
Olympiads Olympiads
in Informaticsin Informatics19

IOI
InternatIonal olympIad In InformatIcs

I S S N 1 8 2 2 - 7 7 3 2

Olympiads
in Informatics
Volume 19, 2025

O
lym

piads in Inform
atics V

olum
e 19, 2025

Olympiads
in Informatics
Volume 19, 2025

G. AUDRITO, L. LAURA, A. ORLANDI, D. OSTUNI, R. RIZZI, L. VERSARI
Interactive Problem Solving in the Classroom: Experiences with Turing Arena
Light in Competitive Programming Education

1

P. DIETRICH, B. KOSTKA
Virtual Time Measurement in Programming Contests

27

M. DOLINSKY
Strategy and Tactics for Introducing Generative Artificial Intelligence into the
Instrumental Distance Learning System DL.GSU.BY

35
J. GAL-EZER, D. ZOHAR, A. ROLNIK

International Science Olympiads: The Israeli Teams

45
Y. GULBAHAR, T. ÖZTÜRK, V. DAGIENĖ, M. PARVIAINEN, I. GÜVEN,
J. BILBAO

Evaluating Interactive Tasks through the Lens of Computational and Algebraic
Thinking, Interactivity Types, and Multimedia Design Principles

63
M. MAREŠ, D. SKÝPALA

Pisek – a Caching Task Preparation System

87
L. MARRONE BERZETTI di BURONZO, N. GAMBIRASIO

Girls in STEM: A Qualitative Analysis of Factors and Actors Impacting on Girls’
Engagement in International Computer Science Competitions

101
P.S. PANKOV, E.S. BUROVA, E.J. BAYALIEVA

Оlympiad Tasks in Changing Environment

115
Y. SU, P. Nie, X. MENG

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery and
Interactive Learning in Competitive Programming

129
T. VERHOEFF

The Olympiad Trap and an Old Trampoline

145

REPORTS
I. SADIGOV

Informatics Curriculum and Programming Competitions: Azerbaijani Experience

159
D. TSEDEVSUREN

Policy Reforms of Informatics Education of Mongolia

177
M.S. TSVETKOVA, V.M. KIRYUKHIN

School Startup in Olympiad in Informatics

189

ISSN 1822-7732

ISSN 1822-7732

INTERNATIONAL OLYMPIAD IN INFORMATICS

VILNIUS UNIVERSITY

OLYMPIADS IN INFORMATICS

Volume 19 2025

Selected papers of
the International Conference joint with

the XXXVII International Olympiad in Informatics
Sucre, Bolivia, July 27 to August 3, 2025

OLYMPIADS IN INFORMATICS

Editor-in-Chief
Valentina Dagienė
Vilnius University, Lithuania, valentina.dagiene@mif.vu.lt

Executive Editors
Mile Jovanov
Sts. Cyril and Methodius University, North Macedonia, mile.jovanov@finki.ukim.mk

Technical Editor
Tatjana Golubovskaja
Vilnius University, Lithuania, tatjana.golubovskaja@mif.vu.lt

International Editorial Board
Benjamin Burton, University of Queensland, Australia, bab@maths.uq.edu.au
Michal Forišek, Comenius University, Bratislava, Slovakia, misof@ksp.sk
Gerald Futschek, Vienna University of Technology, Austria, futschek@ifs.tuwien.ac.at
Marcin Kubica, Warsaw University, Poland, kubica@mimuw.edu.pl
Luigi Laura, Uninettuno University, Rome, Italy, luigi.laura@uninettunouniversity.net
Ville Leppänen, University of Turku, Finland, villelep@cs.utu.fi
Krassimir Manev, New Bulgarian University, Bulgaria, kmanev@nbu.bg
Ágnes Erdősné Németh, Eötvös Loránd University, Hungary, erdosne@inf.elte.hu
Seiichi Tani, Nihon University, Japan, tani.seiichi@nihon-u.ac.jp
Willem van der Vegt, Windesheim University for Applied Sciences, The Netherlands,
 w.van.der.vegt@windesheim.nl

The journal Olympiads in Informatics is an international open access journal devoted to publishing
original research of the highest quality in all aspects of learning and teaching informatics through
olympiads and other competitions.

https://ioinformatics.org/page/ioi-journal

ISSN 1822-7732 (Print)
 2335-8955 (Online)

© International Olympiad in Informatics, 2025
 Vilnius University, 2025
 All rights reserved

Olympiads in Informatics, 2025, Vol. 19, 1–25
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.01

1

Interactive Problem Solving in the Classroom:
Experiences with Turing Arena Light in
Competitive Programming Education

Giorgio AUDRITO1, Luigi LAURA2, Alessio ORLANDI3,
Dario OSTUNI4, Romeo RIZZI5, Luca VERSARI3
1University of Turin, Italy
2International Telematic University Uninettuno, Italy
3Google
4Università degli Studi di Milano, Italy
5Università di Verona, Italy
e-mail: giorgio.audrito@unito.it, luigi.laura@uninettunouniversity.net,
 oalessio@google.com, dario.ostuni@unimi.it, romeo.rizzi@univr.it, veluca@google.com

Abstract. Turing Arena Light (TAlight) is a contest management system designed having in
mind the needs of classroom teaching, rather than competitive programming contests. In TALight
all problems are interactive by default. This means the contestant’s solution for a problem will
always interact with the problem, in real time. In this paper, we discuss our experience of using
Turing Arena light in the course of Competitive Programming, an optional course offered to
students of various LTs and LMs at the Department of Computer Science at the University of
Verona. The course is meant to teach the students how to solve algorithmic problems, by teach-
ing them the most common algorithmic techniques and data structures, and how to actively use
them to solve problems.

Keywords: competitive programming, programming contest, competitive programming educa-
tion.

1. Introduction

Programming contest management systems are the backbone of competitive program-
ming events, handling everything from problem distribution and solution submission to
automated judging and live scoreboarding (Revilla et al., 2008; Maggiolo and Mascel-Maggiolo and Mascel-
lani, 2012; Maggiolo et al., 2014). Over the years, these systems have evolved from
ad-hoc scripts and manual procedures into sophisticated platforms that emphasize se-
curity, scalability, and fairness (Leal and Silva, 2003). Traditional contest systems like
the Programming Contest Control System (PC2), used in ACM ICPC since the 1990s,

G. Audrito et al.2

enabled basic contest operations (login, submissions, judging interface) and were reli-
able for on-site contests. However, many early systems required judges to manually run
solutions or provided limited automation.

Turing Arena Light (TALight) is a new contest management system that distinguishes
itself by focusing on simplicity, interactivity, and flexibility. It was conceived as a light-
weight platform geared toward educational use and practice environments rather than
large-scale contests (https://github.com/turingarena/turingarena). TALight’s
design philosophy is to keep the core system minimal and conceptually simple, del egating
most functionality to problem-specific modules. Uniquely, all problems in TALight are
treated as interactive by default, meaning a contestant’s solution gets connected to and
interacts in with a problem manager program that provides inputs and checks outputs.
The interaction takes place in real-time, while nothing prevents the constant to monitor
the interaction in full while also print-debugging his code or logging everything in lo-
cal. With this, it is quite handy to design interactive problems. And, even with standard
input/output problems, the real commit ment of the problem maker is to provide as much
feedback as possible so that all of the students get their chance to actively learn and no
one is cut out.

2. Related Work

Competitive programming systems can be classified into three main categories, each
serving distinct purposes while sharing some overlapping features.

Contest Management Systems (CMS) are sophisticated platforms specifically de-
signed for formal competitions like the International Olympiad in Informatics (IOI),
ACM-ICPC, or national olympiads. Systems like DOMjudge (Pham and Nguyen, 2019),
CMS (Maggiolo and Mascellani, 2012; Maggiolo et al., 2014), and Kattis (Enstrom
et al., 2011) provide robust infrastructure for high-stakes, in-person events. They fo- provide robust infrastructure for high-stakes, in-person events. They fo-
cus on security, reliability, and scala bility to handle numerous concurrent submissions
while maintaining fair evaluation conditions. These systems typically include features
like real-time scoreboards, detailed analytics for judges, and stringent sandboxing mech-
anisms to ensure solution integrity. CMS platforms prioritize stan dardized evaluation
environments where all participants compete under identical conditions with controlled
resource limitations.

Online Judges serve a broader educational purpose by providing continuous access to
problem-solving opportunities outside formal competitions. Platforms like Codeforces,
LeetCode, and SPOJ host extensive problem libraries that users can attempt at their
own pace. Unlike Contest Management Systems, they emphasize learning progression
through difficulty-ranked challenges, detailed performance statistics, and community
engagement via discussion forums and editorials. While they can host virtual contests,
their primary value lies in self-directed prac tice. Many online judges incorporate gami-
fication elements like ratings, badges, and streaks to motivate continued participation.
Furthermore, since these systems have, in some cases, order of thousands of differ-

Interactive Problem Solving in the Classroom: Experiences with ... 3

ent tasks, there is a vast literature related to the development of recommender systems
able to suggest a suitable task depending on the learner’s abilities (Audrito et al., 2020;
Fantozzi and Laura, 2020, 2021a, 2021b); also the problem of plagiarism is addressed
(Iffath et al., 2021). We refer the interested reader to the surveys of Wasik et al. (2019)
and Watanobe et al. (2022).

Classroom Ad-hoc Tools like Turing Arena Light are specifically tailored for edu-
cational settings where pedagogical considerations outweigh competitive rigor. These
systems prioritize ease of use, interactive problem types, and flexibility to accommodate
diverse learning objectives. Unlike the standardized environments of CMS platforms,
classroom tools often allow students to work in familiar development environments on
their own machines. They typically feature simplified interfaces, immediate feedback
mechanisms, and support for interactive problems that engage students through real-
time interactions. While less suited for large-scale competitions, these tools excel at
reinforcing classroom concepts and providing instructors with meaningful insights into
student progress.

3. Turing Arena Light

In this chapter we introduce Turing Arena light, the spiritual successor of Turing Arena
(https://github.com/turingarena/turingarena). Turing Arena light is a con-
test management system that is designed to be more geared towards the needs of class-
room teaching, rather than competitive programming contests. It strives to be as simple1
as possible, while being very flexible and extensible.

While we will discuss each point in more detail later, as an overview the design of
Turing Arena light focuses on the following aspects:

Simplicity: ● the design of Turing Arena light tries to keep things as simple as pos-
sible, while achieving the desired functionalities. While a meaningful objective
metric for simplicity is hard to define, the current implementation of Turing Arena
light consists of only 2197 lines of code (https://github.com/romeorizzi/
TALight).
Interactivity: ● in Turing Arena light all problems are interactive by default. This
means the contestant’s solution for a problem always interacts in real-time with
the problem. In partic ular, a problem in Turing Arena light is defined by the prob-
lem manager, which is a program that interacts with the contestant’s solution and
gives a verdict at the end of the interaction. By being interactive by default, Turing
Arena light allows a wider range of problems to be implemented with less effort,
while not causing much overhead for non-interactive problems.
Flexibility: ● Turing Arena light is designed to be able to run on all major operating
systems, and allow solutions and problem managers to be written in any program-
ming language, while still being able to guarantee a certain level of security. To

1 Simple might mean very different things, in this context it is conceptual simplicity.

G. Audrito et al.4

achieve this, Turing Arena light only consists of a small core written in Rust (Mat-Mat-
sakis and Klock, 2014), whose main purpose is to spawn the process of the prob-, whose main purpose is to spawn the process of the prob-
lem manager on the server, to spawn the process of the contestant’s solution on its
own machine, and to connect the standard input and output of the two processes.
Thus, the contestants’ code is never run on the server, and the problem manager
can run without a sandbox, being trusted code written by the problem setter.
Extensibility: ● as stated in the previous point, Turing Arena light only consists of
a small core that has the fundamental role of spawning to processes and connect-
ing their standard input and output. All the other functionalities are implemented
by the problem manager itself, possibly using a common library of utilities. This
allows the problem setter to implement any kind of problem, while still being able
to use the same contest management system.

4. Architecture and Design

The fundamental idea behind Turing Arena light is to have two programs that talk to each
other through the standard input and output channels. One of the two programs is the
problem manager, which is a program that interacts with a solution to give it the input
and evaluate its output, and eventually give a verdict. The other program is the solution,
which is the program written by the contestant that is meant to solve the problem.

While this is not too far off from what other contest management systems do, the
two main differences are that in Turing Arena light these two programs run on different
machines, and the interaction between them is done in real-time. This is unlike main-
stream contest management systems, where the two programs run on the same machine
(like in DOMjudge (Eldering et al., 2020), CMS (Maggiolo and Mascellani, 2012) and
Codeforces (https://codeforces.com/)), or where the interaction is not done in
real-time (like in the old Google Code Jam (https://codingcompetitionsonair.
withgoogle.com/#codejam) and Meta Hacker Cup (https://www.facebook.com/
codingcompetitions/hacker-cup)).

In the following subsections we will discuss the components of Turing Arena light
and how they interact with each other. We will start from the problem manager, going
through the server and the client, and finally discussing the user interface.

4.1. Problem Manager

A problem in Turing Arena light is defined as a set of services and a set of attachments.
A service is a program that can be spawned with a set of well-defined parameters, and
that will ultimately interact with the solution. An attachment is a generic file that can be
attached to the problem and downloaded by the contestant, such as the statement of the
problem, or a library that the contestant can use in their solution.

A service defines which parameters it accepts, and the accepted values for each pa-
rameter. Parameters can be either strings or files. Each string parameter has a regular

Interactive Problem Solving in the Classroom: Experiences with ... 5

4.1 Problem manager

%YAML 1.2

public_folder: public

services:

free_sum:

evaluator: [python , free_sum_manager.py]

args:

numbers:

regex: ^(onedigit|twodigits|big)$
default: twodigits

obj:

regex: ^(any|max_product)$
default: any

num_questions:

regex: ^([1 -9]|[1 -2][0 -9]|30)$
default: 10

lang:

regex: ^(hardcoded|hardcoded_ext|en|it)$
default: it

help:

evaluator: [python , help.py]

args:

page:

regex: ^(free_sum|help)$
default: help

lang:

regex: ^(en|it)$
default: it

Fig. 1. Description file for a problem in Turing Arena light

A problem in Turing Arena light is defined as a set of services and a set of attachments. A service
is a program that can be spawned with a set of well-defined parameters, and that will ultimately
interact with the solution. An attachment is a generic file that can be attached to the problem
and downloaded by the contestant, such as the statement of the problem, or a library that the
contestant can use in their solution.

A service defines which parameters it accepts, and the accepted values for each parameter.
Parameters can be either strings or files. Each string parameter has a regular expression that de-
fines the set of accepted values and a default value. Furthermore, a service defines which program
will be invoked with the given parameters: the problem manager (also called the evaluator). The
attachments are just regular files in a folder on the file system.

The description of a problem is contained in a file called meta.yaml, which is a YAML [2]
file. The file contains the description of all the services, and their parameters, and the directory
of the attachments. An example of a meta.yaml file is shown in Figure 1. Thus, a problem in
Turing Arena light is represented by a folder containing a meta.yaml file, and all the files and
subdirectories needed for services and attachments.

Fig. 1. Description file for a problem in Turing Arena light.

Fig. 2. Architecture of Turing Arena light

4.2 Server

After the problem manager, there is the server. The server is the beating heart of Turing Arena
light : its role is to accept incoming connections from the clients, spawn the problem manager
corresponding to the client requested problem and service, passing to it the parameters specified
by the client, and finally connect the standard input and output of the problem manager to the
client.
Note that up to this point, Turing Arena light is merely a specification of how the problem is

defined and how the interaction between the problem manager and the solution should happen.
This opens up the possibility of having multiple implementations of the Turing Arena light
framework, since the specification is very simple and does not require any particular technology,
such as sandboxing.
Currently, there is only one implementation of the Turing Arena light framework, which is

rtal (Rust Turing Arena light). It is written in Rust [23], and it is the reference implementation
of Turing Arena light. The server component, rtald, is a small program that, given a folder
containing problems, listens for incoming connections from the clients, and spawns the correct
problem manager, and relays the standard input and output of the problem manager to the client
via a protocol based on WebSockets [10].

4.3 Client

On the other side of the network7 there is the client. The client is the program that the contestant
runs on their machine to connect to the server and interact with the problem manager. Its role
is to connect to the server, send the request for a problem and a service, send the string and file

7 Which might even be on the same machine, if both the server and the client are running on the same
machine.

Fig. 2. Architecture of Turing Arena light.

G. Audrito et al.6

expression that de fines the set of accepted values and a default value. Furthermore, a
service defines which program will be invoked with the given parameters: the problem
manager (also called the evaluator). The attachments are just regular files in a folder on
the file system.

The description of a problem is contained in a file called meta.yaml, which is a
YAML (Ben-Kiki et al., 2009) file. The file contains the description of all the services,
and their parameters, and the directory of the attachments. An example of a meta.
yaml file is shown in Fig. 1. Thus, a problem in Turing Arena light is represented by
a folder containing a meta.yaml file, and all the files and subdirectories needed for
services and attachments.

4.2. Server

After the problem manager, there is the server. The server is the beating heart of Turing
Arena light: its role is to accept incoming connections from the clients, spawn the prob-
lem manager corresponding to the client requested problem and service, passing to it the
parameters specified by the client, and finally connect the standard input and output of
the problem manager to the client.

Note that up to this point, Turing Arena light is merely a specification of how the
problem is defined and how the interaction between the problem manager and the solu-
tion should happen. This opens up the possibility of having multiple implementations
of the Turing Arena light framework, since the specification is very simple and does not
require any particular technology, such as sandboxing.

Currently, there is only one implementation of the Turing Arena light framework,
which is rtal (Rust Turing Arena light). It is written in Rust (Matsakis and Klock,
2014), and it is the reference implementation of Turing Arena light. The server compo-
nent, rtald, is a small program that, given a folder containing problems, listens for
incoming connections from the clients, and spawns the correct problem manager, and
relays the standard input and output of the problem manager to the client via a protocol
based on WebSockets (Fette and Melnikov, 2011).

4.3. Client

On the other side of the network2 there is the client. The client is the program that the
contestant runs on their machine to connect to the server and interact with the problem
manager. Its role is to connect to the server, send the request for a problem and a ser-
vice, send the string and file parameters for the service, and finally spawn and attach
itself to the standard input and output of the solution running on the local machine of
the contestant.

2 Which might even be on the same machine, if both the server and the client are running on the
same machine.

Interactive Problem Solving in the Classroom: Experiences with ... 7

Once everything is up and running, the client will send the standard output of the
solution to the server, which will relay it to the problem manager, and forward on the
standard input of the solution all the incoming data from the server. Basically, the client
is a proxy that connects the standard input and output of the solution to the server.

Like the server, there is also a rtal component for the client, also called rtal. This
client component is a command line program that takes as parameters the address of the
server, the problem and the service, and the parameters for the service. It also takes the
command to run the solution. The client will then connect to the server, send the request
for the problem and service, and spawn the solution with the given command, proxying
the data between the solution and the server.

4.4. User Interface

As far as the contestant is concerned, what they must do is to write a solution to the
problem in their favourite programming language. The only requirement is that it reads
from the stan dard input and writes to the standard output. To read the problem state-
ment, the contestant can download the attachments of the problem using the client.
The client will download the attachments and save them on the local machine of the
contestant.

Once the solution is ready, the contestant can run the client passing the right param-
eters, including the command to run their solution. The client will then connect to the
server, send the request for the problem and service, and spawn the solution with the
given command. Note that the solution is spawned and run on the local machine of the
contestant, which means that the contestant has full freedom on which files it can read
and write, which resources it can use, and so on. This is unlike other contest management
systems that support real-time interaction, where the solution is run on a sandboxed en-
vironment on the server.

The ability to run the solution on the local machine opens to many possibilities. For
example, the contestant can precompute some large set of data, save it on their machine,
and then use it during the interaction with the problem manager to speed up the computa-
tion. Another example is the potential to use external libraries, multithreading, or even
GPU computation. All of this is possible because the solution is run on the local machine
of the contestant, where they have full control, and not on the server.

5. Implementation Details

As mentioned in the previous section, Turing Arena light currently has only one full
implemen tation, which is Rust Turing Arena light (rtal). Like the name suggests, it is
written in Rust (Matsakis and Klock, 2014). The choice of language was motivated by
the fact that Rust is a systems programming language, and thus it is well suited for writ-
ing low-level programs that need to interact with the operating system and other pro-

G. Audrito et al.8

grams. Furthermore, one key factor is portability: Rust is a compiled language whose
compiled binaries require only minimal external dependencies to run, which makes it
ideal to produce distributable binaries. This is important because Turing Arena light is
meant to be used by students, which might not have the technical knowledge to install
and configure a complex system. Having a single binary that can be downloaded and
run without any configuration is a big advantage.

The implementation of Turing Arena light is split into three components: the server
(rtald), the client (rtal), and the checker (rtalc). All three components share
some common parts. The main one is the problem description definition, also known
as the meta.yaml file. The definition can be found in Fig. 3. The definition is writ-
ten using Rust structures which are then serialized to and deserialized from YAML
using serde (https://serde.rs/), a serialization framework for Rust. rtalc is a
small independent command-line program that takes as input a directory containing the
problem description, and checks that the description is valid and matches the content
of the directory. This is useful to check that the problem description is correct before
uploading it to the server.

pub const META: &str = "meta.yaml";

#[derive(Debug , Clone , Serialize , Deserialize)]

pub struct Problem {

pub name: String ,

pub root: PathBuf ,

pub meta: Meta ,

}

#[derive(Debug , Default , Serialize , Deserialize , Clone)]

pub struct Meta {

pub public_folder: PathBuf ,

pub services: HashMap <String , Service >,

}

#[derive(Debug , Default , Serialize , Deserialize , Clone)]

pub struct Service {

pub evaluator: Vec <String >,

pub args: Option <HashMap <String , Arg >>,

pub files: Option <Vec <String >>,

}

#[derive(Debug , Serialize , Deserialize , Clone)]

pub struct Arg {

#[serde(with = "serde_regex")]

pub regex: Regex ,

pub default: Option <String >,

}

Fig. 3. Problem description definition in Rust Turing Arena light

parameters for the service, and finally spawn and attach itself to the standard input and output
of the solution running on the local machine of the contestant.
Once everything is up and running, the client will send the standard output of the solution

to the server, which will relay it to the problem manager, and forward on the standard input of
the solution all the incoming data from the server. Basically, the client is a proxy that connects
the standard input and output of the solution to the server.
Like the server, there is also a rtal component for the client, also called rtal. This client

component is a command line program that takes as parameters the address of the server, the
problem and the service, and the parameters for the service. It also takes the command to run
the solution. The client will then connect to the server, send the request for the problem and
service, and spawn the solution with the given command, proxying the data between the solution
and the server.

4.4 User interface

As far as the contestant is concerned, what they must do is to write a solution to the problem
in their favourite programming language. The only requirement is that it reads from the stan-
dard input and writes to the standard output. To read the problem statement, the contestant

Fig. 3. Problem description definition in Rust Turing Arena light.

Interactive Problem Solving in the Classroom: Experiences with ... 9

The two main jobs of the client and the server are process spawning and networking.
For both of these tasks, rtal and rtald use the tokio (https://tokio.rs/) li-
brary, which is a framework for writing asynchronous programs in Rust. For the process
spawning part, there is nothing particularly interesting: the server spawns the problem
manager, and the client spawns the solution. They then, through tokio, manage the chan-
nels of the standard input and output of the spawned processes. All the internal commu-
nication within the server and the client is done using the actor threading model (Hewitt
et al., 1973; Hoare, 1978).

For the networking part, the communication protocol between the server and the
client is based on WebSockets (Fette and Melnikov, 2011). The protocol definition is
shown in Fig. 4. The protocol is based on JSON (Crockford, 2006) messages, which are
serialized and deserialized using serde. These messages are then exchanged between
the server and the client using WebSockets. The interaction between the server and the

pub const MAGIC: &str = "rtal";

pub const VERSION: u64 = 4;

#[derive(Serialize , Deserialize , Debug)]

pub enum Request {

Handshake {

magic: String ,

version: u64 ,

},

MetaList {},

Attachment {

problem: String ,

},

ConnectBegin {

problem: String ,

service: String ,

args: HashMap <String , String >,

tty: bool ,

token: Option <String >,

files: Vec <String >,

},

ConnectStop {},

}

#[derive(Serialize , Deserialize , Debug)]

pub enum Reply {

Handshake { magic: String , version: u64 },

MetaList { meta: HashMap <String , Meta > },

Attachment { status: Result <(), String > },

ConnectBegin { status: Result <Vec <String >, String > },

ConnectStart { status: Result <(), String > },

ConnectStop { status: Result <Vec <String >, String > },

}

Fig. 4. Network protocol definition in Rust Turing Arena light

Both rtal and rtald run their spawned processes in an unsandboxed environment. This
is done to avoid the complexity of sandboxing, but we argue that it does not pose a major
security risk. The reason is that, for the client, the program being run is the contestant’s own
written solution, which is run on their local machine. Thus, the contestant has full control over
the program, and can do whatever they want with it. For the server, the program being run
is the problem manager, which is written by the problem setter. Thus, as long as the problem
setter is trusted, there is no need to sandbox the problem manager. This is usually the case, as
the problem setter is the one who also is responsible for the server where the rtald program is
running. If this is not the case, then rtald can be run in a virtualized environment, such as a
Docker container [24], to mitigate the risk of a bug in the problem manager that could cause
unauthorized access to the server.

Fig. 4. Network protocol definition in Rust Turing Arena light.

G. Audrito et al.10

client is shown in Fig. 2. Using WebSockets enables a client of Turing Arena light to be
implemented as a web application.

Both rtal and rtald run their spawned processes in an unsandboxed environ-
ment. This is done to avoid the complexity of sandboxing, but we argue that it does
not pose a major security risk. The reason is that, for the client, the program being run
is the contestant’s own written solution, which is run on their local machine. Thus, the
contestant has full control over the program, and can do whatever they want with it. For
the server, the program being run is the problem manager, which is written by the prob-
lem setter. Thus, as long as the problem setter is trusted, there is no need to sandbox the
problem manager. This is usually the case, as the problem setter is the one who also is
responsible for the server where the rtald program is running. If this is not the case,
then rtald can be run in a virtualized environment, such as a Docker container (Mer-Mer-
kel et al., 2014), to mitigate the risk of a bug in the problem manager that could cause
unauthorized access to the server.

5.1. Problem Manager Libraries

So far we have discussed the architecture, the design and the implementation of Turing
Arena light. However, we have not yet discussed how the problem manager is imple-
mented. As mentioned in the previous sections, the problem manager is a program that
interacts with the solution, and gives a verdict at the end of the interaction. The problem
manager, just like the solution, has to communicate with its counterpart, which is the
solution, using the standard input and output channels. Thus, the problem manager has
full freedom on how to interact with the solution, as long as it does so using the afore-
mentioned channels.

While this grants the problem maker a great deal of freedom, it also means that the
problem maker has to potentially write a lot of boilerplate code each time they want to
implement a new problem. To mitigate this problem, a problem maker can create a li-
brary of utilities that can be used to implement the problem manager. This library can be
based on a particular style of problems, so that the problem maker can offer a consistent
experience to the contestants.

In our case, we wrote a library called tc.py. A snippet of the library is shown in
Fig. 5. This library allows to write a old-Google-Code-Jam like problem by only writing
the code essential to the problem, and leaving all the boilerplate code to the library. What
the manager has to implement is a function that generates a test case, and a function that
evaluates the solution given by the contestant on a test case. The library will then take
care of the rest, including enforcing the time limit, generating the right number of test
cases, and assigning and storing the score for the solution. Note that with the Turing
Arena light there is no way to enforce the memory limit, as the solution is run on the
local machine of the contestant. However, the time limit can be enforced by measuring
how much time passes between the sending of the input and the receiving of the output.
While this is not a very precise measurement, it is good enough for distinguishing be-
tween solutions that have very different computational complexities.

Interactive Problem Solving in the Classroom: Experiences with ... 11

As the name suggests, the tc.py library is written in Python (Van Rossum et al.,
2007), and it is meant to be used with problem managers written in Python. This works
great for problems where the optimal solution plays well with Python, however in prob-
lems where the performance of the solution is critical, having the problem manager writ-
ten in Python may make the evaluation of the contestant’s output too slow. To mitigate
this problem, we ported the tc.py library to Rust, thus creating the tc.rs library
(https://github.com/dariost/tal-utils-rs). By using Rust as the program-

class TC:

def __init__(self , data , time_limit =1):

self.data = data

self.tl = time_limit

def run(self , gen_tc , check_tc):

output = open(join(environ["TAL_META_OUTPUT_FILES"], "result.txt"), "

w")

total_tc = sum(map(lambda x: x[0], self.data))

print(total_tc , flush=True)

tc_ok = 0

tcn = 1

for subtask in range(len(self.data)):

for tc in range(self.data[subtask][0]):

tc_data = gen_tc (*self.data[subtask][1])

stdout.flush ()

start = time()

try:

ret = check_tc (* tc_data)

msg = None

if isinstance(ret , tuple):

result = ret [0]

msg = ret [1]

else:

result = ret

if time() - start > self.tl:

print(f"Case #{tcn :03}: TLE", file=output)

elif result:

print(f"Case #{tcn :03}: AC", file=output)

tc_ok += 1

else:

print(f"Case #{tcn :03}: WA", file=output)

if msg is not None:

print(file=output)

print(msg , file=output)

print(file=output)

except Exception as e:

print(f"Case #{tcn :03}: RE", file=output)

print(file=stderr)

print("".join(traceback.format_tb(e.__traceback__)), e, file=

stderr)

tcn += 1

print(file=output)

print(f"Score: {tc_ok }/{ total_tc}", file=output)

output.close ()

Fig. 5. Snippet of the python version of the competitive-programming like problem manager library for
Turing Arena light

5.1 Problem manager libraries

So far we have discussed the architecture, the design and the implementation of Turing Arena
light. However, we have not yet discussed how the problem manager is implemented. As mentioned

Fig. 5. Snippet of the python version of the competitive-programming like problem manager
library for Turing Arena light.

G. Audrito et al.12

ming language for the problem manager, the whole execution of the problem manager is
much faster. The functionality of the two libraries is the same, and they are interoperable
with each other. This means that in a single contest, the problem maker can use both
Python and Rust problem managers.

Turing Arena light has no built-in support for saving the results of the contest, as this
job is left to the problem manager. This is done to allow the problem maker to have full
control over how the results are saved. In tc.py and tc.rs we implemented a simple
database that saves the results of the contest in a SQLite (Owens, 2006) database. The
schema of the database is shown in Fig. 6. The database provides a way to save the re-
sults of the contest, and it enables contestants to see their position in the ranking during
the contest, using a service defined in Turing Arena light.

6. Graphical User Interface

The Rust implementation of Turing Arena light only comes with a command line inter-
face for the client. While this is enough to run the contest, it is not very user friendly.
Contestants have to remember the right parameters to pass to the client, and the less
experienced ones might have trouble working with a terminal. To mitigate this problem,
a graphical user interface for the client was developed.

A web application was developed as a new client for Turing Arena light (https://
talco-team.github.io/TALightDesktop/). A screenshot of the application is
shown in Fig. 7. It was developed using the Angular framework (Green and Seshadri,
2013), and it is written in TypeScript (https://www.typescriptlang.org/). The

in the previous sections, the problem manager is a program that interacts with the solution, and
gives a verdict at the end of the interaction. The problem manager, just like the solution, has to
communicate with its counterpart, which is the solution, using the standard input and output
channels. Thus, the problem manager has full freedom on how to interact with the solution, as
long as it does so using the aforementioned channels.

While this grants the problem maker a great deal of freedom, it also means that the problem
maker has to potentially write a lot of boilerplate code each time they want to implement a new
problem. To mitigate this problem, a problem maker can create a library of utilities that can
be used to implement the problem manager. This library can be based on a particular style of
problems, so that the problem maker can offer a consistent experience to the contestants.

In our case, we wrote a library called tc.py. A snippet of the library is shown in Figure 5. This
library allows to write a old-Google-Code-Jam like problem by only writing the code essential
to the problem, and leaving all the boilerplate code to the library. What the manager has to
implement is a function that generates a test case, and a function that evaluates the solution
given by the contestant on a test case. The library will then take care of the rest, including
enforcing the time limit, generating the right number of test cases, and assigning and storing
the score for the solution. Note that with the Turing Arena light there is no way to enforce the
memory limit, as the solution is run on the local machine of the contestant. However, the time
limit can be enforced by measuring how much time passes between the sending of the input and
the receiving of the output. While this is not a very precise measurement, it is good enough for
distinguishing between solutions that have very different computational complexities.

As the name suggests, the tc.py library is written in Python [38], and it is meant to be used
with problem managers written in Python. This works great for problems where the optimal
solution plays well with Python, however in problems where the performance of the solution
is critical, having the problem manager written in Python may make the evaluation of the
contestant’s output too slow. To mitigate this problem, we ported the tc.py library to Rust,

CREATE TABLE users (

id TEXT PRIMARY KEY ,

name TEXT NOT NULL ,

other TEXT

);

CREATE TABLE problems (

name TEXT PRIMARY KEY

);

CREATE TABLE submissions (

id INTEGER PRIMARY KEY ,

user_id TEXT NOT NULL ,

problem TEXT NOT NULL ,

score INTEGER NOT NULL ,

source BLOB NOT NULL ,

address TEXT ,

FOREIGN KEY (user_id) REFERENCES users(id),

FOREIGN KEY (problem) REFERENCES problems(name)

);

Fig. 6. SQLite schema for database used by tc.py and tc.rs
Fig. 6. SQLite schema for database used by tc.py and tc.rs.

Interactive Problem Solving in the Classroom: Experiences with ... 13

peculiar thing about this application is that aside from offering all the functionalities of
the command line client, it also offers a way to write the solution directly in the browser.
Not only that, but the solution is run directly in the browser, without the need to install
any additional software. This functionality is currently only available for Python solu-
tions, but it could be extended to other languages as well. To do this, the Python in-
terpreter has been compiled to JavaScript, using Pyodide (https://pyodide.org/).
This allows to run Python code directly in the browser. Thus, the contestant can do
everything from an integrated environment in its browser.

Aside from running the solution in the browser, the web application also imple-
ments an emulated file system within the browser. This allows the contestant to send file
parameters and receive file attachments and file outputs, all from the browser. Another
useful feature that derives from having a file system is the ability to save and restore
the working environment. This is useful for example when the contestant is working
on a problem, and they want to save their progress and continue working on it later.
Another scenario is when a template is provided to the contestant, and they can start
working directly on it. The file system can be exported as a tar archive, or can be stored
in the cloud using either GitHub (https://github.com/), Google Drive (https://
drive.google.com/), or OneDrive (https://onedrive.live.com/). They can be
later imported back from a tar archive or from the cloud, specifically from GitHub.

7. Experience in the Classroom

Turing Arena light has seen a good amount of use in some of the courses of the Com-
puter Science department at the University of Verona. In particular, it has been used in

Fig. 7. Graphical user interface of Turing Arena light.

G. Audrito et al.14

the courses of Algorithms and Data Structures, Operations Research and Competitive
Programming. In this section we will discuss the experience of using Turing Arena light
in the course of Competitive Programming.

The course of Competitive Programming is a course that is offered to the students
of the department of Computer Science at the University of Verona. The course is
meant to teach the students how to solve algorithmic problems, by teaching them the
most common algorithmic techniques and data structures, and how to use them to
solve problems. The course is structured in two parts: the first part is a series of lec-
tures where the theory is explained, and the second part is a series of practical lessons
where the students are given problems to solve, and they have to write a solution to
the problem.

The practical lessons are done in a computer lab, where the students have access to
a computer with the Turing Arena light client (rtal) installed. We prepared a body of
problems that the students can solve, and we give them a problem to solve during each
lesson. The problems are themed around the topic of the lecture, so that the students
can practice the theory they learned during the lecture. The students have access to the
problems both during the lesson, and at home, so that they can practice on their own. To
achieve this, we have a server running rtald that is accessible from the Internet, and
the students can connect to it from the client. The whole implementation of Rust Turing
Arena light is released under the MPL-2.0 license, which allows the students to down-
load and use the client and the server for free.

Particular emphasis has been put on interactive problems. Since Turing Arena light
allows to implement interactive problems with little effort, and they are kind of scarce
in other contest management systems, we decided to focus on them. In particular, focus-
ing on interactive problems allows us to give the students problems that do not focus on
the time to compute the solution, but rather on the ability to interact with the problem
manager or how many queries they can make. The kind of problems that are best suited
for this are problems that involve some kind of game, where the contestant has to play
against the problem manager. Another format is where the contestant has to guess some
hidden information, and the problem manager gives hints to the contestant. In both cases
the problem gives the contestant a sense of playing a game, rather than solving a prob-
lem, which is a good way to keep the students engaged.

Retaining the students’ attention is more difficult in a classroom setting rather than
in a competitive programming contest. In a contest, the contestants are motivated by the
fact that they are competing against other contestants, and they want to win. Thus, they
challenge them selves, they can be motivated to solve problems and learn on their own.
In a classroom setting, the students are usually only motivated by the fact that they have
to pass the exam, and they are not motivated to learn anything more than what is needed
for that. Thus, it is important to keep the students engaged and make them interested
about the topic, in order for them to then be motivated to learn more on their own. Inter-
active problems are a way to move towards this goal, as they can be more engaging than
other kinds of problems.

As an example of such a problem, following this paragraph there is a problem that
was given in the first laboratory lesson of the course.

Interactive Problem Solving in the Classroom: Experiences with ... 15

Anna and Barbara’s game Anna and Barbara discovered a new game: it is played on
a vector of natural numbers. The first player picks a number from one end and takes
it, then the second player does the same, and the game continues like this until the vector
becomes empty. The player whose sum of the numbers taken is greater.

Anna always likes to play as the first player, while Barbara always wants to always
go second. You want to play a game, but you have already seen the vector that will be
used. Use this information to choose who to play against in so that you are sure not to
lose and win the game!
Assumptions The following size are present, where the default is big:

- small: = 8, () = 20.
- big: = 50, () = 106

The sum of the values of is always odd.
The time limit for testcase is 5 seconds.

Interaction The first line contains , the number of games that will be played. In each
game you are given on the first line , and on the second line the vector of natural
separated by space. At this point it is your turn, write 0 if you want to play first, or 1 if
you want to play second. The game starts with the first player and alternates players until
all numbers have been taken. The player whose turn it is must write L or R followed by a
carriage return depending on whether he or she wants to choose the number furthest left
or the one furthest to the right.

To get AC you must win the game. It is always possible to win the game by some
choice of which player to be and the moves to make, regardless of what the opponent
will do.

Example Lines beginning with < are those sent by the server, those that begin with >
are those sent by the client.

< 2
< 4
< 0 8 5 4
> 0
> R
< R
> R
< L
< 4
< 7 4 5 3
> 1
< R
> L
< R
> L

G. Audrito et al.16

7.1. Exams

Aside from the laboratory lessons, Turing Arena light has also been used for the exams
of the course. The exam is structured in a fashion similar to a competitive program-
ming contest: the students are given three problems to solve, each worth 100 points,
and they have four hours to solve them. The exam is taken in a computer lab, where the
students have access to a computer with the Turing Arena light client (rtal) installed,
other than the usual tools for programming, like an editor, a C++ compiler and a Python
interpreter. The students are allowed to use any programming language they want, and
they can use any piece of documentation they want, as long as they do not communicate
with other students. However, they do not have internet access, so they cannot look up
solutions online, or use other fancy tools, like GitHub Copilot (https://copilot.
github.com/).

In the one academic year the course was offered, we administered five exam ses-
sions. At the end of each session, the results were published, having a randomly generat-
ed identifier for each student3. The results of the exams are shown in Figures 8, 9, 10, 11
and 12. As shown in the figures, the total number of students that took the exam across
all sessions is 31. The participation to the exam started low, with only 4 students taking
the first exam, but it increased over time, with 12 students taking the last exam. Students
were allowed to take the exam multiple times, and some of them did, since they could
improve their score by taking the exam again, and keeping the best score. The results of
the exams become better over time, as the students got more opportunities to practice
and become accustomed with the kind of problems that were given.

3 If a student took the exam multiple times, they would have a different identifier each time.

Fig. 8. Results of the 6th of February 2023 exam

has been compiled to JavaScript, using Pyodide [29]. This allows to run Python code directly
in the browser. Thus, the contestant can do everything from an integrated environment in its
browser.
Aside from running the solution in the browser, the web application also implements an

emulated file system within the browser. This allows the contestant to send file parameters
and receive file attachments and file outputs, all from the browser. Another useful feature that
derives from having a file system is the ability to save and restore the working environment. This
is useful for example when the contestant is working on a problem, and they want to save their
progress and continue working on it later. Another scenario is when a template is provided to the
contestant, and they can start working directly on it. The file system can be exported as a tar
archive, or can be stored in the cloud using either GitHub [11], Google Drive [14], or OneDrive
[26]. They can be later imported back from a tar archive or from the cloud, specifically from
GitHub.

7 Experience in the classroom

Turing Arena light has seen a good amount of use in some of the courses of the Computer
Science department at the University of Verona. In particular, it has been used in the courses
of Algorithms and Data Structures, Operations Research and Competitive Programming. In this
section we will discuss the experience of using Turing Arena light in the course of Competitive
Programming.
The course of Competitive Programming is a course that is offered to the students of the

department of Computer Science at the University of Verona. The course is meant to teach the
students how to solve algorithmic problems, by teaching them the most common algorithmic
techniques and data structures, and how to use them to solve problems. The course is structured
in two parts: the first part is a series of lectures where the theory is explained, and the second

Fig. 8. Results of the 6th of February 2023 exam.

Interactive Problem Solving in the Classroom: Experiences with ... 17

As an example of the problems given in the exam, following this paragraph there is
a problem that was given in the exam session of the 22nd of June 2023.
Plumbing Luigi has begun his new adventure as a plumber, and now he is faced with
his first job. In an old building there is a piping system that connects by joints the various
apartments. Specifically, in this system there are joints connected by pipes, and each pipe
is connected to two joints. Between each pair of joints there is a piping path connecting
them, and the number of pipes is − 1. Each pipe has some length i.

Fig. 9. Results of the 21st of February 2023 exam

part is a series of practical lessons where the students are given problems to solve, and they have
to write a solution to the problem.
The practical lessons are done in a computer lab, where the students have access to a computer

with the Turing Arena light client (rtal) installed. We prepared a body of problems that the
students can solve, and we give them a problem to solve during each lesson. The problems are
themed around the topic of the lecture, so that the students can practice the theory they learned
during the lecture. The students have access to the problems both during the lesson, and at
home, so that they can practice on their own. To achieve this, we have a server running rtald

that is accessible from the Internet, and the students can connect to it from the client. The whole
implementation of Rust Turing Arena light is released under the MPL-2.0 license, which allows
the students to download and use the client and the server for free.
Particular emphasis has been put on interactive problems. Since Turing Arena light allows

to implement interactive problems with little effort, and they are kind of scarce in other contest
management systems, we decided to focus on them. In particular, focusing on interactive problems
allows us to give the students problems that do not focus on the time to compute the solution,
but rather on the ability to interact with the problem manager or how many queries they can
make. The kind of problems that are best suited for this are problems that involve some kind of
game, where the contestant has to play against the problem manager. Another format is where
the contestant has to guess some hidden information, and the problem manager gives hints to
the contestant. In both cases the problem gives the contestant a sense of playing a game, rather
than solving a problem, which is a good way to keep the students engaged.
Retaining the students’ attention is more difficult in a classroom setting rather than in a

competitive programming contest. In a contest, the contestants are motivated by the fact that
they are competing against other contestants, and they want to win. Thus, they challenge them-
selves, they can be motivated to solve problems and learn on their own. In a classroom setting,
the students are usually only motivated by the fact that they have to pass the exam, and they
are not motivated to learn anything more than what is needed for that. Thus, it is important to

Fig. 9. Results of the 21st of February 2023 exam.

Fig. 10. Results of the 27th of March 2023 exam

keep the students engaged and make them interested about the topic, in order for them to then
be motivated to learn more on their own. Interactive problems are a way to move towards this
goal, as they can be more engaging than other kinds of problems.
As an example of such a problem, following this paragraph there is a problem that was given

in the first laboratory lesson of the course.

Anna and Barbara’s game Anna and Barbara discovered a new game: it is played on a V
vector of n natural numbers. The first player picks a number from one end and takes it, then the
second player does the same, and the game continues like this until the vector becomes empty.
The player whose sum of the numbers taken is greater.
Anna always likes to play as the first player, while Barbara always wants to always go second.

You want to play a game, but you have already seen the vector that will be used. Use this
information to choose who to play against in so that you are sure not to lose and win the game!

Assumptions The following size are present, where the default is big:

– small: n <= 8, max(V) <= 20.
– big: n <= 50, max(V) <= 106

The sum of the values of V is always odd.
The time limit for testcase is 5 seconds.

Interaction The first line contains T , the number of games that will be played. In each game
you are given on the first line n, and on the second line the vector V of natural separated by
space. At this point it is your turn, write 0 if you want to play first, or 1 if you want to play
second. The game starts with the first player and alternates players until all numbers have been
taken. The player whose turn it is must write L or R followed by a carriage return depending on
whether he or she wants to choose the number furthest left or the one furthest to the right.

Fig. 10. Results of the 27th of March 2023 exam.

G. Audrito et al.18

Luigi was called to calculate the total length of the piping system. However, Luigi
does not have a diagram of the system, but he can measure the total length between two
joints by running water between the two joints and measuring the time it takes to travel
the path, thus measuring its length.

Luigi wants to finish the job as soon as possible so that he can move on to the next
one, so he wants to calculate the total length of the piping system with as few measure-

Fig. 11. Results of the 22nd of June 2023 exam

To get AC you must win the game. It is always possible to win the game by some choice of
which player to be and the moves to make, regardless of what the opponent will do.

Example Lines beginning with < are those sent by the server, those that begin with > are those
sent by the client.

< 2

< 4

< 0 8 5 4

> 0

> R

< R

> R

< L

< 4

< 7 4 5 3

> 1

< R

> L

< R

> L

7.1 Exams

Aside from the laboratory lessons, Turing Arena light has also been used for the exams of the
course. The exam is structured in a fashion similar to a competitive programming contest: the
students are given three problems to solve, each worth 100 points, and they have four hours to
solve them. The exam is taken in a computer lab, where the students have access to a computer

Fig. 11. Results of the 22nd of June 2023 exam.

Fig. 12. Results of the 6th of July 2023 exam

with the Turing Arena light client (rtal) installed, other than the usual tools for programming,
like an editor, a C++ compiler and a Python interpreter. The students are allowed to use any
programming language they want, and they can use any piece of documentation they want, as
long as they do not communicate with other students. However, they do not have internet access,
so they cannot look up solutions online, or use other fancy tools, like GitHub Copilot [12].
In the one academic year the course was offered, we administered five exam sessions. At the

end of each session, the results were published, having a randomly generated identifier for each
student8. The results of the exams are shown in Figures 8, 9, 10, 11 and 12. As shown in the
figures, the total number of students that took the exam across all sessions is 31. The participation
to the exam started low, with only 4 students taking the first exam, but it increased over time,
with 12 students taking the last exam. Students were allowed to take the exam multiple times,
and some of them did, since they could improve their score by taking the exam again, and
keeping the best score. The results of the exams become better over time, as the students got
more opportunities to practice and become accustomed with the kind of problems that were
given.
As an example of the problems given in the exam, following this paragraph there is a problem

that was given in the exam session of the 22nd of June 2023.

Plumbing Luigi has begun his new adventure as a plumber, and now he is faced with his first
job. In an old building there is a piping system that connects by joints the various apartments.
Specifically, in this system there are n joints connected by pipes, and each pipe is connected to
two joints. Between each pair of joints there is a piping path connecting them, and the number
of pipes is n− 1. Each pipe has some length Li.
Luigi was called to calculate the total length of the piping system. However, Luigi does not

have a diagram of the system, but he can measure the total length between two joints by running

8 If a student took the exam multiple times, they would have a different identifier each time.

Fig. 12. Results of the 6th of July 2023 exam.

Interactive Problem Solving in the Classroom: Experiences with ... 19

ments as possible. Help him take the minimum number of measurements needed to cal-
culate the total length of the piping system.

Assumptions The following size are present, where the default is big:

- tiny [30 points]: = 45, each joint is connected to at most 2 pipes
- small [30 points]: = 45
- big [40 points]: = 50

The maximum number of measurements that Luigi can make is 1000.
For each pipe , i is an integer between 1 and 10000.

Interaction The first line contains , the number of testcases to be solved. This is fol-
lowed by instances of the problem.

In each instance, initially the server sends , the number of joints. Next, the client
can make two kinds of requests:

- ? u v: the client asks for the path length between joints and .
- ! l: the client communicates the total length of the pipeline system, which is .

Whenever the client makes a request of type ? u v, the server responds with an
integer, which is the length of the path between joints and .

The client can make at most 1000 requests of type ? u v, after which it must make
a request of type ! l to terminate the interaction of the current instance.

Technical details While this problem has no time limit, sending 1000 queries and re-
ceiving as many responses can take a non-negligible amount of time.

However, it is possible to send queries in batches: if you do not need to know the
result of the current query to send the next one, you can send all queries, and only after
sending them do an explicit flush of the standard output.

In this way, all queries will be sent as a single packet, and all responses will be re-
ceived as a single packet, greatly reducing communication time.

Example Lines beginning with < are those sent by the server, those that begin with >
are those sent by the client.

< 1
< 3
> ? 0 1
< 4
> ? 0 2
< 2
> ? 1 2
< 6
> ! 6

Technical details While this problem has no time limit, sending 1000 queries and re-
ceiving as many responses can take a non-negligible amount of time.

G. Audrito et al.20

However, it is possible to send queries in batches: if you do not need to know the
result of the current query to send the next one, you can send all queries, and only after
sending them do an explicit flush of the standard output.

In this way, all queries will be sent as a single packet, and all responses will be re-
ceived as a single packet, greatly reducing communication time.

Example Lines beginning with < are those sent by the server, those that begin with >
are those sent by the client.

< 1
< 3
> ? 0 1
< 4
> ? 0 2
< 2
> ? 1 2
< 6
> ! 6

7.2. Survey

After all the exams were administered, we asked the students to fill in a survey about
their experience with Turing Arena light. The survey was anonymous, and it was done
using Google Forms (https://www.google.com/forms/about/). The survey con-
sisted of five questions:

How much did you like the problems available in Turing Arena light (rtal)? ●
How difficult did you find the problems proposed with Turing Arena light (rtal)? ●
Did you find the interactive problems more interesting than the regular ones? ●
How hard was to use Turing Arena light (rtal)? ●
How strongly would you like for Turing Arena light to have a graphical user in- ●
terface?

These questions were chosen to get a general idea of how the students felt about Tur-
ing Arena light, and to check if initial goals of Turing Arena light were being met. Note
that this survey was conducted before the graphical user interface was available, so the
last question was meant to check if the work being done on the graphical user interface
was worth it.

The responses for the first question are shown in Fig. 13. As can be seen from ●
the results, the students liked the problems available in Turing Arena light. The
average score is 4.07, which means that the problems were liked by the stu-
dents.
The responses for the second question are shown in Fig. 14. As can be seen from ●
the results, the students found the problems proposed with Turing Arena light to
be of slightly above-medium difficulty. The average score is 3.67, which means

Interactive Problem Solving in the Classroom: Experiences with ... 21

that the problems were not too difficult, but they were not too easy either, al-
though they were slightly on the hard side.
The responses for the third question are shown in Fig. 15. As can be seen from ●
the results, the students found the interactive problems to be more interesting
than the regular ones. The average score is 3.80, which reinforces the idea that
interactive problems are more engaging than regular ones.
The responses for the fourth question are shown in Fig. 16. As can be seen from ●
the results, the students found Turing Arena light to be easy to use. The average
score is 2.20, which means that for the sample of students that took the survey,
Turing Arena light did not pose any particular difficulty.
The responses for the fifth and final question are shown in Fig. 17. As can ●
be seen from the results, the students are kind of split whether they would
like Turing Arena light to have a graphical user interface. The average score is
2.93, which means that the students are indifferent on average about wanting a
graphical user interface, although there are some students that would strongly
like it.

Fig. 13. Answers of question 1: How much did you
like the problems available in Turing Arena light
(rtal)?

Fig. 14. Answers of question 2: How difficult did
you find the problems proposed with Turing Arena
light (rtal)?

Technical details While this problem has no time limit, sending 1000 queries and receiving as
many responses can take a non-negligible amount of time.

However, it is possible to send queries in batches: if you do not need to know the result of
the current query to send the next one, you can send all queries, and only after sending them do
an explicit flush of the standard output.

In this way, all queries will be sent as a single packet, and all responses will be received as a
single packet, greatly reducing communication time.

Example Lines beginning with < are those sent by the server, those that begin with > are those
sent by the client.

< 1

< 3

> ? 0 1

< 4

> ? 0 2

< 2

> ? 1 2

< 6

> ! 6

7.2 Survey

After all the exams were administered, we asked the students to fill in a survey about their
experience with Turing Arena light. The survey was anonymous, and it was done using Google
Forms [15]. The survey consisted of five questions:

– How much did you like the problems available in Turing Arena light (rtal)?

– How difficult did you find the problems proposed with Turing Arena light (rtal)?

– Did you find the interactive problems more interesting than the regular ones?

– How hard was to use Turing Arena light (rtal)?

– How strongly would you like for Turing Arena light to have a graphical user interface?

Fig. 13. Answers of question 1: How much did you like
the problems available in Turing Arena light (rtal)?

Fig. 13. Answers of question 1: How much did you
like the problems available in Turing Arena light
(rtal)?

Fig. 14. Answers of question 2: How difficult did
you find the problems proposed with Turing Arena
light (rtal)?

Technical details While this problem has no time limit, sending 1000 queries and receiving as
many responses can take a non-negligible amount of time.

However, it is possible to send queries in batches: if you do not need to know the result of
the current query to send the next one, you can send all queries, and only after sending them do
an explicit flush of the standard output.

In this way, all queries will be sent as a single packet, and all responses will be received as a
single packet, greatly reducing communication time.

Example Lines beginning with < are those sent by the server, those that begin with > are those
sent by the client.

< 1

< 3

> ? 0 1

< 4

> ? 0 2

< 2

> ? 1 2

< 6

> ! 6

7.2 Survey

After all the exams were administered, we asked the students to fill in a survey about their
experience with Turing Arena light. The survey was anonymous, and it was done using Google
Forms [15]. The survey consisted of five questions:

– How much did you like the problems available in Turing Arena light (rtal)?

– How difficult did you find the problems proposed with Turing Arena light (rtal)?

– Did you find the interactive problems more interesting than the regular ones?

– How hard was to use Turing Arena light (rtal)?

– How strongly would you like for Turing Arena light to have a graphical user interface?

Fig. 14. Answers of question 2: How difficult did you find
the problems proposed with Turing Arena light (rtal)?

G. Audrito et al.22

Fig. 15. Answers of question 3: Did you find the
interactive problems more interesting than the reg-
ular ones?

Fig. 16. Answers of question 4: How hard was to
use Turing Arena light (rtal)?

These questions were chosen to get a general idea of how the students felt about Turing Arena
light, and to check if initial goals of Turing Arena light were being met. Note that this survey
was conducted before the graphical user interface was available, so the last question was meant
to check if the work being done on the graphical user interface was worth it.

– The responses for the first question are shown in Figure 13. As can be seen from the results,
the students liked the problems available in Turing Arena light. The average score is 4.07,
which means that the problems were liked by the students.

– The responses for the second question are shown in Figure 14. As can be seen from the
results, the students found the problems proposed with Turing Arena light to be of slightly-
above-medium difficulty. The average score is 3.67, which means that the problems were not
too difficult, but they were not too easy either, although they were slightly on the hard side.

– The responses for the third question are shown in Figure 15. As can be seen from the results,
the students found the interactive problems to be more interesting than the regular ones. The
average score is 3.80, which reinforces the idea that interactive problems are more engaging
than regular ones.

– The responses for the fourth question are shown in Figure 16. As can be seen from the results,
the students found Turing Arena light to be easy to use. The average score is 2.20, which
means that for the sample of students that took the survey, Turing Arena light did not pose
any particular difficulty.

– The responses for the fifth and final question are shown in Figure 17. As can be seen from
the results, the students are kind of split whether they would like Turing Arena light to
have a graphical user interface. The average score is 2.93, which means that the students
are indifferent on average about wanting a graphical user interface, although there are some
students that would strongly like it.

8 Future directions

Turing Arena light has been developed enough to be used in a real-world classroom setting, and
it has been used in the course of Competitive Programming at the University of Verona. It has
been used for both the laboratory lessons and the exams, and it has been well received by the
students. However, there is still a debate to be had in which direction Turing Arena light should
move forward.

Fig. 16. Answers of question 4: How hard was to use Turing Arena light (rtal)?

Fig. 15. Answers of question 3: Did you find the
interactive problems more interesting than the reg-
ular ones?

Fig. 16. Answers of question 4: How hard was to
use Turing Arena light (rtal)?

These questions were chosen to get a general idea of how the students felt about Turing Arena
light, and to check if initial goals of Turing Arena light were being met. Note that this survey
was conducted before the graphical user interface was available, so the last question was meant
to check if the work being done on the graphical user interface was worth it.

– The responses for the first question are shown in Figure 13. As can be seen from the results,
the students liked the problems available in Turing Arena light. The average score is 4.07,
which means that the problems were liked by the students.

– The responses for the second question are shown in Figure 14. As can be seen from the
results, the students found the problems proposed with Turing Arena light to be of slightly-
above-medium difficulty. The average score is 3.67, which means that the problems were not
too difficult, but they were not too easy either, although they were slightly on the hard side.

– The responses for the third question are shown in Figure 15. As can be seen from the results,
the students found the interactive problems to be more interesting than the regular ones. The
average score is 3.80, which reinforces the idea that interactive problems are more engaging
than regular ones.

– The responses for the fourth question are shown in Figure 16. As can be seen from the results,
the students found Turing Arena light to be easy to use. The average score is 2.20, which
means that for the sample of students that took the survey, Turing Arena light did not pose
any particular difficulty.

– The responses for the fifth and final question are shown in Figure 17. As can be seen from
the results, the students are kind of split whether they would like Turing Arena light to
have a graphical user interface. The average score is 2.93, which means that the students
are indifferent on average about wanting a graphical user interface, although there are some
students that would strongly like it.

8 Future directions

Turing Arena light has been developed enough to be used in a real-world classroom setting, and
it has been used in the course of Competitive Programming at the University of Verona. It has
been used for both the laboratory lessons and the exams, and it has been well received by the
students. However, there is still a debate to be had in which direction Turing Arena light should
move forward.

Fig. 15. Answers of question 3: Did you find the interactive problems
more interesting than the regular ones?

Fig. 17. Answers of question 5 of the post-exams survey: How strongly would you like for Turing Arena
light to have a graphical user interface?

While the extreme flexibility of Turing Arena light made it possible to experiment a lot with
different kinds of problems, it also made it difficult to find a common ground on which to stan-
dardize some common features, without having all of the problem manager libraries reimplement
them. One such feature is the ability to save the results of the contest. While Turing Arena light
does not have any built-in support for saving the results of the contest, it is possible to implement
it in the problem manager. However, this means that each problem manager has to reimplement
the same functionality, which is not ideal.
Moreover, some feature are implementable only by standardizing them at the core of Turing

Arena light. One such feature is the ability of accurately measuring the time consumed by the
solution. Right now, the time used by the solution is measured by measuring the time between
the sending of the input and the receiving of the output. However, this is not a very accurate
measurement, as it does not take into account the time spent sending and receiving the packets
over the network. This is not a problem when the server and the client are on the same local
network, as it happened in the course of Competitive Programming, but it becomes a problem
when the server and the client are on different networks, such as when the server is on the
Internet.
There is a solution to mitigate this problem, which is to encrypt the data, send it, then

start the clock and send the decryption key. Doing it this way, one can eliminate the time spent
sending the data, which can be a significant amount of time when the input is big. However,
to implement such a solution, it would require to have some mechanism to make the problem
manager and the core communicate on a meta-level to require this functionality from the core.
However, such mechanism could cause a narrowing of the flexibility of Turing Arena light.
While the command-line interface has worked great for the course of Competitive Program-

ming, it is not very probable that it would be fine for other courses with less hardcore students.
Thus, the development of the graphical user interface continues, and it is planned to be tested in
the next iteration of the course of Competitive Programming, and possibly in other courses with
more general students.

Fig. 17. Answers of question 5 of the post-exams survey: How strongly would you
like for Turing Arena light to have a graphical user interface?

Interactive Problem Solving in the Classroom: Experiences with ... 23

8. Future Directions

Turing Arena light has been developed enough to be used in a real-world classroom set-
ting, and it has been used in the course of Competitive Programming at the University of
Verona. It has been used for both the laboratory lessons and the exams, and it has been
well received by the students. However, there is still a debate to be had in which direc-
tion Turing Arena light should move forward.

While the extreme flexibility of Turing Arena light made it possible to experiment
a lot with different kinds of problems, it also made it difficult to find a common ground
on which to stan dardize some common features, without having all of the problem man-
ager libraries reimplement them. One such feature is the ability to save the results of
the contest. While Turing Arena light does not have any built-in support for saving the
results of the contest, it is possible to implement it in the problem manager. However,
this means that each problem manager has to reimplement the same functionality, which
is not ideal.

Moreover, some feature are implementable only by standardizing them at the core
of Turing Arena light. One such feature is the ability of accurately measuring the time
consumed by the solution. Right now, the time used by the solution is measured by mea-
suring the time between the sending of the input and the receiving of the output. How-
ever, this is not a very accurate measurement, as it does not take into account the time
spent sending and receiving the packets over the network. This is not a problem when
the server and the client are on the same local network, as it happened in the course of
Competitive Programming, but it becomes a problem when the server and the client are
on different networks, such as when the server is on the Internet.

There is a solution to mitigate this problem, which is to encrypt the data, send it,
then start the clock and send the decryption key. Doing it this way, one can eliminate the
time spent sending the data, which can be a significant amount of time when the input is
big. However, to implement such a solution, it would require to have some mechanism
to make the problem manager and the core communicate on a meta-level to require this
functionality from the core. However, such mechanism could cause a narrowing of the
flexibility of Turing Arena light.

While the command-line interface has worked great for the course of Competitive
Program ming, it is not very probable that it would be fine for other courses with less
hardcore students. Thus, the development of the graphical user interface continues, and
it is planned to be tested in the next iteration of the course of Competitive Programming,
and possibly in other courses with more general students.

G. Audrito et al.24

References

Audrito, G., Di Mascio, T., Fantozzi, P., Laura, L., Martini, G., Nanni, U., Temperini, M. (2020). Recommend-
ing tasks in online judges. In: Advances in Intelligent Systems and Computing. Cham: Springer International
Publishing, pp. 129–136.

Ben-Kiki, O., Evans, C., Ingerson, B. (2009). Yaml ain’t markup language (yaml™) version 1.1. In: Working
Draft 2008-05 11.

Crockford, D. (2006). The Application/JSON Media Type for Javascript Object Notation (JSON). Tech. rep.
Eldering, J., Kinkhorst, T., van de Warken, P. (2020). DOM Judge–Programming Con test Jury System. 2020.
Enstrom, E., Kreitz, G., Niemela, F., Soderman, P., Kann, V. (2011). Five years with kattis – Using an auto-

mated assessment system in teaching. In: 2011 Frontiers in Education Conference (FIE). IEEE, Oct. 2011,
T3J–1–T3J–6.

Fantozzi, P., Laura, L. (2020). Recommending tasks in Online Judges using Autoencoder neural networks. In:
Olymp. Inform. (Dec. 2020).

Fantozzi, P., Laura, L. (2021a). A dynamic recommender system for online judges based on autoencoder neural
networks. In: Methodologies and Intelligent Systems for Technology Enhanced Learning, 10th International
Conference. Workshops. Advances in intelligent systems and computing. Cham: Springer International Pub-
lishing, pp. 197–205.

Fantozzi, P., Laura, L. (2021b). “Collaborative recommendations in online judges using autoencoder neural net-
works”. In: Advances in Intelligent Systems and Computing. Ad vances in intelligent systems and computing.
Cham: Springer International Publishing, pp. 113–123.

Fette, I., Melnikov, A. (2011). The websocket protocol. In:
Green, B., Seshadri, S. (2013). AngularJS. ” O’Reilly Media, Inc.”
Hewitt, C., Bishop, P., Steiger, R. (1973). A universal modular actor formalism for artificial intelligence. In:

Proceedings of the 3rd International Joint Conference on Artificial Intelligence, pp. 235–245.
Hoare, C.A.R. (1978). Communicating sequential processes. In: Communica tions of the ACM 21.8, pp. 666–

677.
Iffath, F., Kayes, A., Tahsin Rahman, Md., Ferdows, J., Arefin, M., Sabir Hossain, Md. (2021). Online judging

platform utilizing dynamic plagiarism detection facilities. In: Comput. Rev. Esp. Hist. Contab. 10, p. 47.
Leal, J., Silva, F. (2003). Mooshak: a Web-based Multi-site Programming Contest System. Software: Practice

and Experience. 33, 567–581.
Maggiolo, S., Mascellani, G. (2012). Introducing CMS: A Contest Management System. In: Olympiads in In-

formatics, 6 (2012).
Maggiolo, S., Mascellani, G., Wehrstedt, L. (2014). CMS: a Growing Grading System. In: Olympiads in Infor-

matics, 123.
Matsakis, N.D., Klock, F.S. (2014). The rust language. ACM SIGAda Ada Letters, 34(3), 103–104.
Merkel, D. et al. (2014). Docker: lightweight linux containers for consistent development and deployment.

Linux j. 239(2), 2.
Owens, M. (2006). The Definitive Guide to SQLite. Springer.
Pham, M.T., Nguyen, T.B. (2019). The DOMJudge based online judge system with plagiarism detection. In:

2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF). IEEE,
pp. 1–6.

Revilla, M.A., Manzoor, S., Liu, R. (2008). Competitive learning in informatics: The UVa online judge experi-
ence. Olympiads in Informatics, 2, 131–148.

Van Rossum, G. et al. (2007). Python Programming Language. In: USENIX annual technical conference.
Vol. 41.1. Santa Clara, CA, pp. 1–36.

Wasik, S., Antczak, M., Badura, J., Laskowski, A., Sternal, T. (2019). A survey on online judge systems and
their applications. en. ACM Comput. Surv. 51(1), pp. 1–34.

Watanobe, Y., Rahman, Md.M., Matsumoto, T., Rage, U.K., Ravikumar, P. (2022). Online Judge System: Requi-
rements, architecture, and experiences. en. Int. J. Softw. Eng. Knowl. Eng., 32(06), 917–946.

Interactive Problem Solving in the Classroom: Experiences with ... 25

G. Audrito is involved in the training of the Italian team for the IOI
since 2006, and since 2013 is the team leader of the Italian team. Since
2014, he has been coordinating the scientific preparation of the OIS
and of the first edition of the IIOT. He got a Ph.D. in Mathematics in
the University of Turin, and currently works as a Junior Lecturer in the
University of Turin.

L. Laura is currently the president of the organizing committee of the
Italian Olympiads in Informatics that he joined in 2012; previously,
since 2007, he was involved in the training of the Italian team for the
IOI. He is Associate Professor of Theoretical Computer Science in
Uninettuno university.

A. Orlandi helped train, tutor and coach potential candidates for,
and members of, the Italian IOI delegation. He is currently a Principal
Engineer at Google Switzerland.

D. Ostuni is currently the president of Associazione Nazionale Pro-
grammazione Competitiva, the largest Italian association of com-
petitive programmers. He has been in the organization of the Italian
Olympiad in Informatics since 2015. He got a Ph.D. in Computer Sci-
ence from the University of Verona, and is currently a postdoctoral
researcher at the University of Milan.

R. Rizzi begun training high school students for their participation
toregional and national competitions of the Italian Olympiads in In-
formatics in 2001. Since 2004 he also begun training and coaching the
Italian team to the International Olympiads in Informatics. He is full
professor of Operations Research in the University of Verona.

L. Versari has been training Italian competitors in Informatics Olym-
piads since 2012 and Swiss competitors since 2023. He is a member
of the IOI ITC, as well as part of the technical committees of mul-
tiple international competitions. He is currently a Software Engineer
at Google.

Olympiads in Informatics, 2025, Vol. 19, 27–33
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.02

27

Virtual Time Measurement in
Programming Contests

Paweł DIETRICH1, Bartosz KOSTKA2
1Google Poland,
2Google Canada
e-mail: p.dietrich@fri.edu.pl, kostka@oij.edu.pl

Abstract: We propose a novel method for measuring time in programming competitions. This
method utilizes the instruc tion count, using existing hardware capabilities, to ensure a fair and
deterministic evaluation. By basing the measurement on the count of executed instructions, the
method becomes less dependent on the underlying machine’s specifications. Further more, it facili-
tates scalability by enabling parallel program exe cution on multiple threads. We also discuss the
adoption of this method in various Polish competitions.

Keywords: virtualized time measurement, hardware performance counters, deterministic program
evaluation, programming contest judging systems.

1. Introduction

The goal of this paper is to share a novel approach to measure execution time of par-
ticipants’ submissions developed for Polish Olympiad in Informatics (POI). The authors
also share their experience with using this approach in a production environment.

Traditionally, competitive programming problems challenge participants to write a pro-
gram that performs computations and that execution is restricted by certain time and memory
limits. The memory footprint of the program is straightforward to measure, as the approach
to handling memory has not changed in years. On the other hand, there are multiple CPU
architectures, and within a single architecture, there are different revisions of processors. Par-
ticipant submissions can run faster or slower depending on the clock speed, cache sizes, CPU
die layout, memory controller latency, and many other factors.

Organizers wanting to provide consistent judging verdicts using standard time mea-
surement techniques need to maintain a uniform fleet of judging ma chines and carefully
control their software. To achieve time measurement accu racy within an error margin
of a few percent, only one program can be judged on each judging machine. This ap-
proach also disallows the use of shared hardware (e.g., cloud machines) due to “noisy
neighbor” problems. The requirement to use physical machines is usually costly, and this

P. Dietrich, B. Kostka28

approach often wastes signifi cant resources, since today’s machines have multiple CPU
cores. However, to maintain the time measurement accuracy, only one submission can
be judged at a time.

2. Implementations

There were multiple iterations of the mechanism that we use today for time measure-
ment in Polish competitions. The first version of the tool called oitime tool Acedański
(2009) used Intel’s library PinLuk et al. (2005). The current version used in POI is called
sio2jailDubiel (2018) was based on perf API.

The first tool was limited to running only on Intel CPUs, and since there are other
popular vendors in the CPU space, we decided to switch to sio2jail exclusively and
abandon oitimetool. This way, we depend on an open-source software component (the
Linux kernel with perf enabled), rather than on a proprietary CPU interface. Both solu-
tions were intentionally implemented to calculate the same time for the same programs.
The idea was to make the switch a small technical nuance.

2.1. Using a Linux perf

Modern computer systems are equipped with various ways of collecting and an alyzing
performance data. One of the tools that uses these build-in systems is perf – a powerful
performance analysis tool available on Linux systems. perf was introduced as a tool for
using the Performance Monitoring Units (PMUs) hard ware in modern processors to col-
lect data on hardware events such as instruction counting or cache monitoring.

The perf tool provides a very simple command line interface. For example:

2 Implementations
There were multiple iterations of the mechanism that we use today for time
measurement in Polish competitions. The first version of the tool called oitime-
toolAcedański (2009) used Intel’s library PinLuk et al. (2005). The current
version used in POI is called sio2jailDubiel (n.d.) was based on perf API.

The first tool was limited to running only on Intel CPUs, and since there
are other popular vendors in the CPU space, we decided to switch to sio2jail
exclusively and abandon oitimetool. This way, we depend on an open-source
software component (the Linux kernel with perf enabled), rather than on a
proprietary CPU interface. Both solutions were intentionally implemented to
calculate the same time for the same programs. The idea was to make the switch
a small technical nuance.

2.1 Using a Linux perf
Modern computer systems are equipped with various ways of collecting and an-
alyzing performance data. One of the tools that uses these build-in systems is
perf – a powerful performance analysis tool available on Linux systems. perf was
introduced as a tool for using the Performance Monitoring Units (PMUs) hard-
ware in modern processors to collect data on hardware events such as instruction
counting or cache monitoring.

The perf tool provides a very simple command line interface. For example:

$ perf stat -B dd if=/dev/zero of=/dev/null count=1000000

1000000+0 records in
1000000+0 records out
512000000 bytes (512 MB) copied, 0.956217 s, 535 MB/s

Performance counter stats for ’dd if=/dev/zero of=/dev/null count=1000000’:

5,099 cache-misses # 0.005 M/sec (scaled from 66.58%)
235,384 cache-references # 0.246 M/sec (scaled from 66.56%)

9,281,660 branch-misses # 3.858 % (scaled from 33.50%)
240,609,766 branches # 251.559 M/sec (scaled from 33.66%)

1,403,561,257 instructions # 0.679 IPC (scaled from 50.23%)
2,066,201,729 cycles # 2160.227 M/sec (scaled from 66.67%)

217 page-faults # 0.000 M/sec
3 CPU-migrations # 0.000 M/sec

83 context-switches # 0.000 M/sec
956.474238 task-clock-msecs # 0.999 CPUs

0.957617512 seconds time elapsed

There are two main metrics, which can be used to model execution time of
the program itself. Thay are cycles and instructions. Esentially different
instructions can take different amount of cycles. From our experiments the ratio
of cycles per particular instruction can vary from CPU to CPU, even within a
particular vendor. For more accurate results for a particular hardware this can

2

Virtual Time Measurement in Programming Contests 29

There are two main metrics, which can be used to model execution time of the pro-
gram itself. They are cycles and instructions. Essentially different instructions
can take different amount of cycles. From our experiments the ratio of cycles per par-
ticular instruction can vary from CPU to CPU, even within a particular vendor. For
more accurate results for a particular hardware this can be a good metric. However our
original goal was to be more hardware agnos tic, that is why we choose the instructions
counter, which counts the literal instructions writted in a program’s binary file as they
are executed.

In sio2jail, we use the perf interface using its C++ API (linux/perf_event.h).
We set up performance monitoring using perf_event_open1 system call. We set it
up to count only instructions from user namespace and only after the execve call (the call
that executes the program to be judged) is executed. Addi tionally, we want to implement
the instruction limit. We use the sample_period and wakeup_events options,
which allow us to receive a notification when the counter values exceed certain values,
to do so.

2.2. sio2jail Usage

The implementation of sio2jail is available in the GitHub repository SIO2Project (2018).
The implementation offers process sandboxing using seccomp The Linux Kernel Docu-
mentation (2025) and instruction counting using above mentiond perf, memory limit
verification and more. There is also a test program available, that was running exactly
1 second on a reference machine and was used to properly scale instructions to seconds
ratio.

Unfortunately we did not provide any default options for the sio2jail binary. The us-
ers are responsible for setting all the options by themselves. We have released an extra
script called oiejq, which sets the sio2jail command line options to print time(1)
like output, which is handy for the participants to use.

3. Pros and Cons

Using this special virtual environment for time measurement can be beneficial for pro-
gramming competitions in a number of ways.

First, the described method, leveraging hardware event counters and po tentially
running in a virtualized environment with namespaces, eliminates the dependency on
the specific physical configuration of the machine evaluating the program. This means
the same program, when run on different machines with varying factors like clock
speed, cache size, or even the number of cores (as suming they don’t impact the algo-

1 https://man7.org/linux/man-pages/man2/perf_event_open.2.html

P. Dietrich, B. Kostka30

rithm’s execution path), will result in highly consistent instruction counts. This has
several advantages:

Flexibility in judging machines. The judging machines do not need to have identi- ●
cal configurations, which is often impractical and costly to achieve, especially for
larger competitions. This also allows for the judging ma chines to differ from the
contestants’ machines. As long as the virtual environment with hardware event
counters is implemented, the measure ment conditions remain consistent.
If the environment is published, the contestants also have an ability to run their ●
programs in the exact same environment. This is extremely helpful for situations
where we cannot guarantee that each contestant has access to the exactly same ma-
chine (for instance in online competitions where contestants participate from their
homes, using their personal machines). The contestants do not have to experiment
how much smaller/faster are the judging machines compared to the machine they
use for the competi tion, as they can run their programs in the exact same environ-
ment.
Problem setters can set the time limits for their problems much easier. They can ●
now execute their model solutions on their own machines and confidently set ap-
propriate time limits for the problems based on the mea sured execution time during
the development stage. This eliminates the need to worry about hardware discrep-
ancies between their machines and the judging environment.
A cornerstone of the proposed method is its guarantee of deterministic and repeat- ●
able execution. This ensures that the measured execution time for a given solution
remains invariant across multiple runs. This characteristic proves particularly ad-
vantageous in scenarios where a solution requires re-evaluation. Under the conven-
tional time measurement approach, such re-judgement can lead to discrepancies in
the verdict, especially when the solution is fairly close to the time limit. Tradition-
ally, this necessitates executing the solution multiple times and verifying if any
of those runs fall within the allotted time. The virtual time measurement method
effectively eliminates this issue. Furthermore, the inherent consistency of virtual
time measurement facilitates the seamless portability of problems across different
platforms, provided they share the same virtual environment. This eliminates the
need for time limit re-calibration for each platform, As we use distinct platforms
for competitions and public training purposes, this feature streamlines problem
reuse across these platforms.
Simplified maintenance and upgrades. If machines need to be replaced in the judg- ●
ing environment, the consistency of time measurement ensures that time limits for
past problems don’t need to be recalculated or re evaluated.

Furthermore, we want to highlight that this virtual environment allows for a high
degree of isolation for program execution. This isolation ensures that the measured ex-
ecution time remains independent of extraneous processes run ning concurrently on the
judging machine. Consequently, the time measurement becomes a more accurate reflec-
tion of the program’s intrinsic performance, as factors like CPU or memory utilization

Virtual Time Measurement in Programming Contests 31

by other processes are effectively elimi nated from the equation. This isolation offers a
significant advantage for both contestant and judging machines. For judging machines,
this isolation permits the parallel execution and evaluation of the programs. By leverag-
ing multi-core processors, the judging process can achieve significant efficiency gains.
Addition ally, the isolation allows us to utilize virtualization techniques without concerns
regarding the impact of other processes running within the same virtual ma chine. This
allows for greater flexibility in resource allocation and management within the judging
environment.

While the proposed method offers substantial advantages, especially for the contest
organizers, we have to acknowledge that it represents an abstraction of real-world time
measurement. While the discrepancies between the stan dard method and the virtual pro-
cessor approach are minimal, we recognize that transitioning to a new time measurement
method necessitates a comprehensive preparation and education effort. Our experience,
encompassing over a decade of utilizing virtual time measurement, instills confidence
that this method will have a negligible impact on the competition experience for the
vast majority of participants, particularly for new contestants. This is contingent upon
pro viding them with appropriate tools to gauge execution time within the virtual envi-
ronment.

The main differences to traditional approach, which can be viewed as cons are as
follows.

Uniform memory access cost. Cache size does not affect the program performance ●
as measured by the number of instructions. It means that programs do not get any
penalty due to cache misses and the whole mem ory basically has a uniform access
cost, which is far from the reality.
A separate realtime limit is still needed. This is because a program, can still hang on ●
a syscall or even just sleep. In such cases no instructions are being executed and a
instruction limit might not be reached at all. However in competitive programming
usage of sleep and complex syscall instructions is very rare.

4. Adoption in Polish Olympiad in Informatics

Recognizing the significance and potential ramifications of adopting a new time mea-
surement system, we prioritized a well-defined implementation process. This ensured
thorough preparation and understanding for both the scientific commit tee and the con-
testants.

During the initial phase (2008), all first-stage submissions for the Polish Olympi-
ad in Informatics (POI) were re-evaluated using the oitimetool after the competition
concluded. This analysis compared results generated by oitimetool with those obtained
through conventional time measurements. The results ex hibited a high degree of sta-
tistical similarity. Notably, correlation coefficients remained consistently above 0.998.
Detailed findings are available in Acedański (2009).

P. Dietrich, B. Kostka32

The oitimetool system’s first official integration into the competition oc curred
during the final stage of the POI in 2011. This stage was chosen strate gically due to the
smaller number of advanced participants (under 100). During this contest, contestant
submissions were judged in two distinct environments:

The traditional environment measuring actual execution time. ●
A virtual environment utilizing the Pin library for instruction counting. ●

The final score for each submission was determined by the higher value ob-
tained from these two executions.

Following the successful pilot run, oitimetool was adopted as the sole judg-
ing environment for the first time during the subsequent school year (2011/2012). All
three stages of the POI utilized oitimetool, resulting in [number] submissions being
judged.

Over the following years, advancements in technology necessitated adapta-
tion. This included the introduction of new hardware-based instruction counting and
mechanisms for program privilege isolation and restriction. To address these changes, a
modernized judging environment named sio2jail was implemented in 2018. Built upon
state-of-the-art technologies of the era, sio2jail addressed some of the limitations pres-
ent in oitimetool.

The virtual environment was not incorporated into other Polish program ming
competitions. Notably, both the Polish Collegiate Programming Competi tion (Aka-
demickie Mistrzostwa Polski w Programowaniu Zespołowym) and the country’s larg-
est open competition, Algorithmic Engagements (Potyczki Algo rytmiczne), opted out.
This decision was based on the belief that both con testants (students and professionals)
and problem-setters in these competitions possess sufficient experience with traditional
real-time measurement approaches, and therefore, the virtual environment wouldn’t
offer them significant benefits.

We believe that this implementation allowed us to use full potential of multi-
threaded judging machines, minimizing impact of the hardware to the scoring and run-
ning costs. On the downsides, it slightly changed the characteristics of a CPU and
treated memory accesses as uniform.

References

Acedański, S. (2009). Wykorzystanie sprzętowych liczników zdarzeń do oceny wydajności algorytmów (Unpub-
lished master’s thesis). University of War saw.

Dubiel, M. W. T. D. P. J. K. W. (2018). Sio2jail, narzędzie do nadzorowania wykonania programów zgłaszanych
w ramach konkursów algorytmicznych. (University of Warsaw, 2018)

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., ... Hazel-wood, K. (2005). Pin: building
customized program analysis tools with dynamic instrumentation. Acm Sigplan Notices, 40(6), 190–200.

SIO2Project. (2018). A tool for supervising execution of programs sub mitted in algorithmic competitions. Re-
trieved from https://github.com/sio2project/sio2jail

The Linux Kernel Documentation. (2025). seccomp: secure computing. Retrieved from
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html

Virtual Time Measurement in Programming Contests 33

P. Dietrich is an engineer at Google Poland working on platforms and
infrastructure. He is serving as a member of Polish Olympiad in In-
formatics Committee focusing on technical details. Paweł is leading
a technical team that organizes most competitive programming events
in Poland. This team was responsible for running contests with time
measurement approach described in this document.

B. Kostka is a software developer at Google Canada. He is actively
involved in the competitive programming community, serving as a
member of the IOI Scientific Committee, Vice President of the Polish
Junior Olympiad in Informatics, and a member of the Universal Cup
organising committee. Pre viously, he worked with many talented stu-
dents who won multiple IOI medals and also organised and set prob-
lems for Google Kick Start.

Olympiads in Informatics, 2025, Vol. 19, 35–44
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.03

35

Strategy and Tactics for Introducing Generative
Artificial Intelligence into the Instrumental
Distance Learning System DL.GSU.BY

Michael DOLINSKY
Faculty of Mathematics and Technologies of Programming, F. Skorina
Gomel State University, Sovetskaya str., 104, Gomel. 246019. Republic of Belarus
e-mail: dolinsky@gsu.by

Abstract. This paper provides the strategy and tactics for introducing generative artificial intel-
ligence (GenAI) into the instrumental distance learning system DL.GSU.BY (hereinafter DL).
The strategy consists of sequential implementation of the following stages of development: creat-
ing opportunities for convenient work with GenAI in the DL system; launching electronic GenAI
students to automatically complete training courses in the DL system and comparative analysis
of the achievements of various GenAIs among themselves and with real students; accumulation
and dissemination of students’ experience working with GenAI; improving the quality of training
using GenAI by developing a system of preprompts for tasks and subjects; further personalization
of training through the implementation of advanced techniques for using GenAI (active GenAI,
Learning By Teaching). GenAI implementation tactics consistently and in detail describe the prac-
tical steps to implement the strategy.

Keywords: generative artificial intelligence, instrumental system for distance learning,
DL.GSU.BY.

1. Introduction

The goal of initial programming training at the university is to develop Computational
Thinking skills (Kaleem, 2024), which includes the following components: abstraction,
decomposition, pattern recognition, algorithmization, debugging.

A significant increase in learning efficiency comes from the use of online platforms
for teaching programming, such as EduCoder (Zhang, 2023; Li, 2023), HTProgramming
(Figueiredo, 2021), Code4brownies (Phan, 2018).

A new stage in increasing the efficiency of initial programming training is associated
with the introduction of generative artificial intelligence (GenAI). Text-based generative
systems have a chatbot as the front end to interact with the user and are based on LLMs –
generative models that can produce new content based on the data they are trained on.

M. Dolinsky36

The most famous LLMs: GPT (OpenAI), Gemini (Google), Llama (Meta), Claude3 (An-
thropic). User interaction with a chat bot is implemented by requests. Herden (2024)
formulated tasks for such chat bots during the initial programming learning process:
explaining basic knowledge, constructing code, explaining code, refactoring code, for-
matting code, checking coding style, commenting on code.

The most effective seems to be the integration of GenAI into online systems for
training and testing programs. TutorBot+ (Martinez-Araneda, 2023, 2024) is integrated
into a WEB training system and an online program testing platform: it allows you to
take the problems, obtain solutions in dialogue with GenAI, and check solutions. KOGI
(Kuramitsu, 2023) is a learning support system that integrates ChatGPT and the Jupyter
framework. KOGI helps the student get advice from ChatGPT in response to errors and
questions. KOGI is implemented in two introductory courses: Algorithms, Data Science.
As a result, there is a significant reduction in the number of unresolved student errors
and teachers receive information about questions and errors.

IPSSC is an intelligent programming scaffolding system based on ChatGPT (Liao,
2024), where instead of direct interaction, students work through three structured mod-
ules: Solution Assessment, Code Assessment, and Free Interaction. In the Solution As-
sessment module, students decompose a complex problem into several simple ones and
abstract them so that the solution is suitable for similar problems (thus, this module
focuses on decomposition and abstraction). In the Code Assessment module, students
design algorithms, write code, and continuously debug code, using the module to iden-
tify errors in the code, then fix them. ChatGPT helps improve algorithms and code. In the
Free Interaction module, students can interact with ChatGPT directly, discussing topics
that are not covered in other modules.

Coding Step (Sarshartehrani, 2024) is a web application designed to teach the basics
of Python programming.

LearningProgrammingWithGPT (Abolnejadian, 2024) – an environment that is used
with students in the CS1 course while studying Python. The course integrates ChatGPT
as a means to support students and instructors in the classroom. The platform acts as a
medium between students and their GenAI instructor, providing personalized educa-
tional material based on preprompts built into student requests.

The developers of CodeHelp (Liffiton, 2023; Denny,2024) claim that programming
teachers have huge problems being able to devote enough time to each student. Code-
Help provides students with on-demand help without offering immediate solutions, an
example of a “Socratic” tutor who avoids revealing solutions directly to the user.

CodeAid (Kazemitabaar, 2024) also avoids direct answers with code, trying to guide
the student to solve the problem.

The developers of NotebookGPT (George, 2024) believe that direct use of ChatGPT
can interfere with student learning, so NotebookGPT gives access to GPT, but does not
return complete solutions, providing: feedback on programming style, explanations of
how pieces of code work, help with debugging code, the ability to see alternative solu-
tions to problems.

AI TA (Lee, 2023) helps students perform decomposition – that is, partitioning tasks
into subtasks. AI TA supports the Subgoal learning, an effective learning strategy that
helps students break down complex problems into subtasks.

Strategy and Tactics for Introducing Generative Artificial Intelligence into the ... 37

StAP-tutor (Roest, 2024) provides recommendation of the next step to solve the
problem. TeachYou+AlgoBo (Jin, 2023) offers an LBT (Learning By Teaching – teach-
ing yourself by teaching someone). Here TeachYou is an LBT environment for teaching
algorithms, and AlgoBo is a learning chatbot for problem solving.

2. Instrumental System of Distance Learning DL.GSU.BY

Since September 1999 at Gomel State University named after F. Skorina, under the lead-
ership of the author, the instrumental distance learning system DL.GSU.BY (hereinafter
DL) has been introduced and developed (Dolinsky, 2022a). The author has been using it
all this time to teach programming to schoolchildren (starting from the first grade) (Do-
linsky, 2016) and first-year students of the Faculty of Mathematics and Programming
Technologies (Dolinsky, 2022b)., as well as to teach first- and second-year students the
basics of digital electronics within the subjects Machine-oriented programming, and
Computer architecture (Dolinsky, 2022c).

DL allows you to take problems and send solutions to these problems for testing in
various programming languages, including Pascal, C++, Python, Java, C#. And when
studying the basics of digital electronics, programs are sent in assembly languages and
C microprogramming, as well as circuit diagrams of digital devices developed in the
high-level design system HLCCAD (Dolinsky, 2022d). To support personalized learn-
ing for students with different levels of training, a tree-based learning system has been
introduced, in which a student who cannot solve a problem has the opportunity to press
a “I don’t know” button and receive a tree of auxiliary tasks that will help him ultimately
solve the original problem. However, on the one hand, this is a static, predetermined
system. On the other hand, there are many test tasks for which there is no such built-in
training system. The introduction of generative artificial intelligence can help in learning
to solve these problems as well. In addition, for courses related to teaching the basics
of digital electronics, there is no such learning tree at all. Further development the sys-
tem of learning capabilities of the DL is associated primarily with its integration with
GenAI.

3. Strategy for Introducing GenAI into the Instrumental Distance Learning
System DL.GSU.BY

3.1. Creating Opportunities for Convenient Work with GenAI in the DL System

The basis for introducing GenAI into the DL system is a chatbot (#1), which receives
student requests and sends them through the API provided by GenAI and receives re-
sponses, and then displays the responses to students. The presence of such a chatbot
allows the use of special additional training preprompts for tasks, programming languag-
es, topics and subjects, including those taking into account the individual characteristics

M. Dolinsky38

of a particular student. To explore the capabilities of GenAI from various companies,
they are permanently added to our chatbot, and the student is given the opportunity to
select a GenAI and then assess satisfaction with the result of working with GenAI with
a score from 0 to 5. Accordingly, at the student’s request, he is provided with a list of
available GenAI in alphabetical order or in descending order of the average GenAI grade
by students. GenAIs, which are worked interacting with our chatbot #1, are called built
into the DL system.

Alternatively, students are given the opportunity to work with the same GenAI di-
rectly, without using our chatbot, to be able to develop the latter based on student sug-
gestions. Such GenAI are called non-embedded.

3.2. Launching e-Learners in DL Courses

A special bot is being developed (#2), the parameter of which is name of the GenAI
website. After manual registration on DL, this bot permanently performs the following
work:

Goes to the first available unsolved task. ●
Takes the problem text. ●
Sends it to GenAI with a request to return the solution to the problem. ●
Receives a solution from GenAI. ●
Sends it for testing on DL. ●
If the solution passes, moves on to the next task. ●
If the solution does not pass – takes from the DL website, a test on which the solu- ●
tion did not pass.
Sends a test to GenAI with a request to correct the solution. ●
Receives a corrected solution in response. ●
Sends the corrected solution to the site DL. ●

This process continues until the solution passes or until the limit on the number of
submissions of a solution to the same problem.

There are educational and control tasks. Educational tasks are open all the time, ex-
cept for those classes when control tasks are open. The results of all e-students appear in
the special result tables: only e-students – to compare GenAI sites with each other based
on the success of solving problems; together with students – to compare the results of
e-learners with the results of students.

For each problem, the following marks are saved: not solved, solved at what attempt,
by which GenAI.

3.3. Accumulation of Student Work Experience

Insert call icons to our chatbot, which supports working with built-in and non-built-in
GenAI, into the DL in the menu of the site, each course (subject), each task. As students

Strategy and Tactics for Introducing Generative Artificial Intelligence into the ... 39

work with the GenAI chatbot, a protocol is kept that records the date and time of work,
the student, the task, and the student’s assessment of the quality of the assistance re-
ceived. In parallel, for the built-in GenAI, the entire dialogue is saved in the file system.
For non-embedded GenAI, the student is asked to save the dialogue in the cloud and en-
ter a link to it in a special field. DL will automatically copy the dialog file to its file sys-
tem. Links to each such dialogue are provided directly on the page of the task for which
this dialogue was conducted. In addition, pages are created with links to all available
dialogues, both on tasks and on general questions. Search by keywords is provided. In
this way, students gain experience working with GenAI. And a student can receive help
without directly contacting GenAI, if such help has already been provided to another
student before and turned out to be effective.

3.4. Improving the Quality of Teaching by Developing Preprompts

A special direction of development is the permanent development and improvement of
the system preprompts by tasks, courses, programming languages. Such preprompts are
additional information that is sent before the student’s request to improve the quality of
the response to the student. Such preprompts are developed primarily by the students
themselves. In addition, students are provided with direct access to all preprompt infor-
mation so that they can use it interactively when working with non-embedded GenAI.

3.5. Personalization of Learning

Currently, the author sees two directions for the development of personalization:
The “active GenAI” mode, when, having received the condition of the problem, (1)
it does not immediately give a solution, but tries to consistently lead the student
to a solution, asking clarifying questions that help GenAI find out what exactly
the student does not know and, accordingly, eliminate this ignorance. At the same
time, the student, under the guidance of GenAI, consistently performs abstraction,
decomposition, pattern recognition, algorithm development, coding and debug-
ging for the task.
Mode LBT (Learning By Teaching) – when a student is asked to teach a specially (2)
tuned GenAI to solve problems of a given type. The same mode can be used to
research and develop pre-prompts on tasks, topics and programming languages.

3.6. Entry from the other End

Since 1999, the DL system has been accumulating problems, their solutions by students,
and the corresponding entries in the protocol: pass or fail, and if not pass, then on what
test. These solutions are of high-level programming languages, Intel 8086 assembler,

M. Dolinsky40

C-MPA microprogramming language, digital device diagrams – represented by projects
– in graphical or text form. This data can be used for direct LLM training.

4. Tactics for Introducing GenAI into the Instrumental Distance Learning Sys-
tem DL.GSU.BY

1. Create opportunities for convenient work with GenAI in the DL system:
Launch the page ● http://dl.gsu.by/ai/chat – this task has already been com-
pleted.
Create and expand the list of sites accessed via API (currently, there are four such ●
sites).
Create and expand the list of sites where students can work interactively after log- ●
ging in through http://dl.gsu.by/ai/chat.
Develop a page for adding new sites to the second list (by entering a URL). ●
Allow students to rate their experience with sites from both lists (using a 0–5 star ●
rating system).
Display site lists both alphabetically and sorted by descending ratings. ●

2. Accumulate of student work experience:
GenAI call icons are built into the menu of the DL website, DL course, and tasks in the
DL course. Students are provided with the opportunity to:

Select GenAI for dialogue from the list provided (ordered alphabetically, the cur- ●
rent rating of students, by the number of tasks passed using this GenAI).
Replenish the AI list with new URLs with starting comments (the system adminis- ●
trator has the ability to edit and delete information entered by students).
Ask questions about tasks. ●
Ask any questions (for clarification). ●
Leave your comments/evaluations of the work – search and view dialogues on ●
tasks and answers to questions.

The system automatically accumulates links to task dialogs, providing ordering and
search by task number. CC also accumulates lists of dialogues on general issues, sorted
alphabetically and searched by keywords. Dialogs are stored as doc files in a special
folder Dialogs.

GenAI is called by following the link http://dl.gsu.by/ai/chat with the trans-
mission of any combination of the following parameters, depending on the already avail-
able information:
AI_ID = GenAI identifier
Course_ID = course (subject) identifier
Task_ID = task identifier
Language_ID = programming language identifier (the default is taken from the task
page, the student is also given the opportunity to select another programming language
from the proposed list).

Strategy and Tactics for Introducing Generative Artificial Intelligence into the ... 41

To support the operation of the chatbot, information about courses, programming
languages and users is copied from the database (DB) of the DL system:
Courses: <Number> <Name>
Languages: <Number> <Name>
Users : <Number> <personal information as in DL>

In addition, special database tables are created
AI_ID <Number> <URL><Indicator built-in/non-embedded)><Name>
Themes <Number> <Subject of the request to ID>
 (for subsequent search and/or display
 in the list of topics by alphabetical order/relevance>
References <Number> <file name in the Dialogues folder>
AI_LOG <Date><Time><AI_ID> <Refs_ID (dialogue link)> <(0–5)
 User Rating> [User_ID]
 [Course_ID] [Task_ID] [Theme_ID]

During work in the database, a log of work with sites is kept in the format
<Date><Time><AI_ID> <Refs_ID (link to dialogue)> <(0–5)
User Rating> [User_ID] [Course_ID]
 [Task_ID] [Theme_ID]

[] mean that this information may absent
All dialogues are saved in the file system in the Dialogues folder, in subfolders

<Task_ID> <Language_ID>
The dialog file names are as follows:

<UserID> <AI_ID> <Date><Time><User Rating>.doc
When working with built-in GenAI, these files are created automatically by the sys-

tem.
When working with non-embedded GenAI, the student is asked to manually create a

dialogue doc file in the cloud, and then enter a link to this file, as well as select dialogue
metadata (Task_ID, Language_ID) or enter the topic of the dialogue.

If a student requests a task with previously saved dialogues, a list of them is first
shown for viewing. (together with user rating in descending order of ratings). In addi-
tion, it is a supporting list of saved dialogs by task / topic / language.

3. Improve the quality of teaching by developing preprompts
A folder Preprompts is created in the file system with files Course_ID.txt, Task_ID_.txt,
Language_ID.txt.

When working with the built-in GenAI, suitable preprompts are automatically sent to
GenAI, anticipating student requests. When working with unbuilt GenAI, students have
access to all preprompts to manually send preprompts.

Resources are available for editing preprompt files, developing and accumulating
preprompt files for tasks, languages, courses by students.

In order to provide the chatbot with access to task texts, folders containing them are
copied from the DL to the chatbot:

M. Dolinsky42

Tasks – html task texts
Images\original – pdf and doc – task texts

Make and add to the folder
Tasks-ext – txt-texts of tasks.
 Replenish task txt texts by extracting from pdf and doc, if not
 found in Tasks and Tasks-ext.

Automatically include the task texts into the student’s request for the task.
Preprompts are also automatically inserted depending on the task (language,

course).

4. Launch e-learners in DL courses
The goal is to support the continuous operation of GenAI on DL: solving training prob-
lems, tests, team olympiads, possible with a limit on the number of attempts, followed
by comparison of the GenAI results with each other and with the results of students. To
ensure the principle of “do no harm” to the operation of the DL system, tests for tasks
(Archives folder) and the DL database are copied to the chatbot. At first there will be a
routine copying of information (for example, once a day at night), and in the future it
will be incremental (that is, as the information changes).

Next development of DL API is needed:
Log in with your account. ●
Go to the course. ●
Get a list of tasks to be solved (during training, control, by options). ●
Get the problem text. ●
Send the solution to the problem. ●
Find out the verdict on the sent solution. ●
Take the first failed test for the solution. ●
Skip task. ●

E-learners are launched by universal bot #2, which receives AI_ID as a parameter.

5. Handmade
This work is done until it is automated in order to accumulate relevant experience:

Create – expand the list of AI sites where you can ask for solutions to problems. ●
Register AI sites on DL (such as AI URL instead of last name and first name). ●
Comparison of the effectiveness of different GenAI (by manually sending solu- ●
tions to the same tasks).
Accumulation of dialogues and links to them – for solving problems. ●
Accumulation of preliminary notes on tasks, languages, courses. ●
Accumulation of tasks and GenAI most suitable for LBT (Learning By Teaching). ●
Solving problems using these sites (every problem on each site). ●
Write on the forum about students impressions. ●
Posting a link to the task on the DL, the URL of the AI site, a link to the entire ●
dialogue with the AI site.
Accumulate a helper file for preprompts before sending the task conditions. ●

Strategy and Tactics for Introducing Generative Artificial Intelligence into the ... 43

Systematic work on pre-prompts for the most problematic tasks for students/e- ●
students
Training AI sites to “consistently teach students how to solve problems” – by in- ●
dividual types.

5. Conclusion

This paper presents the strategy and tactics for introducing GenAI into the instrumental
distance learning system DL.GSU.BY. As a result, it is expected to create opportunities
for convenient work with GenAI in the DL system; launching electronic GenAI students
to automatically complete training courses in the DL system and comparative analysis
of the achievements of various GenAIs among themselves and with real students; ac-
cumulation and dissemination of students’ experience working with GenAI; improving
the quality of training using GenAI by developing a system of preprompts for tasks and
subjects; further personalization of training through the implementation of advanced
techniques for using GenAI (active GenAI, Learning By Teaching).

References

Abolnejadian, M , Alipour, S., Taeb K. (2024). Leveraging ChatGPT for Adaptive Learning through Person-
alized Prompt-based Instruction: A CS1 Education Case Study. In: Extended Abstracts of the 2024 CHI
Conference on Human Factors in Computing Systems (CHI EA ‘24). ACM, New York, NY, USA, Article
521, 1–8.

Denny, P., MacNeil, S., Savelka J., Porter, L., Luxton-Reilly, A. (2024). Desirable Characteristics for AI Teach-
ing Assistants in Programming Education. https://arxiv.org/pdf/2405.14178v1

Dolinsky, M. (2016) Gomel Training School for Olympiads in Informatics. Olympiads in Informatics, 10,
237–247.

Dolinsky, M. (2022a) Instrumental system of distance learning DL.GSU.BY and examples of its application.
Global Journal of Computer Science and Technology Interdisciplinary, 22(1), 45–53.

Dolinsky, M. (2022b). Teaching Algorithms and Programming First Year University Students on Base of Dis-
tance Learning System DL.GSU.BY. WSEAS Transactions on Advances in Engineering Education, 19,
52–57.

Dolinsky, M. (2022c). Experience of Blended Learning the Fundamentals of Digital Electronics for First/Sec-
ond Year University students On Base of Distance Learning System DL.GSU.BY. International Journal of
Education and Learning Systems, 7, 59–64.

Dolinsky, M. (2022d). Tool HLCCAD for Blended Learning the Fundamentals of Digital Electronics. Interna-
tional Journal of Circuits and Electronics, 7, 47–55.

Figueiredo ,J., Garcia-Penalvo, F.J. (2021). Teaching and Learning Tools for Introductory Programming in Uni-
versity Courses. In: A. Balderas, A. J. Mendes and J. M. Dodero, Eds., Proceedings of the 2021 International
Symposium on Computers in Education (SIIE) (23–24 September 2021, Malaga, Spain). USA: IEEE.

George, S.D., Dewan P. (2024). NotebookGPT – Facilitating and Monitoring Explicit Lightweight Student
GPT Help Requests During Programming Exercises. In: Companion Proceedings of the 29th International
Conference on Intelligent User Interfaces (IUI ‘24 Companion). ACM, NY, USA, 62–65.

Herden, O. (2024). Integration of Chatbots for Generating Code Into Introductory Programming Courses Inter-
national Conference on Future of education.

Jin, H., Lee, S., Shin, H., Kim, J. (2023). Teach AI How to Code: Using Large Language Models as Teachable
Agents for Programming Education. https://arxiv.org/pdf/2309.14534

Jin, H. , Lee, S., Shin, H., Kim, J. (2023). Teach AI How to Code: Using Large Language Models as Teachable
Agents for Programming Education. https://arxiv.org/pdf/2309.14534v2

M. Dolinsky44

Kaleem, M., Hassan, M.A., Khurshid, S.K. (2024). A Machine Learning-Based Adaptive Feedback System to
Enhance Programming Skill Using Computational Thinking. IEEE Access https://ieeexplore.ieee.
org/stamp/stamp.jsp?arnumber=10506466

Kazemitabaar, M., Ye, R., Wang, X., Henley, A.Z., Denny, P., Craig, M., Grossman T. (2024). CodeAid: Evalu-
ating a Classroom Deployment of an LLM-based Programming Assistant that Balances Student and Educa-
tor Needs. https://arxiv.org/pdf/2401.11314

Kuramitsu, K. , Obara, Y., Sato, M.., Obara, M. (2023). KOGI: A Seamless Integration of ChatGPT into Jupyter
Environments for Programming Education. In: Proceedings of the 2023 ACM SIGPLAN International Sym-
posium on SPLASH-E (SPLASH-E 2023). ACM, NY, USA, 50–59.

Lee, C. , Myung, J., Han, J., Jin, J., Oh, A. Learning from Teaching Assistants to Program with Subgoals: Ex-
ploring the Potential for AI Teaching Assistants. https://arxiv.org/pdf/2309.10419

Li, Z., Zhang, S., Sang, X. (2023). Exploration of Machine Learning Teaching based on the EduCoder Platform.
Journal of Education and Educational Research, 4(3), 130.

Liao, J., Zhong, L., Zhe, L., Xu, H. , Liu, M., Xie T. (2024). Scaffolding Computational Thinking With Chat-
GPT. IEEE Transactions on Learning Technologies, 17.

Liffiton, M., Sheese B., Savelka, J., Denny P. (2023). CodeHelp: Using Large Language Models with Guardrails
for Scalable Support in Programming Classes. https://arxiv.org/pdf/2308.06921

Martinez-Araneda C., Gutierrez, M., Maldonado, D., Gomez, P., Segura, A., Vidal-Castro, C. (2024). Designing
a Chabot to support problem-solving in a programming course. In: INTED2024 Proceedings, pp. 966–975.

Martinez-Araneda C., Valenzuela, M.G., Meneses, P.G., Montiel, D.M., Navarrete, A.S. Vidal-Castro C. (2023).
How Useful TutorBot+ is for Teaching and Learning in Programming Courses: a Preliminary Study. In:
42nd IEEE International Conference of the Chilean Computer Science Society (SCCC). Concepcion, Chile,
pp. 1–7.

Phan, V., Hicks, E. (2018). Code4brownies: an active learning solution for teaching programming and problem
solving in the classroom. In: Proceedings of the 23rd Annual ACM Conference on Innovation and Technol-
ogy in Computer Science Education, pp. 153–158.

Roest, L., Keuning, H., Jeuring, J. (2024). Next-Step Hint Generation for Introductory Programming Using
Large Language Models. In: Proceedings of the 26th Australasian Computing Education Conference (ACE
‘24). Association for Computing Machinery, New York, NY, USA, 144–153.

Sarshartehrani, F., Mohammadrezaei, E., Behravan, M., Gracanin, D. (2024). Enhancing E-Learning Experi-
ence Through Embodied AI Tutors in Immersive Virtual Environments: A Multifaceted Approach for Per-
sonalized Educational Adaptation. In: Sottilare, R.A., Schwarz, J. (eds), Adaptive Instructional Systems.
HCII 2024 LNCS, 14727. Springer, Cham.

Zhang, S., Yang, J., Sang X. (2023). Exploring the Applications of EduCoder Platform in Blended Teaching for
Computer Major. Journal of Education and Educational Research, 4(2), 100.

M. Dolinsky is a lecturer in Gomel State University “Fr. Skoryna”
from 1993. Since 1999 he is a leading developer of the educational
site of the University (dl.gsu.by). Since 1997 he is heading prepara-
tion of the scholars in Gomel to participate in programming contests
and Olympiad in informatics. He was a deputy leader of the team of
Belarus for IOI’2006, IOI’2007, IOI’2008 and IOI’2009. His PhD is
devoted to the tools for digital system design. His current research is in
teaching Computer Science and Mathematics from early age.

Olympiads in Informatics, 2025, Vol. 19, 45–62
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.04

45

International Science Olympiads:
The Israeli Teams

Judith GAL-EZER, Doron ZOHAR, Anat ROLNIK
The Open University of Israel, Mathematics and Computer Science Dpt. Ra’anana, Israel
e-mail: galezer@openu.ac.il, doron.zohar@openu.ac.il, anatrolnik@gmail.com

Abstract. The International Olympiads (IOs) caters to exceptional students worldwide. Israel, for
example, in 2023, competed in nine out of 14 IOs, including five in the sciences. Students par-
ticipating in the Olympiads must possess a high level of knowledge and a broad understanding of
their subject area, along with the ability to tackle complex problems, synthesize knowledge, and
develop creative solutions.

Ministries of Education as well as academic institutions and policy makers see the Olympiads
as a vehicle of developing the social conditions and economics of their country, consequently,
they encourage talented students by providing financial support for training programs, travel, and
accommodation.

In this paper, we provide an overview of the science IOs: the International Mathematical
Olympiad (IMO), the International Physics Olympiad (IPhO), the International Chemistry Olym-
piad (IChO), and the International Biology Olympiad (IBO), with a particular focus on the Inter-
national Olympiad in Informatics (IOI). We describe the organizational structure, student train-
ing process, and ranking system, while highlighting the participation and achievements of Israeli
delegations.

Keywords: International Olympiads; International Science Olympiads; Israeli National Teams.

1. The International Olympiads

The International Olympiads (IOs) are social-educational events that bring together out-
standing students from around the world who share a common interest in science, and
a team of expert coaches with aligned goals and interests. The official aims of each
Olympiad are specified in the competition regulations (for example (IBO, 2025; IChO,
2023; IMO, 2023; IOI, 2023; IPhO, 2023)). In addition, unofficial goals arising from the
nature of the event itself include:

Encouraging scientific excellence among teens. ●
Increasing interest in the sciences. ●
Encouraging students to choose scientific subjects in schools and in the future. ●
Enabling international relations between educators, scientists, and future scientists. ●

J. Gal-Ezer, D. Zohar, A. Rolnik46

Lim et al. (Lim et al., 2014) highlight the impact of Science Olympiad programs
on students’ education in science, technology, engineering, and mathematics (STEM),
enhancing their skills and shaping their career aspirations. These programs provide
students with a perspective on science beyond their high school experience, offering
close contact with university faculty and researchers, and insight into potential science
careers: “Science Olympiads are important vehicles for science communication, espe-
cially between scientists, educators, and students. When students participate in these
Olympiads, they gain exposure to a different view of science from that which they
experience at the high school level. Close contact with university faculty and science
researchers will provide students with a glimpse of what careers in science can offer.
For those who will not pursue science any further than high school, at least they will
hopefully have a higher level of scientific literacy”. In a later research, Jovanov and
Stankov (Jovanov and Stankov, 2020) mention an additional aspect of the Olympiads:
“Science Olympiads are not just a science competition but a means to care for talent in
the particular scientific field. International Olympiad in Informatics (IOI) is one of the
first five Olympiads that arose, after Mathematics, Physics and Chemistry, and before
Biology Olympiad. Being the “summit” of the brightest students, at all Olympiads con-
testants are generously awarded with recognitions in the form of gold, silver and bronze
medals, and additionally, the so-called ‘Honorable Mention’ award”.

STEM competitions significantly contribute to student development, fostering cre-
ativity and critical thinking among emerging professionals as presented in (Campbell
et al., 2017). Campbell and Welberg observed that many students who participated in
these programs later chose to pursue science-related academic programs and technical
careers that contribute to national development (Campbell and Welberg, 2010). Years
later, Smith et al. also reached the conclusion that participation in such rigorous com-
petitions, along with the preparatory training involved, bolsters students’ motivation
and promotes sustained academic growth. Science Olympiad experiences influenced
both academic and career decisions, especially in college and major selection (Smith
et al., 2021).

There are many international competitions designed for talented youth in the fields
of science; any competition may be called an “Olympiad”. Some examples are: The
Asian Physics Olympiad (APhO) (APhO, 2024), the Romanian Master in Mathematics
(RMM) (RMM, 2024), the International Mendeleev Chemistry Olympiad (IMChO)
(IMChO, 2024), computer science competitions, such as the Asia-Pacific Informatics
Olympiad (APIO) (APIO, 2024), Central European Olympiad in Informatics (CEOI)
(CEOI, 2024), the European Girls’ Mathematical Olympiad (EGMO) (EGMO, 2024),
the European Girls’ Olympiad in Informatics (EGOI) (EGOI, 2024), and the Baltic
Olympiad in Informatics (BOI) (BOI, 2025). These competitions are similar in nature
and structure to the IOs, but participation is conditional and often based on factors such
as continent (or region), gender, or the country’s ranking in the IOs.

In contrast to these and many other competitions, IOs are accessible to any coun-
try interested in participating, without restrictions based on location, gender, or prior
achievements. IOs are regarded as the world’s largest and most challenging competi-
tions for youth in the sciences and humanities.

International Science Olympiads: The Israeli Teams 47

Fifteen Olympiads (listed in Table 1) fall under the umbrella of the IOs, which in-
clude participants from dozens of countries worldwide.

In Section 2, we will describe the International Science Olympiads IMO, IPhO,
IChO, and IBO; with more details on IOI; In Section 3, we highlight the case of Is-
rael, including the efforts made to ensure inclusiveness by providing opportunities to all
populations, and we explain the crucial role of teachers, and Section 4 presents a brief
summary.

2. International Science Olympiads

In the following we provide detailed descriptions of the organizational structure, regula-
tions, delegations, procedure and finally, ranking and medals of the International Science
Olympiads (ISOs).

2.1. Organizational Structure and Regulations

The organizational structure of the ISOs is generally as follows: The General Assembly
(GA) is the main authority. It elects or appoints the Executive Committee. The Execu-
tive Committee (EC sometimes called Executive Board) oversees overall operations and
helps the next Host Country Organizing Committee. The Host Country Organizing Com-

Table 1
The International Olympiads

Foundation Scientific Field Name Acronyms

1959 Math International Mathematical Olympiad (IMO, 2023)* IMO
1967 Physics International Physics Olympiad (IPhO, 2023)* IPhO
1968 Chemistry International Chemistry Olympiad (IChO, 2023)* IChO
1989 Computer Science/Informatics International Olympiad in Informatics (IOI, 2023)* IOI
1990 Biology International Biology Olympiad (IBO, 2025)* IBO
1993 Philosophy International Philosophy Olympiad (IPO, 2023)* IPO
1996 Astronomy International Astronomy Olympiad (IAO, 2024) IAO
1996 Geography International Geography Olympiad (iGeo, 2024) iGeo
2003 Linguistics International Linguistics Olympiad (IOL, 2023)* IOL
2004 Sciences (Chemistry, Biology,

and Physics)
International Junior Science Olympiad (IJSO,
2023)*

IJSO

2007 Earth Sciences International Earth Science Olympiad (IESO, 2024)* IESO
2007 Astronomy International Olympiad on Astronomy and

Astrophysics (IOAA, 2024)
IOAA

2015 History International History Olympiad (IHO, 2024) IHO
2018 Economy International Economics Olympiad (IEO, 2024) IEO
2024 Artificial Intelligence International Olympiad in AI (IOAI, 2024) IOAI

 *Israeli participation

J. Gal-Ezer, D. Zohar, A. Rolnik48

mittee sets up the Scientific Committees for the competition. The Scientific/Academic
committees are composed of experts from various disciplines. Some Olympiads have a
small Permanent Secretariat for long-term support. Each year, a new country organizes
the Olympiad, but the basic structure remains.

The GA composed of official country representatives. The EC is a smaller elected
group managing operations between Olympiads. The Host Country Organizing Commit-
tee is a temporary committee responsible for running a specific year’s Olympiad.

The rules and regulations for ISOs are generally established and decided upon
by the GA. The committees are responsible for coordinating the event, setting the
rules and standards, and ensuring that the competition runs smoothly. They also work
to maintain consistency and fairness across different countries and regions. In some
cases, an Olympiad will be organized by the president of one of the committees, to
whom the other committees and bodies report. The international committee of each
ISO includes representatives from the participating countries. These committees have
several key roles, for example, approving competition regulations, electing a presi-
dent, and determining future decisions, such as the order of host countries or whether
to hold the competition online (for instance, during the COVID-19 pandemic). In addi-
tion to their general duties, committees are responsible for overseeing the competition
itself. This includes maintaining the quality of competition questions and tasks, man-
aging the scoring process, addressing any issues that arise, and establishing the score
cutoffs for medal allocation and criteria for special awards. They also play a vital role
in upholding the professional standards and integrity of the ISOs.

Each ISO can establish additional committees, based on the regulations and spe-
cific needs of the competition. The mission of these committees is always to support
the effective organization, management, and execution of each Olympiad.

The regulations of each ISO may change from time to time, as responses to requests
from the representatives of the participating countries or the international committee
of the Olympiad. These changes aim to produce an efficient, fair, and ethical com-
petition. The representatives from the participating countries vote on any proposed
changes; majority consent is required for their implementation.

Although each Olympiad has its own specific regulations, there are some basic
rules common to all. For example, the host country is obliged to invite all the countries
that participated in the previous year’s Olympiad, without discrimination on political
or religious grounds. Regardless of nationality, gender identity, physical ability, reli-
gion, or sexual preference, the host country must treat all delegations equally.

The official language of competitions is English. Olympiad questions are trans-
lated by coaches and trainers into the native language of participating students. The
students’ answers are typically written in English although, in some cases, they may
also provide answers in their native language as a backup, in the event of an appeal.
In natural sciences and exact sciences Olympiads, some of the students’ answers may
be in the form of formulas or computer code. However, English language proficiency
is still important, as some answers require an explanation of the approach and essence
of the solution.

International Science Olympiads: The Israeli Teams 49

2.2. The Delegations

Each Olympiad delegation includes the student team and the coaches, trainers, and
observers, all led by the chair of the delegation. The students chosen to represent their
country are selected through a national competition open to all eligible youth in that
country. The trainers and observers are experts in the specific field of knowledge and
must be fluent in English. Each year, a different participating country hosts the Olym-
piad.

Each delegation consists of between four and six students (IMO – up to six students,
IPhO – up to five students, IChO, IBO, and IOI – up to four students). Middle school
and upper school students up to the age of twenty may participate. Some ISOs, such as
the IMO and the IOI, allow home-schooled students to take part, as long as they have
not yet completed high school.

Coaches, who are responsible for training the students and accompanying them to the
competitions, are integral members of each delegation. The coaches are subject-matter
experts with professional backgrounds, some of whom may have even participated in a
previous ISO. At the head of the delegation are the leaders, one of whom is designated
Head of the delegation, and next in line are the observers who assist the leaders. The
coaches serve as mentors to the students in the training process and during the competi-
tion itself. This professional team is mandated by the rules and regulations of the ISOs.

Unlike sports competitions, in which coaches have no influence on the judges’ evalu-
ation, during ISOs, these mentors play a decisive role and have a significant influence on
the final results, in the following realms:

 1. Translation: The mentors are responsible for translating the exam questions
from English into the competitors’ native languages. Precise translation in scien-
tific fields is critical for students’ understanding of the questions which, in turn,
can impact their performance.
 2. Evaluation: After the competition, judges (appointed by the host country) check
and grade the solutions. Mentors evaluate their students’ solutions and compare
their assessment with the judges’ grades.
 3. Appeal process: If there is a discrepancy between the mentors’ and judges’ eval-
uations, a structured appeal process takes place. The mentors conduct scientific-
professional negotiations with the competition judges on a dedicated day during
the program. This appeal process requires negotiation skills and extensive aca-
demic knowledge, as it can affect the final grades and overall results.

The mentors’ involvement in translation, evaluation of solutions, and the appeal pro-
cess (if necessary) can significantly impact the team’s achievements in the ISOs.

2.3. Competition Program

Each ISO features an organized program that is announced to all participating countries
in advance, both directly and through the competition website. The syllabus is published

J. Gal-Ezer, D. Zohar, A. Rolnik50

several months before the event so that all participants may organize accordingly. The
Olympiad website, published by the host country, includes comprehensive information
about the competition, including the registration process and fees. The site is updated
before and after the competition with Olympiad questions, solutions, various statistics,
such as the participants’ scores, the scores of the leading countries, and the distribution
of medals.

Usually, ISOs take place for a week to ten days; a period of time that allows for both
the exam days and social activities that reflect the dual goals of the Olympiad: forging
friendships between students and professionals from around the world.

Usually, each ISO begins with a solemn opening ceremony, during which all par-
ticipating countries and delegation members are presented. Some also feature a group
ceremony in which students pledge to uphold exam integrity and human dignity. Each
event includes two exam days, social activities, and cultural tours. In the IOI, the two
exam days are experimental. In the other ISOs the first day is usually devoted to a theo-
retical and the second day to an experimental. The Olympiad concludes with a closing
ceremony during which medals and prizes are awarded.

To preserve exam integrity, competitors are typically isolated from accompanying
coaching staff who have had prior access to competition questions. In some ISOs, stu-
dents are also separated from devices with Internet connections in order to maintain this
goal.

2.4. Medals and Ranking of Countries

In sport competitions, gold, silver, and bronze medals are awarded to the three athletes
with the highest achievements. At ISOs, the distribution of medals is done in order to
encourage outstanding youth to engage in, and deepen their study of scientific subjects.
Therefore, at each ISO, a large number of medals of every kind, as well as certificates
of appreciation and marks of honor are given. Each country’s ranking is determined by
weighing the results of its delegation.

The distribution of medals is carried out in accordance with the rules established by
the International Olympiad Committee and stipulated in the regulations. For example,
IMO regulations state that the number of medal winners will not exceed half the number
of participants and the ratio between them will be approximately 1 : 2 : 3. For example, if
100 students participate, 50 may receive medals: eight students will receive a gold medal
(one-sixth of fifty), 16 will receive a silver medal (two-sixths of 50) and the rest will
receive a bronze medal. According to IPhO regulations, gold medals are to be awarded
to the 8% with the highest results, silver medals to the following 25% in the order of
the results, and bronze medals to 50% of the remaining students. A commendation is
awarded to 67% of the participants with the highest scores. For example, if 100 students
participated, eight will receive gold, 17 silver, 25 bronze, and 17 students will receive a
commendation.

In addition to the distribution of medals, some ISOs add additional categories and
special prizes. For example, at the International Biology Olympiad, a prize is given to a

International Science Olympiads: The Israeli Teams 51

“Social Delegation” (IBO, 2025) for promoting friendships between young people from
around the world, and for sharing and exchanging ideas for studying biology education.
In the International Physics Olympiad, the award “Absolute Winner” (IPhO, 2023) is
given to the student who achieved the highest combined score in both the theoretical
and experimental sections of the competition. In the International Math Olympiad, “The
Most Outstanding and Creative Solution” (IMO, 2023) prize was awarded.

In addition, some regulations include a section that allows the host country to deter-
mine categories for additional prizes as long as they preserve the goals of the competi-
tion and the rights of the participants. Some of these categories have become traditional
and are included annually. For this reason, during the awards distribution portion of the
closing ceremonies, different categories are added. These include “Honorable Mention”,
“Perfect Score”, and “The Best Solution” in the International Math Olympiad; and the
“Best Theoretical Score”, “Best Experimental Score”, and “The Most Creative Solu-
tion” in the International Physics Olympiad. The “Absolute Gold” prize is awarded to
the student with the heights score in all ISOs.

Despite the Olympiads are individual competitions, with medals and prizes awarded
to students who achieve the best results, reference is also made to the ranking of partici-
pating countries. Each country’s ranking is calculated by weighing the results of the del-
egation’s members. In the ranking process, the points earned by all delegation members
are added up, and based on this sum, the country’s ranking is determined. According to
this system, the countries that stand out for their excellence are China, Russia, and the
United States (IMO, 2023; IOI, 2023; IPhO, 2023).

As an example of a specific Olympiad we elaborate in the next section, on the Inter-
national Informatics Olympiad.

2.5. The International Informatics Olympiads (IOI)

The official Website of the IOI (IOI, 2023) provides useful information about the goals,
the organization, the participating countries and statistics.

According to the history of the IOI by Mārtiņš Opmanis (IOI, 2023) the concept of
organizing an IOI for school students was first proposed at the 24th General Conference
of the United Nations Educational, Scientific and Cultural Organization (UNESCO) in
Paris by Bulgarian delegate Professor Blagovest Sendov in October 1987. In May 1989,
UNESCO launched and sponsored the first IOI, which took place in Bulgaria that same
year.

As described above, each year, a different country hosts the event. The competi-
tion is supervised by the International Committee and follows the UNESCO-endorsed
structure. Teams are officially selected by their national organizations through national
contests. Each country can send up to 4 participants, along with team leaders.

The contest consists of two days of algorithmic programming challenges, where stu-
dents solve problems using programming languages like C++ first, for a few years Java
was also supported. The solutions are submitted as files of C++ code which are then
compiled and executed on a set of test cases for grading.

J. Gal-Ezer, D. Zohar, A. Rolnik52

Many former IOI participants have gone on to become startup founders and tech
leaders: Adam D’Angelo co-founder of Quora received a silver medal in the 2002 com-
petition (IOI, 2023). Nikolai Durov, a four-time medalist at the IOI (1995–1998), co-
founded VKontakte (VK, 2023), Russia’s largest social network, and later Telegram
Messenger, focusing on secure communication (IOI, 2023; Maréchal, 2018). These in-
dividuals exemplify how the skills and experiences gained from participating in the IOI
can serve as a strong foundation for entrepreneurial success in the technology sector.

In 2007 the IOI community in cooperation with the Institute of Mathematics and
Informatics (now Vilnius University Institute of Data Science and Digital Technologies)
initiated the journal Olympiads in informatics, an international open access journal (IOI,
2023).

In the following section, we explore Israel’s participation in the International Science
Olympiads, highlighting its involvement and achievements.

3. The Case of Israel

Israel began competing at ISOs in 1994. In its first year, Israel sent only one delegation
to the IPhO (IPhO, 2023). Since then, Israel has expanded its involvement. In 1997, two
delegations participated in two additional ISOs: the IMO (IMO, 2023) and the IOI (IOI,
2023). Israel joined the IChO (IChO, 2023) in 2005. A year later, a delegation partici-
pated in the IPO (IPO, 2023) for the first time, and in 2012, the first delegation took part
in the IESO (IESO, 2024). Over the next ten years, delegations continued to represent
Israel at the Olympiads. In 2022, the Israeli delegation took part for the first time in the
IBO (IBO, 2025) and in 2023, Israel participated for the first time in the IJSO (IJSO,
2023). In 2012, Israel also participated in the IOL (IOL, 2023). As of 2023, Israel has
taken part in nine of the 14 existing IOs.

Israel’s participation in ISOs serves several objectives, including enhancing the
country’s standing in the global science education community, fostering role models
for Israeli youth, particularly young women, pursue science studies in middle and high
school and encouraging minority groups, such as the Arab population. The Israeli educa-
tion system has embraced this approach as a means of effectively addressing the needs of
gifted students with a strong interest in science. Engaging in these programs allows stu-
dents to build connections with peers and exceptional students from around the world.

To achieve a high rank in the Olympiads, the most outstanding students must be se-
lected and properly prepared according to the competition’s syllabus. Five high school
Israeli Science National Teams (ISNTs) have been established for this purpose. Each fo-
cuses on a specific field: mathematics (The Israeli Ministry of Education, 2024d), chem-
istry (The Israeli Ministry of Education, 2024b), physics (The Israeli Ministry of Educa-
tion, 2024e), biology (The Israeli Ministry of Education, 2024a), and computer science
(The Israeli Ministry of Education, 2024c). An additional team, the Israeli Science Young
Team (ISYT), serves middle school students and acts as a feeder for the high school
ISNTs (IYST, 2024). The teams train throughout the school year and the outstanding stu-
dents compete at the end of the year to join the delegation representing Israel.

International Science Olympiads: The Israeli Teams 53

3.1. Paving the Way to the Olympiads

In this section we describe the process leading to participation in five science Olympiads
of the ISNTs and the ISYT.

3.1.1. The Israeli National Science Teams (ISNTs)

Candidates for the teams undergo a structured recruitment and selection process con-
sisting of three stages. In Phase A, students take a 90-minute online exam via the Israel
National Teams Website (The Israeli Ministry of Education, 2024f). Any student in the
education system is eligible to participate, with the exam available in both Hebrew and
Arabic. Some disciplines emphasize creative and scientific thinking without requiring
prior knowledge in the sciences, while others demand extensive background knowledge
in a specific field and advanced familiarity with the science curriculum. The exam is of-
fered in two sittings, and students may attempt both. The highest score is considered for
advancing candidates to the next phase.

Phase B takes place at a number of nationwide centers. The participants chosen in
Phase A (with the exception of ISYT) must attend in person. Students who pass this
stage will continue to the final phase.

Phase C is a one-day program conducted at an academic host institution for the ISNT.
It includes a lecture, an exam, a personal interview, and an overview of the preparation
process leading up to the Olympiad.

The transition between Phases B and C differs from field to field. The study materials
required for preparing for each stage are published on the Israel National Teams Website
(The Israeli Ministry of Education, 2024f) and sent directly to students who have passed
Phases A and B. Students who successfully complete Phase C are assigned to the ISNTs
based on their area of expertise.

After having been accepted to an ISNT, students undergo a training period during
which they learn different areas of knowledge related to their field while emphasiz-
ing various study skills. These include independent learning and group collaboration,
organization of study materials, time management, strategic development for diverse
solutions, perseverance, working under pressure, and quick recovery from failure. In
addition, students engage in self-reflection on their activities, draw conclusions, and
practice critical, scientific, and creative thinking.

During this stage of the training, emphasis is placed on experimental and playful
learning, which helps all team members reach higher achievement.

For examples from the Israeli National Informatics Olympiad, see Appendix A.

3.1.2. The Israeli Science Young Team (ISYT)

As mentioned above, the ISYT is a feeder team for the ISNTs. The ISYT is comprised of
about 200 students from grades 8 and 9 who undergo a two-year training process. During
the 7th grade they take exams, during the 8th grade, students study mathematics, physics,

J. Gal-Ezer, D. Zohar, A. Rolnik54

chemistry, and computer science. In the 9th grade, they specialize in two of the four fields,
in coordination with the academic staff and based on their preferences. At the end of the
9th grade, the four most outstanding students are chosen to represent Israel in the Interna-
tional Junior Science Olympiad (IJSO) (IJSO, 2023). In this competition, the students are
tested together in the fields of physics, chemistry, and biology. As part of the preparations
for this Olympiad, students complete the biology studies which were not covered during
their ISYT training.

Like the ISNTs, the ISYT also has three selection phases, with the first two avail-
able online (IYST, 2024). In Phase A, the exam consists of math questions that require
a numerical answer or a multiple-choice response. Phase B requires students to present
the solution process. Phase C takes place at the academic institution hosting the team,
in the format of a study day that includes a personal interview, lecture, and a number of
exams. These exams test abilities such as mathematical thinking, listening comprehen-
sion, reading comprehension, and include questions based on the lecture content.

The ISNTs participants gain significant benefits, the most important for all students
is the acquisition of a deep understanding of academic subjects, the development of
thinking skills, and the tools gained during the training and coaching process. These
include independent learning, dealing with heavy workloads, teamwork, scientific cre-
ative thinking, strategies for solving complex and challenging problems, study habits,
time management, perseverance, and learning from failure. These tools will become in-
tegral to the students and will serve them, not only in the Olympiads, but also through-
out their lives.

In addition, ISNT members who have completed a full year of training are entitled
to exemption from the Ministry of Education matriculation exam which would normally
take place at the end of the training year.

Academic institutions offer benefits to the ISNTs, especially to members of the del-
egations. These benefits are primarily reflected in tuition fees.

Many ISYT graduates successfully advance to the ISNT selection process. Some
even integrate into the ISNTs while still members of the ISYT, depending on their skills
and level of emotional readiness for academic challenges.

Israel’s performance has improved steadily over the years. For instance, at the 2015
IOI, three of the four Israeli contestants earned bronze medals, placing between 116th
and 163rd. By 2022, all four contestants received medals – one gold, two silver, and one
bronze – placing between 27th and 92nd (IOI, 2023). At the IMO, Israel was ranked 40th
in 2015 and 10th in 2022 (IMO, 2023).

3.2. Inclusion of all Populations

In order to give every student an equal opportunity to participate in the ISNTs or the
ISYT, the Ministry of Education’s unit in charge of the ISOI decided to increase the
number of students participating in the program. To this end, the data of students who
had participated over the years were examined, and their level of success in the exams

International Science Olympiads: The Israeli Teams 55

leading up to the ISNTs and acceptance to the Israeli delegations were analyzed1. The
data were examined with reference to area of residence, socioeconomic status, gender,
and identification with specific sectors that make up Israel’s population. Based on the
analysis, it was decided to operate through several different channels. Changes were
implemented to encourage participation by underrepresented groups, including those
from the geographic periphery, female students, pupils attending religious state educa-
tion (HEMED) schools (HEMED, 2024), and the Arab sector.

3.2.1. Peripheral Communities

To encourage the participation of students from the geographic and/or socioeconomic
periphery, meetings were held with educators and decision makers responsible for these
areas. During the meetings, which were attended by inspectors from the Ministry of Edu-
cation, heads of education departments in local authorities, school administrators, and
teachers, the selection process was explained and benefits for team members were high-
lighted. The meetings also emphasized the image benefits for schools and municipali-
ties, as well as for the country as a whole. These meetings led to the development of a
preparatory system for the exams, including classes for the placement tests, study groups
for students who had already gone through Phase A, monitoring of student needs, and
providing emotional support during the next screening stages. One of the challenges was
providing financial support for travel costs to exams. The Ministry of Education and the
municipalities had to assist with this support. The students who were accepted to the na-
tional team were given recognition and appreciation by heads of municipalities, as well
as by teachers and school principals.

3.2.2. Female Students

In order to encourage female students to participate, emphasis was placed on marketing
and advertising directed to a female audience. This was accomplished by pointing out the
achievements of female students and by using written and visual cues in marketing (capi-
talizing on the grammatical difference between addressing males and females in Hebrew)
and by using photos of female students.

Since the advanced selection stages of the recruitment process and the teams them-
selves are overwhelmingly male-dominated, an effort was made to group several female
students from the same school or residential area together during the transition between
the phases, in order to provide support and encourage them to reach advanced screening
stages.

In addition, it was decided that Israel would participate in two additional Olympi-
ads in which only female students compete: the European Girls’ Mathematical Olym-
piad (EGMO) (EGMO, 2024) and the European Girls’ Olympiad in Informatics (EGOI)
(EGOI, 2024). The goals of these are to promote excellence among women in math-
ematics and computer science, to increase the number of female students studying these
subjects, and to provide them with an international platform in which to excel.

1 This was carried out by moderator from the Ministry of Education.

J. Gal-Ezer, D. Zohar, A. Rolnik56

For example, in 2022, the number of female students on the computer science team
tripled. In EGMO, Israel was ranked ninth, with students winning four medals (one
gold and three bronze) (EGMO, 2024). In the IPhO, a female student from the Israeli
delegation won the gold medal (IPhO, 2023). In the IMO, a female student from the
Israeli delegation won a silver medal (IMO, 2023) and was first place champion of the
Asian continent.

3.2.3. The Jewish Religious Community

In the Israeli education system, an educational stream called HEMED (Religious State
Education) (HEMED, 2024) provides a response to the unique academic needs of reli-
giously observant students. HEMED schools provide gender-separate classrooms in up-
per grades, and the curriculum provides religious as well as secular studies while ensuring
that students can observe religious rituals such as praying, keeping kosher, observing
Shabbat, and celebrating Jewish holidays.

In the current setup of the ISNTs and the ISYT, certain situations may conflict with
modes of religious lifestyles. Issues may arise with gender-mixed learning, social activi-
ties, and training camps that include mixed-gender accommodations.

It was found that school stakeholders sometimes refrained from sending their stu-
dents to participate in the Olympiads due to concerns that the activities might conflict
with their students’ religious lifestyle. They feared criticism from parents, and as a re-
sult, over the years, fewer students were sent from religious schools.

In a dialogue with the management of HEMED, and with the assistance of admin-
istrators and teachers, the rules of conduct of the ISNTs and the ISYT were modified
in order to allow religiously observant students to participate. Sabbath observance,
keeping kosher, etc. were offered and were also made possible for delegations traveling
abroad. It was also suggested that Phase A of the selection process be held at their own
HEMED schools (HEMED, 2024). In any case, the decision of whether to participate
was left up to each individual and their parents, allowing them to decide according to
their religious beliefs.

The possibility of observing religious precepts is also given to members of other
religions participating on the national teams.

3.2.4. The Arab Community

During the team training period, studies are conducted entirely in Hebrew. In the past,
this prevented native Arabic speakers who lacked proficiency in Hebrew from participat-
ing in the selection tests and later, from joining the ISNTs or the ISYT. Over the years, it
has become evident that the Arab community in Israel has improved its command of the
Hebrew language, and students whose mother tongue is Arabic are now better equipped
to cope with studies in Hebrew.

However, the timed placement tests remain an obstacle for acceptance to the team.
In the past, these screening tests were only given in Hebrew. To overcome this barrier,
starting in 2020, the test for Phase A has been translated into Arabic for both test dates.

International Science Olympiads: The Israeli Teams 57

Additionally, during the exams, a telephone support center was opened to provide an-
swers to questions in Arabic.

For the ISYT, the exams for Phases B and C were also translated. Students who
passed Phase C but struggled with Hebrew were provided language improvement les-
sons. During the selection process, an Arabic-Hebrew dictionary can be used during the
exam for students who require assistance.

These efforts will hopefully lead to an increase in participation of Arabic-speaking
students, ensuring equal opportunities for all students, regardless of their native lan-
guage.

3.2.5. Intervention Impact

Following the implementation of these interventions, the total number of participants
from schools countrywide has increased, especially the number of female students in
the ISNTs and the ISYT. Today, many students from the religious education stream have
joined the national teams and an increasing number of students from the Arab sector are
also joining, especially in the ISYT, which paves the way to the ISNTs.

At the same time, to maintain the growth trend and in order for the screening tests to
become part of a school’s routine, these processes require continued work and constant
effort in order to establish awareness among school stakeholders.

3.3. The Role of Teachers

Teachers are the cornerstone of every process in the education system (Gal-Ezer et al.,
1995). Armoni and Gal-Ezer in their paper (Armoni and Gal-Ezer, 2023) demonstrate,
among other findings, that high-school teachers influence students’ later decisions to
pursue computing disciplines in higher education. Teachers also play a key role in en-
couraging student participation, their guidance contributes to students passing the exams
required to join these teams and support students in staying committed, which helps
maintain a steady flow of qualified participants in national teams over time. Teachers
who express enthusiasm, interest, involvement, and care for the subject will influence
their students, leading them to participate in the national exams, motivating them to
continue the process from throughout all the phases of the selection process.

As key educational influencers, teachers, especially science teachers, play a vital role
in raising awareness about the ISNTs and ISYT. This includes explaining the challenges
and benefits that students may experience from participating, both during high school
and beyond.

In order to effectively prepare students for initial challenges, science teachers can
direct all students in their classes to questions from the ISNT’s question bank and even
solve such questions in class, thereby introducing their pupils to different thinking skills,
which are often more challenging than what is needed for the official curriculum.

Upon receiving the results of the Phase A exam, which are also sent to the teachers
by the Ministry of Education, teachers share the outcome with their students. If the result

J. Gal-Ezer, D. Zohar, A. Rolnik58

is positive, they can turn the good news into a pivotal moment. Conversely, if the result
is negative, teachers can offer emotional support and encourage students to continue
participating in other excellence programs. Support and encouragement from teachers is
valuable at every stage throughout the process and during team training. Instructors play
a vital role, both by showing interest and providing motivation to continue, and on an
organizational level, by granting permission for absences or helping students catch up on
material missed due to team commitments.

The schools, with the assistance of the teachers, can create a supportive social envi-
ronment for students who are progressing towards, or are already part of, national teams,
turning them into role models. This can be done, for instance, by sharing their stories
on school websites and on social networks, highlighting their efforts and the significant
investment required to secure a place on the Israeli national teams.

The path to success begins with the first phase of training and testing at a student’s
school, and continues to worthy achievements with the help of supportive teachers all
along the way.

4. Summary

The International Olympiads are the highlight of international school students’ competi-
tions. They are the main goal that Ministries of Education or their equivalents worldwide
aim for, and the driving factor behind national teams training programs. Each national
team member aspires to be part of the delegation representing his or her country in these
international competitions.

The IOs serve as a quality incubator for youth with high intellectual abilities who
have a passion for science, technology, mathematics, and other disciplines. This enables
the development of human capital that will be at the forefront of progress in science,
industry, technology, security, health, and the economy.

Israel views human capital as its most important resource. The country’s academic
and economic strength is based on exporting scientific and technological knowledge.
Therefore, developing these academic strengths and fostering excellence in these fields
is of utmost importance.

The essence of Israel’s efforts goes beyond just preparing for the international com-
petitions. It focuses on creating expert human resources in science, Informatics and
mathematics through education for scientific distinction, creative thinking, and complex
problem solving.

Within the scope of this paper, we focused on the general structure of five sci-
ence Olympiads in which Israel participates, with a focus on the informatics Olympiad.
The paper offers an overview without delving into the structure of each competition.
Despite the local point of view, same as (Cohen et al., 2022; Zohar and Gal-Ezer,
2023), it can serve worldwide populations, who will benefit by following the guidelines
and practices described, replicating them, and emphasizing inclusiveness in their own
countries.

International Science Olympiads: The Israeli Teams 59

References

HEMED (2024). Administration of Religious Education (HEMED). The Ministry of Education, State of Israel.
https://hemed.education.gov.il/ (in Hebrew). Accessed: 2024, July 29.

Armoni, M., and Gal-Ezer, J. (2023). High-School Computer Science – Its Effect on the Choice of Higher Edu-
cation. Informatics in Education, 22(2), 183–206.

APhO (2024). Asian Physics Olympiad (APhO). http://asianphysicsolympiad.org/. Accessed: 2024,
February 16.

APIO (2024). Asia-Pacific Informatics Olympiad (APIO). https://ioimalaysia.org/competition/
apio/. Accessed: 2024, February 16.

BOI (2025). Baltic Olympiad in Informatics (BOI), https://boi2019.eio.ee/. Accessed: 2024, February
16.

Campbell, J. R., and Walberg, H. J. (2010). Olympiad Studies: Competitions Provide Alternatives to Develop-
ing Talents That Serve National Interests. Roeper Review, 33(1), 8–17.
https://doi.org/10.1080/02783193.2011.530202.

Campbell, J.R., Cho, S., and Tirri, K. (2017). Mathematics and Science Olympiad Studies: The Outcomes of
Olympiads and Contributing Factors to Talent Development of Olympians. International Journal for Talent
Development and Creativity, 5(1–2), 49–60.

CEOI (2024). Central European Olympiad in Informatics (CEOI). http://www.ceoi.inf.elte.hu/. Ac-
cessed: 2024, February 16.

Cohen, A., Dolev, S. and Gal-Ezer, J. (2022). The journey of computer science and software engineering in
Israeli schools. ACM Inroads, 13(3), 29–37. https://doi.org/10.1145/3556879

EGMO (2024). European Girls’ Mathematical Olympiad (EGMO). https://www.egmo.org/, EGMO: Israel
(ISR): https://www.egmo.org/countries/country47/. Accessed: 2024, October 21.

EGOI (2024). European Girls’ Olympiad in Informatics (EGOI). https://egoi.org/about-egoi/. Ac-
cessed: 2024, February 16.

Gal-Ezer, J., Beeri, C., Harel, D. and Yehudai, A. (1995). A High-School Program in Computer Science, IEEE
Computer, 28, 10, 73–80.

Ginat, D. (2015). Intersecting lines. Colorful Challenges Column, ACM Inroads, 6(3), pp. 47–48.
Ginat, D. (2019), Fence levelling. Colorful Challenges Column, ACM Inroads, 10(1), pp. 28–29.

https://doi.org/10.15388/infedu.2023.14

IAO (2024). International Astronomy Olympiad (IAO), http://www.issp.ac.ru/iao/. Accessed: 2024,
February 16.

IBO (2025). International Biology Olympiad (IBO). https://www.ibo-info.org/en/. Accessed: 2025,
April 18.

IChO (2023). International Chemistry Olympiad (IChO). https://www.ichosc.org/. Accessed: 2023, De-
cember 18.

IESO (2024). International Earth Science Olympiad (IESO). https://www.ieso2022.com/. Accessed: 2024,
February 16.

IEO (2024). International Economics Olympiad (IEO). https://ecolymp.org/. Accessed: 2024, February
16.

iGeo (2024). International Geography Olympiad (iGeo). http://www.geoolympiad.org/. Accessed: 2024,
February 16.

IHO (2024). International History Olympiad (IHO). https://www.historyolympiad.com/. Accessed:
2024, February 16.

IJSO (2023). International Junior Science Olympiad (IJSO). https://www.ijsoweb.org/. Accessed: 2023,
December 18.

IOL (2023). International Linguistics Olympiad (IOL). https://ioling.org/index.html. Accessed: 2023,
December 18.

IMO (2023). International Mathematical Olympiad (IMO). https://www.imo-official.org/. Accessed:
2023, November 25.

IMChO (2024). International Mendeleev Chemistry Olympiad (IMChO). https://mendeleevolympiad.kz/
en#about. Accessed: 2024, February 16.

IOAI (2024). International Olympiad in Artificial Intelligence. https://ioai-official.org/, Accessed:
2024, April 29.

IOI (2023). International Olympiad in Informatics (IOI). https://ioinformatics.org/. Accessed: 2023,
December 18.

J. Gal-Ezer, D. Zohar, A. Rolnik60

IOAA (2024). International Olympiad on Astronomy and Astrophysics (IOAA). https://www.ioaastro-
physics.org/. Accessed: 2024, February 16.

IPO (2023). International Philosophy Olympiad (IPO). https://www.philosophy-olympiad.org/. Ac-
cessed: 2023, December 18.

IPhO (2023). International Physics Olympiad (IPhO), https://ipho-unofficial.org/. Accessed: 2023,
December 18.

The Israeli Ministry of Education (2024a). Israel National Biology Team, Students and Alumni Portal. The
Israeli Ministry of Education. https://students.education.gov.il/social-and-enrichment-
activities/contests/bio (in Hebrew). Accessed: 2024, April 26.

The Israeli Ministry of Education (2024b). Israel National Chemistry Team, Students and Alumni Portal. The
Israeli Ministry of Education. https://students.education.gov.il/social-and-enrichment-
activities/contests/chem (in Hebrew). Accessed: 2024, April 26.

The Israeli Ministry of Education (2024c). Israel National Computer Science Team, Students and Alumni Por-
tal. The Israeli Ministry of Education, https://students.education.gov.il/social-and-enrich-
ment-activities/contests/comp (in Hebrew). Accessed: 2024, April 26.

The Israeli Ministry of Education (2024d). Israel National Mathematics Team, Students and Alumni Portal. The
Israeli Ministry of Education. https://students.education.gov.il/social-and-enrichment-
activities/contests/math (in Hebrew). Accessed: 2024, April 26.

The Israeli Ministry of Education (2024e). Israel National Physics Team, Students and Alumni Portal. The
Israeli Ministry of Education. https://students.education.gov.il/social-and-enrichment-
activities/contests/phy (in Hebrew). Accessed: 2024, April 26.

The Israeli Ministry of Education (2024f). Israel’s Science Teams – The International Olympiads, Student and
Graduate Portal. Israeli Ministry of Education. https://students.education.gov.il/social-and-
enrichment-activities/contests/international-science-olympiads (in Hebrew). Accessed:
2024, October 21.

IYST (2024). Israel’s Young Science Team, Pedagogical space, Teaching Portal, state of Israel, Ministry of
Education, https://pop.education.gov.il/olimpiadot-madaim/nivheret-israel-tzeira/ (in
Hebrew). Accessed: 2024, October 21.

Jovanov, M., and Stankov, E. (2020). Introduction of “Honorable Mention” award at the International Olympiad
in Informatics. Olympiads in Informatics, 14, 87–104.

Lim, S. S. L., Cheah, HM., and Hor, T. S. A. (2014). Science Olympiads as Vehicles for Identifying Talent in the
Sciences: The Singapore Experience. In: Tan Wee Hin, L., Subramaniam, R. (eds) Communicating Science
to the Public. Springer, Dordrecht. pp. 195–211. https://doi.org/10.1007/978-94-017-9097-0_12

Maréchal, N. (2018). From Russia with crypto: A political history of Telegram. The 8th USENIX Workshop on
Free and Open Communications on the Internet (FOCI’18). USENIX Association.

RMM (2024). Romanian Master in Mathematics (RMM). https://rmms.lbi.ro/rmm2023/index.
php?id=home. Accessed: 2024, February 16.

Smith, K. N., Jaeger, A. J., and Thomas, D. (2021). Science Olympiad Is Why I'm Here: the Influence of an
Early STEM Program on College and Major Choice. Res Sci Educ 51 (Suppl 1), 443–459. https://doi.
org/10.1007/s11165-019-09897-7

Zohar, D., and Gal-Ezer, J. (2023). Navigating to Tomorrow's High-Tech Landscape: Outlining a Path Based on
the Israeli Case, ACM Inroads, 14(4), 51–56. https://doi.org/10.1145/3630606

International Science Olympiads: The Israeli Teams 61

J. Gal-Ezer is Professor Emerita of Computer Science (CS) at the
Open University of Israel (OUI), where she played a pivotal role in
developing Math and CS courses, and designing the undergraduate and
master’s programs in CS. She has held significant positions, including
Head of the Math and CS Department and Vice President for Academic
Affairs. Her research focuses on CS education. She holds key roles in
various prestigious committees, including the ACM Education Board,
the I4All Coalition, chairs the ACM Europe Education Committee and
is member of the EU expert group for teaching Informatics in school.
She is ACM Fellow. And the recipient of the ACM SIGCSE Award, the
IEEE Taylor L. Booth Education Award, and the ACM Karl V. Karl-
strom Outstanding Educator Award.

D. Zohar is an educator specializing in science and technology, with
over 30 years of experience in higher education, educational policy,
and secondary-school instruction in Israel. At the OUI, he teaches
computer science courses, coordinates curriculum development, and
develops multimedia instructional materials. He also supports peda-
gogical initiatives aimed at encouraging STEM careers across the
national education system. From 2018 to 2019, Dr. Zohar served as
Acting Chief Inspector for Computer Science at Israel’s Ministry of
Education, overseeing the K7-12 curriculum and managing the 5-unit
matriculation exams. Since 1996, Dr. Zohar has taught computer sci-
ence at Ohel Shem High School, preparing students for advanced-level
matriculation exams in CS. He coordinates the “Academia in High
School” initiative, a collaborative effort between the Ministry of Edu-
cation and the Open University of Israel. Throughout his career, Dr.
Zohar has focused on enhancing excellence, equity, and accessibility
in computer science education.

A. Rolnik, an educator and jurist, has been a prominent figure in sci-
ence and technology education in Israel for four decades. In recent
years, her work has focused on advancing scientific and technological
excellence within the national education system. Among her notable
achievements, Anat was one of the founders of the Scientific-Techno-
logical Cadet Program, which transformed the national approach to
science and technology education and led to a significant increase in
the number of students earning high-quality matriculation certificates.
She also led Israel’s national science teams for six years, founded both
the Israeli Biology Team and the Young Israeli Team, and helped ex-
pand opportunities for excellence among students nationwide. Most
recently, Anat directed the Israeli High-Tech Program at the Minis-
try of Education, working in close cooperation with the public sector,
high-tech companies, NGOs, and philanthropic foundations to pro-
mote excellence and strengthen the connection between education and
the high-tech industry.

J. Gal-Ezer, D. Zohar, A. Rolnik62

Appendix A: Examples from the Informatics Olympiads

The core of the IOI competitions is algorithmic problem solving. Today online prepara-
tion sessions are offered, these sessions help students develop skills in writing pseudo-
code (between Phases A and B) and basic programming (between Phases B and C).

Such algorithmic problems can be found in David Ginat’s column in the ACM InRoads
Magazine, for example: “Given the points 1 .. N in the X-axis and the points 1 .. N in Y-
axis of a Cartesian coordinates system, where N is even; each point i on each axis is con-
nected, with two lines, to two points on the other axis – the points i and N-i + 1; devise a
recursive solution for computing the number of line intersections. For example, for N = 2,
the answer is 1; for N = 4 the answer is 10. (If two lines meet on one of the axes, we do not
consider it intersection.) The challenge may be solved directly, with suitable counting. It
may also be solved recursively in some cumbersome ways. We are asking for an elegant,
illuminating, recursive solution.” (Ginat, 13) The emphasis on simple and elegant solu-
tions makes these problems even more challenging.

In (Ginat, 14) the problem presented involves optimizations task, which was designed to
exercise induction and abstraction. Through these and other algorithmic challenges, stu-
dents refine their abstraction and creativity, deepening their understanding of algorithmic
problem-solving – the core of computer science.

Olympiads in Informatics, 2025, Vol. 19, 63–86
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.05

63

Evaluating Interactive Tasks through the Lens of
Computational and Algebraic Thinking, Interactivity
Types, and Multimedia Design Principles

Yasemin GULBAHAR1, Tugba ÖZTÜRK2, Valentina DAGIENĖ3,
Marika PARVIAINEN4, Ismail GÜVEN2, Javier BILBAO5

1Teachers College, Columbia University, USA
2Ankara University, Türkiye
3Vilnius University, Lithuania
4University of Turku, Finland
5University of the Basque Country (UPV/EHU), Spain
e-mail: gulbahar@tc.columbia.edu, tozturk@ankara.edu.tr, valentina.dagiene@mif.vu.lt,
 mhparv@utu.fi, guveni@ankara.edu.tr, javier.bilbao@ehu.eus

Abstract. This study investigates student engagement within an online assessment environ-
ment, focusing on the interplay between interactivity types, and multimedia design. We analyzed
(1) descriptive patterns of student engagement and performance, (2) time-on-task in relation to
interactivity type of tasks, (3) the frequency and distribution of multimedia design principles
(e.g., contiguity, modality) across tasks designed to elicit computational and algebraic thinking,
and (4) the correlation between the application of these principles and students’ average scores.
Findings reveal distinct engagement patterns and performance levels across task types. Time
spent varied significantly by interactivity, with certain types eliciting more engagement. Specific
multimedia principles were more prevalent in particular tasks, and correlational analysis indi-
cated relationships between the application of certain design principles and student performance
outcomes. These insights contribute to a more nuanced understanding of how interactive design
and multimedia integration can influence learning in computationally and algebraically rich on-
line environments.

Keywords: interactive tasks, multimedia principles, computational thinking, algebraic thinking.

1. Introduction

The modern era in which we live differs significantly from the past, and hence, there are
substantial differences in the skills that individuals are expected to possess. In today’s
competitive world, international non-governmental organizations such as the World
Economic Forum (WEF) regularly update the 21st-century skills which have been fre-
quently identified and featured in the WEF’s Future of Jobs reports (World Economic

Y. Gulbahar et al.64

Forum, 2020). Some of these skills have attracted scholars’ attention, with Computa-
tional Thinking (CT) as one of these crucial key skills (Agbo et al., 2023; Curzon et al.,
2009; Dede et al., 2013; Papadakis, 2022; Voogt et al., 2015; Yang et al., 2023). CT is
a term used to define the ability to perform logical reasoning and algorithmic thinking
(Denning, 2009). Not just computer scientists, but individuals from various disciplines
should possess CT skills (Wing, 2006). CT is said to encompass a set of mental pro-
cesses, algorithms, and solutions utilized in formulating problems (Grover & Pea, 2013).
From a wider perspective, the International Society for Technology in Education (ISTE)
and the Computer Science Teachers Association (2011) formulated an operational defi-
nition for CT, where they included core skills such as problem solving, decomposition,
abstraction, algorithm design and pattern recognition.

While the definitions of CT have varied over time, the consensus is that it is a
particularly significant skill for today’s world. This disposition leads to the question:
“What makes CT one of the most important skills of the 21st century?”. Promoting CT
skills is essential in educational settings since these skills may serve as a catalyst for
learners to understand effective use of technology for solving real-life problems. For
example, the ISTE and CSTA (2011) suggested that CT can enhance students’ academic
performance and better prepare them to join today’s competitive workforce. Addition-
ally, Gülbahar et al. (2019) argued that CT can expand students’ thinking horizons,
whilst Tripon (2022) opined that CT can enhance students’ lifelong learning skills.
Furthermore, Korkmaz and Bai (2019) emphasised that CT is a critical factor in shaping
students’ attitudes toward science and technology. Numerous studies in the literature
have emphasised the significance of CT skills and their implications. The ISTE and
CSTA (2011) underlined the existence of a close link between CT and algorithmic and
arithmetic thinking. Additionally, Shang et al. (2023) revealed a positive relationship
between CT and students’ self-efficacy, while Polat and Yilmaz (2022) highlighted the
correlation between CT and academic achievement.

All of these research studies provided evidence that CT is an important skill that
every child has to learn. Based on this fact, numerous research studies have revealed the
effect of different plugged and unplugged pedagogical approaches in teaching-learning
processes. Although a number of tools exist that could be utilized in accordance with
this purpose, the researchers agreed on the use of tasks from Bebras Challenge as the
subject of inquiry in the current study, due to its international impact and role on society
(https://www.bebras.org/).

Computational thinking (CT) is a problem-solving process that involves formulat-
ing problems in a way that enables us to use computer-based tools and techniques to
help solve them. It's not just about programming, but rather a set of cognitive skills and
approaches applicable across many disciplines. The most commonly cited elements of
computational thinking include: algorithm design (developing step-by-step procedures
or rules to solve a problem), decomposition (breaking down a complex problem into
smaller, more manageable parts), pattern recognition (identifying similarities and recur-
ring structures within problems or data), abstraction (focusing on the essential informa-
tion while ignoring irrelevant details), and evaluation (assessing the effectiveness and
efficiency of a solution).

Evaluating Interactive Tasks through the Lens of Computational and Algebraic ... 65

On the other hand, Algebraic Thinking (AT) is a way of thinking about mathemati-
cal situations that focuses on generalizing relationships, identifying patterns, and rep-
resenting these relationships using symbols. It is about moving beyond just calculating
with specific numbers to understanding the underlying structure and properties of math-
ematical operations and systems. AT comprises four thinking strands (Pitta-Panzazi et al.,
2020): generalized arithmetic, functional thinking, modeling languages, and algebraic
proof (i.e., abstract algebra). AT includes a shift of attention from the result to the process
in problem-solving situations (Malara & Navarra, 2018) where some ideas merge and
overlap with CT. So, we can talk about some shared features in CT and AT, as follows:

Algorithmic thinking algorithm design. ●
Problem-solving process, abstraction skills. ●
Concepts of equality, variable, algorithm and function. ●
Defining patterning, generalization and parametrization. ●

The assessment of computational and algebraic thinking within interactive tasks
should consider several key dimensions. Firstly, it should evaluate students’ mastery of
algorithms, specifically their capacity to comprehend, execute, and create algorithmic
procedures, encompassing skills such as decomposition into smaller steps and gener-
alization to broader contexts. Secondly, it needs to gauge their proficiency in problem
solving and working with data, including their abilities to analyze, represent in mean-
ingful ways, and derive insights through visualization and abstraction. Furthermore, the
evaluation should focus on students’ skills in dealing with concepts like equality, vari-
ables and function, as well as structures in the problems. Finally, the assessment should
probe their ability to identify patterns and, importantly, to generalize from observed
examples to formulate broader rules or principles. These interconnected dimensions
provide a comprehensive view of how interactive tasks can foster and reveal students’
computational thinking abilities.

2. Interactive Tasks

In today’s skills-based world, the promotion of digital tools for teaching and learning
has become increasingly important. The substantial support provided by technology-
assisted approaches to education has had a significant impact on educational outcomes.
These solutions also provide interaction that is crucial in the acquisition of critical
skills, as they enable the transformation of learners’ cognitive structures and facilitate
effective learning (Johnson et al., 2014; Moore, 1989). Since interaction emerged as a
key concept to the cultivation of valuable understanding and practicing in learning con-
texts, technology-assisted solutions are used to help enhance interaction in educational
settings through a wide range of means and methods. As such, computer games and
digital simulations are utilized to teach essential skills such as CT (Basawapatna et al.,
2011; 2014) with context-appropriate elements of interaction.

Gaining importance in recent years, the literature illustrates a multitude of works
that have addressed interactivity in teaching and learning processes, and the utiliza-

Y. Gulbahar et al.66

tion of Bebras tasks to impact upon learners’ CT skills. For example, Lutz et al. (2018)
used Bebras tasks to promote students’ CT skills in programming training, and stated
that a positive relation exists between CT and task completion. Similarly, Chiazzese
et al. (2018) performed project-based robotics training with the help of Bebras tasks to
improve learners’ CT skills, and revealed that a positive effect was seen in supporting
learners’ CT skills. These examples provide insight into how CT skills can be promoted
and supported by using Bebras task-oriented interactive products, and how inspiration
can be drawn from such attempts to enhance learners’ CT skills through effective design
with the use of multimedia design principles.

Interactive tasks employ a variety of interaction types to engage learners. ‘Click-on-
object’ interactions allow users to manipulate the state of elements, such as changes in
color, shape, or orientation, often revealing underlying concepts or triggering events.
‘Drag and drop’ functionalities enable users to physically manipulate digital objects,
facilitating tasks like categorization, sequencing, or spatial reasoning. Tasks that involve
‘Writing text or integers’ provide opportunities for students to input answers, define vari-
ables, or express their understanding in a textual or numerical format. Finally, ‘Click &
draw’ interactions, such as creating arrows or freehand markings, can support learners in
annotating diagrams, illustrating relationships, or visualizing their thinking directly on
the interface. These diverse interactivity types offer different affordances for engaging
with the learning content.

Incorporating CTML principles into the design of instructional materials has been
recommended to enhance learners’ achievement, and also to decrease their cognitive
load. Various investigations in the existing literature have examined the effectiveness
of CTML principles (Basawapatna et al., 2013; Schnotz & Bannert, 2003; Selby, 2015;
Torcasio & Sweller, 2010) in promoting CT whereas some studies on CT have identified
significant gaps. For example, Tang et al. (2020) conducted a systematic review which
revealed that CT assessments heavily prioritize programming skills. The researchers
also proposed that additional assessments, particularly those focused on quality, are
greatly needed in order to achieve better results. Similarly, Hsu et al. (2018) reported
that CT is primarily used in activities based on computer science. Given that cognitive
abilities vary among learners of different ages, it logically sounds that the most appropri-
ate methods and ways should be adopted to promote CT skills, and that this may involve
the use of varied approaches so as to effectively foster CT skills at different stages of
development.

3. Cognitive Theory of Multimedia Learning

Richard Mayer’s cognitive theory of multimedia learning centers on the idea that our
working memory has a limited capacity, which can easily be overwhelmed by too much
simultaneous information. Mayer proposes that learning is an active process where we
build our own understanding from what we are presented with. He also suggests that us-
ing both visuals and audio in learning materials can improve understanding by engaging
multiple senses and linking different pieces of information. Rooted in cognitive psy-

Evaluating Interactive Tasks through the Lens of Computational and Algebraic ... 67

chology, Mayer’s theory aims to optimize multimedia design to match how our minds
process information. A key aspect is the limited capacity of working memory, meaning
instructional materials should be well-structured to avoid overload. Furthermore, Mayer
emphasizes active learning, where learners actively select, organize, and integrate in-
formation, and his principles guide the creation of materials that support these processes
for better learning.

Mayer’s (2009) cognitive theory of multimedia learning is based on cognitive load
theory, which states that our working memory has a limited capacity for processing
information at once. Mayer’s theory suggests that the information we encounter dur-
ing learning leads to three kinds of cognitive processing: selective processing, where
learners focus on only one part of the information, typically when it’s simple; coherent
processing, where learners connect new information to what they already know, leading
to deeper understanding; and generative processing, where learners actively engage with
the material to create new mental representations, which is considered the most effective
for learning.

Mayer’s theory proposes that multimedia presentations can be structured to encour-
age these various types of cognitive processing, ultimately leading to improved learning
results. For instance, when multimedia is designed to promote generative processing,
learners are more likely to remember and use the information in practical contexts.

Extraneous load, or wasted mental effort, arises from non-essential elements that do
not aid learning. To reduce this, instructors should stick to the core content and avoid
distractions like unnecessary animations or irrelevant details.

Intrinsic load, or the essential mental effort of processing the material itself, depends on
its complexity. Instructors can manage this by breaking down content into smaller parts
and explaining technical terms beforehand.

Germane load, or the effort learners put into truly understanding the material, is heavily
influenced by their motivation. Instructors can boost this by providing learning support
and pacing the content well.

Essentially, cognitive load theory expands on the idea of our limited processing capacity.
It suggests that to maximize learning and memory, instructors should create multimedia
that appropriately manage intrinsic load, optimize germane load, and minimize extrane-
ous load. Consequently, Mayer’s principles for effective multimedia design can also be
understood as practical strategies for managing cognitive load.

Briefly, the cognitive theory of multimedia learning posits that our minds have sepa-
rate visual and auditory channels with limited processing power, and that learning is an
active process. Therefore, those creating multimedia should design their presentations
to carefully manage the demands on these cognitive resources. Mayer views multimedia
as tools that help learners build their own understanding, not just as ways to transmit
information.

In order to promote effective learning, interactive learning environments that incor-
porate information and communication technologies are being developed in response to
the rapid evolution seen in the use of digital technologies (Liu & Szabo, 2009). Owing to

Y. Gulbahar et al.68

the fact that interaction within learning environments is often facilitated through the use
of multimedia elements, Mayer (2013) developed the Cognitive Theory of Multimedia
Learning (CTML) to provide a theoretical foundation for the development of multime-
dia learning environments. Since then, CTML has been identified as a critical theory for
instructional technology designers, as it aims to facilitate efficient learning for learners
(Cavanagh & Kiersch, 2022).

4. Principles of Multimedia Learning

Drawing on his theories of learning, Richard Mayer outlined twelve principles to guide
the creation of effective multimedia learning tools. These guidelines, listed below, aim
to help designers produce engaging materials that lead to better understanding and
memory.

 1. Multimedia Principle: Combining words and pictures is more effective for
learning than using words alone.
 2. Modality Principle: Presenting related information visually and audibly is bet-
ter than using just one of these methods.
 3. Redundancy Principle: Avoid presenting the same information both as on-
screen text and as spoken narration.
 4. Coherence Principle: Learning is improved by excluding any unnecessary con-
tent.
 5. Signaling Principle: Using cues to highlight important information and the
structure of the material enhances learning.
 6. Spatial Contiguity Principle: Placing related text and visuals close together
improves understanding.
 7. Temporal Contiguity Principle: Presenting spoken words and corresponding
graphics simultaneously is more effective.
 8. Segmenting Principle: Breaking down lessons into smaller, manageable parts
helps learners.
 9. Pre-training Principle: Providing necessary background information before the
lesson improves learning.
 10. Image Principle: Use relevant graphics that help explain the content and sup-
port learning objectives.
 11. Personalization Principle: Avoid formal language and instead use a conversa-
tional tone to engage learners.
 12. Voice Principle: A friendly human voice is better for narration than a computer-
generated one.

Ultimately, Mayer’s principles offer practical advice for developing effective multi-
media learning experiences. By applying these guidelines, creators can design materials
that actively involve learners and lead to more profound understanding and better reten-
tion of the information.

Among these principles, seven of them, namely coherence, signaling, spatial con-
tiguity, temporal contiguity, segmenting, pre-training, and image principles, which are

Evaluating Interactive Tasks through the Lens of Computational and Algebraic ... 69

applicable for text and visuals as well as use of interactivity, are further investigated ac-
cording to their potential for minimizing extraneous, intrinsic and germane load.

4.1. Principles That Minimize Extraneous Load

4.1.1. The Coherence Principle

According to the Coherence Principle, people learn better when multimedia messages
exclude extraneous material. This means instructors should avoid adding information
that will not be tested, is just for show, or distracts from the learning goals. Mayer also
points out the danger of “seductive details” – engaging but irrelevant content that can
be better remembered than the main points, thus interfering with learners’ construction
of understanding. To adhere to this, multimedia should only contain learning-relevant
graphics, text, and narration, should not include background music, and should use
simple visuals.

In the ‘Writing text or integers’ type interactive task presented in Fig. 1, the use of
several simple visuals aims to just improve learning, in other words, students can under-
stand the change in the pattern by just observing relevant graphics.

4.1.2. The Signaling Principle

According to the Signaling Principle, adding cues that emphasize the organization
of key material helps people learn better. When multiple elements are visible, learn-
ers benefit from knowing what to focus on, their current location in the presentation,
and how the information fits together to build their mental models. Thus, instructors
should use signals to draw attention to important content, but Mayer cautions against

Fig. 1. Example of an interactive task: Writing text or entering integers.

Y. Gulbahar et al.70

overuse. To apply this principle, use tools for highlighting for emphasis, and provide
an advanced organizer that outlines the presentation’s structure, referring back to it as
you progress.

For example, in the ‘Click-on-object’ type interactive task seen in Fig. 2, arrows are
used for moving the bird to the target. Hence, arrows are the signals in this question
which provides interactivity and step by step trial.

4.1.4. The Spatial Contiguity Principle

The Spatial Contiguity Principle suggests that learners understand better when related
text and visuals are placed close together on the screen or page. This intuitively means
keeping labels and captions near the graphics they describe. Doing so reduces the mental
effort learners need to connect the text and images, allowing them to focus on under-
standing and integrating the information instead of scanning the screen to make those
links. To apply this, place text near its corresponding graphics, provide feedback close
to related questions or answers, present instructions on the same screen as the activity,
and have learners read any text before an animation begins.

As it is seen in the ‘Writing text or integers’ type of interactive question in Fig. 3,
although there are too many shapes and words which could lead to a potential cognitive
load, combination of verbal and visual elements closer to each other make it easy to
understand the question.

4.1.5. The Temporal Contiguity Principle

The Temporal Contiguity Principle states that learning is more effective when related
words (narration) and pictures (animation) are presented at the same time rather than
one after the other. To maximize learning, narration should be synchronized with the

Fig. 2. Example of an interactive task: Click-on-object.

Evaluating Interactive Tasks through the Lens of Computational and Algebraic ... 71

graphics, rather than having students read an explanation and then see the visuals sepa-
rately. To apply this, ensure that narration is timed to coincide with the corresponding
animations.

For example, in the ‘Drag and drop’ type interactive task seen in Fig. 4, having all
text and graphics altogether makes it easy to understand the problem, and through inter-
activity students can try and learn even if they make mistakes.

4.2. Principles That Manage Intrinsic Load

4.2.1. The Segmenting Principle

According to the Segmenting Principle, people learn better when they can proceed
through a multimedia message at their own pace, rather than having it presented con-
tinuously. Mayer’s research with asynchronous lessons on processes showed that allow-
ing students to control the speed improved their recall and transfer abilities. Therefore,

Fig. 3. Example of an interactive task: Writing text (several times).

Y. Gulbahar et al.72

this principle advises giving users control over the lesson’s pace (like speed controls or
“next” buttons) and breaking down extensive content into smaller segments to allow for
sufficient processing at each step.

In the ‘Drag and drop’ type interactive task seen in Fig. 5, the users can drag num-
bers and drop empty places having the control over the sorting process, so they can
observe each step through interaction, which allows them to work at their own pace.

Fig. 4. Example of an interactive task: Drag and drop.

Fig. 5. Example of an interactive task: Drag and drop.

Evaluating Interactive Tasks through the Lens of Computational and Algebraic ... 73

4.2.2. The Pre-Training Principle

The Pre-training Principle suggests that learners understand more deeply when they are
familiar with the names and features of the main ideas before the lesson. Because man-
aging the inherent complexity of information can easily overwhelm beginners, instruc-
tors should introduce key terms and concepts before explaining processes. Without this
pre-training, students might struggle to learn the components of a process while simulta-
neously trying to understand the process itself, hindering their learning. Essentially, pre-
training scaffolds learning by ensuring students have the necessary background knowl-
edge before starting a multimedia lesson.

For example, in the ‘Writing text or integers’ type of interactive task seen in Fig. 6,
the students need some pre-training in order to be able to solve the task. Hence, the

Fig. 6. Example of an interactive task: Writing text or integers.

Y. Gulbahar et al.74

question provides some clues prior to asking the question. This is where students have
to understand the codes related to shapes, so they can apply this information to solve the
actual problem.

4.3. Principle That Optimize Germane Load

4.3.1. The Image Principle

The Image Principle encourages the use of diagrams, animations, or other visual aids
that directly relate to the topic being discussed. Using visuals, symbols and images while
aligning text closely with these visual cues make information easy to follow or supports
easy understanding of concepts and processes.

In the ‘Drag and drop’ type interactive task seen in Fig. 7, the text explanations
appear before and after the visual in order to improve the effect of the visual besides
text, where use of images support easy understanding of the explanations provided as
text.

Fig. 7. Example of an interactive task: Drag and drop.

Evaluating Interactive Tasks through the Lens of Computational and Algebraic ... 75

4.4. Stating the Gap in the Literature

Research consistently highlights the significant potential of using digital interactive
tasks in mathematics education to support thinking processes and foster deeper learning
(Mierluş-Mazilu & Yilmaz, 2023; Drijvers & Sinclair, 2024). These tasks, leveraging
elements like click-on interactions, drag-and-drop, text input, and drawing tools, can
engage students in ways that traditional methods often cannot.

Interactive tasks, especially those incorporating game-based learning or real-world
applications, can significantly increase student engagement and motivation in mathemat-
ics (Wang, Chang, Hwang, & Chen, 2018; Hwa, 2018; Moon & Ke, 2020). The dynamic
and often playful nature of these tasks can also make learning more enjoyable and less
intimidating, fostering a more positive attitude towards math (Applebaum, 2025).

Interactivity allows students to visualize and manipulate abstract mathematical
concepts, leading to a deeper and more intuitive understanding (Ziatdinov & Valles Jr,
2022). Tasks that require active participation and experimentation help students break
down complex ideas and build stronger cognitive connections (Boaler, 2022).

Interactive tasks often require students to actively solve problems and think critical-
ly, contributing to the development of these essential skills (Blyznyuk & Kachak, 2024).
Studies have shown the positive impact of interactive math apps on early math learning
gains, including basic facts, concepts, and higher-level reasoning (Bang, Li & Flynn,
2023; Clements, Lizcano & Sarama, 2023). Besides, digital platforms with features like
dynamic representations, simulations, and virtual manipulatives help students engage
with math in more meaningful ways (Cirneanu & Moldoveanu, 2024; Bush, 2021).

In conclusion, research strongly supports the use of digital interactive tasks in math
teaching as a way to enhance engagement, understanding, and skill development. How-
ever, the effectiveness hinges on thoughtful design, appropriate pedagogical integration,
and equitable access for all learners. Hence, while the potential is high, the design of
effective interactive tasks is crucial to maximize their benefits, since simply digitizing
traditional exercises may not yield the desired outcomes.

5. Research Methodology

Based on the literature review and theoretical basis provided, the purpose of this article
is to analyze interactive tasks based on the computational and algebraic thinking they
promote, the nature of their interactivity, and their adherence to established multimedia
principles. To address this issue, we tried to answer the following research questions:

What are the typical patterns of student engagement (types of interaction, time 1.
spent) within the online learning environment?
How does the average time students spend on a task vary across different types 2.
of interactive tasks?

Y. Gulbahar et al.76

How frequently are various multimedia design principles (e.g., contiguity, mo-3.
dality, coherence, redundancy) applied across the learning tasks?
Is there a statistically significant correlation between the extent to which multi-4.
media design principles are applied in a task and the average scores achieved by
students on that task?

By addressing these research questions, the study will provide a comprehensive
analysis of the multimedia design effectiveness of the interactive mathematics questions
for students. The findings will not only inform the refinement of the platform but also
contribute to our understanding of how interactive design and multimedia principles can
be optimally applied in educational contexts to foster critical thinking skills.

Hence, this research study is based on quantitative data analysis where descriptive
analysis as well as correlational analysis were used.

5.1. Working Group

Data from a total of 63 students (Grades 1–2) were used in this study (Table 1). How-
ever, some of them did not provide answers to some questions. So, the total number of
students answering each question shows variety for each group and task.

5.2. Interactive Tasks

The interactive tasks (which are called as COMATH items in the context of the project)
used within this research are developed in the scope of CT&MathABLE project (2025)
which focuses on benchmarking Computational and Algebraic thinking skills in school
systems in the project partner countries. The tasks are provided through a digital online
learning platform, ViLLe, which focuses on learning analytics.

Interactive tasks in the Computational Thinking (CT) Dimension of the scale are
derived from items developed for the 2022 International Bebras Challenge (Dagienė
and Stupurienė, 2016). Algebraic Thinking (AT) items were developed at University of
Turku by staff in the Turku Research Centre for Learning Analytics during Autumn of
2023 and Spring of 2024.

Table 1
Demographic Information about Working Group

Grades Number of Participants Female Male

Grades 1–2 63 27 36
Grades 3–4 57 24 33
Grades 5–6 59 26 33
Grades 7–8 28 19 9

Total 207 96 111

Evaluating Interactive Tasks through the Lens of Computational and Algebraic ... 77

A total of 207 students participated in the study; however, the analysis focused on
Grade 1 and 2 students, as they represented the largest subgroup and offered the most
suitable data for the research objectives.

Interactive tasks for this research study are provided and accessed through ViLLE
Platform. ViLLE is a collaborative learning platform1 developed by the Centre of Learn-
ing Analytics of the University of Turku. It offers students and teachers detailed infor-
mation regarding their learning process in the form of immediate feedback and learning
analytics. Teachers can create exercises for their personal use but they can also utilize
materials made by others. Most exercises are automatically assessed which allows teach-
ers to spend more of their time supporting students.

In response to the significant findings reported in the literature and Mayer’s (2017)
call for future research on the use of educational multimedia designed in accordance
with CTML principles in educational contexts, the current study explores the integration
of these principles in interactive tasks. ViLLE system is not supporting audio and video
content, so this research study will focus on the principles which are applicable for text
and visuals. The interactive tasks will be evaluated using seven of the multimedia design
principles considered appropriate to the characteristics of interactive tasks, which are
such as the use of coherence, signaling, spatial contiguity, temporal contiguity, segment-
ing, pre-training, and multimedia principles.

5.3. Data Collection

Data for this study were collected through the implementation of interactive tasks using
the ViLLE system. From the system logs, we extracted several key variables: “scores,”
representing the points students earned for each task; “submissions,” indicating the
timestamp when a student clicked “Submit” and received immediate feedback; and
“time on task,” reflecting the total duration a student spent completing each task. Ad-
ditionally, the dataset includes anonymized student identifiers and gender information.
Thus, all data were gathered online via the ViLLE platform to analyze students’ per-
formance.

5.4. Data Analysis

The data analysis focused on understanding student interaction types, time and perfor-
mance based on descriptive statistics. The findings can inform improvements in interac-
tive task design and multimedia principles.

1 https://en.learninganalytics.fi/ville

Y. Gulbahar et al.78

6. Findings

This section presents the results of the study, which aimed to assess interactive tasks in
relation to computational and algebraic thinking processes, interactivity types, and the
application of multimedia design principles. A combination of descriptive and inferen-
tial statistical analyses was conducted to examine patterns in student engagement, task
performance, and the instructional quality of the tasks through multimedia design.

The dataset comprises interaction data from 18 tasks completed by students in
Grades 1 and 2. Key variables analyzed include the number of students per task, time
spent on tasks, average scores, number of submissions, and the frequency and type of
multimedia principles applied. Additionally, the study explores the potential relationship
between multimedia principles and student performance using non-parametric statistical
methods due to the non-normal distribution of score data.

As aligned with the research questions, the results are structured into four main ar-
eas: (1) descriptive patterns of student engagement and performance, (2) time on task by
interactivity type, (3) frequency and distribution of multimedia design principles across
tasks, and (4) correlation between the application of these principles and students’ aver-
age scores. These findings offer insight into how interactive design and multimedia appli-
cation may influence students’ learning behaviors and outcomes in digital environments.

Descriptive and correlation analyses of the data are presented in Table 2.
The dataset is composed of performance and engagement metrics across 18 tasks

completed by students. Below is a summary and interpretation of the key variables:
On average, each task was completed by approximately 32 students. The number

of students per task varied, ranging from a minimum of 12 to a maximum of 40. This
indicates that while most tasks had similar participation levels, a few were completed
by significantly fewer or more students, possibly due to differences in group size or task
allocation.

TimeA.

In terms of time on task, on average, students spent about 172 seconds (around 2.9 min-
utes) on each task (Table 3). Some tasks took as little as 48 seconds, while others took

Table 2
Descriptive Results for Grades 1–2

Mean Min Max Std. Dev.

Time on Task 171.8 s 48.4 502.1 112.9
Time Std Dev 142.8 25.5 411.2 110.8
Average Score 5.24 0.00 10.0 3.24
Score Std Dev 3.32 0.00 4.92 1.36
No. of Submissions 1.69 1.00 2.93 0.52
Submission Std Dev 1.04 0.00 2.30 0.65

Evaluating Interactive Tasks through the Lens of Computational and Algebraic ... 79

more than 8 minutes. This big difference shows that some tasks were much harder or
more detailed than others. While a few tasks were quick and easy to finish, others took a
lot more time – probably because they were more difficult, had more content, or needed
more interaction. The high variation (112.9 seconds) also shows that the time students
spent on each task was quite different from one task to another.

Interactivity typeB.

Tasks that involved Click on object and Drag and Drop interactions took the longest av-
erage time to complete, suggesting these may require more exploration or user engage-
ment. Write-type tasks, where students input text or numbers, took moderately less time,
possibly due to more direct response formats.

Performance (Score)C.

Score variability is relatively high, implying that some students performed very well
while others struggled, possibly due to differences in multimedia principles. Number of
Submissions as an indicator of performance shows that on average, students submitted
each task about 1.7 times. The number of submissions ranged from 1 to almost 3 times.

Table 3
The average time spent on each interactivity type

Task Time on task Interactivity

1 97 Drag and drop

2 93 Drag and drop

3 48 Drag and drop

4 90 Drag and drop

5 197 Write text, integer

6 115 Write text, integer

7 198 Click

8 189 Write text, integer

9 79 Click

10 157 Write text, integer

11 113 Click

12 502 Drag and drop

13 131 Click

14 140 Click

15 119 Write text, integer

16 266 Drag and drop

17 182 Click

18 377 Click

Y. Gulbahar et al.80

This shows that many students submitted the same task more than once. This might
mean they had a chance to revise their work, made mistakes on the first try, or wanted to
improve their scores by trying again. In line with this, the standard deviation for the num-
ber of submissions was 1.04, which indicates there was a noticeable difference among
students in how often they resubmitted tasks. Some students submitted only once, while
others submitted multiple times. The variation in submission frequency further supports
the likelihood of repeated attempts or iterative learning processes for certain tasks.

Multimedia principles

An analysis of multimedia principle usage across the interactive tasks is shown in
Table 4.

The result of the analysis reveals that the Temporal Contiguity Principle was the
most frequently applied, being present in 100% of the tasks. A number of other princi-
ples were also widely implemented. Specifically, the Redundancy Principle, the Spatial
Contiguity Principle, and the Image Principle were each applied in 94.4% of the tasks,
indicating strong alignment with best practices for presenting visual and verbal informa-
tion effectively.

In terms of moderate usage, both the Segmenting Principle and the Pre-training
Principle appeared in 83.3% of the tasks. These were followed by the Coherence
Principle, which was used in 77.8% of tasks, and the Signaling Principle, present in
72.2%.

Regarding multimedia principles and the average scores, the data do not meet the
requirements for a parametric test. A Shapiro-Wilk test was conducted to assess the
normality of the score data. The results indicated a deviation from normality, W = 0.89,
p = .037. Therefore, the assumption of normality was violated, and non-parametric tests
were used in subsequent analyses. Since the p-value is less than 0.05, the null hypothesis
of the Shapiro-Wilk test was rejected. This means that the score data is not normally
distributed.

The correlational analysis was run based on each principle. The result of the analysis
is shown in Table 5.

Table 4
Frequencies of Principles within Questions

Principle f %

Temporal Contiguity 18 100
Redundancy Principle 17 94,44
Spatial Contiguity Principle 17 94,44
Image principle 17 94,44
Segmenting Principle 15 83,33
Pre-training Principle 15 83,33
Coherence Principle 14 77,78
Signaling Principle 13 72,22

Evaluating Interactive Tasks through the Lens of Computational and Algebraic ... 81

A non-parametric point-biserial correlation, a specialized form of Pearson’s cor-
relation for measuring the relationship between a continuous variable (average score)
and binary variables (multimedia principles, coded as 0/1) was used to analyze the data.
Temporal Contiguity Principle is excluded because all values are constant (all 1s) and
this makes correlation undefined. The analysis revealed statistically significant posi-
tive correlations for the Coherence Principle (r = 0.59, p = 0.01), Signalling Principle
(r = 0.50, p = 0.03), and Pre-training Principle (r = 0.52, p = 0.02), suggesting that the
presence of these principles is associated with higher average scores. Other principles,
including Redundancy, Spatial Contiguity, and Segmenting, did not show significant
relationships with the average score (p > 0.05).

7. Conclusion

This study examined the effectiveness of interactive tasks in promoting computational
and algebraic thinking skills among primary and lower secondary students, with a focus
on interactivity types and the application of multimedia design principles. The analysis,
based on data collected from 63 students across multiple grade levels, provided insight
into learner performance in terms of average scores, time on task, and number of submis-
sions, as well as the instructional quality of task design.

Descriptive results revealed that the majority of tasks were completed within ap-
proximately three minutes, though there was considerable variation in completion time,
suggesting differences in task complexity and cognitive demand. Tasks involving Click-
on-object and Drag-and-drop interactions took longer to complete, indicating that these
formats may encourage exploration and deeper engagement. Conversely, Write-type
tasks resulted in shorter engagement time, possibly due to their more straightforward
input structure. The number of submissions also indicated active student engagement,
with several students revisiting tasks – suggesting that the platform effectively sup-
ported iterative learning.

From a multimedia design perspective, the most frequently applied principles were
Temporal Contiguity, Spatial Contiguity, Redundancy, and the Image Principle, each
appearing in over 94% of tasks. These align well with Mayer’s Cognitive Theory of

Table 5
Correlation Between Multimedia Principles and Student Scores

Principle Point-Biserial r p-value

Redundancy Principle 0.19 0.44
Coherence Principle 0.59 0.01
Signaling Principle 0.50 0.03
Spatial Contiguity 0.19 0.44
Segmenting Principle 0.42 0.08
Pre-training Principle 0.52 0.02
Image Principle 0.26 0.30

Y. Gulbahar et al.82

Multimedia Learning, which emphasizes minimizing extraneous load and promoting
meaningful learning through the integrated presentation of verbal and visual content.

The results demonstrate positive correlations for the Coherence, Signaling and Pre-
training Principle with higher average scores. These results reinforce prior literature
suggesting that effective multimedia design can positively influence learning outcomes
when principles are applied deliberately (Dubois & Vial, 2001; Mayer, 2017).

Importantly, the findings also reflect on the alignment of interactivity types and mul-
timedia principles. Tasks that embedded multimedia design more consistently tended to
correlate with higher scores and increased engagement, supporting the notion that cogni-
tive load can be strategically managed through careful instructional design (Schnotz &
Bannert, 2003).

In sum, this study supports existing research that emphasizes the pedagogical value
of interactive, well-structured multimedia tasks in fostering computational and alge-
braic thinking. These findings can inform educators and designers in developing more
adaptive and cognitively balanced learning environments that enhance both engage-
ment and achievement. Future research may consider longitudinal studies and qualita-
tive feedback to explore how learners perceive and respond to these design elements
over time.

Acknowledgements

This work has been co-funded through the European Union. Information about the proj-
ect is on the CT&MathABLE website https://www.fsf.vu.lt/en/ct-math-able.
Views and opinions expressed are however those of the authors only and do not neces-
sarily reflect those of the European Union or the National Agency. Neither the European
Union nor National Agency can be held responsible for them.

References

Applebaum, M. (2025). Fostering creative and critical thinking through math games: A case study of Bachet’s
game. European Journal of Science and Mathematics Education, 13(1), 16–26.

Bang, H.J., Li, L., & Flynn, K. (2023). Efficacy of an adaptive game-based math learning app to support per-
sonalized learning and improve early elementary school students’ learning. Early Childhood Education
Journal, 51(4), 717–732.

Blyznyuk, T., & Kachak, T. (2024). Benefits of interactive learning for students’ critical thinking skills improve-
ment. Journal of Vasyl Stefanyk Precarpathian National University, 11(1), 94–102.

Boaler, J. (2022). Mathematical Mindsets: Unleashing Students’ Potential through Creative Mathematics, In-
spiring Messages and Innovative Teaching. John Wiley & Sons.

Bush, J.B. (2021). Software based intervention with digital manipulatives to support student conceptual under-
standings of fractions. British Journal of Educational Technology, 52(6), 2299–2318.

Cirneanu, A.L., & Moldoveanu, C.E. (2024). Use of digital technology in integrated mathematics education.
Applied System Innovation, 7(4), 66.

Clements, D.H., Lizcano, R., & Sarama, J. (2023). Research and pedagogies for early math. Education Sciences,
13(8), 839.

Evaluating Interactive Tasks through the Lens of Computational and Algebraic ... 83

CT&MathABLE (2025). Computational Thinking and Mathematical Problem Solving, an Analytics Based
Learning Environment (2025). https://www.fsf.vu.lt/ct-math-able#about-the-project

Dagienė, V., Stupurienė, G. (2016). Bebras – A sustainable community building model for the concept based
learning of informatics and computational thinking. Informatics in Education, 15(1), 25–44.

Dubois, M., & Vial, I. (2001). Multimedia design: The effects of relating multimodal information. Journal of Com-
puter Assisted Learning, 17(3), 292–302. https://doi.org/10.1046/j.0266-4909.2001.00186.x

Drijvers, P., & Sinclair, N. (2024). The role of digital technologies in mathematics education: purposes and
perspectives. ZDM – Mathematics Education, 56(2), 239–248.

Hwa, S. P. (2018). Pedagogical change in mathematics learning: Harnessing the power of digital game-based
learning. Journal of Educational Technology & Society, 21(4), 259–276.

Mayer, R.E., & Moreno, R. (1998). A cognitive theory of multimedia learning: Implications for design prin-
ciples. Journal of Educational Psychology, 91(2), 358–368.

Mayer, R.E. (2009). Multimedia Learning (2nd ed.). Cambridge, England: Cambridge University Press.
Mayer, R.E. (2013). Ten research-based principles of multimedia learning. In: Web-Based Learning (pp. 371–

390). Routledge.
Mayer, R.E. (2017). Using multimedia for e-learning. Journal of Computer Assisted Learning, 33(5), 403–

423.
Mierluş-Mazilu, I., & Yilmaz, F. (2023, July). Teaching Mathematics in STEM Education. In: International

Conference on Mathematics and its Applications in Science and Engineering (pp. 147–170). Cham: Spring-
er Nature Switzerland.

Moon, J., & Ke, F. (2020). In-game actions to promote game-based math learning engagement. Journal of Edu-
cational Computing Research, 58(4), 863–885.

Laird, J.E., Gluck, K., Anderson, J., Forbus, K., Jenkins, O., Kunda, M., ... & Rosenbloom, P. (2017). Interactive
task learning. IEEE Intelligent Systems, 32(4), 6–21. https://doi.org/10.1109/MIS.2017.3121573

Liu, Q., Haiyan, C., & Crabbe, M.J.C. (2021). Interactive study of multimedia and virtual technology in art
education. International Journal of Interactive Mobile Technologies, 16(1), 93–104. https://doi.
org/10.3991/ijim.v14i13.14359

Proske, A., Körndle, H., & Narciss, S. (2012). Interactive learning tasks. In: N. M. Seel (Ed.), Encyclopedia of
the Sciences of Learning (pp. 1606–1610).Springer

Soleimani, M., Ibrahim, R., Zamzami, M., & Shahbodin, F. (2017). CyberPLAYce: A tangible interaction
construction kit to enhance young children’s computational thinking. Procedia Computer Science, 105,
169–174.

Wang, S.Y., Chang, S.C., Hwang, G.J., & Chen, P.Y. (2018). A microworld-based role-playing game develop-
ment approach to engaging students in interactive, enjoyable, and effective mathematics learning. Interac-
tive Learning Environments, 26(3), 411–423.

Ziatdinov, R., & Valles Jr, J.R. (2022). Synthesis of modeling, visualization, and programming in GeoGebra as
an effective approach for teaching and learning STEM topics. Mathematics, 10(3), 398.

Y. Gulbahar et al.84

Y. Gulbahar’s career is marked by a strong foundation in mathematics
and a dedication to computer science education and educational tech-
nology. After obtaining her Bachelor’s degree in Mathematics from
Middle East Technical University (METU) in 1992, she worked as a
programmer. Subsequently, she pursued advanced studies in Computer
Education and Instructional Technologies (CEIT) at METU, earning
both her Master’s and Doctoral degrees. Her professional experience
includes more than 30 years in public and private universities, where
she chaired academic departments as well as administrative units. Af-
ter retiring from Ankara University, she moved to the USA and is cur-
rently working at Teachers College, Columbia University. Her teach-
ing portfolio is extensive, covering topics such as learning analytics,
data management, programming, instructional design, and research
methods. She is also a prolific author, contributing numerous publica-
tions to her field.

T. Öztürk is a scholar of educational technology and digital learn-
ing with deep expertise in computational thinking, instructional de-
sign, and multimedia learning environments. She earned her Ph.D.
from Lancaster University’s Centre for Studies in Advanced Learning
Technologies (UK), following her graduate studies in Computer and
Instructional Technologies Education in Turkey. She is a co-editor of
the IGI Global volume Teaching Computational Thinking in Primary
Education and has led multiple international projects on computational
thinking curricula. She has supervised several graduate theses on the
integration of computational thinking into diverse learning contexts and
continues to develop instructional approaches that bridge algorithmic
logic with creative problem-solving. She runs post-graduate courses on
computational thinking.

V. Dagienė is professor at Vilnius University, Lithuania. She has pub-
lished over 300 scientific papers, and more than 50 textbooks in the
field of informatics for schools. She coordinated over 50 national and
international projects on CS education. In 2004 she established an
International Challenge on Informatics and Computational Thinking
BEBRAS which runs in more than 80 countries (http://bebras.
org). V. Dagienė is editor of two international journals “Informat-
ics in Education” (since 2002, indexed by Web of Science, Q1) and
“Olympiads in Informatics” (since 2007, indexed by Scopus). She
is acknowledged by Ada Lovelace Computing Excellence Award by
the European Commission´s, the Presidential Award, the Cross of
the Knight of the Order of the Lithuanian Grand Duke Gediminas,
as well as the Distinguish Award of IOI – International Olympiad in
Informatics.

Evaluating Interactive Tasks through the Lens of Computational and Algebraic ... 85

M. Parviainen is a doctoral researcher at the University of Turku,
where her thesis focuses on computational thinking and mathematical
problem solving. She has a strong academic background in computer
science and mathematics, with a specialization in education. With
over a decade of experience in digital learning environments, she has
contributed to all facets of the field – from teacher training and con-
tent creation to leading initiatives in both national and international
projects.

İ. Güven has B.A. from the Faculty of Educational Sciences, De-
partment of Curriculum and Instrution at Ankara University, Turkey
in 1989. He earned his master’s degree in 1992 and doctoral degree
(Ph.D.) the Social Sciences Institute of Ankara University, Department
of Curriculum and Instruction and, has a second doctoral degree (PhD)
in History at Ankara University in 1998. He has been working in the
Faculty of Educational Sciences in Ankara University since 1990. Dr.
Guven has conducted many studies about teaching methods, computa-
tional thinking in social sciences, textbook analysis, educational ideol-
ogies and policies, social studies and history teaching method courses,
citizenship education courses at every level, and in-service education..
He has carried out many applied research projects on computational
thinking, innovative teaching methods and approaches. He has served
as head of department of Social Studies and History Teaching, and
Director of Graduate School of Educational Sciences at Ankara Uni-
versity and Editor of Journal of Faculty of Educational Sciences. Dr.
Guven worked as visiting scholar at College of Education at Arkansas
Tech University, in USA in 2018/2019. He is working as full Professor
at the Department of Turkish and Social Sciences Education in Faculty
of Educational Sciences in Ankara University since 2011. Prof. Guven
has been working at Teachers College in Columbia University in the
USA since 2024.

Y. Gulbahar et al.86

J. Bilbao is Industrial Engineer (equivalent to Grade and Master) from
University of the Basque Country, Spain. Ph.D. in Applied Mathemat-
ics, by the same university. Subdirector of the Applied Mathematics
Department, University of the Basque Country, Spain; Member of the
Evaluation Committee of the Industrial Engineering Graduate for the
National Plan for the Evaluation of Quality of the Universities of Spain.
(1998–2000); General Chair of different International Conferences;
Member of the International Scientific Committee or Scientific Advi-
sory Board of different Conferences; Member of the Reviewer Board
of the international journal Applied Energy, of the international journal
Mathematical and Computer Modelling, of the international journal
International Journal of Renewable Energy Research – IJRER, etc.;
President of the Labour Health and Safety Committee of the Bizkaia
Campus from 2019. Research Interests: Optimization of series capaci-
tor batteries in electrical lines, Modelization of a leakage flux trans-
former, Losses in the electric distribution Networks, Artificial Neural
Networks, E-learning, Machine Learning, Computational Thinking.
With more than 75 articles in international journals, 30 books, 1 patent,
48 projects, more than 200 conference papers, and scientific member
of the Bebras Community, and IOTPE Organization.

Olympiads in Informatics, 2025, Vol. 19, 87–100
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.06

87

Pisek – a Caching Task Preparation System

Martin MAREŠ, Daniel SKÝPALA
Department of Applied Mathematics Faculty of Mathematics and Physics Charles University
Malostranské nám. 25 118 00 Praha 1 Czech Republic
e-mail: mares@kam.mff.cuni.cz, skipy@kam.mff.cuni.cz

Abstract. We introduce a new tool for developing competition tasks. It helps with creating test
data and checking that the tests award the expected scores to a set of reference solutions. It sup-
ports batch, interactive, and open-data tasks in a variety of programming languages. Test results
are cached, which significantly accelerates task development. Automated checks are utilized to
detect common errors, including fuzzing of output checkers. The tool interfaces to CMS for con-
figuring tasks, testing them, and semi -automatically establishing time limits.

Keywords: task preparation tool, automated testing.

1. Introduction

Preparing a task for a programming competition is an elaborate process, which includes
developing the task statement, creating test data, and checking that the test data award
the expected scores to a set of reference solutions. Experience shows that this process is
prone to errors, especially when last-minute changes are introduced in a hurry.

Contest organizers therefore strive to make the task preparation process rig orous.
One such process was documented by Diks et al. (2008) and its principles are still fol-
lowed by major contests.

An immediate consequence is the development of task preparation systems that try
to automate as much of the process as possible. They take a formal de scription of the
task, its tests, and reference solutions. Then they go through all steps of the process and
check for errors. Some steps still require human inter vention, for example setting of time
limits. But even there, the task preparation system can provide guidance.

There already exist multiple task preparation systems, most notably Poly gon1 (popu-
lar at CodeForces), TPS2 (developed for IOI 2017), sinol-make3 (orig inated in the Polish
OI), and Taskmaker4 (originated in the Italian OI).

1 https://polygon.codeforces.com/
2 https://github.com/ioi/tps
3 https://github.com/sio2project/sinol-make
4 https://github.com/olimpiadi-informatica/task-maker-rust

M. Mareš, D. Skýpala88

In this paper, we present Pisek5 – a system we have developed over the past few
years. It is powerful and fast, while being very simple with minimal dependencies. In
particular, it can be easily used by task authors on their own machines. The current ver-
sion of Pisek is available at https://github.com/piskoviste/pisek/.

We aim for supporting a much wider range of contest types and task for mats – in par-
ticular, both IOI-type contests where solutions are submitted as source code, and open-
data contests where the contestants download test in puts and submit the corresponding
outputs. We also support a wide variety of programming languages.

Pisek is based on its own task format, which tries to make common things straight-
forward and less common things possible. Tasks developed in this format can be later
exported to an actual contest system.

Pisek has a simple command-line interface, which can be used manually or invoked
as a part of a continuous integration system. Pisek employs a lot of caching behind the
scenes to make development cycles short while ensuring correctness.

Inside, Pisek is implemented in as a collection of Python modules that can also serve
as building blocks of other tools for handling tasks, or even of contest systems.

This paper presents the features of Pisek and the foundations on which it is built.
Section 2 introduces the task format and the components of the task development pro-
cess. Section 3 describes deeper layers, in particular handling of programming lan-
guages and the caching layer. Section 4 discusses integration with contest systems like
the CMS.6

1.1. History of Pisek

The first version of Pisek was developed in 2019 by Jiří Beneš, Richard Hladík, Michal
Töpfer, and Václav Volhejn for a Czech open-data contest called Kasio pea,7 drawing
inspiration from the KSP open-data system8 developed by Martin Mareš. Then it was
extended to handle IOI-type tasks for the Czech IOI team selection camp.

Between 2023 and 2025, Pisek was rewritten by Jiří Kalvoda, Daniel Skýpala, and
Benjamin Swart, based on experience with the initial version and further ideas by Mar-
tin Mareš. This version is described in this paper. It is also used to develop tasks for the
Czech national programming olympiad and CEOI 2024.

2. Tasks and their Parts

First of all, we introduce the underlying concepts of tasks and their testing. Then we
explain how these concepts are expressed in Pisek.

5 “písek” is a Czech word for sand, alluding to a playground for children.
6 https://github.com/cms-dev/cms
7 https://kasiopea.matfyz.cz/
8 https://ksp.mff.cuni.cz/

Pisek – a Caching Task Preparation System 89

2.1. Anatomy of a Task

Pisek supports two types of tasks: batch tasks (the solution is a single program that
reads an input and then produces the corresponding output) and interac tive tasks (a pro-
gram that interacts with the contest system in multiple steps; e.g., a two-player game).
By default, all communication is performed via the standard input and output, but the
task can define a library that wraps such communication in an arbitrary API provided
to the solution.

The goal of the task is specified in a task statement given to contestants. Statements
are not handled by Pisek.

Solutions are graded using a set of tests, each having one or more testcases. Each
test is worth a certain amount of points, which are awarded for solving all testcases
in the test. For IOI-style tasks, tests correspond to subtasks. Sample input and output
(given openly to the contestant) is also considered a separate test.

In a batch task, a testcase specifies an input to the solution and the correct output.
The input can be a static file, but it is usually created using a generator. The correct
output can be static, but it is often computed from the input using a correct primary
solution. A checker then decides if the solution’s output matches the correct output. It
can be a diff-like program, or if there are multiple correct outputs, the task can provide
a judge program for checking correctness. The judge may also award partial score (e.g.,
in optimization tasks), the total score per test is then computed as the minimum over
all testcases.

In an interactive task, there is always a judge program, which interacts with the
solution over a pair of pipes. There is also an input file, but it is consumed by the judge.
Again, the judge may award partial score.

A task also comes with several reference solutions with expected scores. One of the
solution is declared primary. A primary solution is expected to solve all testcases cor-
rectly and efficiently.

In addition to solutions, a task can define a validator. It is a separate program that
meticulously verifies that the input files conform to the format set in the task statement.
In some cases, validation is integrated in the primary solution instead.

Generators, judges, and validators can have access to a dataset – a collec tion of
data files that are either contained in the task package or generated by a separate pro-
gram.

2.2. Task Package

Pisek represents everything related to a single task as a task package. The package is
stored as a single directory in the file system (possibly with sub directories). The con-
tents are typically maintained in a Git repository, but Pisek is oblivious to versioning.

Behavior of the task is controlled by a configuration file with a simple INI-like syn-
tax (essentially a collection of key-value pairs divided to sections) – see Fig. 1 for an

M. Mareš, D. Skýpala90

example. The configuration can refer to a parent configu ration file that supplies defaults
for non-specified items. Typically, the parent configuration is specific to a contest. The
ultimate parent is the set of defaults provided by Pisek itself.

Fig. 1. An example configuration file.

Pisek – a Caching Task Preparation System 91

The task package also contains a collection of static input and output files and
source code of all programs related to the task (generators, validators, judges, reference
solutions etc.).

Finally, there may be extra files not handled by Pisek. This typically includes the task
statement.

2.3. Generators

In addition to static testcases, task authors can implement a generator that produces
further testcases in a mechanic way. Pisek supports multiple generator interfaces, but all
of them follow the same logic:

The generator is deterministic ● – the generated input file depends only on the
generator itself, its runtime arguments, and possibly on the dataset. If the genera-
tor uses pseudo-random numbers, it should fix their random seed to one provided
in the runtime arguments. This is crucial for repro ducibility of testing and Pisek’s
caching.
The generator respects the seed ● – for different seeds, the generator should gener-
ate different input files. This is especially useful in open-data contests where each
attempt to solve the task produces new input data based on a fresh seed, which
expires after some time. It is also possible to declare that a particular test does not
have a seed.

The mapping of tests to testcases depends on the particular generator inter face. In the
trivial case, each test has a single testcase named after the test.

With the more advanced interfaces, the generator can be asked to produce a list of
testcases it can generate. Each testcase has a file name (e.g., easy01.in) and optional
attributes: if it is seeded and how many instances of the testcase (with different seeds)
should be generated.

The configuration file can then specify a list of filename globs for each test, e.g.,
in_globs=01*.in easy*.in. All testcases (static and generated) match ing any
of the globs are included in the test.

Moreover, a test can also define one or more predecessor tests, whose testcases are
automatically included. For example, the contest-specific configuration can specify that
the predecessor should be the previous test. Transitively, this makes each test to include
its own testcases and testcases of all previous tests.

2.4. Checkers

A batch task needs a checker to decide if the solution’s output is correct. Pisek provides
a variety of built-in checkers that compare the solution’s output with the correct output
at different levels of strictness:

M. Mareš, D. Skýpala92

Diff ● – runs the diff utility provided by the operating system, set to ignore differ-
ences in whitespace. This is a traditional method, but it suffers from quadratic time
complexity in the worst case.
Tokens ● – compares the two outputs as sequences of whitespace-separated tokens.
By default, newline characters are considered separate tokens, but the task can
choose to make them equivalent to other whitespace. Additionally, the checker can
be configured as case-insensitive and/or to compare numeric tokens with a given
precision. This checker is the rec ommended choice if the correct output is unique
up to formatting.
Shuffle ● – a token-based checker that accepts all permutations of tokens within
a line, or all permutations of lines within a file, or both. It is useful if the correct
output is unique up to order.

If there are multiple correct outputs (e.g., multiple shortest paths in a graph), the task
provides a custom judge. Pisek supports several interfaces to judges, including the one
used in CMS.

Depending on the interface, the judge can be given the test number, the seed used to
generate the input, the input, the correct output (as produced by the primary solution),
and the solution’s output. The input and the correct output are optional – some judges do
not need them, as they can compute everything from the seed. This is useful if Pisek is
used within an open-data contest system, which can skip generating the unneeded files
and save time.

The main part of the judge’s output is the verdict (accept or reject, possibly with a
message for the contestant). Optionally, the judge can award points (absolute or relative
to the number of points per test).

Interactive tasks always require a custom judge, which talks to the solution over a
pair of pipes. Pisek currently supports only the manager interface of communication
tasks in CMS. The judge gets the input and produces a verdict as with the batch judges.

In the future, we plan to design a more flexible interactive judge interface, because
the CMS interface suffers from multiple problems. In particular, use of named pipes
leads to deadlocks if they are opened in an unexpected order. Furthermore, it is not pos-
sible to report wrong answers differently from protocol errors, which leads to confus-
ing results if the protocol error is caused by a pipe being closed automatically after the
solution crashes. This is in need of more research and hopefully also cooperation among
maintainers of contest systems.

2.5. Solutions

The task specifies a primary solution and an arbitrary number of secondary solutions.
The primary solution should be correct and efficient; it is used to produce the correct
output if the checker needs it. The set of secondary solutions usually includes other
correct solutions (to ensure that the primary solution is correct) and also incorrect
solutions with a wide range of mistakes (to ensure that the scoring strategy works as
expected).

Pisek – a Caching Task Preparation System 93

Solutions communicate over their standard input and output, although this can be
wrapped in a library (see below). Solutions typically have their running time and mem-
ory limited.

For each solution, the task configuration specifies the expected outcome. It can be the
expected number of points or the expected outcome for each test (e.g., test 1 passes, test
2 produces a wrong answer, test 3 times out). The expected outcomes are preferred, but
expected points can be more useful in optimization tasks.

2.6. Verification

There are many possible mistakes in competition tasks, but they frequently follow one of
a few typical patterns. Pisek provides a battery of checks for such common errors. All of
them are optional, defaults are usually provided by the per-contest configuration.

Size of inputs and outputs ● – sizes are compared with a configured max imum.
This can catch a run-away generator. In open-data contests, the limits are usually
more strict, because the contestants must be able to download the input, run their
program, and upload its output within a short time window.
Coverage of tests by solutions ● – for each test, there should be a reference solution
that succeeds on this test and all its predecessors, but fails on all other tests. This
is useful if subtasks of the task are linearly ordered (each is a strict superset of the
preceding one) or if their dependencies form a rooted tree.
Unused inputs ● – every input (static or produced by the generator) should be in-
cluded in at least one test.
Last test uses all inputs ● – if the subtasks are linearly ordered, the last test should
include all inputs.
Generator depends on seed ● – the generator produces different input files for the
same testcase with different seeds. This can produce false positives in tasks with
short inputs, but our experience shows that it is rare in practice.
Fuzzing ● – if the task has a custom judge, this check tries to run it on many ran-
domly mutated copies of the sample outputs. This often crashes judges with sloppy
parsing of the solution’s output.

Additionally, a validator supplied with the task is ran on each testcase. Its goal is
to check conformance of the input to the task statement. The validator is also given
the test where the testcase belongs, so it can verify properties required by specific
subtasks.

2.7. Preprocessors

Input and output of most tasks is a simple ASCII text. But the simplicity is often deceiv-
ing: text files can contain trailing spaces at the end of a line, multiple spaces in a row,
or tabulators instead of spaces. Lines can be terminated by different newline characters,

M. Mareš, D. Skýpala94

the final newline can be missing, or perhaps there are a few extra empty lines at the very
end. Windows programs tend to add the UTF-8 byte-order marker at the beginning of
text files, even if the text contains only ASCII characters. Sometimes, they also encode
the ASCII text in UTF-16.

Some of these problems are unknown in the C++-centric world of major com-
petitions. But once a competition enables more exotic programming languages, or if the
tasks are open-data, all of them become everyday issues.

Handling all these anomalies in checkers and judges is a tedious task prone to errors.
Pisek avoids problems with irregular whitespace by using token-based checkers (and we
provide a tokenization library to custom judges). To handle the other problems, Pisek
runs all text files through a preprocessor that normalizes character encoding and newline
characters (including proper termination of the last line).

Preprocessing takes place in three situations:
All inputs (both static and generated) ● – the inputs are normalized first. If an input
contains non-ASCII or non-printable characters, normalization fails and so does
testing of the task. If normalization changes the input, depending on the configura-
tion either the normalized input is used instead, or an error is raised.
Outputs produced by solutions ● – they are normalized before they are checked
for correctness. A warning can be also produced if the output was non-normalized.
Failed normalization causes the testcase to fail.
Outputs produced by contestants ● – if Pisek is used as a part of an open-data con-
test system, outputs uploaded by contestants are also normalized.

Tasks with non-ASCII input/output can set their input/output format to binary and
check correctness using a judge. New formats can be added easily. An obvious candidate
is Unicode text in UTF-8 or UTF-16, but that would bring a completely new set of nor-
malization issues (see Whistler (2024)).

Preprocessing does not take place for interactive tasks. Their judges must cope with
non-normalized text.

3. Building and Running Programs

Development of a task involves running different programs: generators, valida tors,
judges, and reference solutions. They are written in varying programming languages.
First, it is good practice to test solutions in all languages available to the contestants,
so that time limits can be calibrated accordingly. Second, task authors often prefer to
use higher-level languages (e.g., Python) for generators and validators, which need not
run quickly.

Let us consider typical use cases first:
Simple C++ ● – The task package contains one source file. We need to run a compil-
er, which produces an executable file. In some cases, the task author wants to add
custom compiler options or to link a well-known library. Most traditional compiled
languages also fall into this category.

Pisek – a Caching Task Preparation System 95

Simple Python ● – The task package contains one source file. We can run it directly.
This also applies to languages like Perl, Ruby, Raku, and JavaScript.
Simple Java ● – The task package contains one source file. We need to run a com-
piler, which produces byte code. To run it, we need to invoke the Java virtual ma-
chine. Alternatively, we can set up binfmt_misc on Linux to make the kernel
recognize the byte code signature and run the JVM automatically. We prefer to
avoid this approach, because it needs root privileges and we cannot adjust JVM
options per task. A similar case is C#.
Multi-file C++ or Java ● – Like Simple C++, but we have multiple source files
which have to be compiled and linked together to produce a single binary.
Multi-file Python ● – We have multiple source files, but no compiler. All files have
to be present when running the program. An alternative is to use the little-known
zipapp module from Python’s standard library that can pack all files to a single
ZIP archive which is then runnable by the Python interpreter. We still need a ge-
neric solution for other Python-like languages.
Rust with Cargo ● – Rust programs are usually built using Cargo from a directory
with all source files and a configuration of Cargo. A similar case is Go with its
module system.
Make ● – In rare cases, there is a program with a complex building process. It can
be a multi-language program, or perhaps a program whose source code is gener-
ated by another program. As we do not want to implement yet another universal
build system, we prefer to defer to an existing build system in such cases. For
sake of tradition, let us consider Make. The source code is then a directory with
a Makefile.
Task-specific stubs and libraries ● – At some contests (e.g., recent IOIs), solu-
tions are expected to implement an API instead of communicating using files.
The solution is then linked with a stub: a piece of code specific for a combina-
tion of a task and a language that serves as the interface between the contest
system and the API. Usually, the stub reads the input from the standard input,
calls the solution’s API, and writes the result to the standard output. Similarly,
an interactive task can provide an API called by the solution to interact with the
judge.
Multi-purpose binaries ● – Sometimes, we want to share code among gen erators,
judges, and validators. A single source file can participate in compilation of mul-
tiple binaries. Or we can produce a single binary which can play multiple roles,
depending on the command-line arguments passed.

Overall, we want to handle the simple cases (e.g., a single C++/Python source file)
with as little configuration as possible, while still allowing the com plex cases.

This is accomplished by two parts of configuration: build sections that de scribe
how programs are compiled from their sources, and run sections that specify how the
programs should be run. All settings in these sections have defaults such that in the
typical case, you can omit the sections completely and just specify the name of the
program.

M. Mareš, D. Skýpala96

3.1. Building Programs

A build takes the source and produces an executable program. The source is either a
single file or a sub-directory. The executable program is either a single file executable
by the OS or a sub-directory containing an executable file called run that can refer to
the rest of the sub-directory (relative to the path it was ran from).

The build is governed by a build section in the task configuration. The section
is named after the combination of a program name and its purpose, e.g., [build_
solution:good1]. It specifies the name of the source and a build strategy to be
used. Available strategies include:

A simple C++ program ● – compiles a single source file to a single exe cutable file.
A simple Python program ● – just copies the source file and marks it as execut-
able.
A simple Java program ● – compiles a single source file to a byte code file, pro-
duces a directory, were run is a shell script that runs the JVM on the byte code.
A multi-file Python program ● – takes a directory and a given entry point, produces
a directory with run symlinked to the file with the entry point.
Cargo ● – takes a directory and runs Cargo in it to produce a single file.
Make ● – takes a directory, runs make in it; the Makefile is supposed to produce
output in a sub-directory called target, which contains either a single executable
file or a collection of files with an executable run.

If neither the source nor the strategy is given, Pisek chooses automatically. Most
strategies have an auto-detection rule. For example, if we are building the solution
good1 and the task package contains a file good1.cpp, the C++ strategy is willing to
build it. If multiple strategies match, an error is raised and the user must make an explicit
choice. So in the simple cases, the whole build section can be omitted.

Additionally, the build section can set strategy-specific options like compiler options,
further files to be made available to the compiler (e.g., header files) and additional source
files to be compiled together with the main source file (e.g., task stubs). This is useful in
conjunction with inheritance of build section: [build_solution:good1] inherits
from [build_solution] (e.g., task-specific libraries) and [build] (e.g., compiler
flags provided by contest-specific config uration).

3.2. Running Programs

Whenever task configuration specifies a program to be run (e.g., a solution), it actually
refers to a run section named after the program and its purpose. For example, [run_
solution:good1]. The run section refers to a build section that produces the pro-
gram and it specifies the command-line arguments to be passed and resource limits to be
applied (e.g., a time and memory limit).

Again, there are defaults that allow omitting the whole section: we build [build_
solution:good1] and run the program with no arguments. There is an inheritance

Pisek – a Caching Task Preparation System 97

hierarchy of [run_solution] and [run] that typically provides re source limits.
For solutions in particular, we also inherit from [run_primary_solution] and
[run_secondary_solution], which is often used to run secondary solutions with
a less strict time limit.

3.3. Sandboxing

Programs should be run within a sandbox that imposes resource limits and checks that
the programs access only the expected files (this is important to ensure consistent cach-
ing).

Pisek currently uses minibox, a simple pseudo-sandbox which limits memory us-
ing the kernel’s ulimit for virtual memory and which kills the program when the time
limit is exceeded. It is not a proper sandbox as it is easy to escape from it. But it is actu-
ally sufficient in most cases as the programs in the task package can be trusted not to be
malicious. (However, beware when using somebody else’s task packages.)

The advantage of this approach is simplicity and no need for root privileges. Disad-
vantages include problems with limiting memory in C# and Go (both runtimes allocate
enormous amounts virtual address space without actually us ing it) and the impossibility
of controlling programs with multiple processes or threads.

In the future, we plan to switch to Isolate (Blackham and Mareš, 2012)) and/or
systemd-run (weaker, but available in most Linux distributions by de fault).

3.4. Caching

Testing a task in Pisek can be a time-consuming process. We need to generate all input
files, validate them, run all verification checks, run all solutions, and check their output.
All this can easily take at least minutes for an IOI-level task. On the other hand, it is good
practice to re-test the task after every change, especially in the later stages of contest
preparation.

We observe that minor changes in the task often affect only a small subset of Pisek’s
operations. We can therefore save significant time by caching results of operations and
re-computing them only if the relevant parts of the task change.

This is similar to what build systems like make do, but they need the user to declare
explicit dependencies, which is prone to errors. We prefer a systematic and automated
approach that is as close to obviously correct as possible.

Testing of tasks is divided to small pieces called jobs. Each job can depend on results
of other jobs, called its prerequisites. There is a universal mechanism for caching job
results. Each cache entry contains the following information:

Name ● – a human-readable description of the job (e.g., “Run solution name on input
name”).
Result ● – the output of the job (e.g., if running the solution succeeded).

M. Mareš, D. Skýpala98

Signature ● – a cryptographic hash of all data on which the job depends. This in-
cludes:

__init__ ○ arguments – each job is internally a class, whose initial ization
parameters specify what the job should do (with more details than what is
specified in the job’s name).
Results of prerequisites. ○
Testing context ○ – values of command-line arguments and all settings in task
configuration which have been accessed when the job was run.
Contents of files ○ – for each file read or created by the job, we record the hash
of its contents, which is then added to the collective signa ture.
Evaluation of globs ○ – if the job uses filename globbing (e.g., to select tes-
tcases for a given test), we need to check that the glob still pro duces the same
set of files. Otherwise, dependencies on file contents would not catch a newly
matched file.

Signature recipe ● – a list of all inputs from which the signature was com puted.
The cache can contain multiple entries with the same job name, but different signa-

tures. (This is why the signature covers contents of files produced by the job: Different
versions of the job may have the same output file with different contents.)

When Pisek wants to run a job, it looks up all entries with the right name in the
cache. For each such entry, it computes the signature according to the entry’s recipe.
If it matches the entry’s signature, the job is considered unchanged and the cached
result is re-used. If the job needs recomputing, a new entry is created with the same
name and a new signature. If there are too many entries with the same name, we trim
the oldest ones.

The jobs are fine-grained, which enables Pisek to recompute only the abso lute mini-
mum when the task changes. For example, when we change the judge, we do not re-run
the solutions and we only re-judge their outputs. When a new testcase is added, solutions
are run only on that testcase etc.

This systematic approach has proven itself efficient and reliable. Over the years
we used Pisek, there were very few errors, usually caused by colliding job names or
file names. The cache is automatically invalidated when Pisek is upgraded to avoid
compatibility errors. (However, this does not apply when using the development ver-
sion of Pisek from its Git repository as the version number changes only for official
releases.)

4. Integration with Contest Systems

When the task is tested in Pisek, we need to export it to the actual contest system. The
export should be automated to the greatest extent possible to avoid human errors.

The environment in which the solutions run within the contest system is obviously
different from the environment used by task authors. So we need to verify that the be-
havior of tasks in the contest system matches the expectations.

Pisek – a Caching Task Preparation System 99

4.1. Integration with CMS

We have implemented an export to CMS, which can set up the task, create a dataset with
the test data, set time and memory limits, submit all reference solutions, download test
results, and compare them to the expected results.

We also have a semi-automatic tool for choosing the time limit. This requires detailed
specification of the expected behavior of the reference solutions on tests. In particular,
we need to separate timeouts from the other failure modes. Then we can compute the
time interval between the slowest solution that should not time out and the fastest one
that should time out. The time limit is then chosen manually from the computed interval.
If the interval is empty, we must improve the test data.

Since Pisek supports a much wider variety of tasks, there are some restric tions. The
task must use judge interfaces compatible with CMS and it cannot rely on the text pre-
processor.

Currently, the CMS lacks a public API for creating tasks and submitting solutions.
Our CMS interface therefore relies on CMS internals and calls CMS libraries in ways
that can break in the future. We will try to keep up with changes in CMS, but the proper
solution is to make CMS offer a well-defined API.

4.2. KSP Open-data System

With the KSP open-data contest system, we plan a completely different ap proach.
We are going to re-implement the back-end of the contest system on the top of Pisek.
Most of the necessary functionality is already available in Pisek as separate modules:
most importantly generating the input data for a given seed and testing if the output
is correct.

The only significant difference is that we have to separate the actions per formed
online during the contest (generating inputs and checking outputs) from those that take
place when setting up the task (compiling programs, preparing datasets).

5. Conclusions

Pisek has proven itself useful when developing tasks for multiple contests in cluding
CEOI 2024.

Still, there remain several areas which call for further research and develop ment.
Most importantly, we would like to extend compatibility between Pisek and CMS: sup-
port the full range of Pisek’s built-in checkers, judge interfaces, and possibly also the
text preprocessor. One possibility is to improve CMS itself, another is auto-generating
manager code for CMS.

M. Mareš, D. Skýpala100

The task format could be brought closer to the Kattis problem package specification.9
Both formats would benefit from cross-pollination and automated conversion of tasks
between them.

A task statement (and its translations) could be added to the task package format,
which would enable automatic inclusion of sample inputs and outputs. Formalizing de-
scriptions of subtasks (at least partially) could enable sharing a single definition of limits
among the task statements, the validator, and pos sibly also the generator. The task-maker
already supports similar features.

Further automated checks for common errors should be included, especially a more
powerful fuzzer.

Judges and validators of different tasks contain a lot of common code, often imple-
mented with insufficient handling of malformed inputs. We suggest that this common
code should be generalized and made available as a library. The library should be inde-
pendent of the task preparation system used.

References

Blackham, B., Mareš, M. (2012). A New Contest Sandbox. Olympiads in Informatics, 6, 100–109.
Diks, K. et al. (2008). A Proposal for a Task Preparation Process. Olympiads in Informatics, 2, 64–74.
Whistler, K. (ed.) (2024). Unicode Standard Annex #15: Unicode Normal ization Forms. Available online at:

https://unicode.org/reports/tr15/

M. Mareš is a lector at the Department of Applied Math ematics of Fac-
ulty of Mathematics and Physics of the Charles University in Prague,
organizer of several Czech programming contests, member of the IOI
Technical Com mittee, and a Linux hacker.

D. Skýpala is a Bachelor student at Faculty of Mathe matics and Phys-
ics of the Charles University in Prague, IOI 2022 bronze medalist,
organizer of several Czech pro gramming contests and a member of
CEOI 2024 Scientific Committee.

9 https://github.com/Kattis/problem-package-format

Olympiads in Informatics, 2025, Vol. 19, 101–114
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.07

101

Girls in STEM: A Qualitative Analysis of Factors
and Actors Impacting on Girls’ Engagement
in International Computer Science Competitions

Laura MARRONE BERZETTI di BURONZO1, Noemi GAMBIRASIO2

1Università di Modena e Reggio Emilia, Libera Università Internazionale degli Studi Sociali
Guido Carli, National Ph.D. Program in Learning Sciences and Digital Technologies, Italy
2Università Statale degli Studi di Milano, Department of Informatics, Italy
e-mail: lmarrone@luiss.it, noemi.gambirasio@gmail.com

Abstract. The study aims to explore the key-factors and influential actors impacting on girls’
participation in international Computer Science competitions and on their overall aspirations in
STEM career-paths. By analyzing societal perceptions, self-efficacy, and other social and subjec-
tive factors through qualitative analysis, the research wants to uncover both motivators and bar-
riers that shape young women’s interest in scientific fields. The findings will contribute to raise
awareness of the social factors fostering the Gender Gap in Computer Science, providing useful
insights to shape more inclusive and supportive learning environments for young women in com-
petitive programming.

Keywords: STEM literacy, gender equality, inclusive learning, computer science.

1. Introduction

Gender equality in STEM (Science, Technology, Engineering, and Mathematics) educa-
tion and careers remains a pressing challenge despite recent global initiatives aimed at
fostering inclusivity and diversity. In fact, women continue to be significantly underrep-
resented in STEM disciplines – particularly in “hard science” fields such as engineering,
computer science, and physics (Fry et al., 2021; NCSE, 2021) – facing social barriers
that not only limit their potential talent pool and innovation capacity (Cowgill et al.,
2021; Van Camp et al., 2019), but also prevent them from fully participating in and ben-
efiting from economic opportunities offered by these crucial industries (Carnevale et al.,
2011). The underrepresentation of women in STEM-related education not only repre-
sents an issue of social justice, it has indeed strong economic and developmental conse-
quences in today’s modern world. Present and future global challenges require in fact a
multidisciplinary culture that combines humanistic knowledge with widespread STEM
literacy. In the Digital era, STEM fields are essential for economic growth, technologi-

L. Marrone Berzetti di Buronzo, N. Gambirasio102

cal innovation, and overall global competitiveness: the Fourth Industrial Revolution
has amplified the need for STEM-educated professionals, making gender inclusivity in
STEM a critical issue for workforce development (Elazab et al., 2019). In this perspec-
tive, investments in techno-scientific education – fostering interdisciplinary learning,
preparing students for dynamic and evolving career paths (Bybee, 2013) – contribute to
national economic stability, promoting job creation, enhancing problem-solving skills,
and driving innovation (Marginson et al., 2013). Countries that invest heavily in STEM
education and workforce development experience therefore significant advancements in
infrastructure, sustainability, and industrial growth (Xie et al., 2015).

Despite extensive research on gender disparities, a significant gap remains in under-
standing the specific factors that shape girls’ participation in STEM competitive envi-
ronments. While general barriers to inclusion have been widely studied, little attention
has been given to the complex interplay between societal perceptions, self-efficacy, and
the influence of key figures such as educators, mentors, and family members. Addition-
ally, while biases and institutional obstacles are acknowledged, there is a lack of empiri-
cal data on how these challenges interact with individual psychological factors. Gaining
deeper insights into these dynamics is crucial for designing targeted interventions that
not only encourage more girls to enter competitive STEM environments but also support
their long-term engagement and success in these fields.

This study therefore seeks to explore the underlying social and psychological mecha-
nisms that influence young women’s engagement with Computer Science competitions
and their broader aspirations in STEM careers. By investigating the roles of societal ex-
pectations, self-efficacy, and key influencers such as teachers, mentors, and family, this
research aims to uncover both barriers and motivators that shape girls’ participation in
these competitive environments. The study will provide a nuanced understanding of the
complex interactions between individual aspirations and external influences, offering
evidence-based insights to support the development of more inclusive STEM learning
environments. Through this approach, the research will contribute to face gender dis-
parities in STEM by answering the following main research questions:

What psychological and socio-cultural factors influence girls’ participation and ●
persistence in Computer Science competitions and STEM fields in general?
How can educational and institutional support improve gender inclusivity in Com- ●
puter Science competitions and STEM fields in general?

By addressing these questions, this study seeks to contribute to the broader discourse
on gender equality in STEM and provide actionable insights for improving diversity
in these critical fields. In a world where the mastery of scientific tools is in fact a full-
citizenship requirement, it is in fact necessary to make STEM literacy more inclusive,
adopting a perspective of educational equity: this means supporting the many potential
students held back by gaps in educational opportunities (Lee and Buxton, 2010) by ad-
dressing the obstacles to academic access – primarily linked to unfavorable social back-
grounds (OECD, 2012) – and the biases associated with them, which are often internal-
ized since childhood.

The findings will be of interest to educators, policymakers, and researchers aiming to
develop strategies for improving inclusivity in STEM fields: addressing gender dispari-

Girls in STEM: A Qualitative Analysis of Factors and ... 103

ties in STEM will help institutions implement more equitable policies and foster a more
inclusive educational ecosystem. By understanding the challenges faced by women in
STEM, organizations can create targeted interventions to enhance female participation
and retention in these high-demand fields.

2. Related Work

The underrepresentation of women in STEM is the result of a complex interplay of per-
sonal, social, and institutional factors.

At an individual level, Self-Efficacy, Motivation, and Confidence play significant
roles in determining whether girls pursue STEM fields (Rosenzweig & Wigfield, 2016;
van den Hurk et al., 2019; Prieto-Rodriguez et al., 2020): in fact, research suggests that
when girls receive encouragement from teachers, parents, and mentors, they are more
likely to develop a strong STEM identity and persist in these fields (Prieto-Rodriguez
et al., 2020). A sense of belonging has also been identified as a critical factor in women’s
persistence in STEM education and careers. Students who feel socially and academically
integrated into their academic communities are more likely to persist in their chosen
fields (Strayhorn, 2018; Murphy et al., 2020). Support networks, mentorship programs,
and inclusive institutional cultures play a key role in fostering this sense of belonging
for women in STEM.

At a socio-cultural level of examination, the major challenge is represented by the
continued presence of gender stereotypes that depict STEM professionals as predomi-
nantly male (Thébaud & Charles, 2018; Sáinz et al., 2019). Gender disparities in STEM
can be traced back to early childhood and adolescence: as a matter of fact, girls’ interest
in STEM subjects declines between the ages of 12 and 15 (Tsan et al., 2016), largely
due to social and cultural factors, including deeply rooted stereotypes that associate
technical and mathematical abilities with men (Fouad & Santana, 2017; Lent & Brown,
2019). In fact, studies indicate that societal beliefs about gender roles contribute to
the perception that women are less competent in STEM disciplines: the fact that male
students are often perceived as more competent in STEM subjects can affect young
girls’ confidence and engagement in STEM activities (UNESCO, 2018; Sáinz, 2020),
discouraging them from pursuing future careers in these fields (Leaper & Brown, 2014;
Sáinz et al., 2020). As a consequence, addressing these disparities requires interven-
tions at various educational levels, starting in primary and secondary education (Wang
& Degol, 2017). In particular, creating inclusive classroom environments and imple-
menting gender-sensitive teaching strategies can help foster early interest in STEM
careers among young girls (UNESCO, 2018).

Regarding the institutional level, gender disparities have been addressed through
different STEM Intervention Programs (“SIPs”) implemented to engage young women
and provide them with the resources and support needed to succeed (Liben & Coyle,
2014; Rosenzweig & Wigfield, 2016; van den Hurk et al., 2019). Providing institutional
resources and inclusive learning environments can in fact help to mitigate the systemic
challenges that disproportionately affect women in STEM (Cooper et al., 2019).

L. Marrone Berzetti di Buronzo, N. Gambirasio104

3. The Current Study: Insights from Girls participating in
International Computer Science Competitions

Despite Computer science being one of the fastest-growing fields globally, with increas-
ing demand for skilled professionals (Xie et al., 2015), the underrepresentation of wom-
en in this field remains a critical issue in STEM education and career pathways: lower
participation and retention rates are attributable to strong gender disparities, structural
barriers that preclude women’s technical roles, especially in competitive and high-per-
formance computing environments (Cheryan et al., 2017).

Despite numerous initiatives aimed at fostering inclusivity, there remains a gap in
understanding the personal journeys of young women in Computer Science, particularly
those engaged in competitive programming. Competitive programming serves as an es-
sential gateway to high-level technical skills, problem-solving expertise, and career op-
portunities in software engineering, artificial intelligence, and cybersecurity (Li et al.,
2019). Given its importance, examining the experiences of young women in this domain
provides critical insights into how to better support female participation and persistence
in the field.

While quantitative studies highlight disparities in participation and retention, quali-
tative research provides deeper insights into the lived experiences of young women in
this field. Understanding these personal narratives is crucial, as they offer a nuanced per-
spective on the motivations, challenges, and structural barriers faced by young women
entering competitive programming and computer science.

This study therefore employs a qualitative methodology through semi-structured
interviews with female participants in international Programming competitions. By ex-
ploring their educational background, support systems, role models, challenges, and
perspectives on gender diversity, the research aims to shed light on the factors that influ-
ence young women’s engagement in competitive programming. The findings contribute
to the ongoing discourse on gender diversity in STEM and inform future strategies to
create more inclusive and equitable learning environments in computer science.

3.1. Methodology

To explore the factors influencing girls’ engagement in international Computer Science
competitions, the study employed a qualitative methodology based on semi-structured
interviews. The research involved twelve female participants, aged 18 to 23, from di-
verse geographic backgrounds, including Sweden, Lithuania, Germany, Luxembourg,
Italy, Algeria, and Switzerland. These participants were selected based on their involve-
ment in STEM education and participation in the European Girls’ Olympiad in Informat-
ics (EGOI) 2024, held in Veldhoven, the Netherlands.

Data collection focused on participants’ educational backgrounds, support systems,
role models, challenges, and perspectives on gender diversity in STEM. The interviews,

Girls in STEM: A Qualitative Analysis of Factors and ... 105

conducted in English, were transcribed verbatim and analyzed using thematic analysis.
This approach enabled the identification of recurring patterns, categorized according to
three levels of analysis: individual, socio-cultural, and institutional.

Individual Level: regarding self-efficacy, motivation, personal aspirations, and the ●
role of intrinsic interest in STEM.
Socio-cultural Level: regarding family support, peer influence, and societal percep- ●
tions about gender roles in STEM.
Institutional Level: regarding the impact of school curricula, teacher encourage- ●
ment, mentorship programs, and broader policy initiatives on girls’ participation
in STEM.

3.2. Results

The Individual Level

Participants described diverse motivation drivers, identifying several entry points into
Computer Science. Exposure to Mathematics played a foundational role for some partic-
ipants, as problem-solving skills translated naturally into an interest in coding. Informal
learning, such as self-directed study and online courses, also emerged as a crucial factor,
particularly in cases where formal education did not provide sufficient programming
instruction. In general, self-motivation emerged as a key factor in sustaining interest and
overcoming challenges in male-dominated environments.

“I have always been good in math, initially I actually used to partici-
pate in math competitions; it was from there that I have been intro-
duced to computer science” (Serena, 18, Italy)

“I was fascinated by smartphones and how they work, and from there
I started exploring coding” (Vaiva, 23, Lithuania)

However, some participants struggled with sustaining long-term interest in Computer
Science, particularly when motivation drivers – such as competition results – declined.
When faced with these challenges, they tended to develop personal strategies to navigate
biases and self-doubt: many emphasized resilience, self-motivation, and seeking sup-
portive environments .

“I think the biggest challenge is my own self-esteem, sometimes I still
feel like this is not really the world I belong in… I try to remind myself
that I’m capable.” (Priska, 21, Switzerland)

“I faced discrimination from some lecturers, but I made sure to choose
those who supported me.” (Vaiva, 23, Lithuania)

“I overcame self-doubt by focusing on my achievements and sur-
rounding myself with supportive people.” (Noemi, 20, Italy)

L. Marrone Berzetti di Buronzo, N. Gambirasio106

In fact, participants’ future aspirations often included working in the STEM field and
improving its gender inclusivity .

“I want to explore both IT and design in my future career.” (Vaiva,
23, Lithuania)

“I want to create a strong IT community in Algeria for future genera-
tions.” (Maya, 20, Algeria)

“I hope to continue supporting young girls in Olympiads and compe-
titions.” (Noemi, 20, Italy)

The Socio-cultural Level

In the family context, support varied across participants. Some reported highly encourag-
ing environments, with parents who actively promoted STEM engagement by enrolling
their children in STEM-related programs (many reported that they have been introduced
to programming through family members who worked in related fields), while others
described a more neutral stance, with parents providing only passive encouragement and
approval by allowing them to explore their interests independently.

“My father is a PhD in Physics and now he is working in IT: that
probably had some influence. And my mother is a doctor, so she also
has some STEM background. I guess mathematical skills were always
high valued” (Priska, 21, Switzerland)

“My mom signed me up for course about programming and I got ob-
sessed with it” (Isabel, 19, Germany)

“My family has been fundamental. Programming competitions in-
volve a lot of stress and also self-esteem levels are not regular: there
are peaks of it after victories, but of course you also experience de-
feats… having someone who still sees you as capable, even when you
think you cannot do it anymore, is key” (Noemi, 20, Italy)

“My father has a degree in economics, he doesn’t even know what
computer science is; my mother too, she studied accounting... But in
the end I think they are quite happy that I’ve found my way” (Serena,
18, Italy)

In some cases, friends who were already active in the field also played an important
role in introducing participants to the programming world.

“I saw a friend taking an online coding course, and I decided to try it
too. That’s how I got started.” (Zelma, 18, Germany)

Girls in STEM: A Qualitative Analysis of Factors and ... 107

“A girl in my school helped me enter the math-advanced group, and
that made all the difference.” (Matilde, 18, Italy)

“I used to go to math camps, where I met friends who weren’t really
interested in math, they were there just because it was the closest thing
to programming, and they introduced me to it… so yeah, it was be-
cause of my friends” (Maya, 20, Algeria)

Opinions on overall gender diversity in STEM varied among participants, even
though a recurring theme was an overall gender imbalance in STEM contexts, with many
participants describing male-dominated environments (particularly in competitive pro-
gramming). Social isolation was in fact a recurring theme, with many participants report-
ing being among the few girls in their programming classes or competitions: they felt
socially excluded or found it difficult to integrate into male-dominated spaces, struggling
to find a community of like-minded peers, particularly within their local environments.

“When I went to math competitions, there were almost only guys. I felt
out of place.” (Anita, 22, Sweden)

“It was struggling to find a community of other people that lived in
Luxembourg that I knew that were also interested in IT” (Laura, 18,
Luxembourg)

While some of them did not experience explicit discrimination, stating that their
gender did not significantly impact their experiences, others faced actual gender biases
from teachers, peers, or competition organizers , acknowledging subtle differences in
treatment and representation. For instance, some of them described situations where
especially male peers questioned their competence despite superior performance in
competitions. The European Girls’ Olympiad in Informatics itself was reported to be
perceived as less prestigious than mixed-gender programming contests, reinforcing gen-
dered perceptions of ability.

“A teacher literally told me: ‘This is not for you.’” (Maya, 20, Al-
geria)

Some lecturers didn’t like girls in STEM, they treated us differently.”
(Vaiva, 23, Lithuania)

“I was told several times that I was there (i.e. at female programming
competitions) only because I am woman... there is still a lot of dis-
crimination” (Serena, 18, Italy)

Despite these challenges, many participants emphasized that gender biases appeared
to diminish at more advanced levels of expertise and within more specialized communi-
ties, where peers and mentors were more open-minded : over time, those who engaged in
external competitions or international programs were in fact able to establish a network
of supportive peers, reinforcing the importance of community-building initiatives.

L. Marrone Berzetti di Buronzo, N. Gambirasio108

Institutional Level

Institutional support for girls in competitive programming varied significantly, as schools
were found to play an inconsistent role in fostering engagement. As a matter of fact,
some participants encountered supportive educators and had access to competitions and
preparatory resources, whereas others faced a lack of of institutional encouragement and
had to rely only on external initiatives.

My school supported me by organizing competitions, but most teach-
ers didn’t really know about coding.” (Anita, 22, Sweden)

“My teacher was amazing. She encouraged me to participate in Olym-
piads and supported me throughout.” (Priska, 21, Switzerland)

“Some teachers were great, but others were dismissive. I had to choose
carefully who to work with” (Vaiva, 23, Lithuania)

Mentorship programs were also identified as a crucial element in fostering par-
ticipation, with several participants emphasizing the positive impact of female mentors
and role models. In particular, several participants noted that growing up mentors or
visible figures in the field would have helped them to maintain intrinsic motivation.

“If I had a role model, I would have been more motivated.” (Anita,
22, Sweden)

“One of my mentors created a space for women in Olympiads, which
really helped.” (Priska, 21, Switzerland)

Synthetizing Findings

The study highlights key factors influencing young women’s experiences in competi-
tive Computer Science. While some participants reported positive experiences, chal-
lenges such as gender biases, social isolation, and limited access to specialized training
persist. To make STEM subjects more gender-inclusive in the future, three focal needs
emerged:

Early exposure to STEM subjects: family support, school-based initiatives and ●
competitions can spark interest and build confidence in young girls.
Supportive environments: creating inclusive learning spaces and combating gender ●
biases can improve retention and engagement.
Mentorship and community-building: expanding mentorship programs and foster- ●
ing networks for women in STEM can provide essential guidance and support.

Addressing these areas can contribute to a more equitable and supportive landscape
for women in STEM fields, ensuring that more young girls feel empowered to pursue
these careers.

Girls in STEM: A Qualitative Analysis of Factors and ... 109

4. Noemi’s Testimony

My name is Noemi Gambirasio, and I am a woman who works, studies, and lives within
the field of a STEM discipline: computer science. I consider myself lucky because, in
my country, Italy, no one has ever actively prevented me from pursuing my passions.
Don’t get me wrong, there are still people here who believe that certain jobs or fields of
study are meant for men and others for women, but I am happy to say that in Italy, they
are just an annoying minority. The real issue here is all those social concepts, prejudices,
or beliefs that still today make it seem like a woman in my field is an exception or some-
thing unusual.

To be honest, if someone asked me, “Why don’t most women choose the same path
as you?” I wouldn’t be able to give a definite answer. Many in Italy would respond that
it’s simply a field that tends to interest men more, and that could be a factor, after all,
there are no laws or rules here that prevent a woman from choosing to work or study
in these areas. However, throughout the journey that led me to choose computer sci-
ence not only as a job but also as a passion, I have experienced situations that make
me believe that this is not the only reason for the low female participation in STEM
disciplines.

I started my journey thanks to a school competition in competitive programming. To
be honest, my choice wasn’t entirely conscious, I signed up because the school notice
described it as a “logical-mathematical problem-solving contest,” and I had always
enjoyed those kinds of challenges. It was only during the competition that I encoun-
tered an algorithm written in pseudocode for the first time. Needless to say, I didn’t
pass the competition that year, but those problems definitely sparked my interest. So,
I began studying C and C++ and got into competitive programming. The following
year, I passed the school-level round, then the regional round, reached the national
competition, and from there, I was selected to attend training camps for the selection
and preparation for international competitive programming contests. That was where,
for the first time, I found myself in a predominantly male environment focused on a
STEM discipline.

I won’t deny it, the first impact was fantastic. I was surrounded by people my age
who shared my passion. I could express a part of myself that I wasn’t used to sharing
with classmates or friends. I didn’t want to lose that feeling. I wanted to be part of the
group. Unfortunately, the first problems arose precisely because of this, and the preju-
dices I mentioned earlier weren’t imposed on me by others, I imposed them on myself.
In my mind, simply finding people with whom I could share a part of myself wasn’t
enough. I convinced myself that to truly belong, I had to eliminate everything about me
that didn’t interest them, which meant I decided it shouldn’t interest me either. The un-
fortunate part is that this included many of my feminine traits, which I mistakenly began
to classify as weaknesses or, worse, as a waste of time.

The point is that when people say STEM fields have a male-dominated environ-
ment, they are not only referring to the fact that there are more men than women. It also
means that common interests, priorities, humor, and pastimes statistically align more

L. Marrone Berzetti di Buronzo, N. Gambirasio110

often with those of men than with those of women. In my case, this led me to emphasize
certain aspects of myself over others, but for different people, whether women or men,
it could lead to distancing themselves from the environment and, consequently, from
the field itself.

And so, we arrive at the core of what we must fight against in countries like mine.
Over time, and with the support of those around me, I realized what I was unconsciously
doing. With effort, and, I won’t lie, with some pain, I regained balance within myself.
The truth, however, is that this struggle is much more likely to be faced by a woman
than by a man in STEM disciplines. The goal, therefore, is this: that a woman should not
have to choose, whether consciously or not, between fighting against herself and others
or abandoning her passions. There is still a long way to go, but thanks to experiences like
EGOI, I have met women who were either going through or had already overcome the
same inner conflict as mine, and nothing makes you believe you can succeed like seeing
someone else who already has.

5. Conclusions

Despite progress in increasing gender diversity in STEM, significant challenges remain
that hinder the full participation of women in these fields. Societal stereotypes, institu-
tional barriers, and a lack of representation still contribute to the underrepresentation of
women in STEM careers. These disparities are not only detrimental to gender equity but
also limit economic growth, technological advancement, and innovation. Addressing
these challenges requires a multi-faceted approach that targets the root causes of gender
disparity at multiple levels: individual, institutional, and societal.

One key strategy for bridging the gender gap in STEM is the implementation of tar-
geted intervention programs that address both structural and cultural barriers. Research
has shown that mentorship programs, inclusive curricula, and initiatives that foster a
sense of belonging significantly improve women’s participation and retention in STEM
fields. Early exposure to STEM education, particularly through hands-on and experien-
tial learning opportunities, can shape young girls’ interest and confidence in pursuing
these disciplines. Additionally, increasing the visibility of female role models in STEM
plays a crucial role in countering stereotypes and inspiring future generations of women
to enter and thrive in STEM careers.

Institutional reforms are equally vital in creating inclusive academic and profession-
al environments. Universities and workplaces must actively work to eliminate biases in
hiring, promotion, and academic evaluation processes. Creating supportive networks,
implementing gender-sensitive policies, and promoting leadership opportunities for
women in STEM can lead to greater retention and career advancement. Furthermore,
addressing implicit biases in STEM education through teacher training and curriculum
design is critical to fostering equitable learning environments.

From a broader societal perspective, cultural and policy changes are necessary to
challenge deep-rooted stereotypes that associate STEM fields with masculinity. Media

Girls in STEM: A Qualitative Analysis of Factors and ... 111

representation of women in STEM should be enhanced to showcase diverse role models
who break conventional gender norms. Public policies that support work-life balance,
parental leave, and flexible career pathways can also help retain women in STEM pro-
fessions, allowing them to sustain long-term careers while managing personal and fam-
ily responsibilities.

Ultimately, gender equity in STEM is not just a women’s issue but a societal impera-
tive that requires collective action from educators, policymakers, industry leaders, and
communities. Achieving true gender parity will require sustained efforts to dismantle
existing barriers and create environments where women are empowered to succeed in
STEM. By fostering a culture of inclusivity, innovation, and equal opportunity, we can
ensure that STEM fields benefit from the full diversity of talent and perspectives neces-
sary to address the complex challenges of the future.

The findings of the present study underscore the importance of early exposure, sup-
portive educational environments, and the presence of role models in fostering female
participation in STEM. While some participants reported positive experiences, chal-
lenges such as gender biases, social isolation, and limited access to specialized training
persist. These results align with previous research indicating that women in computer
science often face unique structural barriers, including implicit biases, lack of role mod-
els, and limited access to peer communities (Cheryan et al., 2017; Wang & Degol, 2017).
Moreover, the findings suggest that participation in competitive programming plays a
crucial role in skill development and career opportunities, reinforcing the importance
of integrating such activities into formal education settings (Li et al., 2019). However,
disparities in school support and motivation indicate the need for more targeted interven-
tions to ensure inclusivity in these competitive environments.

Future research may explore a broader sample of participants across different edu-
cational and cultural contexts to generalize findings and develop more comprehensive
strategies for fostering diversity in computer science. As Xie et al. (2015) suggest,
strengthening STEM education and reducing gender disparities are crucial for tech-
nological advancement and innovation. By addressing structural and cultural barri-
ers, we can work towards a more equitable and inclusive STEM landscape for future
generations.

References

Astin, A. (1984). Student involvement: A developmental theory for higher education. Journal of College
Student Development, 25(4), 297–308.

Berger, J. B., Braxton, J. M. (1998). Revising Tinto’s interactionalist theory of student departure through
theory elaboration: Examining the role of organizational attributes in persistence. Research in Higher
Education, 39(2), 103–119.

Blickenstaff, J. C. (2005). Women and science careers: Leaky pipeline or gender filter? Gender and Educa-
tion, 17(4), 369–386.

Bottia, M. C., Stearns, E., Mickelson, R. A., Moller, S., Valentino, L. (2021). Growing the roots of STEM
majors: Female math and science high school faculty and the participation of students in STEM. Econom-
ics of Education Review, 79, 102066.

L. Marrone Berzetti di Buronzo, N. Gambirasio112

Braxton, J. M., Sullivan, A. S., Johnson, R. M. (1997). Appraising Tinto’s theory of college student departure.
Higher Education: Handbook of Theory and Research, 12, 107–164.

Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA Press.
Carnevale, A. P., Smith, N., Melton, M. (2011). STEM: Science, technology, engineering, mathematics.

Georgetown University Center on Education and the Workforce.
Cheryan, S., Ziegler, S. A., Montoya, A. K., Jiang, L. (2017). Why are some STEM fields more gender-

balanced than others? Psychological Bulletin, 143(1), 1–35.
Cooper, K. M., Krieg, A., Brownell, S. E. (2019). Who perceives they are smarter? Exploring the role of

gender and self-efficacy in STEM. International Journal of STEM Education, 6(1), 1–14.
Cowgill, B. O., Dell’Acqua, F., Deng, S., Deng, S. (2021). The gender gap in STEM fields: Evidence from a

quasi-experiment. Labour Economics, 71, 102027.
Diekman, A. B., Eagly, A. H. (2008). Of men, women, and motivation: A role congruity account. Advances

in Experimental Social Psychology, 40, 1–59.
Dou, R., Hazari, Z., Dabney, K., Sonnert, G., Sadler, P. (2019). Early informal STEM experiences and STEM

identity: The importance of talking science. Science Education, 103(3), 623–637.
Eccles, J. S. (1994). Understanding women’s educational and occupational choices. Psychology of Women

Quarterly, 18(4), 585–609.
Eccles, J. S. (2009). Who am I and what am I going to do with my life? Personal and collective identities as

motivators of action. Educational Psychologist, 44(2), 78–89.
Eccles, J. S. (2005). Subjective task value and the Eccles et al. model of achievement-related choices. Hand-

book of Competence and Motivation, 105–121.
Eccles, J. S., Wigfield, A. (1995). In the mind of the actor: The structure of adolescents’ achievement task

values and expectancy-related beliefs. Personality and Social Psychology Bulletin, 21(3), 215–225.
Elazab, A., Al-Azab, M., Utsumi, T. (2019). The role of STEM education in the fourth industrial revolution:

A sustainable approach. Journal of Sustainable Development, 12(2), 113–124.
Estrada, M., Woodcock, A., Hernandez, P. R., Schultz, P. W. (2011). Toward a model of social influence that

explains minority student integration into the scientific community. Journal of Educational Psychology,
103(1), 206–222.

Feder, M. A., Malcom, S. M. (2016). Barriers and opportunities for 2-year and 4-year STEM degrees: Sys-
temic change to support diverse student pathways. National Academies Press.

Fouad, N. A., Santana, M. C. (2017). SCCT and underrepresented populations in STEM fields: Moving the
needle. Journal of Career Assessment, 25(1), 24–39.

Fry, R., Kennedy, B., Funk, C. (2021). STEM jobs see uneven progress in increasing gender, racial, and
ethnic diversity. Pew Research Center.

Funk, C., Parker, K. (2018). Diversity in the STEM workforce varies widely across jobs. Pew Research
Center.

Good, C., Rattan, A., Dweck, C. S. (2012). Why do women opt out? Sense of belonging and women’s repre-
sentation in mathematics. Journal of Personality and Social Psychology, 102(4), 700–717.

Giles, M. (2015). The chilly climate for women in STEM: Examining gender bias in science, technology,
engineering, and mathematics. Gender & Society, 29(5), 722–743.

Hall, R. M., Sandler, B. R. (1982). The classroom climate: A chilly one for women? Project on the Status and
Education of Women, Association of American Colleges.

Hurtado, S., Carter, D. F. (1997). Effects of college transition and perceptions of the campus racial climate on
Latino college students’ sense of belonging. Sociology of Education, 70(4), 324–345.

Leaper, C., Brown, C. S. (2014). Perceived experiences with sexism among adolescent girls. Child Develop-
ment, 85(3), 778–795.

Lee, O., Buxton, C. (2010). Diversity and Equity in Science Education: Research, Policy and practice. Inter-
national Journal of Multicultural Education, 13(1).

Lee, J. J., McCabe, J. (2020). Gendered expectations in STEM education: A review of literature. Review of
Educational Research, 90(3), 401–436.

Li, G., Zhang, J., Tang, X. (2019). Competitive programming and its role in computer science education.
Journal of Computer Science Education, 27(2), 123–140.

Liben, L. S., Coyle, E. F. (2014). Developmental interventions to address the STEM gender gap: Exploring
intended and unintended consequences. Advances in Child Development and Behavior, 47, 77–115.

Marginson, S., Tytler, R., Freeman, B., Roberts, K. (2013). STEM: Country comparisons. Australian Council
for Educational Research.

Girls in STEM: A Qualitative Analysis of Factors and ... 113

Marx, D. M., Stapel, D. A., Muller, D. (2005). We can do it: The interplay of construal orientation and social
comparisons under threat. Journal of Personality and Social Psychology, 88(3), 432–446.

Master, A., Cheryan, S., Meltzoff, A. N. (2016). Gender stereotypes about interests start early and cause gen-
der disparities in STEM fields. Proceedings of the National Academy of Sciences, 113(30), 8046–8051.

McGee, E. O. (2020). Interrogating structural racism in STEM higher education. Educational Researcher,
49(9), 633–644.

Muro, M., Liu, S., Whiton, J., Kulkarni, S. (2018). Digitalization and the American workforce. Brookings
Institution.

National Council for Special Education (2021), Annual Report.
Nugent, G., Barker, B., Grandgenett, N., Adamchuk, V. (2015). Impact of robotics and geospatial technology

interventions on youth STEM learning and attitudes. Journal of Research on Technology in Education,
47(3), 173–191.

OECD (2012). Equity and Quality in Education: Supporting Disadvantaged Students and Schools”, OECD
Publishing.

OECD (2015). PISA In Focus, n. 49.
Olson, S., Riordan, D. G. (2012). Engage to excel: Producing one million additional college graduates with

degrees in STEM. Report to the President, Executive Office of the President.
Sadler, P. M., Sonnert, G., Hazari, Z., Tai, R. (2012). Stability and volatility of STEM career interest in high

school: A gender study. Science Education, 96(3), 411–427.
Sáinz, M., Eccles, J. S., Wigfield, A. (2019). Understanding gender differences in STEM. Journal of Research

in Science Teaching, 56(6), 654–678.
Sáinz M., Eccles, J. S. (2012). “Self-concept of computer and math ability: Gender implications across time

and within ICT studies”, Journal of Vocational Behavior.
Shin, J. E. L., Levy, S. R., London, B. (2016). Effects of role model exposure on STEM and non-STEM

student engagement. Journal of Applied Social Psychology, 46(7), 410–427.
Strayhorn, T. L. (2018). College students’ sense of belonging: A key to educational success for all students.

Routledge.
Tsan, J., Boyer, K. E., Lynch, C. (2016). The impact of stereotype threat on women’s STEM interest and

identity. Journal of Computer Science Education, 26(4), 305–320.
UNESCO. (2018). Cracking the code: Girls’ and women’s education in science, technology, engineering and

mathematics (STEM). United Nations Educational, Scientific and Cultural Organization.
Vogt, C. M. (2008). Faculty as a critical juncture in student retention and performance in engineering pro-

grams. Journal of Engineering Education, 97(1), 27–36.
Wang, M. T., Degol, J. L. (2017). Gender gap in STEM: Revisiting the role of school context. Educational

Psychology, 52(4), 222–241.
Williams, W. M., Ceci, S. J. (2012). When scientists choose motherhood: A single factor goes a long way in

explaining the dearth of women in math-intensive fields. American Scientist, 100(2), 138–145.
Xie, Y., Fang, M., Shauman, K. (2015). STEM education. Annual Review of Sociology, 41(1), 331–357.

L. Marrone Berzetti di Buronzo, N. Gambirasio114

L. Marrone Berzetti di Buronzo is a Marketing graduate specialized
in Analytics and Metrics, and currently a Ph.D. candidate in Learning
Sciences and Digital Technologies at Università di Modena e Reggio
Emilia. She is deeply interested in building educational community
engagement through creativity and inclusive communication, with a
strong research focus on Behavioral Economics and Educational Eq-
uity. Accordingly, her diverse work experience spans from teaching
Digital Economy Marketing and being a Research and Teaching As-
sistant in Consumer Behavior, to working as an Academic Orientation
Adviser and collaborating on several projects related to social and
educational inclusion.

N. Gambirasio is a Software Engineer intern specializing in Front-
End Android Development at Bending Spoons. She is also an In-
formatics student at Università degli Studi di Milano and an active
collaborator with the Olimpiadi Italiane di Informatica, where she
contributes to competition task creation and national internships.
With a strong background in algorithmic problem-solving, she has
earned multiple medals at the Italian Olympiad in Informatics. She
competed in the European Girls’ Olympiad in Informatics (EGOI) in
2022 and 2023, earning medals, and was the team leader for the Ital-
ian delegation in 2024.

Olympiads in Informatics, 2025, Vol. 19, 115–127
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.08

115

Оlympiad Tasks in Changing Environment

Pavel S. PANKOV1, Elena S. BUROVA2, Elzat J. BAYALIEVA3

1Institute of Mathematics, Kyrgyzstan
2AUCA, Kyrgyzstan
3J.Balasagyn Kyrgyz National University, Kyrgyzstan
e-mail: pps5050@mail.ru, burova_e@auca.kg, elzat.bayalieva@gmail.com

Abstract. Traditionally, tasks in informatics are formulated within fixed (discrete) environment
such as segments (1..N), rectangles (1..N × 1..M), or graphs containing various objects, obstacles,
connections, and goals. However, in practice environment often change dynamically, and the in-
formation available is incomplete, which makes standard algorithmic solutions inadequate. Like-
wise, a living agent perceives only nearby elements of its environment. This paper explores a class
of tasks that address these limitations. Some of these tasks were generated with the assistance of
AI. The concepts of timexels (introduced by the authors in their prior work) and program time are
used as foundational tools to describe changing discrete environments.

Keywords: Olympiad, informatics, task design, dynamic environment, motion, timexel, program
time.

1. Introduction

In real-world applications, actions often occur with incomplete knowledge of a changing
environment. While many problems in informatics focus on optimization and planning
paths or motions for one or more agents, few explicitly account for environmental uncer-
tainty and change. The aim of this paper is to introduce theoretical constructs, propose
definitions, develop methodology, and create and solve illustrative problems reflecting
such conditions.

Remark. There exist classical tasks involving visibility, such as Seeing the Boundary
(IOI’2003 (along polygons)) and Hermes (IOI’2004 (along streets)), which are based
on visibility along straight lines. However, these problems do not take distances into ac-
count, nor do they use visibility data for active decision-making.

Additionally, several well-known mathematical problems can be reinterpreted under
the lens of dynamic environments or limited visibility (discussed in Section 3).

To incorporate a changing environment formally, we have introduced the concept of
timexels (Pankov et al., 2021).

P.S. Pankov, E.S. Burova, E.J. Bayalieva116

General Task 1 (Formal Setup):

Let USt be a set of states St, with initial state Pt0 and desired final subset Ft1 ⊂ USt. At
each step, the state transitions – either deterministically or non-deterministically – ac-
cording to a computable function W: USt → subset of USt. You are given partial or full
information I(St) about the current state St. Your allowed action is to transition the system
via a computable function Y: U → subset of USt. Your objective is to bring Pt0 to some
Ft1 in the minimum number of steps.

The program must either:
reach Ft1, ●
output the minimum number of steps to Ft1, or ●
compete against a specified (or jury-defined) algorithm W to validate its optimal- ●
ity.

Attempts were made to use AI to generate Olympiad-style tasks involving “to write a
program in changing environment” but initial queries were too general. A more focused
prompt, “write a program to catch a moving goal,” yielded satisfactory tasks (see Sec-
tion 4).

Remark. Informatics often presents dualities (Pankov, 1990). In virtual motion, one may
interpret motion in two ways: either the space moves toward the observer, or the observer
moves through space. Similarly, tasks may be described using permissions or prohibi-
tions – passes or obstacles. We use the more convenient formulation.

Section 2 introduces program time, applies timexels, and proposes a formal definition
of what it means to find an optimal computer program under dynamic conditions.

Section 3 defines tasks based on well-known mathematical problems as well as a
limited visibility domain.

Section 4 contains new tasks on catching moving objects, including under conditions
of limited visibility, with some of them generated by AI systems. Section 5 contains dual
tasks involving temporal objects: one requires jumping onto objects only, while the other
requires avoiding contact with them.

Notation:
Z ● 0 := {…, -2, -1, 0, 1, 2, …};
N ● 0 := {0, 1, 2, …};
N ● 1 := {1, 2, 3, …};
Directions: E, NE, N, NW, W, SW, S, SE (counterclockwise). ●

2. Program Time and Timexels

To represent dynamic processes, we extend the Eulerian perspective from continuum
mechanics to discrete settings. We define space primitives as follows:

1D: dots ●
2D: pixels ●
3D: voxels ●

Оlympiad Tasks in Changing Environment 117

Any similar objects could be called as “spacexels”. ●
By extending space primitive with a time dimension, we introduced “timexels”

(space elements existing during one time step). Each timexel is indexed by its spatial
coordinates, temporal index (a natural number indicating a moment of time-step), and
optional attributes.

The concept of timexcel offers a framework for the approximate description of vari-
ous processes.

Example (models red and green points converging into a black one, followed by
rapid disappearance):

Represented as a set of 1D-timexcels (unordered):
(2, 0, red), (3, 1, red), (4, 2, black), (6, 0, green), (5, 1, green), (6, 3, black), (8, 4,

black)
Same elements presented as spacexels with optional color attribute, ordered in a time

dimension:
time=0: (2, red), (6, green) ●
time=1: (3, red), (5, green) ●
time=2: (4, black) ●
time=3: (6, black) ●
time=4: (8, black) ●

We can identify that such time-indexed representation is limited in flexibility. It can-
not, for example, model the dynamic placement of obstacles by an external agent (e.g.
jury’s program for evaluation).

Definition 1: Program Time (p_time)
To formalize timexel-based programs, we define discrete program time p_time as fol-
lows:

At the beginning, p_time := 0 ●
The program must include a clock procedure (subprogram or function) named Clo ●
(or multiple procedures, such as Clo1, Clo2, etc.). Each execution of this procedure
performs the operation p_time := p_time + 1
All other operations in a program are instantaneous. ●

Example Task 2: Sorting Three Numbers (elements)
Define a Boolean function Clo(X, Y) = true if X < Y, false otherwise.

Comparisons of the elements in the program are allowed only via function Clo. Sam-
ple program code:

Program 2-1:
p_time := 0;
Input(U, V, W);
if (not Clo(U, V)) then Swap(U, V);
if (not Clo(V, W)) then Swap(V, W);
if (not Clo(U, V)) then Swap(U, V);

P.S. Pankov, E.S. Burova, E.J. Bayalieva118

Output(U, V, W);
Output(p_time);
end.

After executing this algorithm, we will get result with p_time = 3.

Task 3: Optimal sorting problem

Using timexel model, the classical sorting problem becomes formalized in a following
way.
Let:

PP: a permutation of M elements ●
P[M]: set of all permutations of M elements ●
QQ: a program permutating PP with Clo function ●
Q[M]: the (infinite) set of programs sorting via Clo function ●

Defining a function FF: Q[M] × P[M] → N1 with the following conditions:
If the program QQ with the initial data PP is completed with p_time < M ● 3 steps,
then FF(QQ, PP) := p_time
otherwise FF(QQ, PP) := M ● 3.

The goal is:

Continued on next page

Table 5 – continued from previous page

𝑠� 𝑠� [(𝑠�, 𝑠�), (𝑠�, 𝑠�), … , (𝑠�−�, 𝑠�)] 10.15388/infedu.2023.

𝑆𝑆 = �𝑃−�𝑁

𝐹(𝑀) ≔ min
𝑄𝑄∈𝑄[𝑀]

� max
𝑃𝑃∈𝑃[𝑀]

𝐹 (𝑄𝑄,𝑃𝑃)�

–

file

СМИ

1. RT на русском (https://t.me/rt_russian)

2. РИА Новости (https://t.me/rian_ru)

3. SHOT (https://t.me/shot_shot)

4. Раньше всех. Ну почти (https://t.me/bbbreaking)

5. РБК (https://t.me/rbc_news)

6. ТАСС (https://t.me/tass_agency)

7. Lomovka (https://t.me/lomovkaa)

8. Комсомольская правда (https://t.me/truekpru)

9. Аргументы и Факты (https://t.me/aifonline)

10. Интерфакс (https://t.me/interfaxonline)

 (1)

Remark. Some authors refer to Swap as Clo2 (in our terminology), but distinguishing
latent swaps within program code is challenging – particularly when assignment opera-
tors are disallowed.

Method 1. For small values of M, such problems are addressed as follows (according to
our terminology):

First, it is formally proven that the inequality F(M) < F1 is not possible. Subsequent-
ly, a program that executes in exactly F1 steps is constructed.

In the case of Problem (1), the inequality

Continued on next page

Table 5 – continued from previous page

𝑠� 𝑠� [(𝑠�, 𝑠2), (𝑠2, 𝑠�), … , (𝑠�−�, 𝑠�)] 10.15388/infedu.2023.

𝑆𝑆 = �𝑃−�𝑁

𝐹(𝑀) ≔ min
𝑄𝑄∈𝑄[𝑀]

� max
𝑃𝑃∈𝑃[𝑀]

𝐹 (𝑄𝑄,𝑃𝑃)�

2�(M)  <  M!

–

file

СМИ

1. RT на русском (https://t.me/rt_russian)

2. РИА Новости (https://t.me/rian_ru)

3. SHOT (https://t.me/shot_shot)

4. Раньше всех. Ну почти (https://t.me/bbbreaking)

5. РБК (https://t.me/rbc_news)

6. ТАСС (https://t.me/tass_agency)

7. Lomovka (https://t.me/lomovkaa)

8. Комсомольская правда (https://t.me/truekpru)

9. Аргументы и Факты (https://t.me/aifonline)

10. Интерфакс (https://t.me/interfaxonline)

 does not hold.
This notation and methodological framework can be consistently applied to a broad

range of problem types.

General Task 4: Adaptive Coin Weighing Problem

The study of such task was initiated by H. Steinhaus (H.Steinhaus, 1989, 1999). The task
is defined as follows:

Given indistinguishable coins, either (A) exactly one or (B) at most one of them
is counterfeit. Additionally, it is known that (C) the counterfeit coin is either heavier or
lighter than the genuine ones, or (D) the counterfeit coin differs in weight, but it is not
known in which direction.

The objective is to determine the minimum number of weighings required to: (G1)
identify the counterfeit coin, or (G2) in case (D), determine both the identity of the coun-

Оlympiad Tasks in Changing Environment 119

terfeit and whether it is heavier or lighter. Additional genuine coins, whose authenticity
is known in advance, may be used in the process.

To formalize this task, the Clo-weight function is employed. This function accepts an
even number of arguments, 2, representing coins. It outputs one of three possible rela-
tions: the first coins are lighter (L), equal in weight (E), or heavier (H) than the second
 coins. The relation H is defined as the inverse of L, i.e., H = –L.

For case (C), it has been shown that the inequality 3F(M) < M does not hold. Similarly,
in case (D), the inequality 3F(M) < 2M is invalid.

Significant contributions to this problem were made by M. Kołodziejczyk (n. d.),
who obtained the following results: in case (A)(C), it was shown that F(19) = 3; and in
case (B)(D), assuming an unlimited number of additional genuine coins, F(40) = 4.

Task 5: Coin Swapping Scenario

As a novel contribution, we introduce Task 5, which, to the best of our knowledge, has
not been previously studied. The task involves three coins, denoted , , and , with
the condition (A)(D): at most one coin is counterfeit, and it is known only that it differs
in weight (heavier or lighter) from the genuine coins. After the first weighing, two of the
coins are swapped. The objective (G2) is to identify the original counterfeit coin.

The following decision procedure is proposed:

Algorithm 5-1.
Initialize p_time := 0.1.
Perform the first weighing: Z1 := Clo-weight(U, V).2.
If Z1 = ‘E’, then conclude that coin 3. is counterfeit. Terminate. Set p_time := 1.
Otherwise (note: 4. , , refer to positions, not fixed coins), proceed:

Swap two coins and perform a second weighing: Z2 := Clo-weight(U, V).o
If Z2 = Z1 (indicating that the counterfeit coin remained in place, and a o
genuine coin was swapped, making the new genuine), then:

Perform a third weighing: Z3 := Clo-weight(U, W).	
Analyze the outcome and conclude. Terminate. Set p_time := 3.	

If Z2 = 'E' (indicating that the counterfeit coin – originally o or – has
moved to position), then:

Perform a third weighing: Z3 := Clo-weight(U, V).	
Analyze the outcome and conclude. Terminate. Set p_time := 3.	

This algorithm demonstrates an efficient strategy to detect the original counterfeit coin
under dynamic conditions involving positional changes after the initial measurement.

3. Tasks with a Horizon

We consider a class of problems involving partial information and spatial exploration,
where the environment is incrementally revealed to the agent. This includes classical
mathematical and algorithmic formulations as well as generalizations suited for practical
robotics or agent navigation.

P.S. Pankov, E.S. Burova, E.J. Bayalieva120

Task 6: Cantor’s Spiral and Obstacle Detection

This task is inspired by Cantor’s diagonal argument demonstrating the countability of
pairs of natural numbers. Let the environment be defined as

Continued on next page

Table 5 – continued from previous page

𝑠� 𝑠� [(𝑠�, 𝑠2), (𝑠2, 𝑠�), … , (𝑠�−�, 𝑠�)] 10.15388/infedu.2023.

𝑆𝑆 = �𝑃−�𝑁

𝐹(𝑀) ≔ min
𝑄𝑄∈𝑄[𝑀]

� max
𝑃𝑃∈𝑃[𝑀]

𝐹 (𝑄𝑄,𝑃𝑃)�

2�(M)  <  M!

Z�𝟘 × Z�𝟘

–

file

СМИ

1. RT на русском (https://t.me/rt_russian)

2. РИА Новости (https://t.me/rian_ru)

3. SHOT (https://t.me/shot_shot)

4. Раньше всех. Ну почти (https://t.me/bbbreaking)

5. РБК (https://t.me/rbc_news)

6. ТАСС (https://t.me/tass_agency)

7. Lomovka (https://t.me/lomovkaa)

8. Комсомольская правда (https://t.me/truekpru)

9. Аргументы и Факты (https://t.me/aifonline)

10. Интерфакс (https://t.me/interfaxonline)

. The agent (de-
noted as) begins at the origin (0, 0) and may attempt to move in one of the four cardinal
directions: East (E), North (N), West (W), or South (S). Movement is governed by a
Boolean function Clo(), where Z ∈ {E, N, W, S}. If the move in direction is possible,
then the agent is shifted accordingly and Clo() = true; otherwise, the agent remains in
place and Clo() = false. An obstacle is present in the environment.

Objective of the task is to design an algorithm to detect the location of the obstacle.

Algorithm 6-1 (Spiral Search).
The agent performs a spiral motion originating from the starting point, thereby systemati-
cally exploring the grid and detecting obstacles via failed moves.

Remark. This formulation also implies the countability of rational numbers since every
rational number can be represented as a pair of integers.

Task 7: General Graph Search with Local Visibility

Traditional formulations of labyrinth or maze-solving problems assume full knowledge
of the environment, including coordinates and obstacle locations. In contrast, we present
the problem in a setting that better reflects real-world constraints, where only local infor-
mation is accessible to the agent.

The environment is an unknown connected undirected graph. The agent starts at an
arbitrary vertex and may place markers on visited vertices. The following operations are
available:

Clo1(): Returns the number of adjacent vertices and indicates whether the goal ●
vertex is among them.
Clo2: Indicates whether a marker is present on the current vertex. ●
Go(●): Moves the agent to the th adjacent vertex (in a list returned by Clo1()).
Goback(): Returns the agent to the previous vertex. ●

Design an algorithm to find the goal vertex.

General Task 8: Goal Search with Obstacles and Partial Visibility

We generalize the previous tasks to a scenario involving spatial navigation with a distant
goal and partially observable obstacles.

The agent starts at an unknown location. The goal is far away and may or may not
be directly visible. Some obstacles are present but can only be detected when in close
proximity. Devise a strategy to reach the goal. This task can be formalized as follows:

Task 9

Let the environment be a 2D grid defined over 1..M × 1..M, with the origin in the south-
west corner. The agent starts at position A(0, 0), and the goal is located at Ft1(,).
There is a single obstacle B1 . It is guaranteed that , 1, and 1 are distinct. The agent

Оlympiad Tasks in Changing Environment 121

may use the function Clo() to attempt a move in direction ∈ {, , , }. The func-
tion behaves as in Task 6.

Objective: Determine the minimal program time p_time necessary to reach 1. Let the
function F(, 0, 0) denote the worst-case minimal steps required to reach the goal.
Then:

Continued on next page

Table 5 – continued from previous page

𝑠� 𝑠� [(𝑠�, 𝑠2), (𝑠2, 𝑠�), … , (𝑠�−�, 𝑠�)] 10.15388/infedu.2023.

𝑆𝑆 = �𝑃−�𝑁

𝐹(𝑀) ≔ min
𝑄𝑄∈𝑄[𝑀]

� max
𝑃𝑃∈𝑃[𝑀]

𝐹 (𝑄𝑄,𝑃𝑃)�

2�(M)  <  M!

Z�𝟘 × Z�𝟘

𝐹(𝑀, 𝑥�, 𝑦�) = min
𝑄𝑄∈𝑄[𝑀]

�max
𝐵�

𝐹 (𝑄𝑄, 𝑥�, 𝑦�,𝐵�)�

–

file

СМИ

1. RT на русском (https://t.me/rt_russian)

2. РИА Новости (https://t.me/rian_ru)

3. SHOT (https://t.me/shot_shot)

4. Раньше всех. Ну почти (https://t.me/bbbreaking)

5. РБК (https://t.me/rbc_news)

6. ТАСС (https://t.me/tass_agency)

7. Lomovka (https://t.me/lomovkaa)

8. Комсомольская правда (https://t.me/truekpru)

9. Аргументы и Факты (https://t.me/aifonline)

10. Интерфакс (https://t.me/interfaxonline)

 (2)

Example. For = 100, with initial position (98, 100) and unknown obstacle at (99,
100):

Clo(E) = false → agent remains at (98, 100) ●
Clo(S) = true → (98, 99) ●
Clo(E) = true → (99, 99) ●
Clo(N) = true → (99, 100) ●
Clo(E) = true → (100, 100) ●

Result: p_time = 5

Remark. In general, for most points (except those adjacent to the goal), the expression
(, 0, 0) = (− 0) + (M − 0) + 3 holds. However, calculating the exact value of
() is difficult even for small values (e.g., = 3) due to the infeasibility of brute-force
methods over the infinite space of potential programs.

Algorithm 9-1: Dynamic Programming Approach
We present a backward dynamic programming approach based on the Manhattan dis-
tance.

Let:
Dist(,) = (−) + (−)
Initialize:

 ● (99, 100) = 1
 ● (100, 99) = 1
 ● (98, 100) = 5
 ● (99, 99) = (100, 98) = 5

Then for increasing values of Dist(,), update:
(,) = max((+ 1,) + 1, Dist(,) + 3)
(e.g., for = 97, = 100)

Task 10: Generalization to Multiple Obstacles

Introduce 1, 2, …, K as obstacles. The prior guarantee that , 1, and obstacles are
distinct is no longer sufficient. It must additionally be guaranteed that a valid path from
 to 1 exists.

P.S. Pankov, E.S. Burova, E.J. Bayalieva122

Remark. Even for = 2 obstacles, the task becomes computationally difficult. A direct
extension of Algorithm 9-1 is not possible since multiple blocked directions may occur
simultaneously (e.g., Clo(E) = false and Clo(S) = false).

Task 11: Search with Limited Field of View

Let the environment be

Continued on next page

Table 5 – continued from previous page

𝑠� 𝑠� [(𝑠�, 𝑠2), (𝑠2, 𝑠�), … , (𝑠�−�, 𝑠�)] 10.15388/infedu.2023.

𝑆𝑆 = �𝑃−�𝑁

𝐹(𝑀) ≔ min
𝑄𝑄∈𝑄[𝑀]

� max
𝑃𝑃∈𝑃[𝑀]

𝐹 (𝑄𝑄,𝑃𝑃)�

2�(M)  <  M!

Z�𝟘 × Z�𝟘

–

file

СМИ

1. RT на русском (https://t.me/rt_russian)

2. РИА Новости (https://t.me/rian_ru)

3. SHOT (https://t.me/shot_shot)

4. Раньше всех. Ну почти (https://t.me/bbbreaking)

5. РБК (https://t.me/rbc_news)

6. ТАСС (https://t.me/tass_agency)

7. Lomovka (https://t.me/lomovkaa)

8. Комсомольская правда (https://t.me/truekpru)

9. Аргументы и Факты (https://t.me/aifonline)

10. Интерфакс (https://t.me/interfaxonline)

, and the agent starts at (0, 0). The agent can step
in cardinal directions and sees only a 2 × 2 square centered at its current position
(simulating a weak flashlight in a dark environment). A rectangle with even-length
sides is placed somewhere in the environment. The task is to reach the center of the
rectangle.

Algorithm 11-1.
 1. Stage I: Perform spiral motion until the rectangle is detected.
 2. Stage II: Traverse two adjacent sides of the rectangle while counting steps.
 3. Stage III: Compute half-lengths of the sides.
 4. Stage IV: Move to the center of one side, then to the center of the rectangle.

4. Tasks Involving Pursuit of a Moving Adversary

In this section, we present a series of algorithmic problems focused on capturing or
immobilizing a moving target (referred to as a “virus” or “target”) within a constrained
environment. The initial formulations were proposed to AI systems (Gemini and chat.
deepseek.com), and their responses have been unified and adapted into rigorous task
definitions.

Task 12: The Elusive Target (Inspired by Gemini)

You are tasked with writing a program to control a virtual “catcher” that must intercept a
moving “target” within a specified arena.

Environment: A toroidal grid shaped arena with dimensions × , where coordinates
wrap around at the boundaries (i.e., movement beyond one edge reappears at the op-
posite edge).

Initial Conditions:
The ● target starts at position (t, t) and moves at a constant velocity vector (t,
t).
The ● catcher starts at position (c, c) and may move one step per time unit in any
of the eight cardinal or diagonal directions.

Input (per time step):
Grid dimensions: ● ,
Target’s position: (● t, t)
Target’s velocity: (● t, t)
Catcher’s position: (● c, c)

Оlympiad Tasks in Changing Environment 123

Output:
One of the nine possible catcher moves: {N, NE, E, SE, S, SW, W, NW, STAY} ●

Goal: The catcher’s goal is to reach the same grid cell as the target.

Constraints:
The target may randomly change its velocity at unspecified intervals. ●
The algorithm must operate within specified time and memory limits. ●

Scoring:
The number of time steps taken to catch the target (lower is better). ●
The algorithm is evaluated over a set of randomly generated target trajectories. ●

Example:
Input: 10 10 \ 5 5 \ 1 1 \ 2 2
Output: NE

Task 13: Dynamic Target Pursuit (Inspired by chat.deepseek.com)

You are tasked with writing a program to simulate an agent (e.g., a robot or drone) that
must catch a moving target in a 2D grid-based environment. The target moves according
to a predefined pattern, and the agent must determine the optimal path to intercept the
target as quickly as possible.

Environment: A finite 2D grid of size × , (1 ≤ M ≤ 100) with no wrap-around be-
havior.

Movement Rules:
The ● agent moves in four directions: {N, E, S, W}.
The ● target follows a repeating predefined movement sequence (e.g., E, N, W, S).
The agent and target move simultaneously, one step at a time. ●
The agent catches the target if they occupy the same cell at the same time. ●
Both the agent and target cannot move outside the grid boundaries. ●

Input:
Grid size ●

Initial positions of agent (● a, a) and target (t, t)
Target’s repeating movement sequence ●

Output:
Sequence of agent moves to intercept the target ●
Total number of steps taken ●
If interception is not possible, return “Target unreachable” ●

Scoring:
50%: Correctness ●
30%: Algorithmic efficiency ●
20%: Handling of edge cases (e.g., unreachable targets) ●

P.S. Pankov, E.S. Burova, E.J. Bayalieva124

Example 13-1:
Input: = 5; Agent: (0, 0); Target: (2, 2); Target Movement Sequence: (E, N, W, S).
Output: Agent moves (E, E, N, N).
Explanation:

At step 1: Agent moves E to (0, 1); Target moves E to (2, 3).
At step 2: Agent moves E to (0, 2); Target moves N to (1, 3).
At step 3: Agent moves N to (1, 2); Target moves W to (1, 2).
At step 4: Agent moves N to (2, 2); Target moves S to (2, 2).
Agent catches the target at step 4.

Remark. This task challenges participants to think about pathfinding, simulation, and
optimization in a dynamic environment. It can be extended with additional complexities,
such as obstacles in the grid or multiple targets, to increase the difficulty level for higher-
tier Olympiads.

Extending this idea, we define the following generalized task:

General Task 14: Virus Immobilization on a Directed Graph

Environment: A directed graph. The adversary (“virus”) starts at a known vertex and
may move at each time step.

Variants:
(A) ● : Virus moves arbitrarily along any outgoing edge.
(B) ● : Virus follows a deterministic rule for choosing edges.

Objective: At each step, one or more vertices (excluding the virus’s current location)
may be disabled (“closed”). The goal is to immobilize the virus in the minimum number
of steps.

Remark. In case (B), the problem may be interpreted as a pseudo-game due to the par-
tially predictable behavior of the virus.

For example,

Task 15: Virus on a Line with Position Access (One-Dimensional)

Environment: Grid size 1..100, Virus starts at given position 0 in {1, ..., 97}, and can
move -2, -1, 1, 2 (arbitrarily).

Interaction Modes:
P1 (Full Information): A numerical function Pos1() returns the current virus loca- ●
tion.
P2 (Partial Information): A Boolean function Pos2() returns true if the virus is at ● P;
otherwise, false. This function may be used once per move.

Constraint: At each step, one position may be blocked with Clo-put() (excluding the
current virus location).

Example 15-1.
Beginning of solution of the Task 15-P1 for 0 = 50.

Оlympiad Tasks in Changing Environment 125

p_time := 0; Clo-put(52); [Virus moves] ●
If Pos1() = 51 then Clo-put(53); ●
If Pos1() = 49 then Clo-put(47); ●
If Pos1() = 48 [Virus’s optimal move] then Clo-put(46) [p_time = 2] ●

Example 15-2.
Beginning of solution of the Task 15-P2 for 0 = 50.

p_time := 0; Clo-put(52); [Virus moves] ●
If Pos2(51) then Clo-put(53) else Clo-put(47) [Virus moves] ●
If Pos2(48) then Clo-put(46) else Clo-put(53) [Virus moves] ●

Task 16: Deterministic Virus in 2D Grid (for Task 14-B)

Environment: 100 × 100 grid. The virus attempts to move in priority order: East →
North → West → South. If all are blocked, the virus stops. Agent can Clo-put an obstacle
at each step.

Task: Given the virus’s initial location, determine the minimum number of steps required
to immobilize it by placing one obstacle per time step.

Example 16-1.
p_time := 0; P ● 0 = (99, 100). Clo-put(100, 99) [Virus moves N];
Clo-put(99, 100); ●
Stop. ●

Result: Virus is immobilized and p_time = 2.

5. Tasks Involving Temporal Constraints

We now consider “timexcels” – time-constrained positions – as part of the environ-
ment.

Task 17: Robot Movement on Timed Platforms (1D)

Environment Setup:
The robot starts at P ● 0 ≠ 100
It can wait or jump(●) where ∣∣ < 10
 ● timed platforms (coasters) are given: each specified by a position and time

Objective: Find the shortest command sequence to reach 100, using only valid coaster
positions at the correct times.

Example 17-1:
Input: P ● 0 = 97; Platforms: (98, 1), (95, 2), (91, 3), (100, 4)
Sequence: Clo-wait; Clo-jump(-2) [R = 95, 2nd coaster]; Clo-jump(-3) [R = 92, 3rd ●
coaster]; Clo-jump(8) [R = 100, goal]
Output: WAIT, JUMP(-2), JUMP(-3), JUMP(8); p_time = 4 ●

P.S. Pankov, E.S. Burova, E.J. Bayalieva126

Task 18: Robot Navigation with Temporal Obstacles

Environment Setup:
1D grid 1..100 ●
The robot executes commands E and W ●
 ● (1..1000) time-bound obstacles are specified by position and time (1D-timex-
cels)
Guaranteed that there exists a sequence of commands to bring Robot to 100 ●

Objective: Determine the shortest sequence of commands that navigates the robot from
P0 ≠ 100 to 100 while avoiding obstacles.

Example 18-1:
Input: P ● 0 = 97; Obstacles: (97, 2), (99, 2) [two obstacles appear at p_time = 2].
Sequence: The command Clo-E cannot be continued because the sequences EE (to ●
99) and EW (to 97) cannot be executed.
Output: Path WEEEE, p_time = 5. ●

Open Question: Can such tasks be solved more efficiently than via brute-force search?

6. Conclusion

This paper presents a range of computational tasks involving dynamic environments
and limited observability. These tasks, often deceptively simple in description, reveal
deep algorithmic complexity due to temporal dynamics and evolving state constraints.
Many such problems are not solvable by brute force due to combinatorial explosion,
highlighting the need for intelligent search strategies and heuristics. We propose that
incorporating such “natural” tasks into Olympiads can better prepare participants for
real-world algorithmic problem solving, as emphasized in Pankov (2008).

References

Steinhaus, H. (1989). Kalejdoskop Matematyczny. Wydawnictwa Szkolne i Pedagogiczne, Warszawa.
Steinhaus, H. (1999). Mathematical Snapshots. Dover Publs.
Kołodziejczyk, M. (n. d.). Two-pan balance and generalized counterfeit coin problem

https://www.mimuw.edu.pl/~andkom/Kule-en.pdf

Pankov, P.S. (1990). Duality of control and observation parameters in obtaining guaranteed estimates. In: Prob-
lems of Theoretical Cybernetics: Abstracts of Reports of the IX All-Union Conference (September 1990).
Volgograd, Part 1(2), p. 57.

Pankov, P.S., Imanaliev, T.M., Kenzhaliev, A.A. (2021). Automatic Makers as a Source for Olympiad Tasks.
Olympiads in Informatics, 15, 75–82.

Pankov, P.S. (2008). Naturalness in Tasks for Olympiads in Informatics. Olympiads in Informatics: Country
Experiences and Developments, 2, 16–23.

Оlympiad Tasks in Changing Environment 127

P.S. Pankov (1950), doctor of physics-mathematics sciences, prof.,
corr. member of Kyrgyzstan National Academy of Sciences (KR
NAS), was the chairman of jury of Bishkek City OIs, 1985–2013, of
Republican OIs, 1987–2012, participates in National OIs since 2020,
was the leader of Kyrgyzstani teams at IOIs, 2002–2013, 2018–2023.
Graduated from the Kyrgyz State University in 1969, is a head of labo-
ratory of Institute of mathematics of KR NAS.

E.S. Burova (1986), Assistant Professor, Applied Mathematics and In-
formatics Program, American University of Central Asia.

E.J. Bayalieva (1984), Senior Lecturer in the Software Engineering
program, Institute of Computer Technologies and Artificial Intelli-
gence, J. Balasagyn National University.

Olympiads in Informatics, 2025, Vol. 19, 129–144
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.09

129

OI-Assistant: A Retrieval Augmented System
for Similar Problem Discovery and Interactive
Learning in Competitive Programming

Yuhua SU1,*, Ping NIE2, Xin MENG2

1International School Altdorf, Altdorf, Switzerland
2Peking University, Beijing, China
e-mail: suyuhuahz21@gmail.com, ping.nie@pku.edu.cn, 1601214372@pku.edu.cn

Abstract. Competitive programming (CP) often requires quickly identifying relevant problems
and solutions, yet current online judge (OJ) platforms offer only limited keyword or tag-based
search. This makes it diffi cult for contestants and coaches to fi nd past problems with similar pat- This makes it diffi cult for contestants and coaches to fi nd past problems with similar pat-This makes it difficult for contestants and coaches to find past problems with similar pat- pat-pat-
terns or concepts, hindering efficient practice and problem-solving.

We introduce OI-assistant, the first intelligent problem search and solution assistant based on
Retrieval Augmented Generation (RAG) to bridge this gap. The proposed OI assistant provides
insightful and similar problems based on our curated problem database, detailed and structured
code explanation, and interactive code validation and follow-up chat.

We first collected over 11,000 programming problems from Luogu, a widely-used Chinese
platform. Then we use multiple embeddings and llm-based ranker to retrieve and rank semanti-
cally similar CP problems based on user queries or code snippets. An LLM generates context-
aware responses, like related problem suggestions or solution summaries, enabling more accurate
discovery than traditional keyword-based searches. Additionally, it validates these solutions by
automatically generating test cases, validating code in real-time and providing educational im-
provement feedbacks.

The proposed RAG-based search engine significantly improves the precision and recall of
finding relevant problems, as evidenced by enhanced search results in our preliminary tests. When
we introduced OI-Assistant to competitive programming students, their feedback was overwhelm-
ingly positive. They rated the similar-problem recommendations highly and particularly appreci-
ated the clear algorithm visualizations and real-time validation and improvement feedbacks. Over-
all, students found our platform significantly more helpful compared to traditional OJ systems or
standalone ChatGPT.

By simplifying the discovery of related practice problems and enhancing real-time interactive
learning, OI-Assistant significantly improves the effectiveness of competitive programming train-
ing and opens up new possibilities for the community.

Keywords: Competitive programming, Retrieval Augmented Generation, Large Language Model

* Corresponding author

Y. Su, P. Nie, X. Meng130

1. Introduction

Competitive programming (CP) has grown remarkably worldwide in recent decades.
Back in 2000, the International Olympiad in Informatics in Beijing had 278 participants
from 72 countries. Last year’s IOI in Egypt drew 362 participants from 91 countries.
Similarly, national contests like the USACO Open have seen participation quadruple in
just ten years. This surge in interest has led to a boom in problem repositories and online
judge (OJ) platforms where competitors hone their skills.

Current OJs have a major weakness: they can’t effectively search for problems based
on their underlying mathematical concepts (C.R.A.C. Generation, 2024; Sollenberger
et al., 2024). Simple keyword searches miss the importance of CP problems, especially
CP problems typically are wrapped in stories to hide their core algorithmic challenges.
The search options on popular platforms like Codeforces, LeetCode, and Luogu only
let you filter by basic methods like difficulty, algorithm tags, or problem sources. These
methods often return too many irrelevant results, forcing users to spend time manually
filtering through them. The problem gets worse because algorithm tagging is wrong or
inconsistent across platforms.

We created OI-Assistant to solve these issues. Our system uses Retrieval Augment-
ed Generation (RAG) specifically designed for competitive programming education
(Lewis et al., 2020; Shao et al., 2025). It brings three key innovations. First, we built a
rich database with over 11,000 quality problems from Luogu, one of the most popular
competitive programming sites. This extensive collection gives our similarity search
a strong foundation, helping students find inspiration from problems with related pat-
terns. Second, we developed a multi-pronged search approach using three different
strategies: question vector search, concept vector search, and summary vector search
(Lewis et al., 2020). We enhance these parallel searches with an LLM-based reranker
that significantly boosts result quality. Our tests show this method achieves over 80%
recall when finding similar problems – much better than traditional keyword searches.
Third, OI-Assistant generates comprehensive solutions that include detailed algorithm
explanations, clear flowcharts, and a real-time code validation system (Kumar, 2025;
Fakhoury et al., 2024). This validation feature uses GPT to automatically create test
cases that cover even edge scenarios (Sollenberger et al., 2024). Users can run their
code right in our platform, get immediate feedback, and receive helpful suggestions
when errors occur (Zhou et al., 2024; Nicol and Macfarlane-Dick, 2006). The system
can also regenerate improved solutions that address specific issues, creating a feedback
loop that enhances learning (Zhang et al., 2024).

Our system builds on recent advances in large language models. As our experiments
show, modern GPT models like O3-mini can score at bronze medal levels in IOI compe-
titions even without retrieval augmentation (El-Kishky et al., 2025). But OI-Assistant’s
real value isn’t about beating these baseline capabilities – it’s about educational impact
(Marouf et al., 2024; Alyoshyna, 2024).

By combining strong problem-solving abilities with our innovative retrieval sys-
tem, OI-Assistant creates a powerful learning tool that helps students find relevant
historical problems matching their current needs (Kazemitabaar et al., 2024; Denny

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 131

et al., 2023). Our retrieval system’s 80%+ recall rate ensures students efficiently find
appropriate practice materials, while the real-time validation provides the immediate
feedback crucial for learning (Price et al., 2016; Price et al., 2017). User studies con-
firm that this feature combination significantly improves problem-solving skill devel-
opment and learning efficiency compared to traditional approaches (Anderson et al.,
1995; Marouf et al., 2024).

2. Related Work

2.1. LLMs in Computer Science Education

Generative AI is changing how we teach computer science. Researchers are exploring
ways to use Large Language Models (LLMs) in educational settings, with promising
results for helping students learn programming (Kazemitabaar et al., 2024; Zhang et al.,
2024; Alyoshyna, 2024). Recent studies show LLMs can solve programming problems
quite well. Denny and colleagues (Denny et al., 2023) tested GitHub Copilot on 166
programming problems. It solved about half of them on the first try. With better prompts,
that success rate jumped to 60% for the remaining problems. Even more impressive,
OpenAI’s ChatGPT-o3 earned a gold medal at the 2024 International Olympiad in In-
formatics and achieved a rating on Codeforces similar to top human competitors (El-
Kishky et al., 2025). These results show that today’s best LLMs can perform at high
levels in competitive programming.

LLMs can do more than just solve problems – they can create educational content
too. Kazemitabaar and team (Kazemitabaar et al., 2024) built CodeAid, a coding assis-
tant based on ChatGPT. It has six functions, including writing code, explaining concepts,
and fixing errors. They tested it with 700 students over a full semester. The feedback
was mostly positive. This shows how carefully designed prompts can make LLMs much
more useful for teaching. These studies lay the groundwork for using LLMs in program-
ming education.

Fakhoury (Fakhoury et al., 2024) and Sollenberger (Sollenberger et al., 2024) shows
these models can generate test cases and check if code is correct. This creates interactive
learning environments that both generate and validate code. Zhang (Zhang et al., 2024)
studied what students want from AI feedback. They found that detailed explanations in
context are what students value most when learning to program.

2.2. Current Online Judge Status

As shown in Table 1, Online Judge (OJ) platforms have grown from simple grading
tools into full-fledged competitive programming communities (El-Kishky et al., 2025;
C.R.A.C. Generation, 2024). Today’s platforms like Codeforces let users join contests,
participate in forums, and study other coders’ solutions. Luogu offers similar features.

Y. Su, P. Nie, X. Meng132

These platforms have become essential for competitive programmers to learn and con-
nect with others.

Despite these improvements, OJs still struggle with organizing problem databases
and providing good search tools, even though users really want these features (C.R.A.C.
Generation, 2024; Sollenberger et al., 2024). We surveyed six major OJ platforms and
found several patterns in how they handle searching:

Search by origin: ● Almost all OJs tag problems by where they came from, as
shown in Table 1. This lets users filter problems by specific competitions or
sources. Only SPOJ lacks this kind of search help.
Search by difficulty: ● Most OJs group problems by how hard they are, but they
do this differently. Codeforces uses numbers from 800–3500, while SPOJ sepa-
rates difficulty into concept and implementation scores based on user votes.
Search by algorithms: ● Algorithm tagging varies widely across platforms. Code-
forces, LeetCode, and USACO use flat tag structures with no hierarchy. Luogu
offers better organization with 22 algorithm categories, each containing related
tags. SPOJ has the most sophisticated approach with a tree-structured system.
All OJs support tag searches, but the differences between platforms make things
confusing for users.
Search by content & problem similarity: ● The biggest gap is in content-based
searching (Lewis et al., 2020; Asai et al., 2024). While some OJs let you search
by problem title or text, none offer true similarity search based on the underlying
math concepts. This is a serious problem since competitive programming tasks
usually come wrapped in stories during contests like IOI, ICPC, and Codeforces,
which makes keyword searching pretty useless.

2.3. Retrieval-Augmented Generation

LLMs can do amazing things, but they still struggle with making up information and
having outdated knowledge, especially in specialized fields (El-Kishky et al., 2025;
Tang et al., 2024). Retrieval-Augmented Generation (RAG) solves these problems by

Table 1
Different OJ Platforms

OJ Search by difficulty Algorithm Source Title
search

Content
search

Similarity
search

Codeforces 800–3500 37 parallel tags Yes No No No
LeetCode 3 categories 71 parallel tags Yes Yes No No
Luogu 7 categories Tags in 22 categories Yes Yes Yes No
USACO 7 categories 162 parallel tags Yes Yes No No
SPOJ Rating for conceptual and

implementational difficulties
119 Tags Yes No No No

UVa NO No Yes No No No

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 133

combining external information lookup with LLM generation. This greatly improves
accuracy and relevance (Lewis et al., 2020; Asai et al., 2024).

For programming tasks, Wang and team created CODERAG-BENCH (C.R.A.C.
Generation, 2024), a benchmark for testing how well RAG works for coding. Their
research shows that RAG-enhanced models consistently beat regular LLMs, especially
when tasks need external libraries. This matters for competitive programming, where
specialized algorithms are often needed.

Shao’s team (Shao et al., 2025) looked at the effects of scale in retrieval-based lan-
guage models with their MassiveDS project, which has a massive 1.4 trillion-token
database. They found that bigger datastores consistently improve performance across
language modeling and various tasks. Interestingly, their smaller models with large data-
stores outperformed bigger models without retrieval in knowledge-heavy tasks. This
finding applies directly to algorithm-intensive competitive programming.

In scientific applications, Asai and colleagues (Asai et al., 2024) developed Open-
Scholar, a retrieval-enhanced model for synthesizing scientific literature. By pulling rel-
evant passages from open-access papers, OpenScholar reduced fake citations and beat
larger models like GPT-4 in factual accuracy. This shows how RAG can improve preci-
sion in technical areas.

Collectively, these studies establish that RAG significantly enhances LLM perfor-
mance in tasks requiring current, domain-specific knowledge (Lewis et al., 2020; Shao
et al., 2025; Asai et al., 2024). This approach proves especially valuable for competitive
programming applications, where precise algorithmic understanding and accurate code
generation are essential. Implementing RAG frameworks in this context can substan-
tially improve solution retrieval, problem explanation, and code generation capabilities
(C.R.A.C. Generation, 2024; Tang et al., 2024; Zhou et al., 2024).

3. Framework

Our OI-Assistant helps students find the right practice problems and understand their
solutions (Kazemitabaar et al., 2024; Marouf et al., 2024). Fig. 1 shows how our system
works. It has four main parts: Data Construction, Backend Search, Solution Generation,
and Frontend Display.

3.1. Data Construction

We started by building a large collection of programming problems (Shao et al., 2025;
Asai et al., 2024). We created web crawlers to gather problems from Luogu, a popular
Chinese programming platform. We collected over 11,000 problems along with their
details and more than 10,000 community solutions.

Programming contests often present problems as stories (El-Kishky et al., 2025).
While these narratives make problems interesting, they hide the core math concepts,

Y. Su, P. Nie, X. Meng134

which makes keyword searches pretty useless. We solved this by using large language
models with carefully designed prompts to extract the mathematical essence from each
problem, separating the algorithm from the story (Denny et al., 2023; El-Kishky et al.,
2025).

We also use Luogu’s tagging system, which groups problems by categories like Dy-
namic Programming, Graph Theory, Math, and Data Structures. Each category has more
specific tags – for example, Dynamic Programming breaks down into 1D DP, Interval
DP, Tree DP, and so on. Luogu rates problem difficulty on a 7-level scale:

Level 1: Beginner problems teaching basic concepts
Level 2: Easy problems needing simple algorithms
Level 3: Medium problems combining multiple ideas
Level 4: Hard problems requiring complex algorithms
Level 5: Provincial competition level
Level 6: National competition (NOI) level
Level 7: International Olympiad (IOI) level
After cleaning the data, each problem has a standard format with the problem state-

ment, algorithm tags, difficulty level, and solution. For each problem, we create three
different vector embeddings using OpenAI’s API: Statement embedding that captures
the math concepts, Concept embedding that represents the algorithms needed, Solution
embedding that encodes how to implement the answer. We store these in FAISS indexes
so we can search them quickly.

Fig. 1. OI-Assistant Framework.

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 135

3.2. Assistant Response Generation

Finding similar problems is helpful, but students also need to understand how to solve
them (Kazemitabaar et al., 2024; Zhang et al., 2024. As shown in Fig. 1 (bottom left),
our Solution Generation Layer transforms a user’s problem query into a comprehensive
educational solution through several interconnected stages.

3.2.1. User Input Processing and Retrieval.

When a user submits a problem, the system first processes it through the Backend Search
Layer shown in Fig. 1 (top right). The input question undergoes multi-vector search,
which splits into three parallel components:

Question Vector Search1. – finds problems with similar statement structures,
Concept Vector Search2. – identifies problems using similar algorithmic tech-
niques,
Summary Vector Search3. – locates problems with similar high-level approaches

The results from these three search components feed into the LLM-based Reranker
(shown in the pink oval in Fig. 1), which evaluates each candidate problem in context
and identifies the most top 50 relevant matches.

3.2.2. Solution Generation Process

As depicted in Fig. 1 (bottom left), the Solution Generator begins with Context Prepara-
tion. This crucial step combines the original problem with the retrieved similar problems
and their solutions from our database. This context gives our system concrete examples of
approaches that worked for similar challenges. The OpenAI Generation Process (shown
in the central box) consists of four key components working in tandem:

 1. Algorithm Analysis: (shown in the pink box) – The system creates a detailed
explanation of the solution approach, key insights, and reasoning steps (Zhang
et al., 2024). This forms the conceptual foundation of the solution.
 2. Mermaid Flowchart: (shown in the pink box) – In parallel, the system gener-
ates a visual flowchart using Mermaid syntax. This visualization helps students
understand the algorithm’s workflow intuitively, making complex concepts eas-
ier to grasp.
 3. Code Generation (shown in the pink box): The system produces implementa-
tion code in the student’s preferred programming language based on the algo-
rithm analysis.
 4. Complexity Analysis (shown in the pink box): The system explains the time and
space complexity of the solution, helping students understand efficiency consid-
erations (El-Kishky et al., 2025).

3.2.3. Code Validation and Regeneration

What makes our system especially valuable is the Code Validation & Regeneration Lay-
er shown at the bottom of Fig. 1 (bottom left). This layer includes: 1. Test Case Genera-

Y. Su, P. Nie, X. Meng136

tion: The system automatically creates diverse test cases covering both normal scenarios
and edge cases (Sollenberger et al., 2024). 2. Code Validator: These test cases are fed
into the Code Validator, which executes the generated code against the tests. 3. Feedback
Loop: If the code passes all tests (the “Yes” path in Fig. 1), the system produces the Final
Solution. If any tests fail (the “No” path), the Code Regenerator (LLM) analyzes what
went wrong and creates an improved solution.

This validation-regeneration cycle continues until a correct solution is found, mim-
icking how a teacher might guide a student through debugging (Anderson et al., 1995;
Price et al., 2017). When tests fail, the system doesn’t just flag errors – it analyzes
the specific issues and suggests targeted improvements (Zhou et al., 2024; Nicol and
Macfarlane-Dick, 2006).

3.3. Frontend Interface

As shown on the right side of Fig. 1, the Frontend Display Layer shows the system’s
functions through nice user interface. Fig. 2 and Fig. 3 illustrate actual screenshots of
the UI interface.

3.3.1. Solution Display Components

The middle right side of Fig. 1 highlights components of the solution display:
Solution: ● Clearly shows the algorithm and codes using clean description.
Flowchart: ● Provides visual diagram that illustrates the algorithm’s workflow. This
is helping students learn the solution process easier.
Similar Questions: ● gives related practice problems from our database. This is
helping students recognize patterns and connections across multiple problems
(Price et al., 2016). Each similar problem also has a reason of its relevance to the
current user input.

Fig. 2. OI-Assistant Frontend for Response.

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 137

3.3.2. Interactive Components

Fig. 2 shows the OI-Assistant’s frontend response and Fig. 3 shows the real-time code
validation and re-generation feature. As shown in Fig. 2, Student can input the question
statement or some code snippts to ask our system, our system will search our database to
find similar statements and solutions. Also, the concepts for the user input are also dis-
played. Then on the right side of Fig. 2, the system will teach the student to understand
the problem by text descriptions and a flowchart. After the flowchart, there is a code for
the input question. In Fig. 3, there is a code box whose default code is from the system
generation. The user can also edit the code box. Then the user can click the button to
validate the code in the box. Our system will on the fly generate the test cases for the
user input statement and the system will execute the code to check if the code can cover
all generated test cases. If some test cases are not passed, the system will again look at
the code and failed cases to generate some suggestions for improvement. The system
will also output improved codes. The user can copy the improved code or input their
own new code back to the code box to validate. This system then provides a super useful
interactive process for learning.

4. Experiments and Evaluation

We built a complete evaluation framework to test OI-Assistant. Our tests cover every-
thing from basic model abilities to how users feel about the system (Kazemitabaar et al.,
2024; Fakhoury et al., 2024). Each experiment shows how different parts work together
to create an effective learning tool.

Fig. 3. OI-Assistant Frontend for Real-time Code Validation and Re-generation.

Y. Su, P. Nie, X. Meng138

4.1. LLM Performance on IOI 2024

As Fig. 4 shows, all models get better results when they try more times. The O3-mini
model starts with okay performance. Yet with enough attempts, it reaches scores similar
to human bronze medalists (around 215 points). This matters for real-world use. Even
smaller models can do well if you let them try multiple times (El-Kishky et al., 2025;
Zhou et al., 2024). We found that performance tends to level off after 10–20 attempts,
suggesting this is a practical limit by computation.

Our system needs LLMs that can solve programming problems well (El-Kishky
et al., 2025). We tested several GPT models on IOI-2024 problems using methods from
the Hugging Face IOI repository. One key question: how does performance improve
with multiple solution attempts?

4.2. Dataset Characteristics and Analysis

After we know we can get good performance with SOTA LLMs, we next check our own
dataset. This knowledge base powers our retrieval system, so it directly affects perfor-
mance.

Our collected dataset includes 11,000 competitive programming problems from Lu-
ogu, one of China’s busiest programming platforms. These problems come with 11,000

Fig. 4. OpenAI models performance on IOI 2024 with multiple generations.

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 139

high quality solutions that have strong community engagement such as upvotes. We
analyzed this dataset from several aspects to understand its educational value.

As shown in Fig. 5, we can see our dataset is balance for different difficulty level.
Data difficulty definition can be found in section 3.1. Each difficulty level has about or
more than 1000 questions. NOI questions are more than 2500. In Fig. 6, we can check the
top 15 popular luogu tags for those questions in our datasets. The tags in Fig. 6 is from
luogu to show it’s real data features. Dynamic Programming and provincial selections
are popular in our datasets. In Fig. 7, we can see the relationship between the acceptance
and the difficulty of the luogu data. When the difficulty increases, the acceptance is drop-
ping. And most of those questions are submitted by students for more than 10k times.
This shows our dataset’s meaningful status of helping those students to learn CP.

Fig. 5: Number of Problems for Difficulty Level.

Fig. 6: Popular Tags in the dataset.

Y. Su, P. Nie, X. Meng140

4.3. Retrieval System Performance

Building on our understanding of LLMs and dataset quality, we tested our multi-vector
retrieval system. Traditional keyword searches often miss the deeper connections be-
tween problems, especially when similar challenges come wrapped in different con-
texts.

As shown in Fig. 8, we tested our system with three different settings to confirm our
system can search and find similar problems given a new coding problem. Substring
setting means the input question is a random substring of the existing problems in the
datasets. Substring could be the problem definition or the solution to the existing prob-
lems. LLM Rewrite setting means we use GPT-4o to rewrite the existing questions with
a different story to wrap the question with the same mathematic logics. Code Snippet
setting means we use GPT-4o to generate an code answer for each existing problem. So
with those three settings, we can comprehensively test our system’s retrieval ability for
both natural language and code input.

We created a dataset with 300 user input for each setting and 900 user input in total.
We evaluated our 3 embedding retrievers and 1 llm ranker’s recall performance. As
shown in Fig. 8, the LLM ranker always gives the highest recall for three setting for all
recall@K, where K = 10, 30, or 50. When we retrieve 50 candidates, the LLM ranker
can achieve 80%+ recall for all settings. For the embedding retrieval, the Question rep-
resentations gives the best score for about 69% at top 59% for the substring setting. For
the code snippet settings, the recall drops dramatically to 30% which means it’s hard for
the embedding vectors to capture the semantic meaning of code. However, the Summary
of the input can still keep decent recall at about 34% which shows the multiple vector
embedding’s advantages. After combining the results from three vector search, the LLM
ranker can always get 80%+ recall at any settings. This shows the robustness of the LLM
ranker. It also provide reliable similar problems output for our system.

Fig. 7: Relationship between Difficulty and Acceptance Rate.

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 141

4.4. User Experience Evaluation

After we confirm our system has good performance with multiple different recall testing.
We conducted a user study with 36 competitive programming students who compared
OI-Assistant with alternatives (ChatGPT and Luogu).

As shown in Table 2, our system outperformed both ChatGPT and luogu across all
dimensions. Students especially give high ratings for our ability of finding similar prob-
lems (rated 4.8/5 compared to just 3.1/5 for ChatGPT and 2.8/5 for traditional platforms).
This confirms that our focus on finding similar questions makes a real difference.

As shown in Table 3, we also show the system’s helpfulness for different modules.
students liked the similar problem recommendations (4.8/5), Code validation and feed-
back (4.9/5). These features create a comprehensive CP learning experience. Students
can first understand solution approaches through clear explanations and visuals. Then

Fig. 8: Recall Performance of different modules on different settings.

Y. Su, P. Nie, X. Meng142

they can improve their learning by using with similar problems found by our retrieval
system and the real-time testing system with automatically generated test cases. The
Overall helpfulness is also high for our system. Those real user experience feedbacks
and ratings confirm our system’s educational value.

5. Limitations and Future Work

Our OI-Assistant shows promise, but it has some clear limitations. Let’s look at what
could be better.

First, the system needs lots of computing power. This makes widespread deployment
challenging. The LLM-based reranker that gives us great results also adds delays that us-
ers notice. When we generate multiple solutions to find the best one, we need even more
computing resources. Not all schools or learning centers can provide this kind of cost.
These issues matter most when trying to use the system in places with limited resources
or when scaling up to many users.

Our dataset has its own limitations. We only used problems from Luogu. Program-
ming problems often contain cultural references that might confuse users from different
backgrounds. Also, different programming communities create problems in their own
unique ways.

In the future, we could try model distillation to create smaller, faster versions of our
reranker without losing much performance. Better search techniques, like hybrid search
and small model ranking. Smart caching for common problem patterns would speed up
responses for frequently asked questions.

Table 2
User Ratings for Different Platforms

System Aspect OI-Assistant ChatGPT Luogu

Solution quality 4.5 3.8 2.6
Finding similar problems 4.8 3.1 2.8
Overall Helpfulness 4.5 3.5 2.1

Table 3
User Ratings for Different Modules

OI-Assistant Feature Average Rating (1–5) Standard Deviation

Algorithm analysis quality 4.7 0.4
Flowchart visualization 4.6 0.5
Code validation and feedback 4.9 0.3
Similar problem recommendations 4.8 0.5
Interactive follow-up capability 4.1 0.6
LLM-generated test cases 4.3 0.3

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 143

We also want to expand what our database Adding more competitive programming
platforms data would provide a richer knowledge base with diverse problem-solving
approaches. Supporting more programming languages would help more students use the
system, especially in schools that teach specific languages.

6. Conclusion

We developed OI-Assistant to address a significant challenge faced by competitive pro-
gramming students and coaches that finding similar problems with similar concepts not
just by tags is super useful for student learning. By leveraging Retrieval Augmented
Generation (RAG), our system achieves promising results. Experiments demonstrate
over 80% recall for retrieving similar questions even for code snippets. Users confirmed
that our integrated features including solution generation, algorithm explanations, flow-
chart, and real-time code validation, greatly help their learning process. Our work shows
a great future for competitive programming education. OI-Assistant doesn’t just help
students find problems; it strengths their understanding by connecting similar code prob-
lems and providing real-time feedback for any coding problems with automatic test
cases and validation. This approach builds stronger thinking, helping students recognize
patterns across diverse problems and figure out the errors in the code by test cases driven
way and educational feedback. As language models continue to evolve, combining RAG
with them will become increasingly valuable for specific knowledge base, making it eas-
ier for students to learn complex concepts and do better in competitive programming.

References

Alyoshyna, Y. (2024). AI in Programming Education: Automated Feedback Systems for Personalized Learning.
University of Twente Student Theses.

Anderson, J.R., Corbett, A.T., Koedinger, K.R., and Pelletier, R. (1995). Cognitive tutors: Lessons learned. The
Journal of the Learning Sciences, 4(2), 167–207.

Asai, A., He, J., Shao, R., Shi, W., Singh, A., Chang, J.C. et al. (2024). OpenScholar: Synthesizing scientific
literature with retrieval-augmented LMs. arXiv preprint arXiv:2411.14199.

C.R.A.C. Generation. (2024). CODERAG-BENCH: Can Retrieval Augment Code Generation?
Corbett, A.T. and Anderson, J.R. (1992). The LISP intelligent tutoring system: Research in skill acquisition.

In: Computer Assisted Instruction And Intelligent Tutoring Systems: Establishing Communication and Col-
laboration. Lawrence Erlbaum Associates, Inc, 141–194.

Denny, P., Kumar, V., Giacaman, N. (2023). Conversing with Copilot: Exploring prompt engineering for solving
CS1 problems using natural language. In: Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 1136–1142.

El-Kishky, A., Wei, A., Saraiva, A., Minaev, B., Selsam, D., Dohan, D., et al. (2025). Competitive Programming
with Large Reasoning Models. *arXiv preprint arXiv:2502.06807*.

Fakhoury, S., Naik, A., Sakkas, G., Chakraborty, S., and Lahiri, S.K. (2024). LLM-Based Test-Driven Interac-
tive Code Generation: User Study and Empirical Evaluation. IEEE Transactions on Software Engineering.

Georgia Department of Education. (2020). Georgia’s ReStart: Embrace, Engage, Expand, and Enhance Learn-
ing with Technology (GRE4T) Initiative.

Kazemitabaar, M., Ye, R., Wang, X., Henley, A.Z., Denny, P., Craig, M., Grossman, T. (2024). CodeAid: Evalu-
ating a classroom deployment of an LLM-based programming assistant that balances student and educator
needs. In: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems. 1–20.

Kira Learning. (n.d.). The AI platform for schools.

Y. Su, P. Nie, X. Meng144

Kumar, S. (2025). Teaching LLMs to generate Unit Tests for Automated Debugging of Code. Medium.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., et al. (2020). Retrieval-augmented genera-

tion for knowledge-intensive NLP tasks. Advances in Neural Information Processing Systems, 33, 9459–
9474.

Marouf, A., Al-Dahdooh, R., Abu Ghali, M.J., Mahdi, A.O., Abunasser, B.S., and Abu-Naser, S.S. (2024). En-2024). En-
hancing Education with Artificial Intelligence: The Role of Intelligent Tutoring Systems. International Jour-
nal of Engineering and Information Systems (IJEAIS), 8(8), 10–16.

Nicol, D.J. and Macfarlane-Dick, D. (2006). Formative assessment and self‐regulated learning: A model and
seven principles of good feedback practice. Studies in Higher Education, 31(2), 199–218.

Price, T.W., Dong, T., and Barnes, T. (2016). Generating data-driven hints for open-ended programming. In:
International Conference on Educational Data Mining. 446–451.

Price, T.W., Zhi, R., and Barnes, T. (2017). Evaluation of a data-driven feedback algorithm for open-ended
programming. In: International Conference on Educational Data Mining. 530–535.

Psotka, J., Massey, L.D., and Mutter, S.A. (Eds.). (1988). Intelligent Tutoring Systems: Lessons Learned. Law-
rence Erlbaum Associates, Inc.

Shao, R., He, J., Asai, A., Shi, W., Dettmers, T., Min, S. et al. (2025). Scaling Retrieval-Based Language Models
with a Trillion-Token Datastore. Advances in Neural Information Processing Systems*, 37, 91260–91299.

Shi, X., Tian, M., and Zhang, J. (2022). A summary of personalized learning research. In: IET Conference Pro-
ceedings. Vol. 2022, No. 9, 53–58.

Sollenberger, Z., Patel, J., Munley, C., Jarmusch, A., and Chandrasekaran, S. (2024). LLM4VV: Exploring
LLM-as-a-Judge for Validation and Verification Testsuites.

Tang, H., Hu, K., Zhou, J.P., Zhong, S.C., Zheng, W.L., Si, X., and Ellis, K. (2024). REx: An Exploration-
Exploitation Framework for LLM-Based Code Refinement. arXiv preprint arXiv:2411.14199.

VanLehn, K. (1988). Student modeling and mastery learning in a computer-based programming tutor. In: Intel-
ligent Tutoring Systems. Springer, Berlin, Heidelberg, 479–506.

Zhang, Z., Cheng, L., and Chen, X. (2024). Students’ Perceptions and Preferences of Generative Artificial Intel-
ligence Feedback for Programming. Journal of Educational Computing Research, 71(4), 647–673.

Zhou, Y., Peng, X., Zeng, A., Xie, Q., and Luo, T. (2024). LLMFix: Automatically Fixing Code Generation Er-
rors in Large Language Models. arXiv preprint arXiv:2409.00676.

Y. Su – a senior high student at the International School Altdorf in
Switzerland. With four years of competitive programming experience,
he won a gold medal in the Swiss Olympiad in Informatics. His re-
search interest focuses on machine learning and human-computer in-
teraction. His past projects include building a stuttering recognition
system and enhancing a micro-expression spotting network.

P. Nie – a Senior Applied Scientist with a Master’s degree from Peking
University. His research interests lie in Code Large Language Mod-
els, Information Retrieval, and Natural Language Processing. He also
serves as a program committee member for conferences such as ACL,
SIGIR, and NeurIPS.

X. Meng – a Senior Deep Learning Engineer with a Master’s degree
from Peking University. He has 10 years of experience in AI develop-
ment, like CUDA acceleration, Parallel Computing. His research in-
terests lie in Computer Vision and Autonomous driving with LLM,
Robots, Embodied Intelligence.

Olympiads in Informatics, 2025, Vol. 19, 145–158
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.10

145

The Olympiad Trap and an Old Trampoline

Tom VERHOEFF
Mathematics and Computer Science, Eindhoven University of Technology
Groene Loper 5, 5612 AE, Eindhoven, Netherlands
e-mail: t.verhoeff@tue.nl

Abstract. After some reminiscing, I describe the Olympiad trap and then delve into a technique to
eliminate recursion by trampolining with continuations.

Keywords: programming, recursion, recursion elimination, continuations.

1. Introduction

Since I plan to retire in October 2025, I hope you will permit me to begin with a brief
reminiscence, before telling you about the Olympiad trap. The bulk of this article, how-
ever, concerns a technical topic: how to eliminate recursion using an old technique
known as a trampoline with continuations.

I graduated in 1985 (Applied Mathematics, Eindhoven University of Technol ogy)
and started there as a PhD candidate. In that same year, TU Eindhoven somehow was
invited to participate in the preliminary regional round of the ACM International Col-
legiate Programming Contest (ICPC). We didn’t know that PhD candidates were (at that
time) allowed to participate. So, I became the team’s coach (rather than a contestant).
We went to London with an ad hoc team, and they qualified to participate in the ICPC
World Finals in 1987 (Saint Louis, MO). Later that year, we organized a university-wide
selection contest for the next regional round of the ICPC.

One thing led to another. In 1988, 1989, and 1990, I organized the pre liminary round
of the ICPC for Europe, Middle-East, and Africa (EMEA) in Eindhoven. The number of
regions increased and they became smaller. In 1997, I organized the North-West Euro-
pean Regional Contest (NWERC), and in 1999, we had the honor of hosting the ICPC
Word Finals in Eindhoven (the first time that it took place outside the USA). In 2004, I
received the ICPC European Founders Award for my efforts.

It was because of my ICPC experience that Ries Kock of the Netherlands In formatics
Olympiad (NIO) approached me in 1994. The Netherlands had been participating in
the IOI since 1990, and Ries had taken up the challenge of orga nizing IOI 1995 in The
Netherlands. He wanted me to head the Host Scientific Committee for IOI 1995. I went

T. Verhoeff146

to IOI 1994, in Sweden, as an observer, and got hooked. As part of the preparations for
IOI 1995, I set up the IOI International Secretariat on the (then still very young) World-
Wide Web. In 1999, the IOI International Scientific Committee was established, which
I chaired until 2007. In that same year, I received the IOI Distinguished Service Award.
Since then, I have followed the IOI on the side.

2. The Olympiad Trap

I already mentioned that I got hooked on the IOI during my first participation as an ob-
server. At the IOI, it feels like you are part of an important mission: discovering, stimu-
lating, and developing young talent (in informatics). You could consider the IOI a trap,
because its attractive force keeps you involved. But that is not the trap I want to discuss
here. I think that the IOI itself is trapped, viz. in its own format. That is what I mean by
the Olympiad trap.

Science olympiads cannot cover the full breadth of their field, certainly not when
the main event is a contest. The more prestigious and popular an olympiad becomes,
the more the team leaders will want to select and prepare their con testants with a focus
on what is relevant for the contest. This leads to training deeply for a narrow field. This
in turn makes it harder to change the olympiad’s format, because many people have in-
vested in the current format. That is, the Olympiad is trapped in its format.

It is easy to lose sight of the breadth of the field and of social aspects when develop-
ing talent. This is particularly worrisome for a field like informatics that still evolves
rapidly. Algorithmic problem solving plays a much smaller role nowadays, both in
(higher) CS education and in research and industry than when the IOI was established.
There is a host of other topics that attract attention. Of these, Data Science and AI
are newcomers. Parents are already advising their children not to study informatics,
because they fear that AI will affect the job market. That is why I think it should be
mandatory to augment training for olympiads with other activities on the side, to help
mitigate the Olympiad trap.

Such side activities should be interesting and challenging. In this article, I will ex-
plore such a side topic. Since this topic is still related to programming, it might even be
useful for IOI contestants.

3. Limits on Recursion

Recursion is a great algorithmic technique, which can lead to more compact and clearer
code for various problems. But recursion also has its dangers. One danger it shares with
general while loops is that it can be hard to reason about such programs, in particular
their termination (Verhoeff, 2018, 2023). Another danger is that recursion implicitly uses
memory, viz. on the call stack, so that deeply nested recursion can run out of memory.
In fact, some programming languages, such as Python and Java, impose a (configurable)
limit on the re cursion depth as built-in protection against infinite recursion. The default

The Olympiad Trap and an Old Trampoline 147

limit for Python is 1000 levels and for Java 256; C++ does not impose a limit other than
available memory.

In (Verhoeff, 2018), I discuss various aspects of recursion, in particular, tail recursion
and how linear tail recursion can be mechanically turned into a loop to avoid burdening the
stack (which I will recap below). In case of branching recursion, it may seem that only one
recursive call can be a tail call, and thus the transformation into a loop fails. In (Verhoeff,
2021), we encountered functions that break the recursion by introducing an extra param-
eter, and then “tying the knot of recursion” on the outside, by making the snake eat its own
tail (through a fixed-point construction, which still burdens the stack). It turns out that there
is another technique to break recursion and make even branching recursion tail recursive.

I will illustrate this technique through two examples in Python. Source code and vi-
sualization of the stack usage during execution is available in (Verhoeff, 2025). The first
example is based on function tri(n) that computes the -th triangular number (similar
to factorials, but using addition, so that the numbers don’t grow so fast):

The second example is total(t) that sums the values in binary leaf tree :

Function tri exhibits linear recursion and total exhibits branching recursion; neither is
tail recursive, since more work is done after the recursive calls return.

The call tri(1000) will result in a RecursionError. In case of function tri, the
standard technique of introducing an accumulation parameter yields a tail recursive
definition:

is another technique to break recursion and make even branching recursion tail
recursive.
I will illustrate this technique through two examples in Python. The first

example is based on function tri(n) that computes the n-th triangular number
(similar to factorials, but using addition, so that the numbers don’t grow so fast):

1 type nat = int # with assumption >= 0
2

3 def tri(n: nat) -> int:
4 if n == 0:
5 return 0
6 else:
7 return n + tri(n - 1)

The second example is total(t) that sums the values in binary leaf tree t:

8 @dataclass
9 class Leaf:

10 value: int
11

12 # binary tree type with int in leaves
13 type Tree = Leaf | tuple[Tree, Tree]
14

15 def total(t: Tree) -> int:
16 if isinstance(t, Leaf):
17 return t.value
18 else: # t is binary fork
19 return total(t[0]) + total(t[1])

Function tri exhibits linear recursion and total exhibits branching recursion;
neither is tail recursive, since more work is done after the recursive calls return.
The call tri(1000) will result in a RecursionError. In case of function

tri, the standard technique of introducing an accumulation parameter yields a
tail recursive definition:

20 def tri_acc(n: nat, acc: int = 0) -> int:
21 if n == 0:
22 return acc
23 else:
24 return tri_acc(n - 1, acc + n)

And this in turn is readily transformed into a loop, which avoids the dreaded
RecursionError:

25 def tri_loop(n: nat, acc: int = 0) -> int:
26 while n != 0:
27 n, acc = n - 1, acc + n
28 return acc

Exercise: Show how one of the recursive calls in total can be transformed into
a tail call by introducing an accumulation parameter. See Appendix A.1 for an
answer.

4 The trampoline

Even though the transformation from tail recursion to loop, shown above, is
straightforward, it needs to be done for each tail recursive function separately.

3

is another technique to break recursion and make even branching recursion tail
recursive.
I will illustrate this technique through two examples in Python. The first

example is based on function tri(n) that computes the n-th triangular number
(similar to factorials, but using addition, so that the numbers don’t grow so fast):

1 type nat = int # with assumption >= 0
2

3 def tri(n: nat) -> int:
4 if n == 0:
5 return 0
6 else:
7 return n + tri(n - 1)

The second example is total(t) that sums the values in binary leaf tree t:

8 @dataclass
9 class Leaf:

10 value: int
11

12 # binary tree type with int in leaves
13 type Tree = Leaf | tuple[Tree, Tree]
14

15 def total(t: Tree) -> int:
16 if isinstance(t, Leaf):
17 return t.value
18 else: # t is binary fork
19 return total(t[0]) + total(t[1])

Function tri exhibits linear recursion and total exhibits branching recursion;
neither is tail recursive, since more work is done after the recursive calls return.
The call tri(1000) will result in a RecursionError. In case of function

tri, the standard technique of introducing an accumulation parameter yields a
tail recursive definition:

20 def tri_acc(n: nat, acc: int = 0) -> int:
21 if n == 0:
22 return acc
23 else:
24 return tri_acc(n - 1, acc + n)

And this in turn is readily transformed into a loop, which avoids the dreaded
RecursionError:

25 def tri_loop(n: nat, acc: int = 0) -> int:
26 while n != 0:
27 n, acc = n - 1, acc + n
28 return acc

Exercise: Show how one of the recursive calls in total can be transformed into
a tail call by introducing an accumulation parameter. See Appendix A.1 for an
answer.

4 The trampoline

Even though the transformation from tail recursion to loop, shown above, is
straightforward, it needs to be done for each tail recursive function separately.

3

is another technique to break recursion and make even branching recursion tail
recursive.
I will illustrate this technique through two examples in Python. The first

example is based on function tri(n) that computes the n-th triangular number
(similar to factorials, but using addition, so that the numbers don’t grow so fast):

1 type nat = int # with assumption >= 0
2

3 def tri(n: nat) -> int:
4 if n == 0:
5 return 0
6 else:
7 return n + tri(n - 1)

The second example is total(t) that sums the values in binary leaf tree t:

8 @dataclass
9 class Leaf:

10 value: int
11

12 # binary tree type with int in leaves
13 type Tree = Leaf | tuple[Tree, Tree]
14

15 def total(t: Tree) -> int:
16 if isinstance(t, Leaf):
17 return t.value
18 else: # t is binary fork
19 return total(t[0]) + total(t[1])

Function tri exhibits linear recursion and total exhibits branching recursion;
neither is tail recursive, since more work is done after the recursive calls return.
The call tri(1000) will result in a RecursionError. In case of function

tri, the standard technique of introducing an accumulation parameter yields a
tail recursive definition:

20 def tri_acc(n: nat, acc: int = 0) -> int:
21 if n == 0:
22 return acc
23 else:
24 return tri_acc(n - 1, acc + n)

And this in turn is readily transformed into a loop, which avoids the dreaded
RecursionError:

25 def tri_loop(n: nat, acc: int = 0) -> int:
26 while n != 0:
27 n, acc = n - 1, acc + n
28 return acc

Exercise: Show how one of the recursive calls in total can be transformed into
a tail call by introducing an accumulation parameter. See Appendix A.1 for an
answer.

4 The trampoline

Even though the transformation from tail recursion to loop, shown above, is
straightforward, it needs to be done for each tail recursive function separately.

3

T. Verhoeff148

And this in turn is readily transformed into a loop, which avoids the dreaded Recur-
sionError:

Exercise: Show how one of the recursive calls in total can be transformed into a tail call
by introducing an accumulation parameter. See Appendix A.1 for an answer.

4. The Trampoline

Even though the transformation from tail recursion to loop, shown above, is straightfor-
ward, it needs to be done for each tail recursive function separately. There is a simple
technique that introduces only one loop, which can transform all tail recursive functions,
after a small intervention. We don’t want nested recursive calls, but we still want to keep
the computation the same. This can be accomplished by returning the recursive call itself
in unevaluated form and let the evaluation be continued from outside the recursive func-
tion, after it has returned. Sounds magical?

Python and many other languages (including Java and C++) offer syntax to define
anonymous functions, that is, without giving them an explicit name. In Python, the syn-
tax lambda x, y: expr defines a nameless function of two arguments with the result
expr, where expression expr typically involves x, y. Similarly, we can use lambda:
expr for a function without arguments that evaluates to expr.

Here is what tri_acc looks like after the intervention to make it return an unevalu-
ated “recursive” call:

It is no longer “truly” recursive, because it does not make the recursive call! We say that the
call is suspended. In order to get the typing correct, we have defined type Thunk[A]:

Note that in Python, Callable[[], R] denotes the type of functions without argu-
ments returning a value of type R. So, a Thunk[A] is either a value of type A or a func-
tion without arguments returning a Thunk[A]. For value thunk of type Thunk[A],

is another technique to break recursion and make even branching recursion tail
recursive.
I will illustrate this technique through two examples in Python. The first

example is based on function tri(n) that computes the n-th triangular number
(similar to factorials, but using addition, so that the numbers don’t grow so fast):

1 type nat = int # with assumption >= 0
2

3 def tri(n: nat) -> int:
4 if n == 0:
5 return 0
6 else:
7 return n + tri(n - 1)

The second example is total(t) that sums the values in binary leaf tree t:

8 @dataclass
9 class Leaf:

10 value: int
11

12 # binary tree type with int in leaves
13 type Tree = Leaf | tuple[Tree, Tree]
14

15 def total(t: Tree) -> int:
16 if isinstance(t, Leaf):
17 return t.value
18 else: # t is binary fork
19 return total(t[0]) + total(t[1])

Function tri exhibits linear recursion and total exhibits branching recursion;
neither is tail recursive, since more work is done after the recursive calls return.
The call tri(1000) will result in a RecursionError. In case of function

tri, the standard technique of introducing an accumulation parameter yields a
tail recursive definition:

20 def tri_acc(n: nat, acc: int = 0) -> int:
21 if n == 0:
22 return acc
23 else:
24 return tri_acc(n - 1, acc + n)

And this in turn is readily transformed into a loop, which avoids the dreaded
RecursionError:

25 def tri_loop(n: nat, acc: int = 0) -> int:
26 while n != 0:
27 n, acc = n - 1, acc + n
28 return acc

Exercise: Show how one of the recursive calls in total can be transformed into
a tail call by introducing an accumulation parameter. See Appendix A.1 for an
answer.

4 The trampoline

Even though the transformation from tail recursion to loop, shown above, is
straightforward, it needs to be done for each tail recursive function separately.

3

There is a simple technique that introduces only one loop, which can transform
all tail recursive functions, after a small intervention. We don’t want nested
recursive calls, but we still want to keep the computation the same. This can
be accomplished by returning the recursive call itself in unevaluated form and
let the evaluation be continued from outside the recursive function, after it has
returned. Sounds magical?
Python and many other languages (including Java and C++) offer syntax

to define anonymous functions, that is, without giving them an explicit name.
In Python, the syntax lambda x, y: expr defines a nameless function of two
arguments with the result expr, where expression expr typically involves x, y.
Similarly, we can use lambda: expr for a function without arguments that
evaluates to expr.
Here is what tri_acc looks like after the intervention to make it return an

unevaluated “recursive” call:

29 def tri_acc_lazy(n: nat, acc: int = 0) -> Thunk[int]:
30 if n == 0:
31 return acc
32 else:
33 return lambda: tri_acc_lazy(n - 1, acc + n)

It is no longer “truly” recursive, because it does not make the recursive call!
We say that the call is suspended. In order to get the typing correct, we have
defined type Thunk[A]:

34 # Thunk[A]: possibly nested suspended computation of type A
35 # A should not be callable
36 type Thunk[A] = A | Callable[[], Thunk[A]]

Note that in Python, Callable[[], R] denotes the type of functions without
arguments returning a value of type R. So, a Thunk[A] is either a value of type A
or a function without arguments returning a Thunk[A]. For value thunk of type
Thunk[A], we can test whether it is actually suspended by callable(thunk).
And if it is suspended, it can be resumed by calling it as thunk().
By deseign, tri_acc_lazy always immediately returns. How can we get the

final result? That is where the trampoline gets to the rescue, since it repeatedly
resumes a suspended computation until it gets a final (non-suspended) result:

37 def trampoline[A](thunk: Thunk[A]) -> A:
38 while callable(thunk): # thunk is suspended
39 thunk = thunk() # resume it
40 return thunk

Therefore, we have tri(n) == trampoline(tri_acc_lazy(n)). Note that
tri_acc_lazy creates only one stack frame, and trampoline repeatedly re-
sumes all suspended tail calls. The control flow bounces between the trampo-
line and the thunked (lazy) “tail recursive” function, where lambda: is placed
in front of every tail recursive call to suspend it. Neat, isn’t it?
Some notes:

• Upon superficial reading, the definition of tri_acc_lazy given above
looks recursive, since the body of the function definition contains a call to
the function itself.

4

There is a simple technique that introduces only one loop, which can transform
all tail recursive functions, after a small intervention. We don’t want nested
recursive calls, but we still want to keep the computation the same. This can
be accomplished by returning the recursive call itself in unevaluated form and
let the evaluation be continued from outside the recursive function, after it has
returned. Sounds magical?
Python and many other languages (including Java and C++) offer syntax

to define anonymous functions, that is, without giving them an explicit name.
In Python, the syntax lambda x, y: expr defines a nameless function of two
arguments with the result expr, where expression expr typically involves x, y.
Similarly, we can use lambda: expr for a function without arguments that
evaluates to expr.
Here is what tri_acc looks like after the intervention to make it return an

unevaluated “recursive” call:

29 def tri_acc_lazy(n: nat, acc: int = 0) -> Thunk[int]:
30 if n == 0:
31 return acc
32 else:
33 return lambda: tri_acc_lazy(n - 1, acc + n)

It is no longer “truly” recursive, because it does not make the recursive call!
We say that the call is suspended. In order to get the typing correct, we have
defined type Thunk[A]:

34 # Thunk[A]: possibly nested suspended computation of type A
35 # A should not be callable
36 type Thunk[A] = A | Callable[[], Thunk[A]]

Note that in Python, Callable[[], R] denotes the type of functions without
arguments returning a value of type R. So, a Thunk[A] is either a value of type A
or a function without arguments returning a Thunk[A]. For value thunk of type
Thunk[A], we can test whether it is actually suspended by callable(thunk).
And if it is suspended, it can be resumed by calling it as thunk().
By deseign, tri_acc_lazy always immediately returns. How can we get the

final result? That is where the trampoline gets to the rescue, since it repeatedly
resumes a suspended computation until it gets a final (non-suspended) result:

37 def trampoline[A](thunk: Thunk[A]) -> A:
38 while callable(thunk): # thunk is suspended
39 thunk = thunk() # resume it
40 return thunk

Therefore, we have tri(n) == trampoline(tri_acc_lazy(n)). Note that
tri_acc_lazy creates only one stack frame, and trampoline repeatedly re-
sumes all suspended tail calls. The control flow bounces between the trampo-
line and the thunked (lazy) “tail recursive” function, where lambda: is placed
in front of every tail recursive call to suspend it. Neat, isn’t it?
Some notes:

• Upon superficial reading, the definition of tri_acc_lazy given above
looks recursive, since the body of the function definition contains a call to
the function itself.

4

The Olympiad Trap and an Old Trampoline 149

we can test whether it is actually suspended by callable(thunk). And if it is sus-
pended, it can be resumed by calling it as thunk().

By deseign, tri_acc_lazy always immediately returns. How can we get the final
result? That is where the trampoline gets to the rescue, since it repeatedly resumes a
suspended computation until it gets a final (non-suspended) result:

Therefore, we have tri(n) == trampoline(tri_acc_lazy(n)). Note that tri_
acc_lazy creates only one stack frame, and trampoline repeatedly re sumes all sus-
pended tail calls. The control flow bounces between the trampo line and the thunked (lazy)
“tail recursive” function, where lambda: is placed in front of every tail recursive call to
suspend it. Neat, isn’t it?

Some notes:
Upon superficial reading, the definition of ● tri_acc_lazy given above looks re-
cursive, since the body of the function definition contains a call to the function
itself.
However, it does not execute that call itself; that is left to the client code. The ●
“recursive knot” is tied on the outside, by trampoline.
For this to work, the programming language must support function ● clo sures that
capture the current values of variables. In case of tri_acc_lazy, the expression
lambda: tri_acc_lazy(n -1, acc + n) involves two local variables, viz.
n, acc, which evaporate after the function returns. Python binds their values in
the returned lambda object.
Thunking via ● lambda: resembles the Command design pattern from Object-Ori-
ented programming (Gamma et al., 1994).

5. Enforcing Tail Recursion Via Continuations

Before addressing total, let’s generalize the technique with the accumulation param-
eter. In general, it may not be easy to find a simple accumulation param eter to make a
definition tail recursive. And in case of branching recursion, it would be useless. But
there is a way that is guaranteed to work: Continuation Passing Style, also known as
CPS (Reynolds, 1993). With CPS, you introduce an extra parameter of a function type,
known as a continuation. In Python, we abbreviate that function type to Func[A, B]:

We name this continuation parameter cont. It represents work that still needs to be done
to complete the computation. An example will make this clear. Let’s specify tri_cps(n,
cont) == cont(tri(n)). Then we have in mathematical notation

There is a simple technique that introduces only one loop, which can transform
all tail recursive functions, after a small intervention. We don’t want nested
recursive calls, but we still want to keep the computation the same. This can
be accomplished by returning the recursive call itself in unevaluated form and
let the evaluation be continued from outside the recursive function, after it has
returned. Sounds magical?
Python and many other languages (including Java and C++) offer syntax

to define anonymous functions, that is, without giving them an explicit name.
In Python, the syntax lambda x, y: expr defines a nameless function of two
arguments with the result expr, where expression expr typically involves x, y.
Similarly, we can use lambda: expr for a function without arguments that
evaluates to expr.
Here is what tri_acc looks like after the intervention to make it return an

unevaluated “recursive” call:

29 def tri_acc_lazy(n: nat, acc: int = 0) -> Thunk[int]:
30 if n == 0:
31 return acc
32 else:
33 return lambda: tri_acc_lazy(n - 1, acc + n)

It is no longer “truly” recursive, because it does not make the recursive call!
We say that the call is suspended. In order to get the typing correct, we have
defined type Thunk[A]:

34 # Thunk[A]: possibly nested suspended computation of type A
35 # A should not be callable
36 type Thunk[A] = A | Callable[[], Thunk[A]]

Note that in Python, Callable[[], R] denotes the type of functions without
arguments returning a value of type R. So, a Thunk[A] is either a value of type A
or a function without arguments returning a Thunk[A]. For value thunk of type
Thunk[A], we can test whether it is actually suspended by callable(thunk).
And if it is suspended, it can be resumed by calling it as thunk().
By deseign, tri_acc_lazy always immediately returns. How can we get the

final result? That is where the trampoline gets to the rescue, since it repeatedly
resumes a suspended computation until it gets a final (non-suspended) result:

37 def trampoline[A](thunk: Thunk[A]) -> A:
38 while callable(thunk): # thunk is suspended
39 thunk = thunk() # resume it
40 return thunk

Therefore, we have tri(n) == trampoline(tri_acc_lazy(n)). Note that
tri_acc_lazy creates only one stack frame, and trampoline repeatedly re-
sumes all suspended tail calls. The control flow bounces between the trampo-
line and the thunked (lazy) “tail recursive” function, where lambda: is placed
in front of every tail recursive call to suspend it. Neat, isn’t it?
Some notes:

• Upon superficial reading, the definition of tri_acc_lazy given above
looks recursive, since the body of the function definition contains a call to
the function itself.

4

• However, it does not execute that call itself; that is left to the client code.
The “recursive knot” is tied on the outside, by trampoline.

• For this to work, the programming language must support function clo-
sures that capture the current values of variables. In case of tri_acc_lazy,
the expression lambda: tri_acc_lazy(n - 1, acc + n) involves two
local variables, viz. n, acc, which evaporate after the function returns.
Python binds their values in the returned lambda object.

• Thunking via lambda: resembles the Command design pattern from Object-
Oriented programming (Gamma et al., 1994).

5 Enforcing tail recursion via continuations

Before addressing total, let’s generalize the technique with the accumulation
parameter. In general, it may not be easy to find a simple accumulation param-
eter to make a definition tail recursive. And in case of branching recursion, it
would be useless. But there is a way that is guaranteed to work: Continuation
Passing Style, also known as CPS (Reynolds, 1993). With CPS, you introduce
an extra parameter of a function type, known as a continuation. In Python, we
abbreviate that function type to Func[A, B]:

41 type Func[A, B] = Callable[[A], B] # functions from A to B

We name this continuation parameter cont. It represents work that still needs
to be done to complete the computation. An example will make this clear. Let’s
specify tri_cps(n, cont) == cont(tri(n)). Then we have

• tri(n) = id(tri(n)) = tri cps(n, id), where id is the (polymorphic) identity
function defined by id(a) = a;

• for n = 0, we have tri cps(0, cont) = cont(tri(0)) = cont(0);

• and for n > 0, tri cps(n, cont) = cont(tri(n)) = cont(n+ tri(n− 1)).
The latter expression can be viewed as a new function applied to tri(n−1).
Which function? The function f defined by f(x) = cont(n+x). In Python,
that function can be expressed as lambda x: cont(n + x). So, we can
rewrite further

cont(n+ tri(n− 1)) = (λx : cont(n+ x))(tri(n− 1))
= tri cps(n− 1, λ x : cont(n+ x))

This leads to the following tail recursive (!) definition of tri_cps:

42 def tri_cps(n: nat,
43 cont: Func[int, int] = id_
44) -> int:
45 if n == 0:
46 return cont(0)
47 else:
48 return tri_cps(n - 1, lambda x:
49 cont(n + x)
50)

5

T. Verhoeff150

 ● () = (()) = _ (,), where is the (polymorphic) identity func-
tion defined by () = ;
for ● = 0, we have _ (0,) = ((0)) = (0);
and for ● 0, _ (,) = (()) = (+ (− 1)).
The latter expression can be viewed as a new function applied to (− 1).
Which function? The function defined by () = (+). In Python, that
function can be expressed as lambda x: cont(n + x). So, we can rewrite
further

 (+ (− 1)) = (λ : (+))((− 1))

= _ (− 1, λ : (+))

This leads to the following tail recursive (!) definition of tri_cps:

The identity function serves as default continuation. We have named it id_, because id
is already a predefined different function in Python:

Function tri_cps first accumulates a (possibly big) continuation in steps, which it
then applies to 0. The evaluation of this continuation will also burden the stack. Thus, to
make this suitable for trampolining and limiting the stack load, lambda: is also needed
in front of both calls of cont (in addition to just the recursive call to tri_cps_lazy):

Note that the two calls to cont were also tail calls. (This explains the somewhat odd
layout of the code.)

• However, it does not execute that call itself; that is left to the client code.
The “recursive knot” is tied on the outside, by trampoline.

• For this to work, the programming language must support function clo-
sures that capture the current values of variables. In case of tri_acc_lazy,
the expression lambda: tri_acc_lazy(n - 1, acc + n) involves two
local variables, viz. n, acc, which evaporate after the function returns.
Python binds their values in the returned lambda object.

• Thunking via lambda: resembles the Command design pattern from Object-
Oriented programming (?).

5 Enforcing tail recursion via continuations

Before addressing total, let’s generalize the technique with the accumulation
parameter. In general, it may not be easy to find a simple accumulation param-
eter to make a definition tail recursive. And in case of branching recursion, it
would be useless. But there is a way that is guaranteed to work: Continuation
Passing Style, also known as CPS (?). With CPS, you introduce an extra pa-
rameter of a function type, known as a continuation. In Python, we abbreviate
that function type to Func[A, B]:

41 type Func[A, B] = Callable[[A], B] # functions from A to B

We name this continuation parameter cont. It represents work that still needs
to be done to complete the computation. An example will make this clear. Let’s
specify tri_cps(n, cont) == cont(tri(n)). Then we have

• tri(n) = id(tri(n)) = tri cps(n, id), where id is the (polymorphic) identity
function defined by id(a) = a;

• for n = 0, we have tri cps(0, cont) = cont(tri(0)) = cont(0);

• and for n > 0, tri cps(n, cont) = cont(tri(n)) = cont(n+ tri(n− 1)).
The latter expression can be viewed as a new function applied to tri(n−1).
Which function? The function f defined by f(x) = cont(n+x). In Python,
that function can be expressed as lambda x: cont(n + x). So, we can
rewrite further

cont(n+ tri(n− 1)) = (λx : cont(n+ x))(tri(n− 1))
= tri cps(n− 1, λ x : cont(n+ x))

This leads to the following tail recursive (!) definition of tri_cps:

42 def tri_cps(n: nat,
43 cont: Func[int, int] = id_
44) -> int:
45 if n == 0:
46 return cont(0)
47 else:
48 return tri_cps(n - 1, lambda x:
49 cont(n + x)
50)

5The identity function serves as default continuation. We have named it id_,
because id is already a predefined different function in Python:

51 def id_[A](a: A) -> A:
52 return a

Function tri_cps first accumulates a (possibly big) continuation in n steps,
which it then applies to 0. The evaluation of this continuation will also burden
the stack. Thus, to make this suitable for trampolining and limiting the stack
load, lambda: is also needed in front of both calls of cont (in addition to just
the recursive call to tri_cps_lazy):

53 def tri_cps_lazy(n: nat,
54 cont: Func[int, Thunk[int]] = id_
55) -> Thunk[int]:
56 if n == 0:
57 return lambda: cont(0)
58 else:
59 return lambda: tri_cps_lazy(n - 1, lambda x:
60 lambda: cont(n + x)
61)

Note that the two calls to cont were also tail calls. (This explains the somewhat
odd layout of the code.)

6 Making branching recursion tail recursive

CPS is so powerful that it can even make functions with branching recursion
tail recursive. Let’s see how that works by revisiting total defined in §3. First,
we specify total_cps(t, cont) = cont(total(t)). Then we have

• total(t) = id(total(t)) = total cps(t, id);

• for t = Leaf (v), we have total cps(t, cont) = cont(total(t)) = cont(v);

• for t = (t0, t1), we have

total cps(t, cont)

= cont(total(t))

= cont(total(t0) + total(t1))

= (λ tt0 : cont(tt0 + total(t1)))(total(t0))

= total csp(t0, λ tt0 : cont(tt0 + total(t1)))

= total csp(t0, λ tt0 : (λ tt1 : cont(tt0 + tt1))(total(t1)))

= total csp(t0, λ tt0 : total csp(t1, λ tt1 : cont(tt0 + tt1))).

Thus, we have derived the following definition for total_cps:

62 def total_cps(t: Tree,
63 cont: Func[int, int] = id_
64) -> int:
65 if isinstance(t, Leaf):
66 return cont(t.value)
67 else: # t is binary fork

6

The identity function serves as default continuation. We have named it id_,
because id is already a predefined different function in Python:

51 def id_[A](a: A) -> A:
52 return a

Function tri_cps first accumulates a (possibly big) continuation in n steps,
which it then applies to 0. The evaluation of this continuation will also burden
the stack. Thus, to make this suitable for trampolining and limiting the stack
load, lambda: is also needed in front of both calls of cont (in addition to just
the recursive call to tri_cps_lazy):

53 def tri_cps_lazy(n: nat,
54 cont: Func[int, Thunk[int]] = id_
55) -> Thunk[int]:
56 if n == 0:
57 return lambda: cont(0)
58 else:
59 return lambda: tri_cps_lazy(n - 1, lambda x:
60 lambda: cont(n + x)
61)

Note that the two calls to cont were also tail calls. (This explains the somewhat
odd layout of the code.)

6 Making branching recursion tail recursive

CPS is so powerful that it can even make functions with branching recursion
tail recursive. Let’s see how that works by revisiting total defined in §3. First,
we specify total_cps(t, cont) = cont(total(t)). Then we have

• total(t) = id(total(t)) = total cps(t, id);

• for t = Leaf (v), we have total cps(t, cont) = cont(total(t)) = cont(v);

• for t = (t0, t1), we have

total cps(t, cont)

= cont(total(t))

= cont(total(t0) + total(t1))

= (λ tt0 : cont(tt0 + total(t1)))(total(t0))

= total csp(t0, λ tt0 : cont(tt0 + total(t1)))

= total csp(t0, λ tt0 : (λ tt1 : cont(tt0 + tt1))(total(t1)))

= total csp(t0, λ tt0 : total csp(t1, λ tt1 : cont(tt0 + tt1))).

Thus, we have derived the following definition for total_cps:

62 def total_cps(t: Tree,
63 cont: Func[int, int] = id_
64) -> int:
65 if isinstance(t, Leaf):
66 return cont(t.value)
67 else: # t is binary fork

6

The Olympiad Trap and an Old Trampoline 151

6. Making Branching Recursion Tail Recursive

CPS is so powerful that it can even make functions with branching recursion tail re-
cursive. Let’s see how that works by revisiting total defined in §3. First, we specify
total_cps(t, cont) == cont(total(t)). Then we have

 ● () = (()) = _ (,);
for ● = (), we have _ (,) = (()) = ();
for ● = (0, 1), we have

_ (,)
= (())
= ((0) + (1))
= (λ 0 : (0 + (1)))((0))
= _ (0, λ 0 : (0 + (1)))
= _ (0, λ 0 : (λ 1 : (0 + 1))((1)))
= _ (0, λ 0 : _ (1, λ 1 : (0 + 1))).

Thus, we have derived the following definition for total_cps:

You may wonder whether this definition is really tail-recursive, because it con tains two
calls of total_cps, only one of which looks like a tail call. It is, since the call with t[1]
is suspended (but not thunked) by lambda tt0. That call is incorporated into the con-
tinuation, and executed when that continuation reaches a leaf. Inside that lambda tt0,
it is a tail call.

We can now easily prepare this for the trampoline by adding lambda: (4×):

The identity function serves as default continuation. We have named it id_,
because id is already a predefined different function in Python:

51 def id_[A](a: A) -> A:
52 return a

Function tri_cps first accumulates a (possibly big) continuation in n steps,
which it then applies to 0. The evaluation of this continuation will also burden
the stack. Thus, to make this suitable for trampolining and limiting the stack
load, lambda: is also needed in front of both calls of cont (in addition to just
the recursive call to tri_cps_lazy):

53 def tri_cps_lazy(n: nat,
54 cont: Func[int, Thunk[int]] = id_
55) -> Thunk[int]:
56 if n == 0:
57 return lambda: cont(0)
58 else:
59 return lambda: tri_cps_lazy(n - 1, lambda x:
60 lambda: cont(n + x)
61)

Note that the two calls to cont were also tail calls. (This explains the somewhat
odd layout of the code.)

6 Making branching recursion tail recursive

CPS is so powerful that it can even make functions with branching recursion
tail recursive. Let’s see how that works by revisiting total defined in §3. First,
we specify total_cps(t, cont) = cont(total(t)). Then we have

• total(t) = id(total(t)) = total cps(t, id);

• for t = Leaf (v), we have total cps(t, cont) = cont(total(t)) = cont(v);

• for t = (t0, t1), we have

total cps(t, cont)

= cont(total(t))

= cont(total(t0) + total(t1))

= (λ tt0 : cont(tt0 + total(t1)))(total(t0))

= total csp(t0, λ tt0 : cont(tt0 + total(t1)))

= total csp(t0, λ tt0 : (λ tt1 : cont(tt0 + tt1))(total(t1)))

= total csp(t0, λ tt0 : total csp(t1, λ tt1 : cont(tt0 + tt1))).

Thus, we have derived the following definition for total_cps:

62 def total_cps(t: Tree,
63 cont: Func[int, int] = id_
64) -> int:
65 if isinstance(t, Leaf):
66 return cont(t.value)
67 else: # t is binary fork

6

68 return total_cps(t[0], lambda tt0:
69 total_cps(t[1], lambda tt1:
70 cont(tt0 + tt1)
71))

You may wonder whether this definition is really tail-recursive, because it con-
tains two calls of total_cps, only one of which looks like a tail call. It is,
since the call with t[1] is suspended (but not thunked) by lambda tt0. That
call is incorporated into the continuation, and executed when that continuation
reaches a leaf. Inside that lambda tt0, it is a tail call.
We can now easily prepare this for the trampoline by adding lambda: (4×):

72 def total_cps_lazy(t: Tree,
73 cont: Func[int, Thunk[int]] = id_
74) -> Thunk[int]:
75 if isinstance(t, Leaf):
76 return lambda: cont(t.value)
77 else: # t is binary fork
78 return lambda: total_cps_lazy(t[0], lambda tt0:
79 lambda: total_cps_lazy(t[1], lambda tt1:
80 lambda: cont(tt0 + tt1)
81))

I hope that this example convinces you that through CPS the transformation of
general, possibly branching, recursion to tail recursion can in fact be automated.
However, I need to temper your expectations somewhat. Exercise: Find a

recursive function definition that cannot be made tail recursive via CPS. See
Appendix A.2 for an answer.

7 Defunctionalization

What did we gain? Well, CPS with trampoline avoids using the stack, and
deep recursion is no longer a problem when using a language that limits the
recursion depth. Memory usage, however, has shifted from the stack to the
continuation. This continuation grows and shrinks (in total_cps it can be
discarded at leaves, once it has been applied, but that may give rise to a new
continuation when hitting another recursive call). The computation is accumu-
lated in the continuation (like meta-programming) and then applied.
That continuation contains all the information needed to complete the com-

putation: both data (operands) and functionality (operations). Since the op-
erations are fairly limited, it is inefficient to copy them multiple times into the
continuation. Can’t we take that duplicate functionality out and share it? Yes,
that is possible through a technique known as defunctionalization.
Let’s first do this for tri_cps. Consider its definition in §5. How are its

continuations constructed? In particular, what data is involved and how is it
structured? It starts off with id_, and “on top” of this, there appear multiple
instances of lambda x: cont(n + x), for varying n: nat. Hence, it seems
plausible that we can encode a continuation as a list[nat]:

82 type tri_cps_data = list[nat]

We now define an auxiliary function tri_cont to reconstruct the continuation
from the data and apply it:

7

68 return total_cps(t[0], lambda tt0:
69 total_cps(t[1], lambda tt1:
70 cont(tt0 + tt1)
71))

You may wonder whether this definition is really tail-recursive, because it con-
tains two calls of total_cps, only one of which looks like a tail call. It is,
since the call with t[1] is suspended (but not thunked) by lambda tt0. That
call is incorporated into the continuation, and executed when that continuation
reaches a leaf. Inside that lambda tt0, it is a tail call.
We can now easily prepare this for the trampoline by adding lambda: (4×):

72 def total_cps_lazy(t: Tree,
73 cont: Func[int, Thunk[int]] = id_
74) -> Thunk[int]:
75 if isinstance(t, Leaf):
76 return lambda: cont(t.value)
77 else: # t is binary fork
78 return lambda: total_cps_lazy(t[0], lambda tt0:
79 lambda: total_cps_lazy(t[1], lambda tt1:
80 lambda: cont(tt0 + tt1)
81))

I hope that this example convinces you that through CPS the transformation of
general, possibly branching, recursion to tail recursion can in fact be automated.
However, I need to temper your expectations somewhat. Exercise: Find a

recursive function definition that cannot be made tail recursive via CPS. See
Appendix A.2 for an answer.

7 Defunctionalization

What did we gain? Well, CPS with trampoline avoids using the stack, and
deep recursion is no longer a problem when using a language that limits the
recursion depth. Memory usage, however, has shifted from the stack to the
continuation. This continuation grows and shrinks (in total_cps it can be
discarded at leaves, once it has been applied, but that may give rise to a new
continuation when hitting another recursive call). The computation is accumu-
lated in the continuation (like meta-programming) and then applied.
That continuation contains all the information needed to complete the com-

putation: both data (operands) and functionality (operations). Since the op-
erations are fairly limited, it is inefficient to copy them multiple times into the
continuation. Can’t we take that duplicate functionality out and share it? Yes,
that is possible through a technique known as defunctionalization.
Let’s first do this for tri_cps. Consider its definition in §5. How are its

continuations constructed? In particular, what data is involved and how is it
structured? It starts off with id_, and “on top” of this, there appear multiple
instances of lambda x: cont(n + x), for varying n: nat. Hence, it seems
plausible that we can encode a continuation as a list[nat]:

82 type tri_cps_data = list[nat]

We now define an auxiliary function tri_cont to reconstruct the continuation
from the data and apply it:

7

T. Verhoeff152

I hope that this example convinces you that through CPS the transformation of general,
possibly branching, recursion to tail recursion can in fact be automated.

However, I need to temper your expectations somewhat. Exercise: Find a recursive
function definition that cannot be made tail recursive via CPS. See Appendix A.2 for an
answer.

7. Defunctionalization

What did we gain? Well, CPS with trampoline avoids using the stack, and deep recur-
sion is no longer a problem when using a language that limits the recursion depth.
Memory usage, however, has shifted from the stack to the continuation. This continu-
ation grows and shrinks (in total_cps it can be discarded at leaves, once it has been
applied, but that may give rise to a new continuation when hitting another recursive
call). The computation is accumu lated in the continuation (like meta-programming)
and then applied.

That continuation contains all the information needed to complete the com putation:
both data (operands) and functionality (operations). Since the op erations are fairly lim-
ited, it is inefficient to copy them multiple times into the continuation. Can’t we take that
duplicate functionality out and share it? Yes, that is possible through a technique known
as defunctionalization.

Let’s first do this for tri_cps. Consider its definition in §5. How are its continua-
tions constructed? In particular, what data is involved and how is it structured? It starts
off with id_, and “on top” of this, there appear multiple instances of lambda x:
cont(n + x), for varying n: nat. Hence, it seems plausible that we can encode a
continuation as a list[nat]:

We now define an auxiliary function tri_cont to reconstruct the continuation from the
data and apply it:

So, now the operation (viz. n+x) occurs once, viz. in tri_cont. The defunc tionalized
version of tri_cps is then given by

68 return total_cps(t[0], lambda tt0:
69 total_cps(t[1], lambda tt1:
70 cont(tt0 + tt1)
71))

You may wonder whether this definition is really tail-recursive, because it con-
tains two calls of total_cps, only one of which looks like a tail call. It is,
since the call with t[1] is suspended (but not thunked) by lambda tt0. That
call is incorporated into the continuation, and executed when that continuation
reaches a leaf. Inside that lambda tt0, it is a tail call.
We can now easily prepare this for the trampoline by adding lambda: (4×):

72 def total_cps_lazy(t: Tree,
73 cont: Func[int, Thunk[int]] = id_
74) -> Thunk[int]:
75 if isinstance(t, Leaf):
76 return lambda: cont(t.value)
77 else: # t is binary fork
78 return lambda: total_cps_lazy(t[0], lambda tt0:
79 lambda: total_cps_lazy(t[1], lambda tt1:
80 lambda: cont(tt0 + tt1)
81))

I hope that this example convinces you that through CPS the transformation of
general, possibly branching, recursion to tail recursion can in fact be automated.
However, I need to temper your expectations somewhat. Exercise: Find a

recursive function definition that cannot be made tail recursive via CPS. See
Appendix A.2 for an answer.

7 Defunctionalization

What did we gain? Well, CPS with trampoline avoids using the stack, and
deep recursion is no longer a problem when using a language that limits the
recursion depth. Memory usage, however, has shifted from the stack to the
continuation. This continuation grows and shrinks (in total_cps it can be
discarded at leaves, once it has been applied, but that may give rise to a new
continuation when hitting another recursive call). The computation is accumu-
lated in the continuation (like meta-programming) and then applied.
That continuation contains all the information needed to complete the com-

putation: both data (operands) and functionality (operations). Since the op-
erations are fairly limited, it is inefficient to copy them multiple times into the
continuation. Can’t we take that duplicate functionality out and share it? Yes,
that is possible through a technique known as defunctionalization.
Let’s first do this for tri_cps. Consider its definition in §5. How are its

continuations constructed? In particular, what data is involved and how is it
structured? It starts off with id_, and “on top” of this, there appear multiple
instances of lambda x: cont(n + x), for varying n: nat. Hence, it seems
plausible that we can encode a continuation as a list[nat]:

82 type tri_cps_data = list[nat]

We now define an auxiliary function tri_cont to reconstruct the continuation
from the data and apply it:

7
83 def tri_cont(data: tri_cps_data, x: int) -> int:
84 if data: # non-empty
85 n = data.pop()
86 return tri_cont(data, n + x)
87 else: # empty, act as identity
88 return x

So, now the operation (viz. n + x) occurs once, viz. in tri_cont. The defunc-
tionalized version of tri_cps is then given by

89 def tri_dcps(n: nat, data: tri_cps_data = None) -> int:
90 if data is None:
91 data = [] # to avoid mutable default argument
92 if n == 0:
93 return tri_cont(data, 0)
94 else:
95 data.append(n)
96 return tri_dcps(n - 1, data)

Of course, this can also be made lazy for the trampoline (see tri_dcps_lazy
in (Verhoeff, 2025)).
For this particular function, we can go even further and reduce the data

to a single natural number, because all continuations basically are composi-
tions of lambda x: n + x for various values of n. The simplification hinges on
associativity of function composition and this property:

(λx : n+ x) ◦ (λx : m+ x) = (λx : (n+m) + x))

Note that for n = 0, λx : n + x is the identity function. This simplification
gives us back tri_acc, where the whole continuation is compressed into a single
integer (acc).
It is also instructive to defunctionalize total_cps defined in §6. Its contin-

uation grows in three ways:

• id_, without capturing any data, is the initial continuation;

• lambda tt0: total_cps(t[1], lambda tt1: cont(tt0 + tt1)), with
t[1]: Tree as captured data, extends cont;

• lambda tt1: cont(tt0 + tt1), with tt0: int as captured data, also
extends cont.

Thus, we can encode a continuation as

97 type total_cps_data = list[int | Tree]

The int is the total of a left subtree that needs to be added to the total of
a right subtree (which has not been determined yet), and the Tree is a right
subtree which still must be totaled. Here is how to reconstruct the continuation
from the data:

98 def total_cont(data: total_cps_data, x: int) -> int:
99 if data: # non-empty

100 last = data.pop()
101 if isinstance(last, int): # pending total of left tree
102 return total_cont(data, last + x) # last is a tt0

8

83 def tri_cont(data: tri_cps_data, x: int) -> int:
84 if data: # non-empty
85 n = data.pop()
86 return tri_cont(data, n + x)
87 else: # empty, act as identity
88 return x

So, now the operation (viz. n + x) occurs once, viz. in tri_cont. The defunc-
tionalized version of tri_cps is then given by

89 def tri_dcps(n: nat, data: tri_cps_data = None) -> int:
90 if data is None:
91 data = [] # to avoid mutable default argument
92 if n == 0:
93 return tri_cont(data, 0)
94 else:
95 data.append(n)
96 return tri_dcps(n - 1, data)

Of course, this can also be made lazy for the trampoline (see tri_dcps_lazy
in (Verhoeff, 2025)).
For this particular function, we can go even further and reduce the data

to a single natural number, because all continuations basically are composi-
tions of lambda x: n + x for various values of n. The simplification hinges on
associativity of function composition and this property:

(λx : n+ x) ◦ (λx : m+ x) = (λx : (n+m) + x))

Note that for n = 0, λx : n + x is the identity function. This simplification
gives us back tri_acc, where the whole continuation is compressed into a single
integer (acc).
It is also instructive to defunctionalize total_cps defined in §6. Its contin-

uation grows in three ways:

• id_, without capturing any data, is the initial continuation;

• lambda tt0: total_cps(t[1], lambda tt1: cont(tt0 + tt1)), with
t[1]: Tree as captured data, extends cont;

• lambda tt1: cont(tt0 + tt1), with tt0: int as captured data, also
extends cont.

Thus, we can encode a continuation as

97 type total_cps_data = list[int | Tree]

The int is the total of a left subtree that needs to be added to the total of
a right subtree (which has not been determined yet), and the Tree is a right
subtree which still must be totaled. Here is how to reconstruct the continuation
from the data:

98 def total_cont(data: total_cps_data, x: int) -> int:
99 if data: # non-empty

100 last = data.pop()
101 if isinstance(last, int): # pending total of left tree
102 return total_cont(data, last + x) # last is a tt0

8

The Olympiad Trap and an Old Trampoline 153

Of course, this can also be made lazy for the trampoline (see tri_dcps_lazy in (Ver-
hoeff, 2025)).

For this particular function, we can go even further and reduce the data to a single
natural number, because all continuations basically are composi tions of lambda x:
n + x for various values of . The simplification hinges on associativity of function
composition and this property:

(λ : +) ◦ (λ : +) = (λ : (+) +))

Note that for = 0, λ : + is the identity function. This simplification gives us back
tri_acc, where the whole continuation is compressed into a single integer (acc).

It is also instructive to defunctionalize total_cps defined in §6. Its contin uation
grows in three ways:

id ● _, without capturing any data, is the initial continuation;
lambda ● tt1: cont(tt0 + tt1), with tt0: int as captured data, extends
cont;
lambda ● tt0: total_cps(t[1], lambda tt1: cont(tt0 + tt1)), with
t[1]: Tree as captured data, also extends cont.

Thus, we can encode a continuation as

The int is the total of a left subtree that needs to be added to the total of a right subtree
(which has not been determined yet), and the Tree is a right subtree which still must be
totaled. Here is how to reconstruct the continuation from the data:

Notice the call of total_dcps. Thus we get the following defunctionalized version of
total_cps:

83 def tri_cont(data: tri_cps_data, x: int) -> int:
84 if data: # non-empty
85 n = data.pop()
86 return tri_cont(data, n + x)
87 else: # empty, act as identity
88 return x

So, now the operation (viz. n + x) occurs once, viz. in tri_cont. The defunc-
tionalized version of tri_cps is then given by

89 def tri_dcps(n: nat, data: tri_cps_data = None) -> int:
90 if data is None:
91 data = [] # to avoid mutable default argument
92 if n == 0:
93 return tri_cont(data, 0)
94 else:
95 data.append(n)
96 return tri_dcps(n - 1, data)

Of course, this can also be made lazy for the trampoline (see tri_dcps_lazy
in (Verhoeff, 2025)).
For this particular function, we can go even further and reduce the data

to a single natural number, because all continuations basically are composi-
tions of lambda x: n + x for various values of n. The simplification hinges on
associativity of function composition and this property:

(λx : n+ x) ◦ (λx : m+ x) = (λx : (n+m) + x))

Note that for n = 0, λx : n + x is the identity function. This simplification
gives us back tri_acc, where the whole continuation is compressed into a single
integer (acc).
It is also instructive to defunctionalize total_cps defined in §6. Its contin-

uation grows in three ways:

• id_, without capturing any data, is the initial continuation;

• lambda tt0: total_cps(t[1], lambda tt1: cont(tt0 + tt1)), with
t[1]: Tree as captured data, extends cont;

• lambda tt1: cont(tt0 + tt1), with tt0: int as captured data, also
extends cont.

Thus, we can encode a continuation as

97 type total_cps_data = list[int | Tree]

The int is the total of a left subtree that needs to be added to the total of
a right subtree (which has not been determined yet), and the Tree is a right
subtree which still must be totaled. Here is how to reconstruct the continuation
from the data:

98 def total_cont(data: total_cps_data, x: int) -> int:
99 if data: # non-empty

100 last = data.pop()
101 if isinstance(last, int): # pending total of left tree
102 return total_cont(data, last + x) # last is a tt0

8

instances of lambda x: cont(n + x), for varying n: nat. Hence, it seems
plausible that we can encode a continuation as a list[nat]:

82 type tri_cps_data = list[nat]

We now define an auxiliary function tri_cont to reconstruct the continuation
from the data and apply it:

83 def tri_cont(data: tri_cps_data, x: int) -> int:
84 if data: # non-empty
85 n = data.pop()
86 return tri_cont(data, n + x)
87 else: # empty, act as identity
88 return x

So, now the operation (viz. n + x) occurs once, viz. in tri_cont. The defunc-
tionalized version of tri_cps is then given by

89 def tri_dcps(n: nat, data: tri_cps_data = None) -> int:
90 if data is None:
91 data = [] # to avoid mutable default argument
92 if n == 0:
93 return tri_cont(data, 0)
94 else:
95 data.append(n)
96 return tri_dcps(n - 1, data)

Of course, this can also be made lazy for the trampoline (see tri_dcps_lazy
in (Verhoeff, 2025)).
For this particular function, we can go even further and reduce the data

to a single natural number, because all continuations basically are composi-
tions of lambda x: n + x for various values of n. The simplification hinges on
associativity of function composition and this property:

(λx : n+ x) ◦ (λx : m+ x) = (λx : (n+m) + x))

Note that for n = 0, λx : n + x is the identity function. This simplification
gives us back tri_acc, where the whole continuation is compressed into a single
integer (acc).
It is also instructive to defunctionalize total_cps defined in §6. Its contin-

uation grows in three ways:

• id_, without capturing any data, is the initial continuation;

• lambda tt0: total_cps(t[1], lambda tt1: cont(tt0 + tt1)), with
t[1]: Tree as captured data, extends cont;

• lambda tt1: cont(tt0 + tt1), with tt0: int as captured data, also
extends cont.

Thus, we can encode a continuation as

97 type total_cps_data = list[int | Tree]

The int is the total of a left subtree that needs to be added to the total of
a right subtree (which has not been determined yet), and the Tree is a right
subtree which still must be totaled. Here is how to reconstruct the continuation
from the data:

8
98 def total_cont(data: total_cps_data, x: int) -> int:
99 if data: # non-empty

100 last = data.pop()
101 if isinstance(last, int): # pending total of left tree
102 return total_cont(data, last + x) # last is a tt0
103 else: # pending right tree
104 data.append(x)
105 return total_dcps(last, data) # last is a t[1]
106 else: # empty, act as identity
107 return x

Notice the call of total_dcps. Thus we get the following defunctionalized
version of total_cps:

108 def total_dcps(t: Tree,
109 data: total_cps_data = None
110) -> int:
111 if data is None:
112 data = [] # to avoid mutable default argument
113 if isinstance(t, Leaf):
114 return total_cont(data, t.value)
115 else: # t is binary fork
116 data.append(t[1]) # postpone processing of t[1]
117 return total_dcps(t[0], data)

We now have two mutually tail-recursive definitions. Without knowing how
these function definitions were derived, it would not be obvious why they ter-
minate.
By the way, just as with tri_dcps, it is possible to merge some continua-

tions for total_dcps, and to pass these on as a single integer (acc), and the
remainder as a list[Tree]. We leave it as an exercise to the reader to fill in
the missing details (see Appendix A.3 for some hints). The result is a classic
tail recursive function, without suspended calls and without the need for an
auxiliary function that explictly reconstructs the continuation.

118 def total_acc_dcps(t: Tree,
119 acc: int = 0,
120 data: list[Tree] = None
121) -> int:
122 if data is None:
123 data = [] # to avoid mutable default argument
124 if isinstance(t, Leaf):
125 acc = acc + t.value
126 if data: # non-empty
127 t1 = data.pop()
128 return total_acc_dcps(t1, acc, data)
129 else: # data is empty
130 return acc
131 else: # t is binary fork
132 data.append(t[1]) # postpone processing of t[1]
133 return total_acc_dcps(t[0], acc, data)

In hindsight, it is clear that in all these defunctionalized programs, parameter
data serves as a custom stack, that stores exactly the information needed to
support the branching recursion.

9

T. Verhoeff154

We now have two mutually tail-recursive definitions. Without knowing how these func-
tion definitions were derived, it would not be obvious why they ter minate.

By the way, just as with tri_dcps, it is possible to merge some continua tions for
total_dcps, and to pass these on as a single integer (acc), and the remainder as a
list[Tree]. We leave it as an exercise to the reader to fill in the missing details (see
Appendix A.3 for some hints). The result is a classic tail recursive function, without
suspended calls and without the need for an auxiliary function that explictly reconstructs
the continuation.

In hindsight, it is clear that in all these defunctionalized programs, parameter data serves
as a custom stack, that stores exactly the information needed to support the (branching)
recursion.

8. Conclusion

I hope to have created awareness of what I call the Olympiad trap, where the IOI is
locked into its own contest format. One way of mitigating it, is to pay attention to inter-
esting and challenging topics in informatics that fall outside the scope of the IOI. As an

103 else: # pending right tree
104 data.append(x)
105 return total_dcps(last, data) # last is a t[1]
106 else: # empty, act as identity
107 return x

Notice the call of total_dcps. Thus we get the following defunctionalized
version of total_cps:

108 def total_dcps(t: Tree,
109 data: total_cps_data = None
110) -> int:
111 if data is None:
112 data = [] # to avoid mutable default argument
113 if isinstance(t, Leaf):
114 return total_cont(data, t.value)
115 else: # t is binary fork
116 data.append(t[1]) # postpone processing of t[1]
117 return total_dcps(t[0], data)

We now have two mutually tail-recursive definitions. Without knowing how
these function definitions were derived, it would not be obvious why they ter-
minate.
By the way, just as with tri_dcps, it is possible to merge some continua-

tions for total_dcps, and to pass these on as a single integer (acc), and the
remainder as a list[Tree]. We leave it as an exercise to the reader to fill in
the missing details (see Appendix A.3 for some hints). The result is a classic
tail recursive function, without suspended calls and without the need for an
auxiliary function that explictly reconstructs the continuation.

118 def total_acc_dcps(t: Tree,
119 acc: int = 0,
120 data: list[Tree] = None
121) -> int:
122 if data is None:
123 data = [] # to avoid mutable default argument
124 if isinstance(t, Leaf):
125 acc = acc + t.value
126 if data: # non-empty
127 t1 = data.pop()
128 return total_acc_dcps(t1, acc, data)
129 else: # data is empty
130 return acc
131 else: # t is binary fork
132 data.append(t[1]) # postpone processing of t[1]
133 return total_acc_dcps(t[0], acc, data)

In hindsight, it is clear that in all these defunctionalized programs, parameter
data serves as a custom stack, that stores exactly the information needed to
support the branching recursion.

8 Conclusion

I hope to have created awareness of what I call the Olympiad trap, where
the IOI is locked into its own contest format. One way of mitigating it, is

9

103 else: # pending right tree
104 data.append(x)
105 return total_dcps(last, data) # last is a t[1]
106 else: # empty, act as identity
107 return x

Notice the call of total_dcps. Thus we get the following defunctionalized
version of total_cps:

108 def total_dcps(t: Tree,
109 data: total_cps_data = None
110) -> int:
111 if data is None:
112 data = [] # to avoid mutable default argument
113 if isinstance(t, Leaf):
114 return total_cont(data, t.value)
115 else: # t is binary fork
116 data.append(t[1]) # postpone processing of t[1]
117 return total_dcps(t[0], data)

We now have two mutually tail-recursive definitions. Without knowing how
these function definitions were derived, it would not be obvious why they ter-
minate.
By the way, just as with tri_dcps, it is possible to merge some continua-

tions for total_dcps, and to pass these on as a single integer (acc), and the
remainder as a list[Tree]. We leave it as an exercise to the reader to fill in
the missing details (see Appendix A.3 for some hints). The result is a classic
tail recursive function, without suspended calls and without the need for an
auxiliary function that explictly reconstructs the continuation.

118 def total_acc_dcps(t: Tree,
119 acc: int = 0,
120 data: list[Tree] = None
121) -> int:
122 if data is None:
123 data = [] # to avoid mutable default argument
124 if isinstance(t, Leaf):
125 acc = acc + t.value
126 if data: # non-empty
127 t1 = data.pop()
128 return total_acc_dcps(t1, acc, data)
129 else: # data is empty
130 return acc
131 else: # t is binary fork
132 data.append(t[1]) # postpone processing of t[1]
133 return total_acc_dcps(t[0], acc, data)

In hindsight, it is clear that in all these defunctionalized programs, parameter
data serves as a custom stack, that stores exactly the information needed to
support the branching recursion.

8 Conclusion

I hope to have created awareness of what I call the Olympiad trap, where
the IOI is locked into its own contest format. One way of mitigating it, is

9

The Olympiad Trap and an Old Trampoline 155

example of such a topic, I explained how tail recursion can be transformed into a loop
using thunking and a trampoline. And next, how Continuation Passing Style (CPS) can
be used to transform arbitrary recursion into tail recursion. These ideas were discovered
a long time ago and have become part of the CS folklore. For a history of continuations
see (Reynolds, 1993), which traces it back to 1964, when Adriaan van Wijngaarden
(designer of Algol 60 and Algol 68, and my father’s promotor) first described it. The
trampoline seems to have been introduced by Steele (1977). Gibbons (2022) is a modern
exploration of CPS, accumulation, and defunctionalization.

The code for this article is available at (Verhoeff, 2025). It includes code that is in-
strumented to visualize how the stack is used, together with the output of that code. It
also treats the example of flattening a binary leaf tree.

Acknowledgment

I would like to thank Ahto Truu and my colleague Berry Schoenmakers (one of the team
members who made it to the ICPC World Finals in 1987) for helping me improve this
article.

References

Gamma, E. and Helm, R. and Johnson, R. and Vlissides, J. (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Gibbons, J. (2022). Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity. The
Art, Science, and Engineering of Programming, 6(2):7:1–7:28.
https://doi.org/10.22152/programming-journal.org/2022/6/7

Reynolds, J.C. (1993). The Discoveries of Continuations. LISP Symb. Comput., 6(3–4):233–248.
https://doi.org/10.1007/BF01019459

Steele, Guy L. (1977). Debunking the “expensive procedure call” myth or, procedure call implementations
considered harmful or, LAMBDA: The Ultimate GOTO. In: ACM’77: Proceedings of the 1977 annual
conference. pp. 153–162. https://doi.org/10.1145/800179.810196

Verhoeff, T. (2018). A master class on recursion. In: Adventures Between Lower Bounds and Higher Altitudes.
Lecture Notes in Computer Science Vol. 11011, Springer, pp. 610–633.
https://doi.org/10.1007/978-3-319-98355-4_35

Verhoeff, T. (2021). Look Ma, backtracking without recursion, IOI Journal 2021, 15, 119–132.
https://doi.org/10.15388/ioi.2021.10

Verhoeff, T. (2023). “Understanding and designing recursive functions via syntactic rewriting”, IOI Journal,
17, 99–119. https://doi.org/10.15388/ioi.2023.08

Verhoeff, T. (2025). Git repository with source code for “The Olympiad Trap and an Old Trampoline”.
(Accessed 30 May 2025)
https://gitlab.tue.nl/t-verhoeff-software/code-for-cps-with-trampoline

T. Verhoeff156

T. Verhoeff is Assistant Professor in Computer Science at Eindhoven
University of Technology, where he works in the group Software En-
gineering & Technology. His research inter ests are support tools for
verified software development, model driven engineering, and func-
tional programming. He received the IOI Distinguished Service Award
at IOI 2007 in Zagreb, Croatia, in particular for his role in setting up
and maintaining a web archive of IOI-related material and facilities for
commu nication in the IOI community, and in establishing, developing,
chairing, and contributing to the IOI International Scientific Commit-
tee from 1999 until 2007.

The Olympiad Trap and an Old Trampoline 157

Appendix A. Answers to Exercises

A.1. Function total with Accumulation Parameter

One of the recursive calls in the definition of total can be made into a tail call by intro-
ducing an accumulation parameter:

The other recursive call is not a tail call, since more work is done after it returns.

A.2. Recursive Function where CPS Fails

Continuation Passing Style (CPS) is a powerful technique that can be used to transform
any recursive function definition into a tail-recursive definition. But this does not mean
that the resulting function is useful. In particular, it may not terminate. One example
where this happens is the fixpoint combinator.

For given function , we call a fixpoint of when () = . The fixpoint combina-
tor returns a fixpoint of a given function from functions to func tions. That is, we
have (()) = () as function. It can be defined in Python as fix:

Function fix is recursive but not tail recursive.
Let’s see an application. Function tri is a fixpoint of function pre_tri:

Note that pre_tri abstracts from the recursive call, by making the function called there
a function parameter. Hence, it is itself not recursive. Obviously, we have

That is, tri is a fixpoint of pre_tri. Hence, we can define tri by fix(pre_tri).
 Can we make fix tail recursive by applying CPS? Let’s try:

Tom Verhoeff is Assistant Professor in Computer Science at
Eindhoven University of Technology, where he works in the
group Software Engineering & Technology. His research inter-
ests are support tools for verified software development, model
driven engineering, and functional programming. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb,
Croatia, in particular for his role in setting up and maintaining
a web archive of IOI-related material and facilities for commu-
nication in the IOI community, and in establishing, developing,
chairing, and contributing to the IOI International Scientific
Committee from 1999 until 2007.

A Answers to exercises

A.1 Function total with accumulation parameter

One of the recursive calls in the definition of total can be made into a tail call
by introducing an accumulation parameter:

134 def total_acc(t: Tree, acc: int = 0) -> int:
135 if isinstance(t, Leaf):
136 return acc + t.value
137 else:
138 return total_acc(t[1], # tail call
139 total_acc(t[0], acc)) # not a tail call

The other recursive call is not a tail call, since more work is done after it returns.

A.2 Recursive function where CPS fails

Continuation Passing Style (CPS) is a powerful technique that can be used to
transform any recursive function definition into a tail-recursive definition. But
this does not mean that the resulting function is useful. In particular, it may
not terminate. One example where this happens is the fixpoint combinator.
For given function f , we call x a fixpoint of f when f(x) = x. The fixpoint

combinator fix returns a fixpoint of a given function f from functions to func-
tions. That is, we have f(fix (f)) = fix (f) as function. It can be defined in
Python as fix:

140 type Endo[A] = Func[A, A] # endo-functions on A
141

142 def fix[A, B](f: Endo[Func[A, B]]) -> Func[A, B]:
143 return f(lambda a: fix(f)(a))

Function fix is recursive but not tail recursive.
Let’s see an application. Function tri is a fixpoint of function pre_tri:

144 def pre_tri(g: Func[nat, int]) -> Func[nat, int]:
145 return lambda n: 0 if n == 0 else n + g(n - 1)

Note that pre_tri abstracts from the recursive call, by making the function
called there a function parameter. Hence, it is itself not recursive. Obviously,
we have

146 pre_tri(tri)(n) == tri(n)

11

Tom Verhoeff is Assistant Professor in Computer Science at
Eindhoven University of Technology, where he works in the
group Software Engineering & Technology. His research inter-
ests are support tools for verified software development, model
driven engineering, and functional programming. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb,
Croatia, in particular for his role in setting up and maintaining
a web archive of IOI-related material and facilities for commu-
nication in the IOI community, and in establishing, developing,
chairing, and contributing to the IOI International Scientific
Committee from 1999 until 2007.

A Answers to exercises

A.1 Function total with accumulation parameter

One of the recursive calls in the definition of total can be made into a tail call
by introducing an accumulation parameter:

134 def total_acc(t: Tree, acc: int = 0) -> int:
135 if isinstance(t, Leaf):
136 return acc + t.value
137 else:
138 return total_acc(t[1], # tail call
139 total_acc(t[0], acc)) # not a tail call

The other recursive call is not a tail call, since more work is done after it returns.

A.2 Recursive function where CPS fails

Continuation Passing Style (CPS) is a powerful technique that can be used to
transform any recursive function definition into a tail-recursive definition. But
this does not mean that the resulting function is useful. In particular, it may
not terminate. One example where this happens is the fixpoint combinator.
For given function f , we call x a fixpoint of f when f(x) = x. The fixpoint

combinator fix returns a fixpoint of a given function f from functions to func-
tions. That is, we have f(fix (f)) = fix (f) as function. It can be defined in
Python as fix:

140 type Endo[A] = Func[A, A] # endo-functions on A
141

142 def fix[A, B](f: Endo[Func[A, B]]) -> Func[A, B]:
143 return f(lambda a: fix(f)(a))

Function fix is recursive but not tail recursive.
Let’s see an application. Function tri is a fixpoint of function pre_tri:

144 def pre_tri(g: Func[nat, int]) -> Func[nat, int]:
145 return lambda n: 0 if n == 0 else n + g(n - 1)

Note that pre_tri abstracts from the recursive call, by making the function
called there a function parameter. Hence, it is itself not recursive. Obviously,
we have

146 pre_tri(tri)(n) == tri(n)

11

Tom Verhoeff is Assistant Professor in Computer Science at
Eindhoven University of Technology, where he works in the
group Software Engineering & Technology. His research inter-
ests are support tools for verified software development, model
driven engineering, and functional programming. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb,
Croatia, in particular for his role in setting up and maintaining
a web archive of IOI-related material and facilities for commu-
nication in the IOI community, and in establishing, developing,
chairing, and contributing to the IOI International Scientific
Committee from 1999 until 2007.

A Answers to exercises

A.1 Function total with accumulation parameter

One of the recursive calls in the definition of total can be made into a tail call
by introducing an accumulation parameter:

134 def total_acc(t: Tree, acc: int = 0) -> int:
135 if isinstance(t, Leaf):
136 return acc + t.value
137 else:
138 return total_acc(t[1], # tail call
139 total_acc(t[0], acc)) # not a tail call

The other recursive call is not a tail call, since more work is done after it returns.

A.2 Recursive function where CPS fails

Continuation Passing Style (CPS) is a powerful technique that can be used to
transform any recursive function definition into a tail-recursive definition. But
this does not mean that the resulting function is useful. In particular, it may
not terminate. One example where this happens is the fixpoint combinator.
For given function f , we call x a fixpoint of f when f(x) = x. The fixpoint

combinator fix returns a fixpoint of a given function f from functions to func-
tions. That is, we have f(fix (f)) = fix (f) as function. It can be defined in
Python as fix:

140 type Endo[A] = Func[A, A] # endo-functions on A
141

142 def fix[A, B](f: Endo[Func[A, B]]) -> Func[A, B]:
143 return f(lambda a: fix(f)(a))

Function fix is recursive but not tail recursive.
Let’s see an application. Function tri is a fixpoint of function pre_tri:

144 def pre_tri(g: Func[nat, int]) -> Func[nat, int]:
145 return lambda n: 0 if n == 0 else n + g(n - 1)

Note that pre_tri abstracts from the recursive call, by making the function
called there a function parameter. Hence, it is itself not recursive. Obviously,
we have

146 pre_tri(tri)(n) == tri(n)

11

Tom Verhoeff is Assistant Professor in Computer Science at
Eindhoven University of Technology, where he works in the
group Software Engineering & Technology. His research inter-
ests are support tools for verified software development, model
driven engineering, and functional programming. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb,
Croatia, in particular for his role in setting up and maintaining
a web archive of IOI-related material and facilities for commu-
nication in the IOI community, and in establishing, developing,
chairing, and contributing to the IOI International Scientific
Committee from 1999 until 2007.

A Answers to exercises

A.1 Function total with accumulation parameter

One of the recursive calls in the definition of total can be made into a tail call
by introducing an accumulation parameter:

134 def total_acc(t: Tree, acc: int = 0) -> int:
135 if isinstance(t, Leaf):
136 return acc + t.value
137 else:
138 return total_acc(t[1], # tail call
139 total_acc(t[0], acc)) # not a tail call

The other recursive call is not a tail call, since more work is done after it returns.

A.2 Recursive function where CPS fails

Continuation Passing Style (CPS) is a powerful technique that can be used to
transform any recursive function definition into a tail-recursive definition. But
this does not mean that the resulting function is useful. In particular, it may
not terminate. One example where this happens is the fixpoint combinator.
For given function f , we call x a fixpoint of f when f(x) = x. The fixpoint

combinator fix returns a fixpoint of a given function f from functions to func-
tions. That is, we have f(fix (f)) = fix (f) as function. It can be defined in
Python as fix:

140 type Endo[A] = Func[A, A] # endo-functions on A
141

142 def fix[A, B](f: Endo[Func[A, B]]) -> Func[A, B]:
143 return f(lambda a: fix(f)(a))

Function fix is recursive but not tail recursive.
Let’s see an application. Function tri is a fixpoint of function pre_tri:

144 def pre_tri(g: Func[nat, int]) -> Func[nat, int]:
145 return lambda n: 0 if n == 0 else n + g(n - 1)

Note that pre_tri abstracts from the recursive call, by making the function
called there a function parameter. Hence, it is itself not recursive. Obviously,
we have

146 pre_tri(tri)(n) == tri(n)

11
That is, tri is a fixpoint of pre_tri. Hence, we can define tri by fix(pre_tri).
Can we make fix tail recursive by applying CPS? Let’s try:

147 def fix_cps[A, B](g: Endo[Func[A, B]],
148 cont: Endo[Func[A, B]] = id_
149) -> Func[A, B]:
150 return fix_cps(g, lambda h: cont(g(lambda a: h(a))))

This definition is indeed tail recursive. But when you apply it to pre_tri,
it does not terminate, because the argument g remains unchanged and never
reaches a base case. The continuation cont keeps on growing. So, fix_cps is
useless and certainly not equivalent to fix.

A.3 Defunctionalization of total_cps

The defunctionalization of total_cps can be better understood by analyzing
the structure of its continuations. These can always be written as a composition:

• id , the initial continuation, is an empty composition;

• λ tt1 : cont(tt0 + tt1) = cont ◦ (λ tt1 : tt0 + tt1) = cont ◦ (tt0 +), where
(n+) abbreviates the function λx : n+ x;

• λ tt0 : total cps(t1, cont ◦ (tt0 +))
= λ tt0 : (cont ◦ (tt0 +))(total(t1))
= λ tt0 : cont(tt0 + total(t1))
= cont(λ tt0 : tt0 + total(t1))
= cont ◦ (+ total(t1)).

Thus, every continuation is some composition of (tt0 +) and (+ total(t1))
for varying values of tt0 and t1. Compositions of these two kinds of functions
commute (due to associativity of addition; see below), and therefore all functions
of the form (tt0 +) can be moved together and merged into one such function,
as we have seen before, which can then be defunctionalized into a single integer
(acc). The composition of the other functions is defunctionalized into a list of
Tree.
Here is a proof that the composition of (n+) and (+m) commutes because

addition is associative. For integer k, we calculate:

((n+) ◦ (+m))(k)
= (n+)((+m)(k))

= (n+)(k +m)

= n+ (k +m)

= (n+ k) +m

= (+m)(n+ k)

= (+m)((n+)(k))

= ((+m) ◦ (n+))(k)

Such calculations with side-effect-free functions lies at the foundation of modern
functional programming.

12

T. Verhoeff158

This definition is indeed tail recursive. But when you apply it to pre_tri, it does not
terminate, because the argument g remains unchanged and never reaches a base case. The
continuation cont keeps on growing. So, fix_cps is useless and certainly not equivalent
to fix.

A.3. Defunctionalization of total_cps

The defunctionalization of total_cps can be better understood by analyzing the struc-
ture of its continuations. These can always be written as a composition:

 ● , the initial continuation, is an empty composition;
λ ● 1 : (0 + 1) = ◦ (λ 1 : 0 + 1) = ◦ (0 +), where (+) ab-
breviates the function λ : + ;
 λ ● 0 : _ (1, ◦ (0 +))
= λ 0 : (◦ (0 +))((1))
= λ 0 : (0 + (1))
= (λ 0 : 0 + (1))
= ◦ (+ (1)).

Thus, every continuation is some composition of (0 +) and (+ (1)) for varying
values of 0 and 1. Compositions of these two kinds of functions commute (due to as-
sociativity of addition; see below), and therefore all functions of the form (0 +) can be
moved together and merged into one such function, as we have seen before, which can
then be defunctionalized into a single integer (acc). The composition of the other func-
tions is defunctionalized into a list of Tree.

Here is a proof that the composition of (+) and (+) commutes because addition is
associative. For integer , we calculate:

 ((+) ◦ (+))()

= (+)((+)())

= (+)(+)

= + (+)

= (+) +

= (+)(+)

= (+)((+)())

= ((+) ◦ (+))()

Such calculations with side-effect-free functions lies at the foundation of modern func-
tional programming.

Olympiads in Informatics, 2025, Vol. 19, 159–175
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.11

159

REPORTS

Informatics Curriculum and Programming
Competitions: Azerbaijani Experience

Ismayil SADIGOV
Institute of Information Technology, Ministry of Science and Education of the Republic of Azerbaijan
B.Vahabzade str., 9A, AZ1141 Baku, Azerbaijan
e-mail: ismail.sadigov@gmail.com

Abstract. To what extent does the content of the International Olympiad in Informatics (IOI),
as well as other programming competitions in which students participate, correspond to the cur-
riculum of secondary school informatics? In other words, can a student who fully mastered the
curriculum of informatics taught in secondary school succeed in programming competitions? This
article reviews the history of informatics and Informatics Olympiads in Azerbaijan, how the cur-
riculum of the subject has changed from 1985 to the present, and in particular, whether the space
allocated to programming in these updates is sufficient. How to eliminate the existing inconsis-
tency in the new curriculum is explained using the example of specific standards.

Keywords: informatics curriculum, programming competitions, International Olympiads in In-
formatics, IOI.

1. Introduction

Probably, the team leaders at the International Olympiads in Informatics (IOI), as well
as the organizers of such competitions in their countries, are often asked the follow-
ing question: to what extent does the content of these olympiads correspond to the
curriculum of secondary school informatics? In other words, can a student who fully
mastered the curriculum of informatics taught in secondary school succeed in program-
ming competitions?

I. Sadigov160

Many teachers still believe that the content of the IOI is not related to the real school
curriculum in informatics. In this regard, it is interesting to analyze the extent to which
the content of the IOI is included in the curriculum of studying informatics at the profile
level. It is important to determine whether there is a real opportunity for students to real-
ize their interest in informatics, including preparation for the olympiad, directly within
the framework of the education they receive at school. (Kiryukhin, 2008)

The article will look for answers to these questions, take a brief look at the history
of school informatics and Informatics Olympiads in Azerbaijan, and touch on how the
integration of these two contents is implemented in the new informatics curriculum.

First, let’s turn to official documents. According to the relevant paragraphs of the
“Rules for the Organization and Conducting of Schoolchildren’s Subject Olympiads”,
approved by the Order No. 1256 of the Minister of Education of the Republic of Azer-
baijan dated December 12, 2014:

3.0.2. Subject Olympiads consist of 2 (two) stages – district (city) and republican
stages. The republican stage, in turn, consists of two rounds – semi-finals and
finals.

3.1.2. At the district (city) stage, questions are prepared by the jury of the republican
subject olympiads in a closed test format in accordance with the school
program.

3.2.4. In the semi-final round of the republican stage, questions are prepared by the
jury of the republican subject olympiads in a closed test format in accordance
with the school program and in a relatively difficult format.

However, this document does not contain any information about whether the ques-
tions for the final round of the republican stage of the subject Olympiads correspond
to the school curriculum. (Rules for organizing and holding school subject Olympiads,
2014) Let us note here that in general, it is normal for the questions to deviate from the
school curriculum for the final round, because the winners of this round are candidates
who will represent the country at the IOI. IOI has an approved syllabus, and this syllabus
must be taken into account. However, despite the fact that the Republican Olympiad in
Informatics has been held for more than 35 years, it is not normal for these Olympiads
to have no approved syllabus to this day.

The Law of the Republic of Azerbaijan on Education, approved on June 19, 2009,
included an article (Article 26.5) on the non-competitive admission of winners of world
subject Olympiads, high-level international competitions and competitions to higher
education institutions in relevant specialties. Although this change paved the way for
stimulating schoolchildren to participate in Olympiads and developing the teaching of
informatics, it naturally did not satisfy specialists, since it covered only international
competitions and contests. Under the influence of discussions opened both at the official
level and on social networks under the leadership of Ramin Mahmudzadeh, a prominent
scientist and educator who led the Azerbaijani team at the IOI (1993–2019), on June
12, 2018, amendments were made to “the Law of the Republic of Azerbaijan on Educa-
tion” and Article 26.5 was amended as follows: “26.5. Winners of international subject
Olympiads in any specialty, winners of republican subject Olympiads, high-level inter-

Informatics Curriculum and Programming Competitions: Azerbaijani Experience 161

national competitions and contests are admitted to higher education institutions in the
relevant specialties without competition”.

Prize-winners of the final round of the Republican subject Olympiads are granted
the right to admission to relevant specialties in higher education institutions without ex-
ams. Therefore, it is important to ensure that not only students from specialized schools
but all students have the opportunity to participate in subject Olympiads, including
the IOI. In other words, the informatics subject curriculum should correspond to the
program of the Republican Olympiad in Informatics to a certain extent. However, of
course, the extent of this correspondence will be the subject of serious analysis and
discussion from time to time.

2. A Brief Look at the History of School Informatics

Informatics as an independent science began to take shape in the middle of the 20th
century, primarily after the invention of electronic computers. In the 1970s, with the in-
vention of microprocessors and the creation of microcomputers and personal computers
based on them, the process of informatization of many areas of human activity acceler-
ated. Naturally, this process also had its impact on the education system. There was a
mass demand for computer literacy and information literacy among the population. In
such conditions, the issue of including the subject of informatics in the curriculum of
general education schools became relevant.

Introduction of a new subject to schools did not happen suddenly, this innovation
became possible after some preparatory work was carried out for a while. Thus, in the
early 1960s, experiments were conducted to teach students the elements of cybernetics.
As a result of these experiments, in 1970, the Fundamentals of Cybernetics course was
officially included in the list of optional courses of secondary general education schools.
This 140-hour course (70 hours in grade 9, 70 hours in grade 10) was taught mainly in
physics-mathematics-oriented schools until 1985.

On April 12, 1984, at a joint meeting of the Central Committee of the CPSU (Cen-
tral Committee of the Communist Party of the Soviet Union) and the USSR Council of
Ministers, Resolution No. 313 was adopted. In that resolution, the USSR Ministry of
Education, the Academy of Pedagogical Sciences, the State Committee for Technical
Vocational Education, and the Ministry of Higher and Secondary Specialized Education
were instructed to:

To organize the study of the basics of computing and electronic technology in the ●
upper grades of general education schools, technical vocational schools, and sec-
ondary specialized schools, so that to taught students the skills of using computers
and are armed with knowledge of the wide application of this technology in the
national economy. For this purpose, special courses should be prepared for stu-
dents, necessary textbooks, teaching aids, school and inter-school cabinets should
be created, and the use of computer technology in basic institutions and other de-
partments should be envisaged for educational purposes.

I. Sadigov162

To inform the Central Committee of the CPSU and the USSR Council of Ministers ●
in 1986 about the psychological and pedagogical problems associated with the use
of computers in the teaching process of general education schools.
To create cabinets of computing electronics and microprocessor technology in ●
1986–1990.

In the organizational and methodological document “Main directions of reform in
general education and vocational schools”, prepared in 1984, one of the main directions
of school reform was declared to be the elimination of general computer illiteracy of
young people and the inclusion of the basics of informatics and computing technology
in the educational process.

At the end of 1984, under the leadership of A.P. Yershov and V.M. Monakhov, the
program for the subject “Fundamentals of Informatics and Computing Technology” be-
gan to be developed, and in mid-1985, this program was approved by the USSR Minis-
try of Education. Fundamentals of Informatics and Computing Technology was included
in the curriculum of general education schools as a subject from September 1, 1985.

In 1986, the “machine version” of the first program for the Fundamentals of Informat-
ics and Computing Technology course was published. The course, which was intended
to be taught in the two upper grades (grades 9 and 10), took 102 hours. Several teaching
aids were prepared in accordance with the content provided in the machine version.

Textbooks and teacher’s aids prepared under the leadership of A.P. Yershov and V.M.
Monakhov were published in Azerbaijani in 1985–1987. This two-part textbook includ-
ed the following sections:

Part 1
Algorithms. Algorithmic language1.
Building algorithms for solving problems2.

Part 2
Computer structure1.
Introduction to programming2.

2.1. Algorithmic language
2.2. Rapira programming language
2.3. BASIC programming language

The role of electronic computing machines in modern society. Development 3.
prospects of computing technology

After our country gained independence in 1991, this textbook, like a number of text-
books on other subjects, was replaced by a national textbook (authors: R.A. Aliyev, T.M.
Aliyev, M.A. Salahlı).

In 1997, a new program on informatics for general education schools was developed
and approved by the Ministry of Education of the Republic of Azerbaijan. On June 15,
1999, the President of the Republic of Azerbaijan signed the Decree No. 168 “On Ap-
proval of the Program of Reform in the Field of Education of the Republic of Azerbai-
jan”. By the Order No. 280 of the Ministry of Education of the Republic of Azerbaijan
dated April 3, 2000, the new basic curricula for general education schools were approved
and this curriculum began to be implemented from the 2000–2001 academic year. Infor-

Informatics Curriculum and Programming Competitions: Azerbaijani Experience 163

matics programs (5–11 grades) that are appropriate for the new conditions were devel-
oped for general education schools. (Mahmudzadeh, 2015)

According to the Education Sector Development Project implemented under the aus-
pices of the World Bank, in accordance with the implementation plan for the Curriculum
Reform sub-component within the Quality of General Education and Compliance with
Real Needs component, a working group was established by the order of the Minis-
try of Education No. 87 dated 08.02.2006 for the purpose of preparing the informatics
curriculum and relevant assessment standards, and this group prepared the informatics
curriculum. According to this curriculum, teaching of informatics in general education
schools was envisaged in all grades of the general education level, that is, from grade
1 to grade 11. In 2007–2017, textbook sets for grades 1–11 were prepared and pub-
lished in accordance with the new curriculum (Fig. 1). (These textbooks, as well as their
Russian and Georgian versions, can be accessed at https://trims.edu.az/site/
search.php?category_id=c-1&courses_id%5B%5D=5&book_type_id=&lang_

id=&grif_no=&grif_date=&search=ok).

Fig. 1. Textbooks of informatics currently in use.

I. Sadigov164

Here, it is necessary to mention two State Programs related to ICT (Information and
Communication Technologies) that have had an indirect rather than direct impact on
the teaching of computer science in the Azerbaijani education system: State program on
the provision of secondary schools with the information and communications technolo-
gies in the Azerbaijan Republic (2005–2007) and State Program on Informatization of
Education System in the Azerbaijan Republic for 2008–2012. Within the framework of
these State Programs, certain works have been carried out in areas such as ICT literacy
of teachers and equipping schools with equipment.

The theoretical and applied content of computer science is rapidly developing and
updating. One of the reasons why this update is necessary in Azerbaijan is that since
2023, applicants wishing to participate in the competition for computer science-orient-
ed specialties, in addition to mathematics and physics, take an exam in informatics at
entrance exams to higher and secondary specialized educational institutions (but from
1992 to 2022 they took an exam in chemistry?!).

3. Teaching Programming in the Primary and Secondary Education System of
Azerbaijan

In this article, since the content line of the computer science curriculum “Algorithms
and Programming” is of interest to us, let’s look at the changes that have occurred in this
direction since 1985.

The initial version of the Fundamentals of Computer Science and Computing course,
which was supposed to be introduced in 1985, was not related to any specific program-
ming language. Instead, it was proposed to use the abstract Russian-language algorith-
mic language (RAYA). This was essentially a symbolic version of flowcharts.

However, A.P. Ershov used the algorithmic language, as well as its machine-imple-
mented adaptation, Rapira, and BASIC in his textbook. Then BASIC became the only
school programming language, and this situation continued in Azerbaijan for almost
20 years. Despite the fact that BASIC was removed from the list of programming lan-
guages allowed at the International Olympiads in Informatics in 1998, it was certainly
not normal for this language to be the only programming language taught in the general
education system of Azerbaijan for the next 10 years.

After the start of teaching informatics from the 5th grade in the 2005–2006 aca-
demic year, Pascal language was included in the 9th grade textbooks in 2008. How-
ever, the “life” of this language in the Azerbaijani general education system was not
as long as BASIC. Thus, as already mentioned, according to the curriculum reform
that was implemented in the Azerbaijani general education system in 2008, starting
the teaching of informatics from the 1st grade also required a new approach to teach-
ing programming. More precisely, it required that the programming language to be
taught in the upper grades be one of the languages used in international programming
competitions. In the new curriculum, programming was planned to be learned from
the 5th grade.

Informatics Curriculum and Programming Competitions: Azerbaijani Experience 165

Discussions were held with leading informatics teachers for several years about
which programming language to choose. During the discussions, taking into account
the age of the students and the level of preparation of the teachers, it was concluded
that the most suitable language for grades 5–7 is the Logo language. However, how to
solve the problem of the commands in the program code being in Azerbaijani? In 2012,
a group consisting of the authors of the informatics textbooks for secondary schools
(Ramin Mahmudzade, Ismayil Sadigov, Naida Isayeva) and programmer Jamshid Na-
khchivanski developed a programming environment called ALPLogo at the Baku pub-
lishing house and it is still used with great success in schools of Azerbaijan (Fig. 2).
The study of the programming environment was included in the informatics textbooks
for grades 5th, 6th and 7th and was distributed to schools of the republic free of charge.
The main feature of the program is that the commands can be written in Azerbaijani,
English and Russian. Since 2013, republic-wide competitions have been held annually
among students in grades 5–7. The ALPLogo program can be accessed and downloaded
at http://www.informatik.az/index/proqram_t_minati/0-13.

When the question of which programming language to use to continue the program-
ming line from the 8th grade was resolved, Python was given priority. Thus, in the
2015–2016 academic year, the Python programming language was switched from the
8th grade (Table 1).

From the 2018–2019 academic year, the Ministry of Education, with the sup-
port of BP-Azerbaijan company, began implementing the project “Organization of
Informatics-oriented Classes in Grades 10–11”. Within the framework of the project,
50 informatics-oriented classes were completed in selected schools in Baku, cover-
ing more than 1,000 students. Within the framework of the project, new content
standards and a curriculum were written by experts for informatics-oriented classes.
Based on these, 4 new materials for teaching is completed pilot classes – informat-

Fig. 2. Screenshot of the ALPLogo programming environment.

I. Sadigov166

ics textbook and a methodological manual for teachers grades 10th and 11th – were
prepared and made available to beneficiary schools. Unfortunately, this project did
not produce the expected results. Thus, in 2020, only 30 percent of students gradu-
ating from informatics-oriented classes chose the ICT direction in higher education
institutions – computer science or engineering, information technologies or security,
robotics, aerospace engineering, informatics teaching or other relevant specialties.
(https://test.edugovaztest.cpanel.edu.az/az/news-and-updates/19555)

The fact that the vast majority (70%) of graduates of informatics-oriented classes
choose other specialties rather than ICT indicates either that the selection for those class-
es is not done correctly, or that the teaching is organized incorrectly (or at a low level).

Here, it is impossible not to mention the Digital Skills project, which has been
implemented in the Azerbaijani education system since the 2017–2018 academic year
and is gradually expanding its scope. According to the information provided on the
official website of the Ministry of Science and Education (https://edu.gov.az/
az/programmes/reqemsal-bacariqlar_16387), the main goal of this project is to
ensure that students acquire in-depth ICT skills, achieve free and purposeful activity in
the information space, and form themselves as competitive, logical and non-standard
thinking individuals. The project is implemented by the Ministry of Science and Edu-
cation and the international educational company “Algorithmica”. By improving the
teaching of informatics, the project develops algorithmic thinking, logical thinking,
project building skills in students, and teaches the basics of programming. The number
of schools under the project has been increased to 762 in the 2024–2025 academic year,
230 of which were newly involved in the project. Currently, the project covers 6,000
teachers and 510,000 students in 57 cities and regions of the country. 1,370 students are
studying in grades 10–11 with a focus on "Digital Skills".

The project teaches programming languages Scratch (grades 4–6) and Python
(grades 7–11). Unfortunately, the project has not lived up to expectations. Although the
number of teaching hours in the classes where it is taught is several times higher than
the hours allocated to informatics, and sufficient funds have been spent, the project
has not had any positive impact on the achievements of Azerbaijani students, neither

Table 1
Programming languages taught in Azerbaijani schools

Academic year Programming language Grades

1985/1986 – 1995/1996 BASIC 9-10
1996/1997 – 2008/2009 BASIC 10-11
2008/2009– 2014-2015 Pascal 9
2012-2013 until now ALPLogo 5-7
2014-2015 untilnow Python 8-11

Included in the new curriculum. ALPLogo, Scratch 2-4

Python 5-9
C++ 10-11

Informatics Curriculum and Programming Competitions: Azerbaijani Experience 167

in international competitions nor in the latest international assessment (ICILS-2023).
In our opinion, among the many reasons for the project’s failure, despite the fact that a
considerable amount of time has passed since its implementation, this subject, which is
taught instead of informatics, still has neither a curriculum nor teaching materials.

4. Participation of Azerbaijani Students in Informatics Olympiads

The 1st All-Union Informatics Olympiad was held from April 13 to 20, 1988. Azerbai-
jani students did not participate in this competition, because at that time, informatics was
not yet included in the list of subject Olympiads held in Azerbaijan among students. This
event took place a little later.

In order to organize the Republican subject Olympiads of students in the 1988–1989
academic year, an order No. 329 was signed by the Ministry of Public Education of the
Azerbaijan SSR on December 22, 1988. In accordance with the order, it was planned
to hold the Olympiads in five subjects – Russian language, physics, chemistry, math-
ematics and informatics in the current academic year in three stages. The 1st Republi-
can Informatics Olympiad was held on March 25–31, 1989. Shortly after this event, an
Azerbaijani student also participated in the 2nd All-Union Informatics Olympiad held in
Minsk, Belarus, from April 15 to 22 and was awarded 3rd place.

Another important event took place during this period. According to paragraph 2 of
Section IV of the “Regulations on Subject Olympiads for Schoolchildren”, approved by
the order of the Ministry of Public Education of the Azerbaijan SSR dated October 10,
1989 No. 1100, starting from 1990, students who took 1st place in the school Olympiad
are admitted to higher and secondary specialized educational institutions of the republic
without exams in the established manner. In 1990, for the first time in Azerbaijan, six
10th-grade graduates who received a first-degree diploma in the final round of subject
Olympiads were admitted to higher educational institutions in the relevant areas with-
out exams, which had a positive effect on stimulating Olympiad winners in subsequent
years. However, unfortunately, after the transition to a new system of admission to high-
er education institutions (centralized examinations by the State Customs Service), this
rule (this concession) was abolished in 1993 (Decree of the President of the Republic of
Azerbaijan No. 487). (dated July 27, 1993).

Over the past period, the scale of the Olympiads on informatics in Azerbaijan, al-
though not at the desired level, has expanded from year to year. Now other competi-
tions related to information and communication technologies are also held both among
students and among teachers. However, the Republican Olympiad on Informatics for
schoolchildren occupies a key place both in terms of importance and state support, be-
cause the winners of this Olympiad protect the honor of our republic at the International
Olympiads on Informatics.

As for the participation of the Azerbaijani team in the IOI, Azerbaijan was invited
to this Olympiad in 1993, but due to visa problems, it was unable to take part in the
competitions held in Argentina that year. Our students first took part in the VI Inter-
national Olympiad in Informatics, which was held in Sweden in 1994, and have since

I. Sadigov168

been represented in all Olympiads held since that year. It should also be noted that the
initiator of our country’s participation in these Olympiads was Ramin Mahmudzadeh,
who led the preparation of the Azerbaijani team for the competition until 2019. (How-
ever, during this period he was not listed as a team leader three times – at the 1994,
1995 and 1997 Olympiads.) Despite this, Ramin Mahmudzadeh was the leader of the
Azerbaijani team at the International Olympiads in Informatics from 1994 to 2019.
(Jalalli I., 2012)

Although about 10 years ago, the only international programming competition in
which Azerbaijani schoolchildren participated was IOI, now they also participate in a
number of other competitions throughout the year. Among these competitions, the fol-
lowing programming competitions are worth mentioning:

International Zhautykov Olympiad, IzhO. ●
European Junior Olympiad in Informatics, EJOI. ●
European Girls’ Olympiad in Informatics, EGOI. ●
International School & Cup in Informatics “Junior”, Cup ISIJ. ●
InfO(1)Cup ●

The Bebras Computing Challenge (bebras.org) also plays a significant role in de-
veloping algorithmic thinking in schoolchildren and encouraging them to participate in
informatics competitions.

It should be noted that the amendment made to the Law on Education on June 12,
2018 (non-competitive admission of winners of republican subject Olympiads to high-
er education institutions in relevant specialties) is already showing its positive effect.
Thus, starting from 2020, Azerbaijani schoolchildren have won at least 1 bronze medal
every year at the International Olympiad in Informatics. The results of our country’s
schoolchildren have also improved in other international programming competitions in
informatics. We are confident that the positive effect of including informatics in entrance
exams will also be evident in the near future.

At the end of this section, it is worth mentioning two recently published books that
will have a great impact on the preparation of Azerbaijani-speaking schoolchildren for
the Olympiads. Although the book Basics of Programming in C++ by Ramin Mahmudza-
deh and Ismayil Jalali is intended primarily for students studying the basics of program-
ming in higher and secondary specialized schools and who want to work in this field in
the future, it can also be useful for teachers and students of computer science-oriented
classes in general education schools, as well as anyone who wants to independently
learn the basics of programming. The topics of computational geometry, combinatorics,
long arithmetic given in a separate section of the book called Mathematics, as well as
the Olympiad section, are intended for readers interested in programming competitions.
(Mahmudzadeh, 2020).

In the second manual, Preparation for Programming Competitions, co-authored by
Ismayil Jalalli (Sadigov) and Mikhail Medvedev, the book describes in detail the mecha-
nism of holding programming olympiads and ways to prepare for them, analyzes the
main topics and algorithms (Fig. 3). The manual is intended for students preparing for
programming competitions, as well as their teachers. This book will also be useful for
high schools with an emphasis on informatics. Students studying in information and

Informatics Curriculum and Programming Competitions: Azerbaijani Experience 169

communication technologies at higher and secondary specialized educational institu-
tions can also benefit from the textbook.

The materials of the book were selected based on the IOI syllabus. All examples in
the book are written in C++. The program codes comply with the C++11 standard, which
is allowed in most modern competitions. The Practice section at the end of each section
of the book, which consists of 11 sections, provides problems related to the topic and
their solution algorithms. In addition, to strengthen the mastery of the topic, additional
problems from the Eolymp portal are recommended for independent work. This book,
which is the third edition published in connection with the Azerbaijani programming
olympiads, is dedicated to the dear memory of Ramin Mahmudzadeh, an outstanding
scientist and educator who laid the foundation of competitive programming in Azer-
baijan and led the Azerbaijani team in the international computer science olympiads.
(Jalalli, 2023)

5. Features of the New Curriculum in informatics for General Education
Institutions of the Republic of Azerbaijan

At a time when ICT are developing rapidly all over the world and the information soci-
ety is being formed, there is a need to update the content of the subject of informatics,
which is at the center of the theoretical and applied problems of these processes. This up-
date is required by the recent work carried out in our country towards building an e-state,
including the amendments made to the Resolution No. 103 of the Cabinet of Ministers of
the Republic of Azerbaijan dated June 3, 2010, “On Approval of the State Standard and

Fig. 3. Mahmudzadeh R., Jalalli I., Basics of Programming in C++. Baku, “Bakıneshr”,
2020, 384 p.; Jalalli I., Medvedev M.. Preparation for Programming Competitions, Baku,

“Bakıneshr”, 2023, 512 p.

I. Sadigov170

Programs (Curriculums) of the General Education Level” on September 29, 2020. In this
document, among the competencies formed in students at the general education level
(the set of knowledge, skills, approaches and values that are acquired in the educational
process and in life, necessary for any field of activity, as well as personal development,
socialization and integration into society, employment, and lifelong education), two are
directly related to the subject of informatics.

One of the main reasons for this update, as mentioned above, is the inclusion of in-
formatics in the list of entrance exams to higher education institutions. Thus, according
to the Resolution of the Cabinet of Ministers of the Republic of Azerbaijan dated March
12, 2022 “On Amendments to the Rules for Admission of Students to Higher Educa-
tion Institutions of the Republic of Azerbaijan”, approved by Resolution No. 39 of the
Cabinet of Ministers of the Republic of Azerbaijan dated February 8, 2017, applicants
who wish to participate in the competition for specialties included in the mathematics-
informatics (MI) subgroup of the 1st specialty group from 2023 will take exams in phys-
ics, mathematics and informatics at the 2nd stage.

Unfortunately, the work on the preparation of the new curriculum for informatics
began only in January 2024 and the process continued throughout the year. Currently,
the document is awaiting approval. However, it should be noted that, considering that
the current curriculum was developed in 2006–2007, textbooks based on the new cur-
riculum will be put into use in the 2026/2027 academic year at best. This is, to put it
mildly, not a good situation.

Based on the study and analysis of current world experience, the following content
lines have been identified for the implementation of general learning outcomes of in-
formatics:

Data and information ●
Hardware ●
Software ●
Algorithms and programming ●
Information society ●

The content lines remain the same across all grades, but the content within each of
these lines is intended to change from simple to complex, deepen, and expand. It should
be noted that any concepts or skills included in the content of a subject may not be lim-
ited to the framework of just one content line.

During the preparation of this document, a number of related documents were ana-
lyzed, the experience gained during the implementation of the current curriculum (2013)
and the Digital Skills project, as well as several international documents were taken as a
basis. Among the international documents, the following should be specially noted:

ICDL Workforce. Computer and Online Essentials; ICDL Workforce. Application ●
Essentials.
Computer Science Teachers Association (CSTA) K-12 Computer Science Stand- ●
ards.
International Computer and Information Literacy Study (2023) Assessment Frame- ●
work.

Informatics Curriculum and Programming Competitions: Azerbaijani Experience 171

The Data and Information content line is divided into two main standards (content
standards) and aims to ensure that students acquire the necessary knowledge and skills
in information processes and data sets. The “International Computer and Information
Literacy Study (2023) Assessment Framework” document was used in the development
of the standards for this content line.
(https://www.iea.nl/publications/icils-2023-assessment-framework)

The Hardware content line is divided into two main standards (content standards) and re-
quires students to acquire the necessary knowledge and skills in information and commu-
nication technology (computers, computer networks), including knowledge of technical
safety rules when using these technologies. The “ICDL Workforce. Computer and Online
Essentials” document was used in the development of standards for this content line.
(https://icdl.org/wp-content/uploads/2024/01/ICDL-Computer-Online-
Essentials-Syllabus-1.0.pdf)

The Software content line is also divided into two main standards (content standards),
and it is intended that students acquire the necessary knowledge and skills in system soft-
ware (operating system) and application software (text editors, spreadsheets, presenta-
tion programs, graphic editors and other programs). The “ICDL Workforce. Application
Essentials” document was used in the development of the standards for this content line.
(https://icdl.org/wp-content/uploads/2024/01/ICDL-Application-Es-
sentials-Syllabus-1.0.pdf)

The Algorithms and Programming content line is divided into three main stan-
dards (content standards) and aims to provide students with the necessary knowledge
and skills in formalization and modeling, algorithmization, and programming. The
“Computer Science Teachers Association (CSTA) K-12 Computer Science Stan-
dards” document was used in the development of the standards for this content line.
(https://csteachers.org/k12standards/downloads/)

The Information Society content line is divided into two main standards (con-
tent standards) and aims to provide students with the necessary knowledge and
skills in the informatization of society and related information security. The “In-
ternational Computer and Information Literacy Study (2023) Assessment Frame-
work” document was used in the preparation of the standards for this content line.
(https://www.iea.nl/publications/icils-2023-assessment-framework)

One of the features of the new computer science curriculum is the inclusion of a separate
content standard in the form of “Demonstrates knowledge and skills in information secu-
rity”, in other words, information security issues are presented in the form of a separate
content standard. This content standard covers all levels of education and is valid from
2nd to 11th grade. Since this content standard is new, let’s dwell on it in more detail.

At the primary level, this content covers “the existence of threats to data in emer-
gency situations such as fire, flood, war, earthquake and the importance of storing back-
up copies of important data elsewhere to prevent losses in such cases”, “the existence

I. Sadigov172

of attempts at unauthorized access to devices, programs and data, as well as methods
to prevent them, the correct use of passwords and their protection”, “potential threats
to computers, computer networks and data – malware, cyber attacks, Internet fraud
(spam)”.

At the general secondary education level, the following issues are addressed: “bio-
metric security techniques used to prevent unauthorized access to computers, computer
networks, and data; malicious programs and the consequences they can cause on com-
puters, ways to protect against those programs; the possibility of information posted on
social networks being found and used by malicious individuals, not disclosing personal
or sensitive information inappropriately when using communication tools; preventing
the spread of inappropriate and false content; the purpose of encrypting information,
the encryption process, various encryption methods, encrypting a given text with these
methods, decrypting the encrypted text; criteria for evaluating the reliability of the
website you visit.”

At the upper secondary level, information is provided on the following topics: “in-
tentional or unintentional attacks that may damage or otherwise endanger information
and the systems that support it can be active or passive, intentional or unintentional, as
well as direct or indirect; what tools are used to prevent hacker attacks; software copy-
right, software piracy and the damage it causes to the software industry”.

Another feature of the new curriculum is the consideration of specialization at the
secondary education level. Thus, it is envisaged that general issues of informatics will be
taught at the primary and secondary education levels, and specific issues at the second-
ary education level.

As noted, since the winners of the final round of the Republican subject Olympiads
gain the right to be admitted to the relevant specialties of higher education institutions
without exams, not only students of specialized schools (classes), but all students should
have the opportunity to participate in subject Olympiads, including the Informatics
Olympiad. In other words, the informatics subject curriculum should correspond to the
program of the Republican Olympiad in Informatics to a certain extent (both in terms of
the chosen programming language and algorithms).

For the last two reasons, the importance of all content lines is taken into account
in the curriculum, but taking into account the current and growing importance of algo-
rithmization and programming, a larger space is allocated to substandards within this
content line. Fig. 4 shows how the substandards are distributed across content lines. As
can be seen from this table, approximately 44% of the total substandards belong to the
algorithms and programming content line.

The Computer Science Teachers Association (CSTA) K-12 Computer Science Stan-
dards document was used to develop the standards for Content Line 4 (Algorithms and
Programming), especially for the secondary level, and some of the standards were in-
cluded in the new curriculum without any changes. Some of these standards are shown
in Table 2. We believe that the implementation of these standards in the future will have
a positive impact on both the teaching of programming in Azerbaijani schools and the
achievements of students in programming olympiads.

Informatics Curriculum and Programming Competitions: Azerbaijani Experience 173

Finally, it should be noted that at a time when work on the curriculum was being
finalized, the results of the 2023 international assessment on the International Computer
and Information Literacy Study (ICILS) were announced. Since the results of Azer-
baijani students were very poor, the standards of the aforementioned assessment were
analyzed, and it was determined which standards were either absent from the current
informatics curriculum at all or were present in higher grades. Based on this analysis,
appropriate changes and additions were made to the new curriculum.

It is also necessary to note one important issue. The new curriculum in informatics
requires updating the existing curricula of the specialties “Informatics Teacher” and
“Mathematics and Informatics Teacher” of pedagogical universities. According to the
information released by the Ministry of Science and Education, work has also begun
in this direction (https://edu.gov.az/az/news-and-updates/21899-1). Thus, a
Commission has been established in the Ministry of Science and Education to develop
new educational programs for the bachelor's (basic (base higher) medical education)
and master's levels of higher education. At the same time, 9 Working Groups, including
the Educational Specialties Group, have begun their activities within the Commission.
We hope that the new educational programs to be developed will meet the requirements
of the modern era.

Grade
levels

Content lines

Total
substandards

1.
Data,

information

2.
Hardware

3.
Software

4.
Algorithms and
programming

5.
Information

society

Level 1 – primary education

1 3 4 4 3 1 15
2 3 2 4 5 2 16
3 2 2 5 7 3 19
4 2 2 5 7 2 18

Level 2 – lower secondary education

5 3 2 6 7 3 21
6 2 2 6 9 3 22
7 3 2 5 9 2 21
8 3 3 3 10 2 21
9 2 2 2 9 3 18

Level 3 – upper secondary education

10 2 2 1 15 2 22
11 2 1 1 11 2 17

27 24 42 92 25 210

Fig. 4. Distribution of substandards by content lines.

I. Sadigov174

6. Conclusion

In an era when information and communication technologies are developing at a very 1.
fast pace and the information society is being formed, there is a need to frequently
update the content of informatics, which is at the center of theoretical and applied
problems of these processes.
The inclusion of informatics in the list of entrance exams for relevant specialties of 2.
higher education institutions from 2023 makes this update even more necessary.
Since the winners of the final round of the Republican Subject Olympiads currently 3.
have the right to be admitted to the relevant specialties of higher education institu-
tions without exams, not only students of specialized schools (classes), but all stu-
dents should have the opportunity to participate in subject Olympiads, including the
Informatics Olympiad, and achieve success. For this, the informatics subject cur-
riculum should meet the requirements of the Republican Olympiad in Informatics to
a certain extent.
The types of questions, their topics and, most importantly, the training program (syl-4.
labus) for the final round of the Republican Olympiad in Informatics should be de-
veloped and approved soon.

Table 2
CSTA Standards

CSTA K-12 Computer Science Standards Informatics curriculum

3B-AP-10. Use and adapt classic algorithms to solve
computational problems. (Examples could include sorting
and searching.)

10-4.2.2. Explains sorting algorithms. (Sorting,
selection sort algorithm, bubble sort algorithm)

3B-AP-11. Evaluate algorithms in terms of their efficiency,
correctness, and clarity. (Examples could include sorting
and searching.)

10-4.2.3. Evaluates algorithms. (Algorithm
efficiency, algorithm correctness, algorithm
clarity)

3B-AP-12. Compare and contrast fundamental data
structures and their uses. (Examples could include strings,
lists, arrays, stacks, and queues.)

10-4.3.3. Compares basic data structures and
their uses. (Strings, lists, arrays, stacks, queues,
dictionaries)

3B-AP-13. Illustrate the flow of execution of a recursive
algorithm.

10-4.3.8. Uses recursion in the program.

3B-AP-19. Develop programs for multiple computing
platforms. (Example platforms could include: computer
desktop, web, or mobile.)

10-4.3.9. Develops programs for various
computing platforms (desktop, web, mobile).

3B-AP-23 Evaluate key qualities of a program through
a process such as a code review. (Examples of qualities
could include correctness, usability, readability, efficiency,
portability and scalability.)

11-4.3.7. Evaluate key qualities of a program
through a process such as a code review.
(Correctness, usability, readability, efficiency,
portability and scalability)

3B-AP-24. Compare multiple programming languages and
discuss how their features make them suitable for solving
different types of problems. (Examples of features include
blocks versus text, indentation versus curly braces, and
high-level versus lowlevel.)

11-4.3.8. Compares several programming
languages.

Informatics Curriculum and Programming Competitions: Azerbaijani Experience 175

Since we are talking about the curriculum for general education institutions, neces-5.
sary changes should also be made in the direction of teacher training for the success-
ful implementation of the new curriculum. That is, the curricula of the specialties
“Informatics Teacher” and “Mathematics and Informatics Teacher” in higher educa-
tion institutions should be revised.

References

Jalalli, I. (2012), International Olympiads in Informatics: 1989–2011. Bakuneshr, Baku (in Azerbaijani,
Beynəlxalq İnformatika Olimpiadaları: 1989–2011).

Jalalli, I., Medvedev, M. (2023). Preparation for Programming Competitions. Bakuneshr, Baku (in Azerbaijani,
Proqramlaşdırma yarışlarına hazırlıq).

Kiryukhin, V. (2008). Informatics. Russian Olympiads. Issue 1. Prosveschenie, Moscow (in Russian,
Информатика. Всероссийские олимпиады. Вып. 1.)

Mahmudzadeh, R., Jalalli I., Aliyev, A. (2015). Republican Informatics Olympiads: 1989–2014. Bakuneshr,
Baku (in Azerbaijani, Məktəblilərin İnformatika Olimpiadaları: 1989–2014).

Mahmudzadeh, R., Jalalli, I. (2020). Basics of Programming in C++. Bakuneshr, Baku (in Azerbaijani, C++
dilində proqramlaşdırmanın əsasları).

Rules for organizing and holding school subject Olympiads. (2014) (in Azerbaijani: Məktəblilərin fənn
olimpiadalarının təşkili və keçirilməsi Qaydaları).

I. Sadigov, PhD of Technical Sciences. Worked in various government
agencies in senior positions in the field of ICT (1983–2021). Works in
the system of the Ministry of Science and Education of the Republic of
Azerbaijan. Engaged in scientific activities at the Institute of Informa-
tion Technologies. Author and manager of many projects in the field of
automation and programming. Author of the “Explanatory Dictionary
of Compter Science Terms (English-Russian-Turkish-Azerbaijani)”
(2017) and a number of other books on computer science. Deputy
leader of the Azerbaijani team at the International Olympiads in Infor-
matics (2007–2018).

Olympiads in Informatics, 2025, Vol. 19, 177–188
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.12

177

Policy Reforms of Informatics Education of Mongolia

Danzan TSEDEVSUREN
Mongolian National University of Education, Ulaanbaatar, Mongolia
e-mail: tsedevsuren@msue.edu.mn

Abstract. As informatics has been accepted by countries around the world as the basic form of
literacy education in the 21st century, it has become universally taught as a compulsory subject in
primary education. School informatics is expanding in terms of content since students are needed
to obtain not only ICT application knowledge and skills but also digital communication-collab-
oration, ethics, basic knowledge of computers, and programming. Children are definitely born
into and develop in a society where ICT is widely used and their future careers are dependent on
technology. Informatics education plays an important role in meeting the needs of young people.
As a result, the policy of informatics education should be dramatically changed by considering the
current needs and demands. This article introduces research findings with regard to how changes
in informatics education have been made in Mongolia and how those changes have integrated
with the reform policy of foreign countries. We conducted factual research using the policies,
standards, curricula, and textbooks of informatics education as well as research papers of leading
researchers. Methods such as comparison of documents on education and reflection have also been
incorporated into our research.

Keywords: school informatics education, digital literacy education, education of computer sci-
ence.

1. Introduction

School informatics education was first addressed at the World Conference on Computer
Education which was held in August 1970 in Amsterdam, Netherlands. The conference
was organized by the International Federation for Information Processing (Sheepmaker
& Zinn, 1970). Subsequently, in 1971, the Conference on Computer Science Education
in Secondary Schools was held in Paris, France and hosted by the Centre for Educational
Research and Innovation (CERI-OCDE, 1971). (Baron, Drot-Delange, Grandbastien, &
Tort, 2014). As a result, the foundation of teaching informatics in secondary education
had been laid which led to informatics education being officially included in the system
of primary education by the world’s leading countries in the 1980s. (Carr & O’Brien,
2010). Informatics was viewed as significantly important in order to learn the methods
of solving mathematics and algebra problems as well as to increase the development of
new ideas and motivation. (Atchison, 1973).

D. Tsedevsuren178

Although only 40 years have passed since the computer science has been taught
in countries around the world, ICT, as the basis of social development, has become
the basic requirement for knowledge and skills that young people have to acquire. In
terms of the informatics of secondary schools and informatics technology education, the
policies and programs which had been accepted in the world hadn’t been developed yet.
(Dagienė & Stupurienė, 2016).

It is common for countries to implement informatics education using terms such as
information communication technology or digital literacy education, (Guerra, 2012).
Depending on the term, the subject content is different.

The book entitled “Rethinking Education: Towards a Global Common Good?”, pu-
blished by UNESCO in 2017, emphasized that in the technological era there is a chal-
lenge for our time which defines an illiterate person as someone who cannot use ICT, not
someone who cannot read, write, and solve math problems. The amendments of two ca-
tegories, “ICT Social and Ethic Issue” and “Career and ICT,” to the application content
of the Information and Communication Technology in Secondary Education approved
by UNESCO in 2000 demonstrate that the proper use of ICT in all fields of society is
significant. (UNESCO, 2000).

Many countries in the world are paying attention to the digital literacy education
of young people. The digital literacy education covers a broad content of not only
having ICT application knowledge and skills but also having an ability to reliably and
responsibly collaborate with the public in social network or on the internet and make a
contribution to the development of ICT. In addition to the ICT application, the issues
of information ethics, digital citizen, and digital communication occupies an important
position to the content of the digital literacy education. However, ICT with literacy is
about ethically using the application knowledge and skills of ICT in creative activities,
generating innovation, and applying for communication and collaboration. (Literacy
with Information, Communication Technology. Across the Curriculum, 2012).

One of the impacts of ICT education is the use of ICT as a tool in the learning pro-
cess. Although the policy of introducing ICT in training activities has been carried out in
many countries, school children lack the knowledge and skills to use it as a learning tool
in secondary education. This is due to the fact that the majority of countries have until
ICT is taught as a compulsory subject in senior grades.

Regardless of whether school informatics education is implemented choosing one
of the three previously mentioned forms, there is a universal principle that considers
algorithm and basics of programming as its core concept. This is probably related to the
history of informatics education starting with algorithm, programming, and codification.
On the other hand, as students study algorithms and programming through contemporary
informatics education, they are learning to acquire the basic skills of creating software
based on mobile devices and web design. (Benaya, Dagiene & Gal-Ezer, 2015; Cser-
noch, Biro, Math, & Abari, 2015).

The Informatics Olympiad and competitions on computing and programming have
been organized at regional, national, and international levels. It is one of the reasons why
the subject of informatics has to be studied in secondary education.

Policy Reforms of Informatics Education of Mongolia 179

2. Changes for the Policy of ICT Education

The tendency for changes in the policies of ICT education can be seen in international
educational programs including “Public Informatics” which was developed by Common
European Countries and “Common Computer Science” which was developed by Com-
mon Association for Computing Machinery-ACM.

According to the policy of “Public Informatics” developed by the European Union,
each of the European countries are required to promote the growth of digital knowledge
and skills in young people because of the basic changes of society. One of the ways of
implementing the policy is to teach the subject of coding at all secondary schools in
the European countries. (Caspersen, Gal-Ezer, McGettrick, & Nardelli, 2018, p.6). The
strategy of the policy of “Common Computer Science” defines the objectives of devel-
oping informatics education as below.

In the secondary education system, all students have the right to get continuous ●
education on informatics. The subject of informatics is taught starting with primary
education.
Informatics curricula should reflect the scientific and constructive nature of the dis- ●
cipline, and be seen as fundamental to twenty-first century education by all stake-
holders (including educators, pupils and their parents).
Informatics courses must be compulsory and recognized by each country’s edu- ●
cational system as being at least on a par with courses in STEM (Science, Tech-
nology, Engineering and Mathematics) disciplines. In particular they must attract
equivalent credit, e.g. for the purposes of university entrance. (Caspersen, Gal-
Ezer, McGettrick, & Nardelli, 2018, p. 8).

Computer science, the discipline that makes the use of computers possible, has driven
innovation in every industry and field of study, from anthropology to zoology. Computer
science is also powering approaches to many of our world’s toughest challenges. Com-
puter Science has become the foundation of creating new ideas and products in all fields
of science as well as every industry to enable our world to conquer the tough challenges
we are facing. The following research in the United States shows that the public demand
for computer science education is high due to the fact that computing is an integral part
of our world. (K-12 Computer Science Framework, 2016, p. 11).

Most parents want their child’s school to offer computer science. (Google & Gal- ●
lup, 2015).
Most Americans believe computer science is as important to learn as reading, writ- ●
ing, and math. (Horizon Media, 2015).
Many of today’s students will be using computer science in their future careers, not ●
only in science, technology, engineering, and mathematics (STEM) fields but also
in non-STEM fields. (Uddin, S., Imam, T. & Mozumdar, M., 2021).
Not all young people in the United States have the opportunity to study computer ●
science. The number of schools in the United States which teach computer sci-
ence or programming effectively is fewer. (Google & Gallup, 2015). Although
students in the United States have access to computers, the acquisition of knowl-

D. Tsedevsuren180

edge of computer science is often limited for marginalized students who are fac-
ing educational inequities. (Google & Gallup, 2015b)

Although ICT and computer skills are very important for the learning process of
young people, in most countries, they have to wait until it is offered in high school.
However, computer science has become an important tool for them to create world-
renowned innovations. To address this issue, The Association for Computing Machinery
(ACM) developed the educational program “Computer Science Education for All” in
2016. The K-12 Computer Science Framework illuminates the big ideas of computer
science through a lens of concepts (i.e., what students should know) and practices (i.e.,
what students should do). The core concepts of the framework represent major content
areas in the field of computer science. The core practices represent the behaviors that
computationally literate students use to fully engage with the core concepts of computer
science. (K-12 Computer Science Framework, 2016, p. 2–3).

K12: The Computer Science Framework is a powerful stimulus of knowledge and
skills that creates equality and participation for every student, helps them to solve real-
life problems, and discover many areas. The practice of computational thinking, such as
summarizing, modeling, and analyzing, intersects with computer science concepts such
as algorithm-programming, automation, and data representation. Computer science is
more than just coding. It covers comprehensive aspects such as physical systems and
networks, data collection, storage and analysis, and the social impact of computation.
Students’ programming knowledge and skills are valuable and contribute to important
intellectual development. (Papert, 2000, p. 728).

Highly developed and developing countries around the world have recognized that
basic education of computer science plays an important role in preparing the world’s
capable citizens to realize the nature of the information society, the fundamentals of so-
cial change, and to create changes and innovations in the future. (Fig. 1). Based on this,
young people should have a computer literacy at high level.

Have a computer literacy in primary education. ●
Acquire application knowledge and skills of information technology in primary ●
education.
In secondary education, school informatics education has been planned and im- ●
plemented to provide learners (or students) with an opportunity to acquire the
basic skills of using ICT tools because there is a need for learners (or students)

Figure 1. Mapping on Informatics Education Policy Reforms

Highly developed and developing countries around the world have recognized that
basic education of computer science plays an important role in preparing the world's
capable citizens to realize the nature of the information society, the fundamentals of
social change, and to create changes and innovations in the future. (Figure 1). Based on
this, young people should have a computer literacy at high level.

 have a computer literacy in primary education
 acquire application knowledge and skills of information technology in primary

education
 In secondary education, school informatics education has been planned and

implemented to provide learners (or students) with an opportunity to acquire
the basic skills of using ICT tools because there is a need for learners (or
students) to study computer science as an elective course in integration with
their needs, interests, future job choices, and to have access to ongoing
education. (Tsedevsuren, 2018, x. 53). How the educational content of
computer science changes in the future is not clear in the same way it is
impossible to foresee social development.

The questions "How has computer science been taught in our country?" and "How are
the global trends in ICT for education and educational principals and approaches to
ICT reflected in Informatics Education Policy Reforms?" have been main concerns.
The solutions to these questions have been taken into consideration in this article.

Research methodology
Based on legal documents, we utilized main research methodologies, such as
observation, comparison of documents on education, and reflection in this
study. The study of Informatics Education Policy Reforms in Mongolia has
been conducted using the major documents of informatics education and other
sources listed below.

 Curriculum on Informatics and Computing Technique Basis, 1988
 Standard of Informatics Education (Primary and Secondary Education), 2004

•Basic
knowledge
& skills of
ICT
• ICT

application

International
Computer
Driving
Lisence
(ICDL)

•Coding
•Computer

Science
• Informatics
•Computing

Creating
innovation,

preparing for
future job

careers, being
a global
citizen

•Computer
Science
•

AI
Big data
Robotics

Fig. 1. Mapping on Informatics Education Policy Reforms.

Policy Reforms of Informatics Education of Mongolia 181

to study computer science as an elective course in integration with their needs,
interests, future job choices, and to have access to ongoing education. (Tsedev-
suren, 2018, x. 53). How the educational content of computer science changes in
the future is not clear in the same way it is impossible to foresee social develop-
ment.

The questions “How has computer science been taught in our country?” and “How are
the global trends in ICT for education and educational principals and approaches to ICT
reflected in Informatics Education Policy Reforms?” have been main concerns. The solu-
tions to these questions have been taken into consideration in this article.

3. Research Methodology

Based on legal documents, we utilized main research methodologies, such as observa-
tion, comparison of documents on education, and reflection in this study. The study of
Informatics Education Policy Reforms in Mongolia has been conducted using the major
documents of informatics education and other sources listed below.

Curriculum on Informatics and Computing Technique Basis, 1988. ●
Standard of Informatics Education (Primary and Secondary Education), 2004. ●
National Program on Informatics Education of Primary and Secondary Education, ●
2004.
Core Curriculum on Informatics Technology of Primary and Secondary Education, ●
2014–2015.
Core Curriculum on Informatics Technology of Primary and Secondary Education, ●
2015.

4. Research Outcome

Starting in 1988, an informatics course titled “Informatics and Computer Basics” was
taught in the 9th and 10th grades at secondary schools. Written by Russian textbook
writers led by A.P. Ershov and translated by Ts. Amarsanaa, B. Narankhuu, D. Gar-
maa, and Ya. Senemeder into Mongolian, this computer science textbook was used in
secondary schools. Additionally, in 1988, a methodological guideline of the textbook
“Informatics and Computer Basics – 9,” translated by B. Jargal, Yu, Namsrai (should
this be Yu Namsrai without the comma in between), and L. Choijoovanchig, provided
methods for carrying out programs for secondary school teachers. The importance of
studying “Informatics and Computer Basics” in the senior grades of secondary schools
was defined as “Discovering the actual capacity of the computer for learners is consider-
ably important to extend not only human recognition of the world view but also their
intellectual and cognitive skills. The study of informatics is the scientific background for
developing students’ perceptions of the possibility of automating various human activi-
ties based on algorithms.”

D. Tsedevsuren182

The objective of the subject was defined by the followings: (Myagmar, 1987, p. 4):
Systematize distinct areas of study of algorithm within the subject of algebra of- ●
fered in an eight-year schooling system.
Have students acquire basic skills of algorithm. ●
Give students an imagination on automated performance of algorithm. ●
Solve mathematics problems using modern computers. ●
Introduce the applications and features algorithm, programming, computer and ●
automation to provide an orientation to technical jobs. ●
Introduce the basis of modern computing techniques based on examples of general ●
principles of micro-computer.
Introduce basic concepts and methods of developing programs using a language ●
for programming.
Give students an understanding of the stages of solving math problems using a ●
computer.
Introduce the main framework of using computing technique and its role in social ●
development.

The informatics course was very important in order to realize the impact and devel-
opment of electronic computing machines in future society and give children and young
people an understanding of computer development and its use as well as algorithm pro-
gramming at an early age. (Myagmar, 1987, p. 4)

The objective of the subject “Informatics and Computer Basics” which was defined
as “to demonstrate the importance of algorithms, programming, and computers in indus-
tries of modern society” (Myagmar, 1987, p. 3) is still viewed as an important concept
because it was the first to recognize the nature of the information society. Computer sci-
ence plays an important role in improving the subject quality of natural sciences includ-
ing mathematics, algebra, and geometry. Therefore, the curriculum and textbook content
provided not only examples of how to solve the problems with those subjects but also
examples of the algorithm.

The next major change in information education was made in 2004. The name of the
subject was changed to “Informatics” and the content standards were implemented at the
primary and secondary education.

The standard defined not only the basis of informatics science but also the role it
plays in the development of other sciences and life of modern society. The objective of
informatics education was defined in the standard as “ … to prepare citizens with compe-
tency who can meet the needs of informatics education and who have acquired the skill
and ethics using the knowledge and information needed for citizens living and working
in a knowledge-based society”. The standard demonstrates that informatics education
has significance theoretically and practically.

To develop the theoretical and practical skills student need to acquire through the
subject of computer science, the content of the standard is designed with following five
areas: “Information”, “Computer”, “Algorithm”, “Model”, and “Information Technol-
ogy”. (Uyanga, Tsogtbaatar, & Choijoovanchig, 2005, p. 5). Since textbooks for all lev-

Policy Reforms of Informatics Education of Mongolia 183

els of secondary education had been developed in accordance with the requirements of
ICT education standards and used in secondary schools, ICT education has become an
integral part of the education system.

To support the standard implementation of informatics in training, the “National
Program for Informatics Education” was developed in 2009–2012 (Appendix 2, the Or-
der No. 301 of the Minister of Education, Culture and Science, 2009). The national cur-
riculum is based on the concept of the International Computer Driving License (ICDL),
which laid the foundation for making informatics subject usage-based. “National Pro-
gram for Informatics Education” was developed with the following contents “A1. Basic
Concepts of Information and Communication Technology (ICT)”, A2. Using a comput-
er and working with files”, “A3. Text information processing”, “A4. Spreadsheet data
processing”, “A5. Image processing”, “A6. Demonstration and processing of audio and
video information”, “A7. Working with databases”, “A8. Use of website and internet”
based on the approach that “Not every student becomes a computer scientist, but ev-
ery student should become an citizen with information technology education in the
future.” (Otgonnaran, Tsogtbaatar, Altantuya, & Tsedevsuren, 2009, pp. 14–18). The
application-based content, which was implemented with the national program, is fully
reflected in the core curriculum developed in 2015. Name of the subject was changed
to “Information Technology” because of the changes in core curriculum based on the
principles of application knowledge and skills to be used in other ICT subjects and
solving life issues (Core Curriculum Handbook for Basic Education, 2015, pp. 48–49).
As a result, the content of algorithms, programming, and modeling, which is the basics
of computer science, has been dramatically reduced and the content of ICT applications
has been increased. (Tsedevsuren, 2016, pp. 72–73). The focus on providing students
with the opportunity to learn through practical examples of how ICT can be used to
solve other academic and life problems was the important change to increase practical
aspects of the subject.

In high school, however, informatics has been included in the compulsory elective
section of the curriculum. Consequently, students have had an opportunity to choose one
of three areas, such as “Software,” “Hardware,” and “Multimedia,” but local schools,
located in rural areas and, especially, in counties, are facing difficulties implementing
the program because of the insufficient ICT learning environment. Local schools have
common issues such as teacher knowledge and skills, computer laboratory equipment
capacity, networking, and Internet availability (Tsedevsuren, 2018a, p. 78). According
to the changes in informatics education, the elective subject “Information Technology”
consists of two selective areas such as “Information and Communication Technology”
and “Programming” to be studied in 10th grade for 1 hour, 11th grade for 3 hours, and
12th grade for 5 hours a week, respectively. (Core Curriculum for Upper Secondary Ed-
ucation. Information Technology, 2016, p. 25). These elective subjects had been offered
to a few schools in Khentii, Khuvsgul provinces and the city of Ulaanbaatar due to the
lack of teacher skills, learning environment, inadequate laboratories, and lack of interest
in elective subjects because informatics is not taken as general entrance examinations
(Tsedevsuren, 2018a, pp. 77–78).

D. Tsedevsuren184

Because of the latest curriculum refinement, information technology has been re-
developed into a compulsory subject to study in senior grades of secondary schools
and it is being implemented from the 2018–2019 academic year. The revised curricu-
lum was developed on the basis of the principle that “ICT literacy has to be studied
in primary education (Primary Education Curriculum, 2019, pp. 49–50), while a basic
knowledge of computer science, all types of information processing including school
subjects and useful information, problem-solving skills, and consumer culture and
ethics in information society has to be acquired in upper secondary education”. (Cur-
riculum for Secondary Education, 2019, p. 44).

Table 1 shows the chronology of Informatics Education Policy Reforms of Mongo-
lia.

Table 1
Policy Reforms and Features of Informatics Education (Computer Science)

Policy docu-
ments, years
published

Principle Features and
explanationsContent Methodology Assessment

Curriculum
on
Informatics,
Computer
Basics, 1988

 Based on knowledge
and understanding:
 Information process-
ing,
 Computer and algo-
rithm, algorithm des-
ign, composing algo-
rithm, basics of progr-
amming, computer
development

 The teacher should
introduce and explain
the main concepts and
approaches in detail,
recognize the main
ideas, and focus on
them.

 The knowledge and
skills to be acqui-
red by students was
defined in the curri-
culum. Students will
be assessed by doing
exercises, such as
solving mathema-
tics and algorithm
problems.

 Informatics was studied
in 9–10th grades for 34
hours of classes per
semester respectively.
It was available to
study 68 hours of
classes in 10th grade at
a school equipped with
computers.

Standard on
Informatics
Education,
2004

 Knowledge and skills
necessary for students
to acquire were divided
into five categories:
“Information,” “Com-
puter,” “Algorithm,”
“Model,” and “Infor-
mation Technology.”
The categories were
based on the develop-
ment of students’
talents and abilities in
addition to features of
their ages, thinking,
interests, and needs.
 (Chimedlkham,
Uyanga, Tsogtbaatar,
& Choijoovanchig,
2005, p. 5).

 By considering stu-
dents’ ages, personali-
ties, health situations,
and learning abilities, a
methodology for sup-
porting their partici-
pation and develop-
ment as well as pre-
paring them to beco-
me well-balanced and
responsible citizens
will be used adhering
to flexible, humani-
tarian, usage based
principles.

 Students’ progress is
assessed according to
the children’s perso-
nalities and features
of their ages and
thinking.

 Features:
self and collective
assessment.
 Principle:
Assessment should be
open and fair. A va-
riety of assessment
methods were used.

 Informatics will be
studied at all levels of
education:
35 hours of classes in
primary education,
140 hours of classes in
secondary education,
175 hours of classes in
high school.

Continued on next page

Policy Reforms of Informatics Education of Mongolia 185

Table 1 – continued from previous page

Policy docu-
ments, years
published

Principle Features and
explanationsContent Methodology Assessment

Curriculum
for the
National
Program for
Informatics
Education,
2009–2012

Usage-based:
 “A1. Basic Concepts
of ICT,”
 “A2. Using a Compu-
ter and Working with
Files,”
 “A3. Text Information
Processing,”
 “A4. Spreadsheet Da-
ta Processing,”
 “A5. Image Process-
ing,”
 “A6. Demonstration
and Processing of Au-
dio and Video Infor-
mation,”
 “A7. Working with
Databases,”
 “A8. Use of Websites
and the Internet.”

 The methodology is
based on learning to
obtain information
through research, col-
lect the information,
process it using tech-
nology, solve prob-
lems and make deci-
sions as to how to find
and collect informa-
tion, process it using
technology, and de-
termine the ways in
which information ca-
me to be, can be im-
proved, and used.

 Methodology: Know-
ledge and understand-
ing, activities of crea-
tion of knowledge,
communication skills,
and creative skills,
critical thinking skills,
decision making,
and problem-solving
skills.

 Understanding of
basic and application
knowledge will be eq-
ually assessed thro-
ughout education. As
students advance in-
to senior grades, es-
pecially high school,
individual and team-
work will be evalu-
ated according to cer-
tain criteria. (based
on Bloom’s taxono-
my).

Core
Curriculum
on
Informatics
Education,
2015–2016

 Primary: Content ba-
sed on ICT literacy
and its use.
 Senior: The elective
course is based on the
principles of applying
the application knowl-
edge and skills needed
to solve other areas of
ICT and life problems.
The content includes 5
sections:
 - Software,
 - Hardware,
 - Multimedia,
 - Information and Co-

mmunication Tech-
nology,

 - Programming.
 (Curriculum on Infor-
mation Technology,
2016, pp. 48–49).

 Methodology, such as
acquiring application
skills and knowledge
by applying ICT as a
means of communi-
cation and using it
independently and
collaboratively as a
learning tool for other
subjects to process in-
formation and solve
the problems, will be
used.

 Basic knowledge of
ICT and computer
science.
 Knowledge and
skills of processing
information and sol-
ving the problems
using ICT will be as-
sessed.

Informatics is not stu-
died at an elementa-
ry school. The basic
content is studied at
secondary school for
140 hours of classes
while the senior graders
of high school study it
as an elective course
for 105 hours choosing
one of the three areas
“Software”, “Hardwa-
re”, and “Multimedia”.
It is available to study
35 hours in 10th grade,
105 hours in 11th grade,
175 hours in 12th grade
in the fields of
“Information and Com-
munication Technolo-
gy” and “Programm-
ing”.

Continued on next page

D. Tsedevsuren186

Table 1 – continued from previous page

Policy docu-
ments, years
published

Principle Features and
explanationsContent Methodology Assessment

Curriculum
on
Information
Technology,
2019

 Intermediate:
By studying the appli-
cation- based content,
students will acqui-
re ICT literacy and
information process-
ing skills.
 Senior:
The content aims to
enable students to ha-
ve basic knowledge
of computer science,
process useful infor-
mation (including in-
formation on other sub-
jects), acquire prob-
lem-solving skills, and
instill in consumers’
culture and the ethics
to properly use the in-
formation in society.
(Information
Technology Program,
2019, pp. 49–50).

Creative methods will
be used to allow stu-
dents to learn a com-
puter language and
how to use ICT as a
tool for information
processing, problem-
solving, and continu-
ing learning.

The following know-
ledge and skills will
be assessed:
 - process the infor-
mation using ICT,
problem solving;
 - understand ICT
and computer scien-
ce terminology, use
information in an
ethical and cultural
manner, create, in-
terpret, share and
collaborate with
others depending on
their circumstances
and needs.

Informatics is not studi-
ed in elementary scho-
ol, however, the basic
content is studied in se-
condary school for 140
class hours.
 Informatics is available
to 10th graders for 35
hours, 11th graders for
105 hours, and 175
hours for 12th graders
in the fields of “Infor-
mation and Communi-
cation Technology” and
“Programming.” Sen-
iors in high school can
also take Informatics
as an elective course
for 105 hours, choosing
one of three areas:
“Software,” “Hardwa-
re,” or “Multimedia.”

5. Conclusion

Informatics education plays an important role in acquiring basic knowledge and skills
for citizens living and working in the information society. Therefore, many countries
around the world have included the subject of informatics in secondary education. The
content of this subject has been shifted from the use of information technology to the
basic content of computer science, which is foundation of technological society since
computer science is crucial for preparing future citizens who have realized the nature of
social changes, can create innovations, and have an ethical use of communication.

In 1988, Mongolia introduced Informatics into secondary education. It was the
right decision at the right time. Informatics has been taught in secondary education for
30 years which is a relatively short period. However, its content and methodology has
been changed five times and the subject has been renamed as “Information Technology”
based on content application.

The renaming of the subject and the reduction of the basic content of computer sci-
ence was a step backwards from the reform of the content of global informatics educa-
tion. Despite the shortcomings, Mongolia is one of the few countries with experience
in teaching informatics as an independent subject in secondary education, starting from
primary education.

Policy Reforms of Informatics Education of Mongolia 187

Depending on the changes in the information society and the needs of future citizens
who will be living and working in the 21st century, the following policy changes need
to be made:

Change the name “Information Technology” to “Informatics” or “Computer Sci- ●
ence.
Include the basic content of computer science that supports the skills needed in the ●
21st century, such as understanding the basics of uncertain social development and
helping to create innovation in the subject content.
Increase the teaching hours of informatics. ●

References

Atchison, W.F. (1973). The Impact of Computer Science Education on the Curriculum. The Mathematics Tea-
cher, 66(1), 7–83. http://www.jstor.org/stable/27959160

Baron, G.L., Drot-Delange, B., Grandbastien, M., & Tort, F. (2014). Computer science education in French
secondary schools: Historical and didactical perspectives. ACM Transactions on Computing Education
(TOCE), 14(2), 1–27. https://doi.org/10.1145/2602486

Benaya, T., Dagiene, V., & Gal-Ezer, J. (2015, July). CS High School Curriculum–A Tale of Two Countries.
In: IFIP TC3 Working Conference “A New Culture of Learning: Computing and next Generations”, 17–28.
Retrieved from http://www.ifip2015.mii.vu.lt/

Carr, J.A., & O’Brien, N.P. (2010). Policy implications of education informatics. Teachers College Record,
112(10), 2703–2716. https://doi.org/10.1177/016146811011201006

Caspersen, M.E., Gal-Ezer, J., McGettrick, A., & Nardelli, E. (2018). Informatics for All the Strategy. ACM.
https://doi.org/10.1145/3185594

Chimedlkham, Ts., Uyanga, S., Tsogtbaatar, D., & Choijoovanchig, L. (2005). Primary and Secondary Educa-
tion. Informatics Education Standard MNS 5420-7: 2004. Ulaanbaatar: National Center for Standardization
and Metrology.

College Board. (2016). AP program participation and performance data 2015 [Data file]. Retrieved from
https://research.collegeboard.org/programs/ap/data/participation/ap-2015

Core curriculum handout for secondary education (2015). Ulaanbaatar. x. 48–55
Core curriculum on secondary education. Improved second edition (2019). Ulaanbaatar. pp. 48–56
Core curriculum on secondary education. Information technology (2016). Ulaanbaatar.
Csernoch, M., Biró, P., Máth, J., & Abari, K. (2015). Testing algorithmic skills in traditional and non-traditional

programming environments. Informatics in Education, 14(2), 175–197. DOI: 10.15388/infedu.2015.11
Curriculum on lower secondary education, Second publication. (2019). Улаанбаатар. pp. 48–56
Curriculum on secondary education, improved second edition (2019). Ulaanbaatar. pp. 44–56
Ershov, A., Monakhov, V., & Beshenkov, S. (1987). Fundamentals of Informatics and Computing. Translated by

Amarsanaa Ts., Narankhuu B. Ulaanbaatar: State Publishing House.
Ershov, A., Monakhov, V., & Kuznetsov, A. (1988). Recommendation for Teaching the Informatics and Com-

puter Basics, Translated by B.Jargal et al. Ulaanbaatar: State Publishing House.
Google, & Gallup. (2015). Searching for computer science: Access and barriers in US K-12 education. Re-

trieved from https://services.google.com/fh/files/misc/searching-for-computer-sci-

ence_report.pdf
Guerra, V., Kuhnt, B., & Blöchliger, I. (2012). Informatics at school-worldwide. An international explorato-

ry study about informatics as a subject at different school levels. https://www.researchgate.net/
publication/275031370_Informatics_at_school_-_worldwide_An_international_explor-

atory_study_about_informatics_as_a_subject_at_different_school_levels
Horizon Media. (2015, October 5). Horizon Media study reveals Americans prioritize STEM subjects over the

arts; science is “cool,” coding is new literacy. PR Newswire. Retrieved from https://www.prnewswire.
com/news-releases/horizon-media-study-reveals-americans-prioritize-stem-subjects-

over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html
K-12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org.

D. Tsedevsuren188

Literacy with Information, Communication Technology. Across the Curriculum. (2012). Northwest Territories,
Canada. Retrieved from https://www.ece.gov.nt.ca/en/node/774

Myagmar, Sh. (1987). Curriculum on Basics of Computer Science and Computing, ed. D. Shagdar. Ulaanbaatar:
State Publishing House.

Otgonnaran, O., Tsogtbaatar, D., Altantuya, Yu., & Tsedevsuren, D. (2009). Informatics Curriculum. Ulaanbaa-
tar: Bit Press LLC.

Papert, S. (2000). What’s the big idea? Toward a pedagogy of idea power. IBM Systems Journal, 39 (3/4),
720–729. DOI: 10.1147/sj.393.0720

Tsedevsuren, D. (2016). Comparative study of secondary education curriculum on informatics. In: Proceedings
of Research Papers of School of Mathematics and Natural Sciences of the MNUE, No 2, pp. 69–75.

Tsedevsuren, D. (2018). Comparative study on secondary education in information technology. Lavai Research
Journal, 20, pp. 53–58. https://lavai.msue.edu.mn/index.php?role=no&link=articles715

Tsedevsuren, D. (2018a). The issues of the curriculum implementation of information technology. In: Proceed-
ings of Research Papers of School of Mathematics and Natural Sciences of the MNUE, No 4, pp. 69–81.

Tsedevsuren, D. (2019). Results of the ICT readiness survey for secondary school teachers. Lavai Research
Journal, 22, pp. 130–140. https://lavai.msue.edu.mn/index.php?role=no&link=articles776

Uddin, S., Imam, T. & Mozumdar, M. (2021) Research interdisciplinarity: STEM versus non-STEM. Sciento-
metrics, 126, 603–618. https://doi.org/10.1007/s11192-020-03750-9

UNESCO. (2000). Information & Communication Technology in Secondary Education.
UNESCO. (2017). Rethinking Education. Is Education a Public Good? UNESCO.

www.unesco.ch/wp-content/uploads/2017/01/Education-transforms-lives.pdf

D. Tsedevsuren (https://orcid.org/0000-0002-8431-1986) is Pro-
fessor at Mongolian National University of Education. He is a PhD in
ICT and Educational Studies, and he is currently working as a chair-
man of the Mongolian Informatics Association from 2014. His research
interests include CS and Informatics for secondary education, ICT in
education, theory and methodology of digital learning and electronic
learning content development. He is a deputy leader or team leader of
Mongolian teams at IOIs in 2002, 2009, 2013, 2015, 2017, 2018 and
2020–2024. He is the author of over 20 books of the olympiad in infor-
matics and preparations for the olympiads.

Olympiads in Informatics, 2025, Vol. 19, 189–208
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.13

189

School Startup in Olympiad in Informatics

Marina S. TSVETKOVA, Vladimir M. KIRYUKHIN
Russian Academy of Natural History, Russian Federation, Moscow, 105037, box 47
e-mail: ms-tsv@mail.ru, vkiryukh@gmail.com

Abstract. The article describes the modern content of an advanced school course in Informatics
(K 7-9 and K 10-11), corresponding to the new educational standard implemented in Russia since
2023. This content is in full compliance with the IOI Syllabus. This allows us to build effective
preparation programs for various Olympiads in informatics, including the International Olympiad
in Informatics (IOI).

Keywords: school education, curriculum in Informatics, Olympiad in Informatics, Modern Con-
tent of an advanced school course in Informatics (K 7-9 and K 10-11), competencies of Olympiad
in Informatics

1. Introduction

As a rule, updating educational standards for schools in any country is aimed at de-
veloping the content of education, updating it considering the development of science
and technology. This is especially important for the subject of informatics, which is the
basis for the digitalization of professions, and reflects the digital transformation of the
economy and science in the country.

In Russia, school informatics has already gone through several stages of develop-
ment: it started in schools in 1985 as a subject based on Algorithmics. At the suggestion
of the Academy of Sciences, in the 90s the subject was supplemented with programming
and a section on information technology, which was facilitated by the appearance of
personal computers in schools. An advanced course in informatics, filled with topics
on the theoretical foundations of informatics, was included in schools for grades 10–11
since 2005 (Kiryukhin, 2010), but mainly reflected topics for the Unified State Exam
for admission to universities. It is important that this exam is an elective exam for se-
nior schoolchildren in technological or physical and mathematical profiles, in which the
course in informatics was studied as an advanced one.

Education in informatics remained within the framework of the basic program for
schoolchildren in grades 7/8–9 until 2022. Only electives and additional education
courses could compensate for the needs of children interested in informatics. In 2022,
as part of the new federal educational standard (Educational Standard, 2022) advanced

M.S. Tsvetkova, V.M. Kiryukhin190

courses in informatics were included in the course in informatics in both basic and high
school at the federal level, and in them, updated sections of theoretical foundations
of informatics, algorithms and programming, which reflect the topics of Olympiad in
Informatics.

Based on the new educational standard, since September 2023 federal programs for
basic general education (Curriculum Advanced Informatics K7-9, 2023) and for high
school (Curriculum Advanced Informatics K10-11, 2023) have been in effect. This al-
lowed schoolchildren involved in Olympiad preparation to choose to study an advanced
course in informatics from the 7th grade (14 years old) free of charge using the appropri-
ate textbooks provided by the state.

Currently, the Russian School Olympiad in Informatics is held considering the cur-
rent advanced standard for the subject, and the winners and prize winners of the Olym-
piad finals receive the right to enter without exams for free education at any university in
the country in the Olympiad profile and successfully participate in international Olympi-
ads. It cannot be denied that this standard and federal programs in informatics for basic
general education and high school have played a significant role in this.

Below are sections of the advanced course in informatics for primary and high school,
the sections of which fully reflect the content of Olympiad training in informatics and
can determine work with schoolchildren in preparation for various levels Olympiads,
including international Olympiads and the IOI.

2. Theoretical Foundations of Informatics.
Information Structures (Graphs, Trees)

This section covers topics of graph descriptions and graph problems, using the example
of a game tree.

К7-9 К10-11

Graph. Vertex, edge, path. Directed and
undirected graphs. Length (weight) of an edge.
Graph weight matrix. Length of a path between
graph vertices. Finding the optimal path in
a graph. Starting vertex (source) and ending
vertex (sink) in a directed graph. Calculating the
number of paths in a directed acyclic graph.

Tree. Root, vertex (node), leaf, edge (arc)
of a tree. Height of a tree. Subtree. Examples
of using trees. Enumeration of options using a
tree.

Graphs. Basic concepts. Types of graphs.
Description of graphs using adjacency
matrices, weight matrices, adjacency lists.
Solving algorithmic problems related to
graph analysis (constructing an optimal path
between graph vertices, determining the
number of different paths between vertices
of a directed acyclic graph).

Trees. Binary tree. Search trees. Methods
of tree traversal. Representation of arithmetic
expressions as a tree. Discrete games of
two players with complete information.
Construction of a tree of enumeration of
variants; description of the game strategy in
tabular form. Winning and losing positions.
Winning strategies.

School Startup in Olympiad in Informatics 191

3. Theoretical Foundations of Informatics.
Data Coding, Data Compression

This section shows the basics of discrete data representation and theoretical approaches
to assessing the amount of information. For senior school, the topic of number repre-
sentation in computer memory is considered, as well as methods of applying coding
to data compression, encryption during archiving or transmission over communication
channels.

Theoretical foundations of informatics
Information is one of the main concepts of

modern science.
Discreteness of data. The ability to describe

continuous objects and processes using disc-
rete data. Information processes are processes
associated with storage, transformation and
transmission of data.
Symbol. Alphabet. Alphabet power

Diversity of languages and alphabets. Natu-
ral and formal languages. Alphabet of texts in
Russian. Binary alphabet. Number of different
words (code combinations) of fixed length in
binary alphabet. Transformation of any alpha-
bet to binary. Number of different words of
fixed length in alphabet of certain power.

Coding of symbols of one alphabet using
code words in another alphabet; code table,
decoding.
Binary code

Representation of data in a computer as
texts in a binary alphabet.

Information volume of data. Bit is the mini-
mum unit of information amount – binary
digit. Byte, kilobyte, megabyte, gigabyte

Theoretical foundations of informatics
Information, data and knowledge.

Information processes in nature, technology
and society.

Continuous and discrete quantities and
signals. The need for discretization of infor-
mation intended for storage, transmission and
processing in digital systems.
Binary coding

Uniform and non-uniform codes. Decoding
messages written using non-uniform codes.
Fano condition. Construction of uniquely de-
codable codes using a tree.

Al. A. Markov's graph.
Units of measurement of information quan-

tity. Alphabetical approach to assessing infor-
mation quantity.

Theoretical approaches to assessing the
amount of information. Law of additivity of
information. Hartley's formula. Information
and probability. Shannon's formula.

Positional and non-positional number sys-
tems

Alphabet. Base. Expanded form of writing
a number. Conversion of numbers written in
other number systems to the decimal system.

Roman numeral system.
Binary number system. Conversion of

natural numbers to the binary number sys-
tem. Octal number system. Conversion of
numbers from the octal system to the binary
and decimal systems and back. Hexadecimal
number system. Conversion of numbers from
the hexadecimal system to the binary, octal
and decimal systems and back.

Number systems
Expanded notation of integers and fractions

in the positional number system. Properties
of positional notation of a number: number
of digits in the notation, divisibility of the
number by the base of the number system.
Algorithm for converting an integer from the
P-number system to the decimal number sys-
tem. Algorithm for converting a finite P-num-
ber fraction to the decimal number system.
Algorithm for converting an integer from
the decimal number system to the P-number
system. Converting a finite decimal fraction to
the P-number system.

M.S. Tsvetkova, V.M. Kiryukhin192

Arithmetic operations in the binary number
system.

Representation of integers in P-number
systems. Arithmetic operations in P-number
systems.

Binary, octal and hexadecimal number
systems, the relationship between them.
Arithmetic operations in positional number
systems.

Balanced ternary number system. Binary-
decimal number system.

Representation of integers in computer me-
mory

Limited range of numbers with limited
number of digits. Overflow of the bit grid.
Unsigned and signed data. Signed bit. Binary
complement code of negative numbers.

Bitwise logical operations. Logical, arith-
metic and cyclic shifts. Encryption using the
bitwise operation «exclusive OR».
Representation of real numbers in compu-
ter memory

Significant part and order of number. Range
of values of real numbers. Problems of storing
real numbers related to limitation of the
number of digits. Carrying out operations with
real numbers, accumulation of errors during
calculations.

Text encoding
Uniform code. Non-uniform code. ASCII

encoding. Eight-bit encodings. The concept
of UNICODE encodings. Decoding messages
using uniform and non-uniform codes.
Information volume of text.
Color coding

Color models. RGB, CMYK, HSL models.
Coding depth. Palette.

Raster and vector representation of images.
Pixel. Evaluation of the information volume
of graphic data for a raster image.
Sound coding

Bit depth and sampling frequency. Number
of recording channels. Evaluation of the
information volume of sound files.

Text encoding
ASCII encoding. Single-byte encodings.

UNICODE standard. UTF-8 encoding.
Determining the information volume of text
messages.
Image encoding

Estimating the information volume of gra-
phic data at a given resolution and color en-
coding depth. Color models. Vector encoding.
Graphic file formats. Three-dimensional gra-
phics. Fractal graphics.
Sound encoding

Estimating the information volume of
audio data at a given sampling frequency and
encoding bit depth.

Data transfer rate
Units of data transfer rate. Data distortion

during transmission.

Data transfer rate
Transfer time dependence on the informa-

tion volume of data and characteristics of the
communication channel. Causes of data tran-
sfer errors. Codes that allow detecting and
correcting data transfer errors. Hamming’s
distance. Bit repetition coding. Hamming’s
co-des.

School Startup in Olympiad in Informatics 193

Data compression algorithms
RLE algorithm. Huffman algorithm. LZW

algorithm. Lossy data compression algorithms.
Reducing the color coding depth. Basic ideas
of JPEG, MP3 compression algorithms.
Data Encryption

Symmetric and asymmetric ciphers.
Simple substitution ciphers. Caesar's cipher.
Vigenere’s cipher. RSA encryption algorithm.

Steganography.

4. Theoretical Foundations of Computer Science.
Logical Algebra

This section, in addition to the theoretical foundations of the logic algebra, which are
important for constructing algorithms, shows the logical foundations of a computer and
engineering approaches to constructing circuits on logical elements.

Logical statements
Logical meanings of statements. Elementary

and compound statements. Logical operations:
«AND» (conjunction, logical multiplication),
«or» (disjunction, logical addition), «NOT»
(logical negation), «exclusive or» (addition
mo-dulo 2), «implication» (consequence),
«equi-valence» (logical equivalence). Priority
of logical operations. Determining the truth
of a compound statement given the known
truth values of the elementary statements it
contains.
Logical expressions

Rules for writing logical expressions.
Construction of truth tables of logical
expressions. Simplification of logical
expressions. Laws of Boolean algebra.
Construction of logical expressions according
to the truth table. Logical elements.
Introduction to the logical foundations of a
computer. Adder.

Algebra of logic
Concept of proposition. Propositional

forms (predicates). Quantifiers of existence
and universality.
Logical operations

Truth tables. Logical expressions. Logical
identities. Proof of logical identities using
truth tables. Logical operations and operations
on sets.
Laws of algebra of logic

Equivalent transformations of logical
expressions. Logical equations and systems
of equations.
Logical functions

Dependence of the number of possible
logical functions on the number of arguments.
Complete systems of logical functions.

Canonical forms of logical expressions.
Perfect disjunctive and conjunctive normal
forms, algorithms for constructing them using
a truth table.
Logical elements in a computer

Trigger. Adder. Multi-bit adder.
Construction of circuits on logical elements
using a given logical expression. Writing a
logical expression using a logical circuit.

Microcircuits and their production tech-
nology.

M.S. Tsvetkova, V.M. Kiryukhin194

5. Mathematical Modeling, Computer Modeling

This is a key section of the advanced course in informatics, which allows you to apply
the acquired knowledge on all theoretical topics of informatics and connect mathemati-
cal modeling with approaches to computer modeling of information systems.

Control
Signal. Feedback. Receiving signals

from digital sensors (touch, distance, light,
sound, etc.). Examples of using the feedback
principle in control systems of technical
devices, including robotics. Examples of
robotic systems (traffic control system in
a transport system, welding line in a car
factory, automated control of home heating,
autonomous vehicle control system, etc.).
Model

Problems solved with the help of modeling.
Classifications of models. Material (natural)
and information models. Continuous and
discrete models. Simulation models. Game
models. Evaluation of the adequacy of the
model to the modeled object and the purposes
of modeling.
The concept of a mathematical model

Problems solved using mathematical
(computer) modeling. The difference between
a mathematical model and a natural model and
a verbal (literary) description of an object.

Stages of computer modeling: problem
statement, construction of a mathematical
model, software implementation, testing,
conducting a computer experiment, analysis
of its results, refinement of the model.

Systems
System components and their interaction.

System effect. Management as an information
process. Feedback.
Models and modeling

The purpose of modeling. Adequacy of
the model to the modeled object or process,
the purposes of modeling. Formalization of
applied problems.

Presentation of modeling results in a form
convenient for human perception. Graphical
presentation of data (diagrams, tables,
graphs).
Stages of computer-mathematical modeling

Problem statement, model development,
model testing, computer experiment, analysis
of modeling results.

Discretization in mathematical modeling of
continuous processes. Modeling of motion.
Modeling of biological systems. Mathematical
models in economics. Computational
experiments with models. Computer modeling
of control systems.

Processing of experimental results. Least
squares method. Estimation of numerical
parameters of modeled objects and processes.
Restoration of dependencies based on
experimental results.

Probabilistic models. Monte Carlo methods.
Simulation modeling. Queueing systems.

6. Algorithms and Programming

The section includes topics of Olympiad informatics. At the choice of schoolchildren,
it is envisaged to study two languages from those recorded in the standard for in-depth
study (Python, Java, C++, C#).

We will consider in more detail the contents of the section in comparison with K7-9
and K10-11 by years of study.

School Startup in Olympiad in Informatics 195

Algorithms and programming / K7
The concept of an algorithm. Algorithm

executors. An algorithm as a plan for managing
an executor.

Algorithm properties. Methods of recording
an algorithm (verbal, in the form of a flowchart,
program).

Algorithmic constructions. The “following”
construction. Linear algorithm. Limitations
of linear algorithms: the impossibility of
foreseeing the dependence of the sequence of
actions performed on the initial data.

The “branching” construction: complete
and incomplete forms. Fulfillment and non-
fulfillment of a condition (truth and falsity of a
statement). Simple and compound conditions.

The “repetition” construction: cycles with a
given number of repetitions, with a condition
of fulfillment, with a cycle variable.

Auxiliary algorithms. Using parameters to
change the results of auxiliary algorithms.

Analysis of algorithms for performers.
Execution of algorithms manually and on a

computer. Syntax and logical errors. Failures.
The coordinate system in computer graphics.

Changing the color of a pixel.
Graphic primitives: segment, rectangle,

circle. Contour properties (color, line
thickness) and fill. Constructing images from
graphic primitives.

Using cycles to construct images. Hatching
a closed area of simple shape (rectangle,
triangle with base parallel to coordinate axis).

Principles of animation. Using animation
to simulate object movement. Controlling
animation using the keyboard.
Algorithms and programming / K8

Programming language (Python, C++,
Java, C#). Programming system: program text
editor, translator, debugger.

Variable: type, name, value. Integer, real
and symbolic variables.

Assignment operator. Arithmetic expressions
and the order of their calculation. Operations
with integers: integer division, remainder
from division. Checking the divisibility of one
integer by another.

Operations with real numbers. Built-in
functions.

Random (pseudo-random) numbers.

Algorithms and programming / K10
Determining the possible results of the

simplest executor control algorithms and
computational algorithms. Determining the
initial data with which the algorithm can give
the required result.

Stages of solving problems on a computer.
Instrumental tools: translator, debugger,
profiler. Compilation and interpretation of
programs. Virtual machines.

Integrated development environment.
Methods of debugging programs. Using
trace tables. Debugging output. Step-by-step
execution of a program. Breakpoints. Viewing
variable values.

Programming language (Python, Java,
C++, C#). Data types: integer, real, symbolic,
logical. Branching. Complex conditions.
Cycles with a condition. Cycles by variable.
Interchangeability of different types of cycles.
Cycle invariant. Compiling a cycle using a
predetermined cycle invariant.

Documenting programs. Using comments.
Preparing a program description and user
instructions.

Algorithms for processing natural numbers
written in positional number systems:
breaking a number into individual digits;
finding the sum and product of digits; finding
the maximum (minimum) digit.

Finding all prime numbers in a given range.
Representing a number as a set of prime
factors. Fast exponentiation algorithm.

Processing data stored in files. Text and
binary files. File variables (file pointers).
Reading from a file. Writing to a file.

Splitting a task into subtasks. Subroutines
(procedures and functions). Recursion. Recur-
sive objects (fractals). Recursive procedures
and functions. Using a stack to organize
recursive calls.

Using the standard library of the prog-
ramming language. Connecting third-party
subroutine libraries. Modular principle of
program construction.

Numerical methods. Exact and approximate
solutions to problems. Numerical methods for
solving equations: enumeration method, bi-
section method. Approximate calculation of
curve lengths. Calculating the areas of figures

M.S. Tsvetkova, V.M. Kiryukhin196

Branching. Compound conditions (writing
logical expressions in the programming
language being studied). Finding the minimum
and maximum of two, three, and four numbers.
Solving a quadratic equation with real roots.
Logical variables.

Dialog debugging of programs: step-by-
step execution, viewing values, debug output,
choosing a breakpoint.

Cycle with a condition. Euclidean algorithm
for finding the greatest common divisor of two
natural numbers. Splitting a natural number in
a positional system with a base less than or
equal to 10 into separate digits. Decomposition
of a natural number into prime factors.

Cycle with variable. Algorithm for checking
whether a natural number is prime.

Analysis of algorithms. Determining pos-
sible results of an algorithm for a given set
of input data; determining possible input data
leading to a given result.

Processing data flow: calculating the num-
ber, sum, arithmetic mean, minimum and
maximum values of sequence elements that
satisfy a given condition.

Processing symbolic data. Symbolic
(string) variables. Character-by-character
string processing. Counting the frequency of
a symbol in a string. Built-in functions for
string processing.

Tabular quantities (arrays). One-
dimensional arrays. Compiling and debugging
programs implementing typical algorithms for
processing one-dimensional numerical arrays
in one of the programming languages (Python,
C++, Java, C#): filling a numerical array with
random numbers, according to a formula or
by entering numbers; finding the sum of the
array elements; linear search for a given value
in the array; counting the array elements that
satisfy a given condition; finding the minimum
(maximum) element of the array.

Concept of algorithm complexity.

using numerical methods (rectangle method,
trapezoid method). Finding the maximum
(minimum) of a function of one variable using
the bisection method.

Processing symbolic data. Built-in functions
of the programming language for processing
symbolic strings. Algorithms for processing
symbolic strings: counting the number of
occurrences of a symbol in a string; splitting
a string into words by whitespace characters;
searching for a substring within a given string;
replacing a found substring with another string.
Generating all words in a certain alphabet that
satisfy specified restrictions. Converting a
number to a symbolic string and back.

Arrays and sequences of numbers. Calcu-
lation of generalized characteristics of array
elements or a numerical sequence (sum,
product, arithmetic mean, minimum and
maximum elements; number of elements
satisfying a given condition). Linear search
for a given value in an array.

Sorting a one-dimensional array. Simple
sorting methods (bubble sort, selection sort,
insertion sort). Merge sort. Quick sorting of
an array (QuickSort algorithm). Binary search
in a sorted array.

Two-dimensional arrays (matrices).
Algorithms for processing two-dimensional
arrays: filling a two-dimensional numerical
array according to given rules; searching
for an element in a two-dimensional array;
calculating the maximum (minimum) and
sum of elements of a two-dimensional array;
rearranging rows and columns of a two-
dimensional array.

Development of programs for solving
simple data analysis tasks (data cleaning,
classification, deviation analysis).

Algorithms and programming / K9
Splitting a task into subtasks. Auxiliary

algorithms (subroutines, procedures, func-
tions). Parameters as a means of changing
the results of a subroutine. Function result.
Logical functions.

Algorithms and programming /K 11
Formalization of the concept of an algo-

rithm. Turing machine as a universal mo-
del of computation. Church-Turing thesis.
Post machine. Normal Markov algorithms.
Algorithmically unsolvable problems. Halt

School Startup in Olympiad in Informatics 197

Recursion. Recursive subroutines
(procedures, functions). Recursion termination
condition (base cases). Using recursion to
enumerate options.

Sorting arrays. Built-in sorting capabilities
of the selected programming language. Sorting
by several criteria (levels).

Binary search in an ordered array.
Two-dimensional arrays (matrices). Basic

algorithms for processing two-dimensional
arrays (matrices): filling a two-dimensional
array with random numbers and using
formulas; calculating the sum of elements, the
minimum and maximum of a row, column,
range; searching for a given value.

Dynamic programming. Problems solved
using dynamic programming: calculating
functions specified by a recurrence formula;
counting the number of options, choosing the
optimal solution.

problem. Impossibility of automatic debugging
programs.

Estimation of the complexity of
computations. Operating time and amount of
memory used, their dependence on the size of
the initial data. Estimation of the asymptotic
complexity of algorithms. Algorithms
of polynomial complexity. Enumeration
algorithms. Examples of various algorithms
for solving one problem that have different
complexity.

Search for prime numbers in a given range
using the “sieve of Eratosthenes” algorithm.

Multi-digit integers, problems of long
arithmetic.

Dictionaries (associative arrays, mappings).
Hash tables. Building an alpha-frequency
dictionary for a given text.

Natural language text analysis. Extracting
sequences by pattern. Regular expressions.
Frequency analysis.

Stacks.Queues. Graph algorithms. Building
a minimum spanning tree of a weighted
connected undirected graph. Depth-first graph
traversal. Breadth-first graph traversal. The
number of different paths between vertices of
a directed acyclic graph. Dijkstra’s algorithm.
Floyd-Warshall algorithm.

Trees. Implementation of a tree using
reference structures. Binary trees. Construction
of a tree for a given arithmetic expression.
Recursive algorithms for tree traversal. Using
a stack and a queue to traverse a tree.

Dynamic programming is a method for
solving problems with saving intermediate
results. Problems solved using dynamic
programming: calculating recursive functions,
counting the number of variants, optimization
problems.

The concept of object-oriented programming.
Overview of programming languages. The
concept of programming paradigms.

Learning a second programming language

M.S. Tsvetkova, V.M. Kiryukhin198

7. Digital Literacy

It is important that for both basic and advanced study of the subject, the standard has
a special section that is mandatory for all schoolchildren to study at both the basic and
advanced levels, this is Digital Literacy. The section includes topics that cover computer
literacy (computer), communication literacy (network), information literacy (software)
and information security.

Digital Literacy K7-9 Digital Literacy K10-11

Safety precautions and rules for working
on a computer

A computer is a universal computing device
that operates according to a program. Types
of computers: personal computers, embedded
computers, supercomputers. Mobile devices.

The main components of a computer and
their purpose. Processor. RAM and long-
term memory. Input and output devices.
Touch input, mobile device sensors, biometric
authentication tools.

The history of the development of
computers and software. Generations of
computers. Modern trends in the development
of computers. Supercomputers. Parallel
computing. Personal computer. Processor
and its characteristics (clock frequency, bit
depth). RAM. Long-term memory. Input and
output devices. The volume of stored data
(computer RAM, hard drive and solid-state
drive, smartphone ROM) and access speed for
different types of media.

Safety and hygiene requirements when wor-
king with computers and other components
of the digital environment

Principles of operation of computers and
computer systems. Von Neumann architecture.
Harvard architecture. Automatic execution of
a program by a processor. RAM, read-only
and long-term memory. Data exchange using
buses. External device controllers. Direct
memory access.

Main trends in the development of
computer technology. Parallel computing.
Multiprocessor systems.

Supercomputers. Distributed computing
systems and big data processing. Mobile digital
devices and their role in communications.
Embedded computers. Microcontrollers.
Robotic production.

Software
Computer software. Application software.

System software. Programming systems.
Files and folders (directories). File types.

File properties. Typical file sizes of different
types (text page, e-book, photo, song recording,
video clip, full-length film).

Principles of file system construction.
Full file name (folder, directory). Path to file
(folder, directory).

File manager. Working with files and folders
(directories): creating, copying, moving,
renaming and deleting files and folders
(directories). Searching for files.

Data archiving. Using archiving programs.
Computer viruses and other malware.

Programs for protection against viruses.

Software
Software for computers and computer

systems. Types of software and their purpose.
Features of mobile device software. Parallel
programming. System software. Operating
systems. Utilities. Device drivers. Installation
and uninstallation of software.

File systems. Principles of placement
and naming of files in long-term memory.
Templates for describing file groups.

Organization of personal information ar-
chive. Backup. Password protection of the
archive. Antivirus programs.

School Startup in Olympiad in Informatics 199

Network
Connecting computers into a network.

Internet. Web page, website. Structure of web
resource addresses. Browser. Search engines.
Searching for information by keywords and
images. Reliability of information obtained
from the Internet.

Modern Internet communications services
Global Internet. IP addresses of nodes.
Network data storage. Methods of individual
and collective placement of new information
on the Internet. Big data (Internet data, in
particular social network data).

Network
Principles of construction and hardware

components of computer networks. Network
protocols. Internet. Addressing on the
Internet. TCP/IP stack protocols. Domain
Name System.

Dividing an IP network into subnets using
subnet masks. Network administration.
Obtaining data on the computer's network
settings. Checking for a connection with a
network node. Determining the route of packet
movement.

Principles of construction and hardware
components of computer networks. Network
protocols. Internet. Addressing on the
Internet. TCP/IP stack protocols. Domain
Name System.

Dividing an IP network into subnets using
subnet masks. Network administration.
Obtaining data on the computer's network
settings. Checking for a connection with a
network node. Determining the route of packet
movement.

Network. Activities on the Internet
Internet services: communication services

(mail service, video conferencing, etc.);
reference services (maps, schedules, etc.),
search services, software update services.
Government services. Cloud data storage.
Collaborative document development tools
(online offices). Software as a web service:
online text and graphic editors, software
development environments.

Network. Types of activities on the Internet
Internet services. Geoinformation systems.

Real-time geolocation services (location of
mobile phones, determination of highway
congestion, etc.); Internet trade; booking tic-
kets and hotels, etc. State electronic services
and services. Social networks – organization
of collective interaction and data exchange.
Network etiquette: rules of conduct in cyber-
space. The problem of authenticity of received
information. Open educational resources.

Network. Web page development
HTML language. Web page structure. Page

title and body. Logical markup: headings,
paragraphs. Development of pages containing
images, lists and hyperlinks.

Network. Internet applications
The concept of the server and client parts of

a site. Client-server technology, its advantages
and disadvantages. Basics of HTML and
Cascading Style Sheets (CSS). JavaScript
scripts. Forms on a web page.

Hosting websites. Hosting service. Upload-
ing files to a site.

Information security
Legal protection of programs and data.

Free and shareware programs. Free software.
Network etiquette, basic norms of information
ethics and law when working on the Internet.
Strategies for safe behavior on the Internet.

Information security
Russian Federation legislation in the field

of software. Licensing of software and digital
resources. Proprietary and free software.
Commercial and non-commercial use of
software and digital resources. Responsibility

M.S. Tsvetkova, V.M. Kiryukhin200

The concept of information security.
Information security threats when working
on the global network and methods of
counteracting them. Rules for secure
authentication. Protecting personal information
on the Internet. Safe strategies for behavior
on the Internet. Prevention of involvement
in destructive and criminal forms of network
activity (cyberbullying, phishing, etc.).

established by Russian legislation for the
illegal use of software and digital resources.
Technogenic and economic threats are
associated with the use of ICT. General
problems of information protection and
information security. Information security
tools in computers, computer networks and
automated information systems. Legal support
for information security.
Electronic digital signature, certified sites and
documents.
Preventing unauthorized access to personal
confidential information stored on a personal
computer, mobile devices. Malicious software
and ways to combat it.

8. Information Technology

This section includes traditional topics about tools for computer processing of various
types of data, but it is supplemented with topics on Artificial Intelligence, Data Analysis
(Big DATA).

The section is aimed at testing schoolchildren of various competencies based on
modern technologies for processing graphics, text, multimedia, spreadsheets and da-
tabases – the topics of this section. It is important that artificial intelligence methods
have already been implemented in all data processing systems (search services, editors),
which must be practically mastered when studying this section. These are voice search,
translators, proofreaders, interlinear translators, handwritten-to-printed text converters,
automatic settings for templates when working with graphics, texts, in spreadsheets,
presentations, video editors and databases.

К 7-9 К 10-11

Information technology
Text documents and their structural elements

(page, paragraph, line, word, symbol).
A word processor is a tool for creating,

editing and formatting texts. Typing rules.
Text editing. Character properties. Font.

Font types (chopped, serif, monospaced).
Bold and italic. Paragraph properties: borders,
paragraph indentation, spacing, alignment.
Style formatting.

Structuring information using lists and
tables. Multilevel lists. Adding tables to text
documents.

Inserting images into text documents.
Wrapping text around images. Including dia-

Information technology
Word processor. Editing and formatting.

Spell and grammar check. Search and auto-
replace tools in a word processor. Using sty-
les. Structured text documents. Footnotes,
table of contents. Collaborative work with
documents. Review tools in word processors.
Cloud services. Business correspondence.
Abstract. Rules for citing sources and forma-
tting bibliographic references. Formatting a
list of references. Standards of bibliographic
descriptions. Introduction to computer type-
setting of text. Technical means of text input.
Specialized means of editing mathematical
texts.

School Startup in Olympiad in Informatics 201

grams and formulas in a text document.
Page settings, page numbers. Adding hea-

ders, footers, and links to a document.
Spell checking. Hyphenation. Voice input.

Optical character recognition. Computer tran-
slation. Using Internet services for text pro-
cessing.

Introduction to graphic editors
Raster images. Using graphic primitives.
Editing operations for graphic objects,

including digital photographs: resizing,
cropping, rotating, mirroring, working with
areas (selecting, copying, filling with color),
color, brightness, and contrast correction.

Vector graphics. Creating vector images
using built-in tools in a word processor or
other programs (applications). Adding vector
images to documents.

Preparing multimedia presentations. Slide.
Adding text and images to a slide. Working
with multiple slides.

Adding audiovisual data to a slide.
Animation. Hyperlinks.

Graphic editor
Input of images using various digital

devices (digital cameras and microscopes,
video cameras, scanners, etc.).

Resolution. Cropping. Perspective
correction. Histogram. Levels correction,
color correction. Desaturation of color images.
Retouching. Working with areas. Filters.

Multilayer images. Text layers. Layer
mask. Channels. Saving a selection. Preparing
illustrations for websites. Animated images.

Vector graphics. Primitives. Changing the
order of elements. Alignment, distribution.
Grouping. Curves. Vector drawing formats.
Using contours. Vectorization of raster ima-
ges.

Principles of constructing and editing three-
dimensional models. Grid models. Materials.
Modeling light sources. Cameras. Additive
technologies (3D printers). The concept of
virtual reality and augmented reality.

Spreadsheets understanding
Data types in spreadsheet cells. Editing and

formatting tables. Built-in functions for finding
maximum, minimum, sum, and average.
Sorting and filtering data in a selected range.
Creating charts (histogram, pie chart, scatter
chart). Selecting a chart type.

Conversion of formulas when copying.
Relative, absolute and mixed addressing.

Conditional calculations in spreadsheets.
Summation and counting of values that meet a
given condition. Processing large data sets.

Dynamic programming in spreadsheets.
Numerical modeling in spreadsheets.

Numerical solution of equations using
parameter selection. Finding the optimal
solution.

Data analysis
The main tasks of data analysis: forecasting,

classification, clustering, deviation analysis.
The sequence of solving data analysis
problems: collecting primary data, cleaning
and assessing the quality of data, selecting
and/or building a model, transforming data,
visualizing data, interpreting results. Software
and Internet services for processing and
presenting data. Big data. Machine learning.
Intelligent data analysis.
Data analysis using spreadsheets

Calculating the sum, arithmetic mean,
and the largest (smallest) value of a range.
Calculating the correlation coefficient of two
data series. Plotting bar, line, and pie charts.
Plotting function graphs. Selecting a trend
line, solving forecasting problems.

Numerical solution of equations using
parameter selection.

M.S. Tsvetkova, V.M. Kiryukhin202

Optimization as a search for the best solution
under given conditions. Objective function,
constraints. Local and global minimum of
the objective function. Solving optimization
problems using spreadsheets.

Tabular models
Table as a representation of a relation.
Databases. Selecting rows in a table that

satisfy a given condition. Developing a single-
table database. Compiling database queries
using a visual editor.

Information technology
Tabular (relational) databases. A table is a

representation of information about similar
objects. Field, record. Table key. Working with
a ready-made database. Populating a database.
Searching, sorting, and filtering data. Queries
for data selection. Queries with parameters.
Calculated fields in queries.

Multi-table databases. Types of relationships
between tables. Foreign key. Database integ-
rity. Queries to multi-table databases.

Basic principles of database normalization.
SQL data management language. Creating
simple queries in SQL to select data from one
table.

Non-relational databases.
Expert systems.

Information technology
The role of information technology in the

development of the economy of the world,
country, region.

Open educational resources. Professions
related to computer science and information
technology: web designer, programmer,
mobile application developer, tester, software
architect, data analysis specialist, system
administrator.

Familiarization with promising areas of
information technology development (using
artificial intelligence and machine learning as
an example). Smart city systems (computer
vision and big data analysis).

Information technology. Artificial intelli-
gence tools

Machine translation and speech recognition
services. Cognitive services. Image
identification and search, face recognition.
Self-learning systems. Artificial intelligence in
computer games. Using artificial intelligence
methods in training systems. Using artificial
intelligence methods in robotics. Internet
of things. Prospects for the development
of computer intelligent systems. Neural
networks.

9. Methodological Aspects of Improving Standards for Primary and High
School in Countries Involved in the Olympiad Movement in Informatics

Improving the educational standard in informatics in schools requires the emergence
of new methods of supporting gifted schoolchildren. Let us consider several important
methodological aspects that allow us to do this.

The main task of supporting gifted schoolchildren is the availability of such training
for all children in the country. If the educational standard guarantees the availability of

School Startup in Olympiad in Informatics 203

training in new informatics content, then the guarantor of the implementation of such
training are the schools of the country. At the same time, schools face various problems:
training qualified teachers for new computer science topics, the availability of courses
and teaching materials on these topics, including online, and creative events for school-
children to demonstrate their giftedness in these new topics of study.

It is important to note that the foundation of all new topics in informatics remains
the mathematical foundations of informatics, algorithmization and programming. These
sections of the course can be called the fundamental core of the subject of informatics.
This fundamental core has been deepened in the school standard in accordance with the
IOI syllabus, which is important for the development of programs for teaching gifted
children considering these topics (complex algorithms, graphs, strings, expansion of
programming languages with languages such as Python, C++ and Java). Gifted children
can choose training in these sections, which are focused on the national olympiad in
informatics and IOI, starting from the 7th grade of school. At the same time, to solve
the problems described, it is important to introduce accessible forms of work with gifted
schoolchildren. Traditional forms in many countries are special IT lyceums or centers
for preparation for the Olympiad at the country level.

To cover younger schoolchildren, as well as to teach them new specialized modules
of informatics, flexible forms of organizing the education of schoolchildren are required.
The creation of such forms can be implemented based on the “Hybrid Learning” model,
which optimizes the selection of teachers, including the involvement of university stu-
dents as course curators, combines online, mobile and face-to-face forms and can cover
children throughout the country. Such models can be quickly implemented in schools.
These include: a school IT-Lab, IT Class at school or IT Club for a group of schools,
IT Lyceum, IT Bus as a mobile IT Lab, as well as a partner IT Campus Online for the
country, for example, based on a university or IT business park.

All these models create an accessible information educational environment for sup-
porting gifted schoolchildren in the IT sphere. Their comprehensive implementation will
allow creating a network of IT platforms for children with a choice of various specific
forms for territories in the country. These models of organizing work with children will
allow the introduction of new additional IT modules of their standard in computer sci-
ence, which are flexibly configured according to the choice of students, for example:

Programming languages (second and third programming languages of choice). ●
Programming AI applications (bots, computer vision, voice assistants, translators, ●
biometric recognizers, etc.).
Algorithms and software tools for big data analysis. ●
Control of unmanned robots and machines. ●
Software procedures for information security, cryptography. ●
Programming of desktop robots and digitally controlled machines. ●
Circuitry and chip programming. ●
Geoinformatics, cartography systems, geonavigation. ●
Additive 3D printing technologies. ●
Media education and digital arts. ●
Advanced computer technologies and quantum computing. ●

M.S. Tsvetkova, V.M. Kiryukhin204

For mass support of children passionate about computer science, the main role is
played by such models as IT laboratories and IT clubs. For example, there are countries
where school IT laboratories begin working with children from elementary school to
high school in three age groups – elementary, basic, advanced. Small, specialized mod-
ules of 12–36 hours of training per year are used in training. In this case, the student can
choose up to three training modules per year. This model implements the methodology
– «test of the IT profession». It has become widespread in the last 5 years as a form of
additional education based on individual schools in all territories. For example, in Rus-
sia, this model has become widespread in the form of such digital educational laborato-
ries or clubs as «IT Cube», «Quantorium», and for rural schools – «Growth Point». It is
important to note that the implementation of such a model requires modern, but small
in number laboratory equipment, including computers, the Internet and sets of applied
digital equipment. This allows schoolchildren to choose innovative areas of further pro-
fessional training.

The IT class model has been widespread since 2010 as a systemic form of support
for children interested in informatics. It implements the normative model – specialized
training from grades 5 or 7 in schools and operates according to the standard of an in-
depth level of informatics study. At the same time, children from IT classes can also
choose modules – electives for additional training of their choice. IT classes require a
professional – informatics teacher and curators – students at IT universities for special-
ized IT practices. By choosing an IT class, children receive an early choice of profes-
sions in the IT field and further education at an IT university.

The IT lyceum model is a classic model that has become traditional for working with
gifted children since the end of the 20th century. Selection to lyceums usually begins
in the 7th grade. Such lyceums have become the main training grounds for the national
Olympiad in informatics and robotics. This model requires a highly qualified teach-
ing staff with appropriate ICT competencies, equipment for several IT classrooms, and
modern and diverse digital equipment in sufficient quantity. Leading universities and
IT commercial companies can provide assistance to IT lyceums in this regard, where
high school students can do an internship. Often, such IT lyceums are national or open
at large universities in the country. In most cases, students leave home to study at an IT
lyceum and live on campus. It is obvious that IT lyceums do not solve the problem of
mass work with gifted schoolchildren, but prepare the IT elite, which is also important
for the country.

During the pandemic, a new mass form of support for gifted children has become
widespread – the «Digital School» model based on IT Campus or IT Parks at universi-
ties. It has significantly expanded the possibilities of educational courses for applicants
at universities, since in addition to preparatory courses for admission to the university,
it has become an online platform for popularizing modern IT, preparing and holding
open, including international Olympiads in various new tracks of Olympiads in infor-
matics.

A special feature of the «Digital School» model is the implementation of a hybrid
form of education. Some events are held online, open to all comers or selected by level
of training. Online rounds of Olympiads are also offered, based on the results of which

School Startup in Olympiad in Informatics 205

finals are held in a face-to-face format, when participants are still getting to know the
university, being on site at the final. Such digital university schools cover children of all
ages, any territories, have a flexible structure of many courses, and also have no staff
shortage, as they invite students to work in the relevant departments.

Thus, all the proposed models, close to schoolchildren everywhere in the country,
become real methodological resources for the development of children who are pas-
sionate about informatics, for mastering new educational IT modules in the informatics
standard, technologically and do not lag behind innovations.

10. Discussion of the Prospects for the Development of New Forms
of Teaching Gifted Schoolchildren in Informatics

Along with traditional forms of work with gifted schoolchildren in informatics, it is very
important to consider IT innovations and help children choose promising development
tracks. And here, the expansion of IT training tracks and the coordination of maximum
coverage of all children involved in the above-mentioned models of schoolchildren’s
preparation are of particular importance.

The experience of the last 10 years has proved that the following organizational
activities are required:

Active development of various tracks of Olympiads in informatics, that organi- ●
cally complement the traditional national olympiad in informatics in the country,
and which are also based on algorithmization and programming, but are used in an
applied IT environment.
Implementation of small organizational forms of IT training for children in the ●
school infrastructure with the involvement of students from IT universities and IT
business partners, and involving children in IT practices.
Equipping IT classes and IT laboratories based on schools, additional education ●
clubs.
Development of mobile IT bus laboratories with access to samples of the most ●
modern IT devices (for example, 3D helmets, drones, 3D pen, 3D scanner, devices
with AI) and the Internet.
Development of children's Digital Schools in universities. ●

If we talk about new tracks of the Olympiads in informatics, these could be the
Olympiads in robotics, information security, artificial intelligence, financial literacy
(business informatics), IT hackathons (integration of informatics tracks and other school
subjects) and the Games of the Future (combining informatics and sports tracks). All of
them, one way or another, rely on the traditional sections of the informatics Olympiad,
but are supplemented by applied IT areas, showing the penetration of digital into all
school subjects, which is now of great interest to children.

The experience of the International School of Informatics for Juniors (ISIJ, 2025),
which was organized to support junior participants in the field of informatics, made it
possible to identify the potential of IT parks in countries to implement the coordina-

M.S. Tsvetkova, V.M. Kiryukhin206

tion function for national Olympiads and their development. In particular, to conduct an
open selection stage in an online format. This can be done in an organized manner with
children within walking distance for them at the sites of IT laboratories, IT classes in
areas throughout the country. Such experience was gained in 2023 in Uzbekistan, where
the national IT park has representative offices in each district of the country to work
with children. This affects the popularization of informatics and supports new tracks of
Olympiads in the IT field directly in partnership with schools, providing the personnel
potential of the IT park to work with children. ISIJ allowed countries to begin the forma-
tion of a children’s Info Park in the country as an integrator of IT education for children,
coordinating the work of all models of IT education, including holding various new
national IT Olympiads based on informatics school.

It can be argued that the formation of departments for working with children, such
as Info Parks (informatics parks), at the IT parks of the country is a very promising
area of cooperation between the school and the IT business community. For example,
a successfully functioning model of an international digital school is the IT school of
Innopolis University (Innopolis, 2025) https://progmatica.innopolis.univer-
sity/, which is open to all children from 12 years of age from all over the world and
is an online and face-to-face platform for preparing and holding the Innopolis Interna-
tional Open Olympiad in five tracks: mathematics (for informatics), informatics (pro-
gramming), robotics, artificial intelligence, information security (OI Olympiad, 2025).
(https://dovuz.innopolis.university/pre-olympiads/innopolis-open/
en) Here children can get their first experience and start in the IT sphere, choosing dif-
ferent ones from the five above-mentioned tracks.

11. Conclusion

Based on the information provided in the article, it can be argued that the introduction of
an advanced course in Informatics in the country’s schools allows all motivated children
to gain free access to Olympiad training in Informatics. But it is also important that in
this case, all relevant specialized schools (for example, IT lyceums) receive a single
program for Olympiad in Informatics for children, which provides teachers with the op-
portunity to work in a single standard regardless of the child’s place of residence, as well
as to receive a specialized textbook for the advanced course.

It is equally important that schoolchildren can master the fundamental principles of
theoretical computer science and gain practical experience in applying knowledge in
various modern programming environments, as well as try themselves in the profession
as part of their first experience working with information systems, artificial intelligence
systems and data analysis already at school. At the same time, all schoolchildren must
also master digital literacy and information security culture, which is also useful for
Olympiad participants.

The development of the federal standard based on the deepening of its scientific
content, expansion by innovative technologies is dictated by the needs of any country
for personnel in the field of high technologies and the need to modernize science in the

School Startup in Olympiad in Informatics 207

context of the digital transformation of the world. The special value of Olympiad in
informatics is that it identifies and prepares human resources among young people for
the digital economy.

The authors hope that the content of this article will be useful both to specialists
involved in the development of the content of the national educational standard and to
teachers working with talented schoolchildren in the field of informatics. Russia’s expe-
rience shows that the use of the above-described advanced course in informatics starting
from the 7th grade will allow talented schoolchildren to achieve high results not only in
national, but also in international Olympiads in informatics, including the IOI.

Reference

Kiryukhin, V. (2010). Mutual Influence of the National Educational Standard and Olympiad in Informatics
Contents. Olympiads in Informatics, 2010. Vol. 4, 15–29.
https://ioinformatics.org/journal/INFOL061.pdf

Educational Standard (2022). Register of sample educational programs, Ministry of Education of Russia.
https://fgosreestr.ru/educational standard

Curriculum of the Base School education (2023). Register of sample educational programs, Ministry of edu-
cation of Russia. https://fgosreestr.ru/poop/federalnaia-obrazovatelnaia-programma-os-
novnogo-obshchego-obrazovaniia-utverzhdena-prikazom-minprosveshcheniia-rossii-ot-

18-05-2023-pod-370

Curriculum of the Hier school education (2023). Register of sample educational programs, Ministry of Educa-
tion of Russia. https://fgosreestr.ru/poop/federalnaia-obrazovatelnaia-programma-sred-
nego-obshchego-obrazovaniia-utverzhdena-prikazom-minprosveshcheniia-rossii-ot-18-

05-2023-pod-371

Curriculum Advanced Informatics K7-9 (2023). Register of sample educational programs Ministry of Educa-
tion of Russia. https://fgosreestr.ru/oop?edl=3&sub=19

Curriculum Advanced Informatics К10-11 (2023). Register of sample educational programs, Ministry of Edu-
cation of Russia. https://fgosreestr.ru/oop?sub=19&edl=2

FLSB (2024). Federal List of schoolbooks, Ministry of Education of Russia. https://fpu.edu.ru/
RESH (2024). Russian Electronic School, Ministry of education of Russia. https://resh.edu.ru/
Sanitary Standard (2024). Register of sample educational programs, Ministry of education of Russia.

https://fgosreestr.ru/sanitary_standard

ISIJ (2025). International School of Informatics for Juniors. https://isi-junior.ru/uch/infopark/
Innopolis (2025). Innopolis University. https://progmatica.innopolis.university/
OI Olympiad (2025). Innapolis Open International Olympiad.

https://dovuz.innopolis.university/pre-olympiads/innopolis-open/en

M.S. Tsvetkova, V.M. Kiryukhin208

M.S. Tsvetkova is professor of the Russian Academy of Natural Sci-
ences, PhD in pedagogic science, prize-winner of competition “The
Teacher of Year of Moscow” (1998). From 2002 to 2018 she is a
member of the Central methodical commission of the Russian Olym-
piad in informatics and the pedagogic coach of the Russian team on
the IOI. She is the author of many papers and books in Russia on the
informatization of education and methods of development of talented
students. She is the author of official textbooks and copybooks in Rus-
sia for primary school in Informatics. She is author and director of the
International school in Informatic ISIJ (since 2017). She is the Rus-
sian team leader (2013–2017). She was awarded the President of Rus-
sia Gratitude for the success organizing the training of IOI medalists
(2016). She was the Expert of Committee on Education and Science
State Duma of the Russian Federation (2017–2021), and she has the
Committee on Education and Science State Duma Gratitude (2021).

V.M. Kiryukhin is professor of the Russian Academy of Natural Sci-
ences, PhD. He is the author of many papers and books in Russia
on development of Olympiad movements in informatics and prepara-
tions for the Olympiads in informatics. He is the exclusive represen-
tative who took part at all IOI from 1989 to 2017 as a member of the
IOI International Committee (1989–1992, 1999–2002, 2013–2017)
and as the Russian team leader (1989, 1993–1998, 2003–2012). He
received the IOI Distinguished Service Award at IOI 2003, the IOI
Distinguished Service Award at IOI 2008 as one of the founders of
the IOI making his long term distinguished service to the IOI from
1989 to 2008 and the medal “20 Years since the First International
Olympiad in Informatics” at the IOI 2009. He was the chairman of
the IOI 2016 in Russia and has the award medal of the President of
Russia (2016) for organizing the Olympiad in Informatics in Russia
and training IOI medalists since 1989. He is now the President of the
International Organizing Committee of the ISIJ.

About Journal and Instructions to Authors

OLYMPIADS IN INFORMATICS is a peer-reviewed scholarly journal that provides
an international forum for presenting research and developments in the specific scope
of teaching and learning informatics through olympiads and other competitions. The
journal is focused on the research and practice of professionals who are working in the
field of teaching informatics to talented student. OLYMPIADS IN INFORMATICS is
published annually (in the summer).

The format for the journal follows the tracks:
the primary section of the journal focuses on research ●
the second report section is devoted to sharing experiences of countries in infor- ●
matics olympiads
the last smallest section presents books reviews or other information ●

The journal is closely connected to the scientific conference annually organized dur-
ing the International Olympiad in Informatics (IOI).

Abstracting/Indexing

OLYMPIADS IN INFORMATICS is abstracted/indexed by:
Cabell Publishing ●
Central and Eastern European Online Library (CEEOL) ●
EBSCO ●
Educational Research Abstracts (ERA) ●
ERIC ●
InfoBase Index ●
INSPEC ●
SCOPUS ● – Elsevier Bibliographic Databases

Submission of Manuscripts

All research papers submitted for publication in this journal must contain original un-
published work and must not have been submitted for publication elsewhere. Any manu-
script which does not conform to the requirements will be returned.

The journal language is English. No formal limit is placed on the length of a paper,
but the editors may recommend the shortening of a long paper.

Each paper submitted for the journal should be prepared according to the following
structure:

concise and informative title ●
full names and affiliations of all authors, including e-mail addresses ●

informative abstract of 70–150 words ●
list of relevant keywords ●
full text of the paper ●
list of references ●
biographic information about the author(s) including photography ●

All illustrations should be numbered consecutively and supplied with captions. They
must fit on a 124 × 194 mm sheet of paper, including the title.

The references cited in the text should be indicated in brackets:
for one author – (Johnson, 1999) ●
for two authors – (Johnson and Peterson, 2002) ●
for three or more authors – (Johnson ● et al., 2002)
the page number can be indicated as (Hubwieser, 2001, p. 25) ●

The list of references should be presented at the end of the paper in alphabetic order.
Papers by the same author(s) in the same year should be distinguished by the letters a, b,
etc. Only Latin characters should be used in references.

Please adhere closely to the following format in the list of references:
For books:

Hubwieser, P. (2001). Didaktik der Informatik. Springer-Verlag, Berlin.
Schwartz, J.E., Beichner, R.J. (1999). Essentials of Educational Technology. Allyn

and Bacon, Boston.
For contribution to collective works:

Batissta, M.T., Clements, D.H. (2000). Mathematics curriculum development as a
scientific endeavor. In: Kelly, A.E., Lesh, R.A. (Eds.), Handbook of Research De-
sign in Mathematics and Science Education. Lawrence Erlbaum Associates Pub.,
London, 737–760.

Plomp, T., Reinen, I.J. (1996). Computer literacy. In: Plomp, T., Ely, A.D. (Eds.), In-
ternational Encyclopedia for Educational Technology. Pergamon Press, London,
626–630.

For journal papers:
McCormick, R. (1992). Curriculum development and new information technolo-

gy. Journal of Information Technology for Teacher Education, 1(1), 23–49.
http://rice.edn.deakin.edu.au/archives/JITTE/j113.htm

Burton, B.A. (2010). Encouraging algorithmic thinking without a computer. Olympi-
ads in Informatics, 4, 3–14.

For documents on Internet:
IOI (2008). International Olympiads in Informatics.

http://www.IOInformatics.org/

Hassinen, P., Elomaa, J., Ronkko, J., Halme, J., Hodju, P. (1999). Neural Networks
Tool – Nenet (Version 1.1).
http://koti.mbnet.fi/~phodju/nenet/Nenet/General.html

Authors must submit electronic versions of manuscripts in PDF to the editors. The
manuscripts should conform all the requirements above.

If a paper is accepted for publication, the authors will be asked for a computerpro-
cessed text of the final version of the paper, supplemented with illustrations and tables,
prepared as a Microsoft Word or LaTeX document. The illustrations are to be presented
in TIF, WMF, BMP, PCX or PNG formats (the resolution of point graphics pictures is
300 dots per inch).

Contacts for communication

Valentina Dagienė
Vilnius University
Akademijos str. 4, LT-08663 Vilnius, Lithuania
Phone: +370 5 2109 732
Fax: +370 52 729 209
E-mail: valentina.dagiene@mif.vu.lt

Internet Address

All the information about the journal can be found at:

https://ioinformatics.org/page/ioi-journal

Olympiads
in Informatics
Volume 19, 2025

G. AUDRITO, L. LAURA, A. ORLANDI, D. OSTUNI, R. RIZZI, L. VERSARI
Interactive Problem Solving in the Classroom: Experiences with Turing Arena
Light in Competitive Programming Education

1

P. DIETRICH, B. KOSTKA
Virtual Time Measurement in Programming Contests

27

M. DOLINSKY
Strategy and Tactics for Introducing Generative Artificial Intelligence into the
Instrumental Distance Learning System DL.GSU.BY

35
J. GAL-EZER, D. ZOHAR, A. ROLNIK

International Science Olympiads: The Israeli Teams

45
Y. GULBAHAR, T. ÖZTÜRK, V. DAGIENĖ, M. PARVIAINEN, I. GÜVEN,
J. BILBAO

Evaluating Interactive Tasks through the Lens of Computational and Algebraic
Thinking, Interactivity Types, and Multimedia Design Principles

63
M. MAREŠ, D. SKÝPALA

Pisek – a Caching Task Preparation System

87
L. MARRONE BERZETTI di BURONZO, N. GAMBIRASIO

Girls in STEM: A Qualitative Analysis of Factors and Actors Impacting on Girls’
Engagement in International Computer Science Competitions

101
P.S. PANKOV, E.S. BUROVA, E.J. BAYALIEVA

Оlympiad Tasks in Changing Environment

115
Y. SU, P. Nie, X. MENG

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery and
Interactive Learning in Competitive Programming

129
T. VERHOEFF

The Olympiad Trap and an Old Trampoline

145

REPORTS
I. SADIGOV

Informatics Curriculum and Programming Competitions: Azerbaijani Experience

159
D. TSEDEVSUREN

Policy Reforms of Informatics Education of Mongolia

177
M.S. TSVETKOVA, V.M. KIRYUKHIN

School Startup in Olympiad in Informatics

189

Publisher office: Vilnius University
 Akademijos str. 4, LT-08663 Vilnius, Lithuania
 June, 2025

Olympiads Olympiads
in Informaticsin Informatics19

IOI
InternatIonal olympIad In InformatIcs

I S S N 1 8 2 2 - 7 7 3 2

Olympiads
in Informatics
Volume 19, 2025

O
lym

piads in Inform
atics V

olum
e 19, 2025

Olympiads
in Informatics
Volume 19, 2025

G. AUDRITO, L. LAURA, A. ORLANDI, D. OSTUNI, R. RIZZI, L. VERSARI
Interactive Problem Solving in the Classroom: Experiences with Turing Arena
Light in Competitive Programming Education

1

P. DIETRICH, B. KOSTKA
Virtual Time Measurement in Programming Contests

27

M. DOLINSKY
Strategy and Tactics for Introducing Generative Artificial Intelligence into the
Instrumental Distance Learning System DL.GSU.BY

35
J. GAL-EZER, D. ZOHAR, A. ROLNIK

International Science Olympiads: The Israeli Teams

45
Y. GULBAHAR, T. ÖZTÜRK, V. DAGIENĖ, M. PARVIAINEN, I. GÜVEN,
J. BILBAO

Evaluating Interactive Tasks through the Lens of Computational and Algebraic
Thinking, Interactivity Types, and Multimedia Design Principles

63
M. MAREŠ, D. SKÝPALA

Pisek – a Caching Task Preparation System

87
L. MARRONE BERZETTI di BURONZO, N. GAMBIRASIO

Girls in STEM: A Qualitative Analysis of Factors and Actors Impacting on Girls’
Engagement in International Computer Science Competitions

101
P.S. PANKOV, E.S. BUROVA, E.J. BAYALIEVA

Оlympiad Tasks in Changing Environment

115
Y. SU, P. Nie, X. MENG

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery and
Interactive Learning in Competitive Programming

129
T. VERHOEFF

The Olympiad Trap and an Old Trampoline

145

REPORTS
I. SADIGOV

Informatics Curriculum and Programming Competitions: Azerbaijani Experience

159
D. TSEDEVSUREN

Policy Reforms of Informatics Education of Mongolia

177
M.S. TSVETKOVA, V.M. KIRYUKHIN

School Startup in Olympiad in Informatics

189

ISSN 1822-7732

