
Olympiads Olympiads
in Informaticsin Informatics18

IOI
International Olympiad in Informatics

I S S N 1 8 2 2 - 7 7 3 2

Olympiads
in Informatics
Volume 18, 2024

O
lym

piads in Inform
atics V

olum
e 18, 2024

Olympiads
in Informatics
Volume 18, 2024

Foreword i
G. AUDRITO, S. CAPECCHI, M. G. CIOBANU, L. LAURA

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students

1

M. KAYKOBAD
Popularizing Science and Science Competitions

25

E. LEE, T. REIZIN, F.E. WU, F.E. WU
Trends on Returning Contestants and Geography at the International Olympiad in Informatics

33

M. MAMMADLI, N. MAMMADLI, J. HASANOV
Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests

51

K. MANEV
Preparing of Youngest Students for Participation in Programming Contests

63

P.S. PANKOV, E.J. BAYALIEVA
Olympiads without Words

81

F. STEINERT, J. KUMMER, M. LANDMAN, L. LEHNER
From Concept to Code: A Two-Day Workshop for Secondary Students on Computational
Thinking and Programming

89
A. TANEJA, A. KOTHARI

Algorithmic Problem-Solving Advancements: A Comprehensive Exploration across
Diverse Domains

101
T. VERHOEFF

Staying DRY with OO and FP

113
E.M. WAGEED, Y.S. ELGAMAL, O.M. ISMAIL, M.H. ABDRABOU

The Impact of Non-Formal Educational Approach on the Academic Performance and
Employability of Engineering and Computer Science Students

129

REPORTS
M. ALREFAYA, S. ALHAJAJLA

Palestine at the International Olympiad in Informatics: Advancing Computational
Thinking Among K-12 Students

147

M. DOLINSKY
High School Programming Olympiads in Gomel Region

155

H.E. DUEÑAS OROZCO, T. AVALOS PIÑON
omegaUp: A Decade of Growth and Impact in Latin American Coding Education

167

K. MIRJALALI, A. BEHJATI
IOI Project Report on Improving TPS (Task Preparation System)

175

R.S. YAMAGUCHI, T. ITO
The First Step Towards Increasing Female Participants in the Olympiads in Informatics in Japan

185

A. YUSUBOV
The Official IOI Website: The Good, the Bad and the Ugly

195

ISSN 1822-7732

ISSN 1822-7732

INTERNATIONAL OLYMPIAD IN INFORMATICS

VILNIUS UNIVERSITY

OLYMPIADS IN INFORMATICS

Volume 18 2024

Selected papers of
the International Conference joint with

the XXXVI International Olympiad in Informatics
Alexandria, Egypt, 1–8 September, 2024

OLYMPIADS IN INFORMATICS

Editor-in-Chief
Valentina Dagienė
Vilnius University, Lithuania, valentina.dagiene@mif.vu.lt

Executive Editors
Mile Jovanov
Sts. Cyril and Methodius University, North Macedonia, mile.jovanov@finki.ukim.mk

Technical Editor
Tatjana Golubovskaja
Vilnius University, Lithuania, tatjana.golubovskaja@mif.vu.lt

International Editorial Board
Benjamin Burton, University of Queensland, Australia, bab@maths.uq.edu.au
Michal Forišek, Comenius University, Bratislava, Slovakia, misof@ksp.sk
Gerald Futschek, Vienna University of Technology, Austria, futschek@ifs.tuwien.ac.at
Marcin Kubica, Warsaw University, Poland, kubica@mimuw.edu.pl
Luigi Laura, Uninettuno University, Rome, Italy, luigi.laura@uninettunouniversity.net
Ville Leppänen, University of Turku, Finland, villelep@cs.utu.fi
Krassimir Manev, New Bulgarian University, Bulgaria, kmanev@nbu.bg
Seiichi Tani, Nihon University, Japan, tani.seiichi@nihon-u.ac.jp
Willem van der Vegt, Windesheim University for Applied Sciences, The Netherlands,
 w.van.der.vegt@windesheim.nl

The journal Olympiads in Informatics is an international open access journal devoted to publishing
original research of the highest quality in all aspects of learning and teaching informatics through
olympiads and other competitions.

https://ioinformatics.org/page/ioi-journal

ISSN 1822-7732 (Print)
 2335-8955 (Online)

© International Olympiad in Informatics, 2024
 Vilnius University, 2024
 All rights reserved

Olympiads in Informatics, 2024, Vol. 18, i–ii
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.00

Foreword
The International Olympiad in Informatics (IOI) is an annual global competition in infor-
matics for individual contestants from over 80 invited countries. The event also includes a
one-day scientific conference for delegation leaders, organizers, and guests, providing an
excellent opportunity for the IOI community to communicate and exchange ideas. Many
countries have a variety of topics to present and discuss.

The IOI Journal focuses on the research and practice of computing professionals who
teach informatics to talented secondary and high school students. The journal is closely
connected to the scientific conference held annually during the IOI. The 18th volume of
the journal has two tracks: the first section focuses on research, and the second section is
devoted to sharing national experiences. This volume features contributions from regu-
lar contributors as well as new authors.

Researchers from Italian universities, Giorgio Audrito, Sara Capecchi, Madalina G.
Ciobanu, and Luigi Laura, have analyzed Giochi di Fibonacci (Fibonacci’s games), a
programming contest for upper primary and lower secondary school students. The con-
test is organized in three phases: the first phase is based solely on logical and algorithmic
quizzes, while the other two phases involve coding using a Blockly environment inte-
grated into the contest platform.

Mirvari Mammadli, Nihad Mammadli, and Jamaladdin Hasanov presented a model
for analyzing contestant progress in real-time coding contests, emphasizing the critical
need for effective measures in assessing code similarity and plagiarism. Current coding
contest platforms often lack robust procedures to identify and address these issues, com-
promising the integrity of the evaluation process. To tackle these challenges, the authors
propose a novel system that leverages advanced techniques to analyze code and collec-
tive behavior, providing a holistic evaluation of submissions. This system enhances the
accuracy of performance assessment and maintains fairness and credibility in real-time
coding contests. The findings from this study highlight the importance of integrating
sophisticated mechanisms to ensure the authenticity of code submissions and uphold the
competitive nature of coding competitions.

Tom Verhoeff, in his paper with the intriguing title “Staying DRY with OO and FP”,
discusses the coding principle of not repeating code and compares various tactics to
achieve DRY code in both object-oriented and functional programming contexts. He
encourages IOI team leaders to study the examples in this article with their contestants.
Verhoeff believes that higher-order functions, which use functions as parameters and
return functions, are powerful tools. While it takes some practice to get used to the func-
tional style, he is convinced that clever contestants will enjoy it.

Representatives from this year’s IOI hosting country, Egypt, Eslam M. Wageed,
Yousry S. Elgamal, Ossama M. Ismail, and Mohamed H. Abdrabou, have shared their

experiences on non-formal education as a solution to the requirements of the era. They
suggest implementing non-formal education through seminars, training camps, and
workshops, including additional activities like competitions or extracurricular learning.
Their study investigates the impact of non-formal educational approaches on engineer-
ing and computer science students’ academic performance and their chances of obtain-
ing a job after graduation.

Felix Steinert, Julia Kummer, Martina Landman, and Lukas Lehner reported on a
two-day informatics workshop for Austrian pupils aged eleven to thirteen. The work-
shop included unplugged activities about algorithms, AI, robotics, and block-based pro-
gramming using Scratch and Sphero BOLT. Feedback from 110 participants showed a
significant gain in knowledge and high interest in computer science. The report details
the favorite activities and experiences of the ten workshop leaders.

Several papers in this volume focus on contests and Olympiads: popularizing science
competitions by M. Kaykobad; statistical analyses of IOI 2011 to 2023 performance
data, emphasizing returning contestants and identifying geographic trends, by E. Lee,
T. Reizin, and F. E. Wu; preparing the youngest students for programming contests by
K. Manev; Olympiads without words by P. S. Pankov and E. J. Bayalieva; and advance-
ments in algorithmic problem-solving by A. Taneja and A. Kothari.

In the second part of the volume, authors from Belarus, Japan, Palestine, and Latin
American countries share their experiences, news, and approaches. K. Mirjalali and A.
Behjati presented an IOI project report on enhancing the Task Preparation System, while
A. Yusubov discussed updates to the official IOI website.

We extend our deepest gratitude to everyone who contributed to this volume, espe-
cially the authors and reviewers. Their dedication and hard work in writing, reviewing,
and refining the papers have been crucial in creating this exceptional collection. We
also warmly thank all the participants, speakers at the conference, and members of the
IOI community. We hope this has been a memorable and enriching experience for all
involved.

Editors

Olympiads in Informatics, 2024, Vol. 18, 1–24
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.01

1

Giochi di Fibonacci Year II: Competitive Blocks
Programming for Young Students

Giorgio AUDRITO1, Sara CAPECCHI1, Madalina G. CIOBANU2,
Luigi LAURA3
1Department of Computer Science, University of Torino, Italy
2University of Salerno, Italy
3Uninettuno University, Rome, Italy
e-mail: {giorgio.audrito,sara.capecchi}@unito.it, mciobanu@unisa.it,
luigi.laura@uninettunouniversity.net

Abstract. We organized the second edition of Giochi di Fibonacci (Fibonacci’s games), a pro-
gramming contest for upper primary and lower secondary schools students; contestants compete in
their own age division. The contest is organized in three phases, where the first one is based only
on logical and algorithmical quizzes, whilst the other two deal with coding using a Blockly envi-
ronment integrated in our contest’s platform. In this paper we report our experience and analyze
the feedback collected from both students and teachers.

Keywords: programming contest, Olympiads in Informatics, peer education, programming train-
ing.

1. Introduction

The scientific-cultural side of computer science, also referred to as computational think-
ing, helps to develop logical skills and the ability to solve problems creatively and ef-
ficiently, qualities that are important for all future citizens.

The significance of incorporating computational thinking and programming into
the curriculum of primary and lower secondary education cannot be overstated,
a trend underscored by the notable success of initiatives like Bebras1 (Dagienė,
2008). Dagienė et al. (Dagienė et al., 2022) provide an insightful overview of how
computational thinking is being adopted globally in primary education; the challenges
and considerations surrounding the integration of informatics into primary education,
from curriculum design to teachers’ perspectives, are thoroughly examined in (Dagienė
et al., 2019).

1	https://www.bebras.org/

G. Audrito et al.2

A wide array of methodologies has been explored to facilitate this integration, in-
cluding unplugged education (Pluhár, 2021; der Vegt, 2016), employing platforms like
Scratch (Fagerlund et al., 2020), and introducing robot programming (Kanemune et al.,
2017) and LEGO robotics (Souza et al., 2018). Additionally, gamification strategies
have been effectively utilized to engage students (Combéfis et al., 2016), as highlighted
by Dolinsky (Dolinsky, 2022).

In Italy, according to the current national curricular recommendations, computer
science related topics are included in broad areas of cross-disciplinary key citizenship
digital competence area or general technology subject area and “whenever possible,
students can be introduced to simple and flexible programming languages in order to
develop a taste for creation and for the accomplishment of projects [...] and in order
to understand the relationships between source code and resulting behavior.”2 As a
consequence, the implementation of the curricular recommendations is delegated to
self-motivated teachers who propose valuable initiatives also in informatics educa-
tion. In this context, initiatives bringing students and teachers closer to programming
play a very important role.

The “Giochi di Fibonacci” (Fibonacci’s games) (Audrito et al., 2023) are a pro-
gramming contest in upper primary and lower secondary education, with each age divi-
sion competing separately, aimed at enhancing students’ computational thinking and
programming skills. In the first edition (last year)“Giochi di Fibonacci” were divided in
three distinct stages, where the initial stage is solely based on logical and algorithmic
assessments, similar to Bebras, while the other two phases involve the use of cod-
ing, either via Scratch or a specially designed simplified pseudo-code programming
environment catered to this competition. The lessons learned in the first year edition
(Audrito et al., 2023) have been the base for the design of this year’s edition, that we
discuss in this paper.

On the bright side, as we decided, we improved the competition by focusing only on
a Block programming language (based on Blockly3); on the dark side, we experienced
a huge bug in the newly designed but not enough tested new platform for the second
phase. It would be nice to say that we corrected the bug immediately and it not affected
the competition but, to be fair, it had definitely a non neglectable impact.

Thus, in this paper we report our experience in running (a buggy version of) an
improved Giochi di Fibonacci competition. In Section 2, we recall the structure of
the competition and report the emergence of the bug and the countermeasures taken.
Then, in Section 3 we discuss the results of the feedback obtained, using question-
naires, from students and teachers. Finally, Section 4 addresses final remarks and
conclusions.

2	https://www.miur.gov.it/documents/20182/51310/DM+254_2012.pdf
3	 The choice of relying on Blockly instead of the more well-known similar platform Scratch is due to its

easier integration with our website. Blockly can be tried online at: https://blockly.games

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students 3

2. Giochi di Fibonacci

A detailed description of the (first edition of the) Giochi di Fibonacci is discussed in
(Audrito et al., 2023). In this section, we briefly present the three phases, that mimic the
structure of the Italian Olympiads in Informatics (Audrito et al., 2021). The first phase
does not involve coding, and problems proposed are similar to the ones of Bebras, thus
aiming to involve students from that competition to participate. The first edition phases
were organised in the following way:

First phase: ●● logical, algorithmic and program comprehension quizzes, similar to
Bebras but with more weight on “program comprehension” skills.
Second phase:●● simple programming tasks (in Scratch or conventional languages).
Third phase:●● more difficult programming tasks.

In the following sections we discuss each of the phases of the second edition, de-
scribing mainly the changes from the first edition, according to the lessons learned from
(Audrito et al., 2023).

2.1. First Phase

The first phase aimed to address logical and algorithmic thinking. Since the first phase
last year was successful and well-received, we maintained the same structure for the test,
with only a minor difference: presenting program comprehension tasks as block-based
code, instead of as flowcharts.

We designed the phase acknowledging the diversity in school resources, that is, not
all educational institutions are equipped with either fixed or mobile computer labs. Con-
sequently, we offered schools the flexibility to select their preferred competition method:
either via traditional pen-and-paper format or through an online platform. This approach
ensured equal opportunity for all participants, regardless of their access to technolo-

Fig. 1. Participating students by type of test.

G. Audrito et al.4

gy. By analyzing the choice of testing methods across different educational levels (see
Fig. 1), we see that in lower high schools there was a greater preference for the online
test over the traditional pen-and-paper format. Conversely, in primary schools, the op-
posite trend was observed, with a higher prevalence of the pen-and-paper method over
online testing. This may suggest a more widespread availability of computer labs in
lower high schools w.r.t. primary schools.

6616 students participated in the first phase: 2352 primary school students and
4264 lower secondary school students. 2216 took the test on paper, while 4400 took
it online. A total of 18 lower secondary school students obtained a full score of 50/50,
while only one primary school student obtained a full score of 45/45. The scores were
overall a bit lower that what we aimed: the average score was 14.7 for primary school
and 17.8 for secondary school, while the median score was 15 for both primary and
secondary school.

Fig. 2 shows the number of participating students divided by year of study, for both
editions: 3prim, 4prim and 5prim are the last 3 years of primary school, while 1sec,
2sec and 3sec represent the 3 years of lower high school. We can see that the participa-
tion has been similarly distributed in the two editions, but lower overall for the second
edition. This may have been a consequence of the exercises being too difficult last year,
especially in the second phase.

2.1.1. Primary School

The test for primary school contained 9 questions to be solved in 50 minutes, divided
into three parts as follows:

Logical thinking questions (4 multiple-choice questions)●● .
Algorithmic thinking questions (2 open-ended numeric questions)●● .
Questions on interpretation of block programs. (3 multiple-choice questions). ●●

Fig. 2. Participating students by years, comparing the two editions.

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students 5

In all three parts, the questions were ordered by increasing difficulty. Few sample
questions follow.

Question 2. The rabbit game board contains 10 squares, numbered from 1 to 10, with
square 10 adjacent to square 1. Tip-Tap starts from square 1 and, in 4 subsequent turns,
advances by 9, by 4, by 8 and finally by 7 boxes. In the end, which square is it on? Mul-
tiple Choice Answers: A) 4, B) 9, C) 1, D) 5, E) 3

Question 3. Tip-Tap received 5 rectangular postcards, measuring (in cm) 8×4, 5×5,
3×10, 9×1 and 4×6. Now he wants to buy a rectangular bulletin board in which to put the
postcards, possibly overlapping but not rotated. For example, this is a possible bulletin
board of area 9×11=99 that contains postcards.

To save money, Tip-Tap would like to purchase the smallest bulletin board possible: how
much is the smallest area (in cm²) of a bulletin board that can contain all postcards?
Multiple Choice Answers: A) 80, B) 90, C) 0, D) 10, E) 85

Question 5.1. Tip-Tap friends all lined up for the count! Each of them has a different
height, written on their t-shirt.

G. Audrito et al.6

In one move, Tip-Tap can choose two consecutive friends and remove the shorter of the
two from the line. What is the minimum height of a friend who can remain in line after
5 moves?

Question 5.2. What is the minimum height of a friend who can remain in line after 4
moves?

Question 6. In what order should these instructions be placed to obtain the number 6 in
the variable x? [We show the english translation on the right side of the original image
of the contest.]

1: the content of  becomes 2

2: the content of  gets doubled

3: the content of  gets increased by one

Multiple Choice Answers: A) 3,2,1; B) 2,3,1; C) 2,1,3; D) 1,2,3; E) 1,3,2
Fig. 3 reports the response distribution for the different questions. The second ques-

tion had the highest number of correct answers. Conversely, question 5.2 recorded the
highest count of incorrect responses. Moreover, question 3 and question 6 stood out as
the ones with the highest frequency of unanswered responses, possibly suggesting that
their statement was hard to understand.

2.1.2. Lower High School

The test for lower high school students consisted of 10 questions to be solved in 50 min-
utes. The questions were multiple choice or numerical open response, and were divided
into three parts:

Logical thinking questions (3 multiple-choice questions)●● .

Fig. 3. Response distribution in primary school.

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students 7

Algorithmic thinking questions (4 open-ended numeric questions)●● .
Questions on interpretation of block programs. (3 multiple-choice questions). ●●

In all three parts, the questions were ordered by increasing difficulty. Few sample
questions follow.

Question 7. Tip-Tap has to decide whether to throw away some of these balloons:

To do this, he follows this procedure: [Pseudocode in english is shown to the right side of
the original image of the contest]

– algorithmic thinking questions (4 open-ended numeric questions);
– questions on interpretation of block programs. (3 multiple-choice questions).

In all three parts, the questions were ordered by increasing difficulty. Few sample questions
follow.

Question 7. Tip-Tap has to decide whether to throw away some of these balloons:

To do this, he follows this procedure: [Pseudocode in english is shown to the right side of the
original image of the contest]

1: procedure SelectBalls
2: for each ball b do
3: if b is basketball then
4: if b is red then
5: keep b
6: else
7: throw b
8: end if
9: else

10: if b is deflated then
11: throw b
12: else
13: keep b
14: end if
15: end if
16: end for
17: end procedure

Which balls does Tip-Tap throw? Multiple Choice Answers: A) 2,3,4; B) 1,4; C) 3,4; D) 1,5;
E) 1,2,5

Question 4.1 was the question with the greatest number of correct answers, and question 4.2
was the question with the greatest number of incorrect answers. Those questions were identical
to questions 5.1 and 5.2 reported previously for primary schools. Question 7 was the question
left blank by the greatest number of students. Question 7 might have been left blank because it
was a question that required some competence on block programming. However, question 8 is
also a question on block programming and was the question with the second highest number of
correct answers, so other factors might be into play.

6

Which balls does Tip-Tap throw? Multiple Choice Answers: A) 2,3,4; B) 1,4; C) 3,4;
D) 1,5; E) 1,2,5

Question 4.1 was the question with the greatest number of correct answers, and ques-
tion 4.2 was the question with the greatest number of incorrect answers. Those ques-
tions were identical to questions 5.1 and 5.2 reported previously for primary schools.
Question 7 was the question left blank by the greatest number of students. Question 7
might have been left blank because it was a question that required some competence on
block programming. However, question 8 is also a question on block programming and
was the question with the second highest number of correct answers, so other factors
might be into play.

G. Audrito et al.8

2.2. Second Phase

In this second edition, we significantly changed the second phase, leading to what we
evaluated as a considerable improvement. This change stems directly from the valuable
feedback received from teachers last year. In particular, in the first edition, the second
phase was perceived too difficult and the web system hard to use. Many students lacked
even rudimentary computer programming skills, including familiarity with block-based
programming concepts. This deficiency is largely attributed to the minimal exposure to
computer science in the standard education curriculum in Italy, particularly up to the age
of 14. Addressing this disparity is one of our primary objectives: to introduce students
to the world of information technology at an earlier stage, fostering a deeper and more
meaningful engagement with the subject matter.

In the previous edition, we allowed the use of traditional languages or Scratch. For
each supported language (including Scratch), they were provided with a starter file con-
taining the code handling input and output, and the students had to implement only the
main procedure. It was up to the students to edit and run the program with external soft-
ware and tools. The obstacle in solving the exercises was not only in the difficulty of the
exercises but, as emerged from the feedback, also in the method provided to perform the
exercises. In particular with Scratch, the devised system required to interact back-and-
forth with two separate websites (the scratch website and the contest website), and this
increased the barrier of accessibility to the contest.

This year we added an extension to our platform in order to integrate Blockly and
avoid the above mentioned issues. The test had the same structure for both primary and
secondary schools, and consisted of 6 questions to be solved in 100 minutes. The ques-
tions were divided into two parts:

3 questions on interpretation of block programs. ●●
3 block programming interactive questions. ●●

Each block programming question required to write a single blockly program, which
was then evaluated on three levels of increasing difficulty. All questions were accessible
from a same page in the contest website, which was based on the same QuizMS platform
used on the first phase, but with an extension providing Blockly support. In both parts,
the questions were ordered by increasing difficulty. The set of questions was different for
primary and secondary schools, as detailed in the following.

2.2.1. Primary School

Question 3. The rabbits at the Fibonacci farm have prepared two huge piles of carrots.
At the beginning the left pile contains 2024 carrots, while the right pile contains 3024.
Bunny, Tip-Tap and Carol eat them following this procedure: [Pseudocode in english is
shown below the original image of the contest]

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students 9

1: Set left pile to 2024 carrots
2: Set right pile to 3024 carrots
3: repeat
4: if left pile has fewer than 7 carrots or right pile has fewer than 7 carrots then
5: if left pile has fewer carrots than right pile then
6: Bunny eats 3 carrots from left pile
7: Tip-Tap eats 7 carrots from right pile
8: else
9: Tip-Tap eats 6 carrots from left pile

10: Bunny eats 4 carrots from right pile
11: end if
12: end if
13: until left pile has fewer than 7 carrots or right pile has fewer than 7 carrots
14: Carol eats left pile carrots from left pile
15: Carol eats right pile carrots from right pile

How many carrots does Carol eat? Multiple Choice Answers: A) 0, B) 4, C) 1, D) 2, E) 8

Question 4.1. Tip-Tap needs to sort out his old collection of N footballs. Since he doesn’t
have room for all of them, he decided to keep all the inflated soccer balls and basketballs, while
throwing away the deflated basketballs. To do this, Tip-Tap can perform the following actions:

– keep: put the next ball on the shelf.

– throw: throw away the next ball in the bin.

– soccer ball: true if the next ball is a soccer ball.

– inflated balloon: true if the next balloon is inflated.

– finish: finish putting the balloons away.

8

1: Set left pile to 2024 carrots
2: Set right pile to 3024 carrots
3: repeat
4: if left pile has fewer than 7 carrots or right pile has fewer than 7 carrots then
5: if left pile has fewer carrots than right pile then
6: Bunny eats 3 carrots from left pile
7: Tip-Tap eats 7 carrots from right pile
8: else
9: Tip-Tap eats 6 carrots from left pile

10: Bunny eats 4 carrots from right pile
11: end if
12: end if
13: until left pile has fewer than 7 carrots or right pile has fewer than 7 carrots
14: Carol eats left pile carrots from left pile
15: Carol eats right pile carrots from right pile

How many carrots does Carol eat? Multiple Choice Answers: A) 0, B) 4, C) 1, D) 2, E) 8

Question 4.1. Tip-Tap needs to sort out his old collection of N footballs. Since he doesn’t
have room for all of them, he decided to keep all the inflated soccer balls and basketballs, while
throwing away the deflated basketballs. To do this, Tip-Tap can perform the following actions:

– keep: put the next ball on the shelf.

– throw: throw away the next ball in the bin.

– soccer ball: true if the next ball is a soccer ball.

– inflated balloon: true if the next balloon is inflated.

– finish: finish putting the balloons away.

8

How many carrots does Carol eat? Multiple Choice Answers: A) 0, B) 4, C) 1, D)
2, E) 8

Question 4.1. Tip-Tap needs to sort out his old collection of N footballs. Since he doesn’t
have room for all of them, he decided to keep all the inflated soccer balls and basketballs,
while throwing away the deflated basketballs. To do this, Tip-Tap can perform the follow-
ing actions:

Keep: put the next ball on the shelf. ●●

G. Audrito et al.10

Throw: throw away the next ball in the bin. ●●
Soccer ball: true if the next ball is a soccer ball. ●●
Inflated balloon: true if the next balloon is inflated. ●●
Finish: finish putting the balloons away. ●●

Write a program that allows Tip-Tap to sort all his balloons! (see Fig. 4)
Fig. 5 reports the response distribution for the different questions. Question 4.1

had the highest number of correct answers, while question 3 had the highest number
of blank answers. On the other hand, questions 5.3, 6.2 and 6.3 were not solved by any
student.

Fig. 4. Second Phase – Primary School – Question 4.1.

Fig. 5. Second Phase – Response distribution in primary school.

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students 11

2.2.2. Lower High School

Question 3 While fixing up his attic, Tip-Tap came across a very old programming book.
On the first page he found the following procedure: [Pseudocode in english is shown to
the right side of the original image of the contest]

Write a program that allows Tip-Tap to sort all his balloons! (see Fig. 4)
Figure 5 reports the response distribution for the different questions. Question 4.1 had the

highest number of correct answers, while question 3 had the highest number of blank answers.
On the other hand, questions 5.3, 6.2 and 6.3 were not solved by any student.

2.2.2 Lower High School

Question 3While fixing up his attic, Tip-Tap came across a very old programming book. On
the first page he found the following procedure: [Pseudocode in english is shown to the right side
of the original image of the contest]

1: Set counter to 0
2: for i from 1 to 42 do
3: if i is a multiple of 7 then
4: Increase counter by 1
5: end if
6: if i is a multiple of 9 then
7: Decrease counter by 1
8: end if
9: end for

10: Print counter

Unfortunately the next page is ruined so Tip-Tap can’t understand which number will be
printed at the end... help him! What number is printed from the last block? Multiple Choice
Answers A) 2, B) 6, C) 10, D) 4, E) 0

Question 6.3 Tip-Tap wants to build a new shed for his farm! First, he needs to build the
two supporting columns: one on the left S centimeters high, and one on the right D centimeters
high. To do this he plans to stack some blocks taken from a construction set, composed of a
single block for every possible height between a minimum of 1 centimeter and a maximum of M
centimeters, and which in total reach exactly the total height of the two columns. Now you can
do these operations:

– right column height: the current height of the right column.
– left column height: the current height of the left column.
– stack block i on the right: adds the block i centimeters high to the right column, if it has not
already been used.

– stack block i on the left: adds the block i centimeters high to the left column, if it has not
already been used.

– finish: complete the columns and build the canopy.

Help Tip-Tap complete the shed as planned! (see Fig. 6)

10

Unfortunately the next page is ruined so Tip-Tap can’t understand which number will
be printed at the end... help him! What number is printed from the last block? Multiple
Choice Answers A) 2, B) 6, C) 10, D) 4, E) 0

Question 6.3 Tip-Tap wants to build a new shed for his farm! First, he needs to build
the two supporting columns: one on the left S centimeters high, and one on the right D
centimeters high. To do this he plans to stack some blocks taken from a construction set,
composed of a single block for every possible height between a minimum of 1 centimeter
and a maximum of M centimeters, and which in total reach exactly the total height of the
two columns. Now you can do these operations:

right column height: the current height of the right column. ●●
left column height: the current height of the left column. ●●
stack block ●●  on the right: adds the block  centimeters high to the right column, if
it has not already been used.
stack block ●●  on the left: adds the block  centimeters high to the left column, if it
has not already been used.
finish: complete the columns and build the canopy. ●●

Help Tip-Tap complete the shed as planned! (see Fig. 6)

G. Audrito et al.12

Fig. 7 reports the response distribution for the different questions. Question 3 had
the highest number of correct answers. Conversely, question 2 (which was the same as
question 3 for primary school) recorded the highest count of wrong answers. Question
6.3 was the level solved by the lowest number of students.

2.2.3. The Hunt for the Bug

The second phase was scheduled to be held during March 13th, 2024. Each school could
choose the two-hour window for the test at any time during the day, to accommodate

Fig. 6. Second Phase – Lower High School -Question 6.3.

Fig. 7. Second Phase – Response distribution in lower high school.

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students 13

their needs. Few schools asked to have the test on the 12th or 14th due to logistic rea-
sons and were granted this possibility. The online platform used for the test allowed
participants to directly register for the test, using a passphrase given by their teacher.
Their answers in the test were locally saved in the browser’s cache, with Blockly ques-
tions being visualized and scored directly in the browser, so that unreliable connection
with the back-end could not impair the students’ experience. The website would still try
to regularly synchronize the students’ answers with a back-end, leveraging the Google
Firebase development platform. The teacher had also access to a managing dashboard,
were he could see the results of all of its students in real-time, as they were saved in the
Firebase back-end.

The contest operations seemed to proceed smoothly both on the 12th and on the
13th morning. Around noon, a teacher wrote us to report that the results she was see-
ing in the teachers’ dashboard did not match the results the participants were seeing in
their webpage, and were actually consistently lower. We first thought that could be due
to errors from the teachers’ side, or network problems from the school: but with some
interaction we the teacher, thanks to her cooperation, we realised that indeed the result
synchronisation was not working properly. Quickly we realised that this was due to a
misconfiguration in Firebase, that rejected updates above a certain maximum size. That
maximum size was not a problem for classic questions, that can be encoded with few
bytes, but it was relevant for Blockly tasks, for which the whole blockly program was
saved and easily reached the maximum allowed size.

By 1 PM the allowed size was raised, preventing the problem from happening for
the 15% of schools that still had to start the test. However, many schools were affected
severely, as the students’ answers on Blockly tasks were mostly not saved. We imme-
diately gave instruction to the teachers on how they might still recover results through
the browsers’ cache: 30% of schools managed to reconstruct the students’ scores by this
means, and 13% of schools declared that their students were not affected by the bug
(probably because of low results on Blockly tasks). The remaining 42% of schools were
affected by the bug and unable to reconstruct the scores.

This bug was a very unfortunate experience, making it hard to properly select the
best students for the final phase. In order to mitigate its consequences, we opted for
a selection criteria heavily grounded on a per-school basis, since students in a same
school were identically affected by the bug. We admitted the first student of each school,
regardless of his score, and the second student provided he reached a given minimum
score. Given the very good results we obtained in the final phase, we believe that this
mitigation strategy worked reasonably well.

Of course, the bug had an impact on the impression of the contest to the affected
parties. However, the bug did not affect the test experience per se, during which the stu-
dent would obtain the correct feedback from the system and could enjoy the challenge
regardless. From the feedback gathered, we believe that only few of the schools were
significantly unhappy of the experience, with most of them being instead supportive and
understanding.

G. Audrito et al.14

2.3. Third Phase

Since last year the third phase seemed too difficult for primary school students, only
lower high school students participated this year in the third phase. The test consisted
of 4 block programming questions to be solved in 3 hours. Questions were sorted by
increasing difficulty. The problems were the following:

Question 1. Tip-Tap loves chocolate, so he bought himself a chocolate bar made of
 ×  squares. His  farm-mates would also like to eat chocolate, and Tip-Tap is too
good to not give them some! Then, for  times he breaks the tablet into two rectangular
parts, not necessarily equal, and gives one of the two to one of his  companions. At the
end of the process, he will keep the remaining last piece for himself.

The tablet can only be broken along the edges of the squares, horizontally or verti-
cally, so as not to divide any square in two. Furthermore, once a part is broken, it is
immediately taken and eaten by a friend without giving him the opportunity to break it
further. Tip-Tap would like to know how to break the bar  times so that he can keep the
most possible pieces at the end.

You can use these blocks:
width: the current width of the tablet. ●●
height: the current height of the tablet. ●●
companions: the number of companions who still ask for chocolate. ●●
break ●●  squares horizontally: break the tablet horizontally, leaving  rows for a
partner.
break ●●  squares vertically: break the tablet vertically, leaving  columns for a
partner.
finish: eat the remaining chocolate. ●●

Help him break the bar  times while keeping as many squares as possible! (see Fig. 8)

Fig. 8. Third Phase – Question 1.

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students 15

Question 2. The rabbits of the Fibonacci farm have just bought a new very efficient elec-
tric car! They can’t wait to try it, so they organize a test trip to the nearby mountains. The
route they want to take is made up of uphill and downhill sections. Along the route there
are N charging stations where you can stop, at different heights. The car uses one unit
of energy to climb 1 meter in altitude, while it gains one unit of energy by descending 1
meter in altitude, and it does not need energy to advance on flat terrain. Unfortunately,
the machine starts without energy, and to recharge it can wait a minute at one of the
charging stations for each unit of energy it wants to obtain at that point. You can use
these blocks:

N: The length N of the path. ●●
energy: the current amount of energy. ●●
altitude of charging station i: the altitude of the i-th charging station on the route. ●●
advance: continue your journey to the next column, if you have enough energy. ●●
recharge for x minutes: wait x minutes at a charging station to recharge x units of ●●
energy.
finish: turn off the machine. ●●

The rabbits start from charger 1, and must arrive at charger N. Plan the trip to the moun-
tains, ensuring that the car does not stop before arriving! (see Fig. 9)

Question 3. Carol dropped her calculator, and now it doesn’t work as it should! The only
working keys are −, ×, 1 and 2. To use the calculator she is forced to start from either
number 1 or number 2 (by pressing the corresponding key), and apply one of the 4 pos-
sible operations that still work, zero or more times:

subtract 1; ●●
subtract 2; ●●
multiply by 1; ●●
multiply by 2. ●●

Fig. 9. Third Phase – Question 2.

G. Audrito et al.16

To prank his friends, she would like to reach number  on the calculator. How many
operations must be performed at least to achieve this? You can use these blocks:

●● : the number  it wants to reach.
ends in x operations: reports that it is possible to reach the number N in x opera-●●
tions.

Note that you are not asked to reconstruct the operations to be performed: just calculate
the necessary number of operations! (see Fig. 10)

Question 4. The brand new SuperBunny video game is finally on the market! Bunny, the
protagonist of the video game, in each level must overcome  obstacles numbered from
1 to . On each obstacle there are two platforms (at different heights) on which Bunny
can jump: the obstacle number  is made up of a higher platform which is at a height of
i meters, and of a lower platform at a height of i meters.

Bunny starts from the ground at height 0 and must first jump onto obstacle number 1
by choosing one of the two platforms. Once he reaches obstacle 1, he will choose one of
the two platforms of the next obstacle, 2, and jump onto it. The objective of the game is
to overcome all the obstacles in order up to obstacle number . Even though Bunny can
choose which obstacle platform to jump onto each time, not all jumps are the same! In
fact, the bigger the jump, the longer it takes to do it. To jump from the platform at height
 to a platform on the next obstacle at height , Bunny will take an amount of seconds
equal to the absolute difference between  and . The total time taken to complete a level
is the sum of the times taken in each jump. How many seconds does it take for Bunny to
complete the level? You can use these blocks:

●● : the number  of obstacles.
high platform i: the height ●● i of the highest -th platform.
low platform i: the height ●● i of the lowest -th platform.

Fig. 10. Third Phase – Question 3.

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students 17

absolute difference between x and ●● : the absolute difference | − | between 

and .
minimum between x and ●● : the minimum value between two numbers  and .
finish in x time: reports that it is possible to reach the ●● -th obstacle in  time.

Furthermore, if you need it, you will have the possibility to write down a value of your
choice on each platform (see Fig. 11) with these blocks:

high platform i value: the value written on the ●● -th high platform.
low platform i value: the value written on the ●● -th low platform.
set value of high platform i to x: write the value ●●  on the -th high platform.
set value of lower platform i to x: write the value ●●  on the -th lower platform.

79 students from 55 lower high schools participated in the third (and final) phase, of
which 75 obtained a non-zero score. 39 students were awarded: 20 bronze, 11 silver and
8 gold medals. Fig. 12 reports the response distribution for the different questions. The

Fig. 11. Third Phase – Question 4.

Fig. 12. Third Phase – Response distribution.

G. Audrito et al.18

question ordering reflected the number of fully correct answers (10/10 levels done).
Questions 1-2-3 all had a similarly low number of wrong answers, with most students
completing at least some levels. Question 4 was much more difficult, as it required dy-
namic programming for a full solution, which was achieved only by two students.

3. Students and Teachers’ Feedback

After the first phase of this years’ edition, we collected feedback from teachers without
involving students to maximize participation: asking teachers to make a high number of
students fill out questionnaires could have been a barrier to participation. For the second
and third phases of this year’s edition, we instead performed a more systematic evalua-
tion of the students’ and teachers’ feedback. For the second phase, the test was split in the
two parts of program comprehension and coding, and we followed this split during feed-
back collection from students, thus asking the questions separately for the two parts. We
adapted some of the question proposed by MEEGA+KIDS (Gresse von Wangenheim
et al., 2020; Petri et al., 2019), a model to evaluate the quality of educational games used
as instructional strategy for computing education. Participants (both teachers and stu-
dents) were asked to assess their level of agreement with each of the following sentences
using a 5-point Likert scale, ranging from “Strongly disagree” to “Strongly agree”:

Questions were sufficiently clear. S1	
The graphical presentation of the test was enticing. S2	
Using the web platform to answer questions was not cumbersome. S3	
The topics covered were interesting. S4	
Questions were adequately challenging. S5	
Questions were not repetitive and boring. S6	
Students had fun working on the questions. S7	
Solving the test made students feel satisfied. S8	
The things learned from questions were satisfactory. S9	
Students’ results depended on their personal commitment and skill. S10	
I’d recommend others to participate in the future. S11	

Context information was also asked to teachers, to assess the backgrounds and initia-
tives the students had before the tests, including:

List the preparation activities the students had before the second phase test. C1	
Detail whether the second phase bug impacted the scores of your students. C2	

The information above described was collected in order to measure:
The impact of various preparatory activities on students’ results. RQ1	
The correlation between the teachers’ impressions on their students and direct RQ2	
students’ feedback.
The impact of the bug on students’ satisfaction metrics. RQ3	
The difference between the program comprehension and coding sections in sat-RQ4	
isfaction metrics.
Which factors are more decisive on the students’ satisfaction. RQ5	
Which factors are more decisive on the intention to recommend participation. RQ6	

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students 19

We focus our research on the second phase in lower high school, for which we have
an almost complete feedback. Many students and teachers in primary schools did not
give feedback, and that could sway the distribution of results. For questions considering
students’ results, we restrict only to the 58% of schools that were not affected by the bug
or could reconstruct the scores, excluding the 42% of schools with unreliable scores.

3.1. Overall Results

Table 1 summarises the overall feedback gathered. We received feedback from 920 stu-
dents out of the 1300 participating (71%), and 56 teachers out of the 66 participating
(85%). Out of them, 445 students and 32 teachers come from schools able to handle the
bug. For all questions, the standard deviation of responses was low, as most respondents
gave intermediate agreement to most questions (neither agree nor disagree). The overall
feeling was slightly more positive than negative for students (with an average score of
about 3.2), and more decidedly positive for teachers (with an average score of about
3.6). Still, the results suggest that there is margin for improvement in future editions. It is
worth mentioning that the best scores were seen in questions S6, S3, S10 for students, S2
and S4 for teachers. This suggests that the platform was effective, and that the novelty
of tasks and their appropriateness to test students’ skills were widely recognised. Indeed,
also by looking at individual suggestions from participants, the main source for discon-
tent was task difficulty, perceived too high by a good fraction of participants.

On the 14th of May we streamed, using YouTube, the Awards Cerimony4 that in-
cluded also some video contributions by participants.

4	 Available at: https://www.youtube.com/watch?v=sNhQy4MW5zk

Table 1
Summary of the feedback collected, by scoring agreement from 1 (strongly disagree) to 5 (strong-

ly agree). Students’ feedback is split for test part A (program comprehension) and B (coding)

students (A) students (B) teachers
mean st.dev mean st.dev mean st.dev

S1 2.76 1.01 2.61 1.12 3.14 0.86
S2 3.31 1.15 3.31 1.18 3.91 0.80
S3 3.41 1.27 3.41 1.27 3.92 0.88
S4 2.83 1.13 2.87 1.15 3.96 0.90
S5 3.22 1.08 3.15 1.12 3.00 1.22
S6 3.42 1.15 3.25 1.17 4.16 0.88
S7 3.04 1.19 3.01 1.20 3.27 1.14
S8 3.39 1.25 3.37 1.23 3.23 1.09
S9 3.28 1.15 3.23 1.13 3.78 0.98
S10 3.73 1.09 3.59 1.17 3.23 1.09
S11 3.17 1.22 3.17 1.22 3.71 1.04

TOT 3.23 0.72 3.18 0.79 3.57 0.73

G. Audrito et al.20

3.2. Research Questions

We analysed the correlation matrix between all gathered questions, in order to answer
RQ1–RQ6. A detailed report follows for each item.

3.2.1. Impact of Preparatory Activities

To assess RQ1, we measured the correlation between the main preparatory activities gath-
ered in C1 and students’ scores, for the 445 students with scores unaffected by the bug.
The four main preparatory activities performed were:

Blockly-based training classes. 1.	
Scratch-based training classes. 2.	
Students’ trying to solve the demo contest we prepared. 3.	
Teachers’ explaining the solution of the demo contest we prepared. 4.	

Unfortunately, the correlation of scores with the preparatory activities turned out to
be not statistically significant (ranging from −0.02 to 0.11). We believe, however, that
this might be a consequence of the feedback gathering method used, and possibly of the
bug swaying results. For the future, we plan to investigate further details about prepara-
tion activities (to estimate how long they prepared for and whether they had done other
activities, courses, etc.).

3.2.2. Correlation between Students and Teachers Impressions

To assess RQ2, we considered all 920 feedbacks and looked at the correlation between
questions S1–S11 asked to students and to teachers. These correlations were very low,
ranging from −0.03 to 0.11: this suggests that teachers’ feedback is not a good predictor
of students’ feedback.

3.2.3. Impact of the Bug on Student Satisfaction

The impact of the bug on students’ satisfaction (RQ3) was also not particularly relevant:
correlation with questions S1-S11 ranged from −0.02 to 0.11. This is probably due to
the fact that feedback from students was gathered at the end of the test, and the students’
experience during the contest was not affected by the bug. Most students learned about
the bug much later, and that might have had an effect on feedback only if feedback was
collected later in time.

3.2.4. Difference between Program Comprehension and Coding

The correlation between answers from students on test part A and B (RQ4) was, instead,
very strong. It ranged from a minimum of 0.56 (for question S5) to a maximum of 0.69
(for questions S4, S8, S9, S10). Apparently, the students were not able to differentiate
their experience on the two parts of the test, suggesting that they were balanced enough
in their main qualities.

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students 21

3.2.5. Main Factors for Students’ Satisfaction

To assess RQ5, we considered as main satisfaction metrics the answers to questions
S6, S7, S8, S9. As main candidate factors for affecting students’ satisfaction, we con-
sidered their results, personal interest (S4) or presentation (S1, S2, S3). The correla-
tion with results turned out to be unexpectedly low, ranging from 0.06 (S6 for part B)
to 0.13 (S7-S8 for part A). The strongest correlation was with students’ interest (S4),
ranging from 0.27 to 0.54 for the various pairs for questions, with an average correla-
tion of 0.43. A lower but still meaningful correlation was registered with presentation,
ranging from 0.21 to 0.48 for the various pairs of questions, with an average correla-
tion of 0.36.

3.2.6. Main Factors for Recommending Participation

To assess RQ6, we first excluded students’ scores and having experienced the bug as
main factors, since those had very low correlations (from −006to 009) with the in-
tention of recommending participation (S11). We then looked at the correlations with
every other question asked, for both students’ and teachers’ (see Table 2). The correla-
tions were all quite strong, but personal interest (S4) stands out as the best predictor
for S11, with satisfaction (S7, S8, S9) following closely. Given that personal interest
also has a very high correlation with satisfaction, it seems likely that it could be the
main cause for S11 as well. It is worth mentioning that even though S6 (boringness)
is also a measure of satisfaction, it had much lower correlation with S11. This may be
caused by the fact that S6 had the highest scores overall, getting good agreement also
for students which didn’t engage with the test. We also remark that the correlation was
lowest with S3 (probably also because of its higher scores overall), and with S1 and
S2 for teachers.

3.3. Lessons Learned

The feedback gathered mostly confirmed the choice of the new test structure and web
platform design, which we plan to keep for the upcoming year. The overall satisfaction
scores could still be improved, with one of the main causes being the perceived dif-
ficulty of tasks. However, given that this is a second phase for a selected audience, we
do not plan to lower the difficulty of the tasks: instead, we plan to instruct teachers to

Table 2
Correlation of other questions with recommending participation (S11)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

students (part A) 0.42 0.44 0.29 0.52 0.28 0.35 0.47 0.38 0.45 0.32
students (part B) 0.40 0.50 0.29 0.46 0.35 0.40 0.52 0.45 0.53 0.37
teachers 0.20 0.09 0.29 0.57 0.53 0.40 0.57 0.53 0.42 0.40

G. Audrito et al.22

administer the test to fewer students, trying to restrict to only those truly interested and
with the necessary skills to enjoy the test. In fact, this year the percentage of partici-
pants passed from phase 1 to phase 2 was particularly high (32%), with respect to the
percentage from phase 2 to phase 3 (4%) and similar percentages last year (11% and
5%). Since participating schools handle the first round of selection autonomously, we
can only suggest a course of action to teachers, but how to implement it is ultimately
up to them. We reckoned that there is a widespread will from teachers to include as
much people as possible in all phases of the competition. Next year, we will try to man-
age this impulse by clarifying that the second phase is only intended for the very best
students of a school, and suggesting to use this phase as a guided class activity for the
other students, with the teacher helping them in solving the tasks. We will also require
a higher level of commitment for participation in the second phase, asking each student
to register to our website in order to participate (this year, registration was required
only for the third phase).

4. Conclusions

The Giochi di Fibonacci is a programming contest for upper primary and lower sec-
ondary students, structured to foster computational thinking and programming skills
across separate age groups. In its inaugural edition last year, the contest was organized
into three distinct stages. The first stage focused exclusively on logical and algorithmic
quizzes akin to those found in Bebras, while the subsequent stages required participants
to code, either in Scratch or in a simplified pseudo-code environment specifically devel-
oped for the competition.

This year, in the second edition, we improved the structure of the contest mainly
by swapping Scratch for an integrated Blockly module, smoothing the user experience.
Unfortunately, as detailed in Section 2.2.3, this also added a significant bug in the sec-
ond stage.

Overall, the mostly positive feedback received largely supported our decision to
adopt the new test format and web platform design, which we intend to maintain for
the next year. While there is room to improve overall satisfaction ratings, the primary
concern was the tasks’ perceived difficulty. However, since this was a second phase
intended for a selected group, we do not anticipate reducing the task difficulty. Instead,
we aim to guide teachers to limit the number of students taking the test, focusing on
those who are genuinely interested and possess the requisite skills to appreciate the
challenge.

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students 23

References

Audrito, G., Ciobanu, M., Laura, L. (2023). Giochi di Fibonacci: Competitive programming for young students.
Olympiads in Informatics, 17, 19–31.

Audrito, G., Di Luigi, W., Laura, L., Morassutto, E., Ostuni, D., et al. (2021). The Italian Job: Moving (Mas-
sively) Online a National Olympiad”. Olympiads in Informatics, 15, 3–12.

Combéfis, S., Gytautas Beresnevičius, G., Dagienė, V. (2016). Learning programming through games and con-
tests: Overview, characterisation and discussion. Olympiads in Informatics, 10.1, 39–60.

Dagienė, V. (2008). The BEBRAS contest on informatics and computer literacy–students drive to science edu-
cation. In: Joint Open and Working IFIP Conference. ICT and Learning for the Net Generation, Kuala
Lumpur, pp. 214–223.

Dagienė, V., Jevsikova, T., Stupurienė, G. (2019). Introducing informatics in primary education: curriculum and
teachers’ perspectives. In: Informatics in Schools. New Ideas in School Informatics: 12th International Con-
ference on Informatics in Schools: Situation, Evolution, and Perspectives, ISSEP 2019, Larnaca, Cyprus,
November 18–20, 2019, Proceedings 12. Springer, pp. 83–94.

Dagienė, V., Jevsikova, T., Stupurienė, G., Juškevičienė, A. (2022). Teaching computational thinking in primary
schools: Worldwide trends and teachers’ attitudes”. In: Computer Science and Information Systems 19.1,
pp. 1–24.

Dolinsky, M.S. (2022). Primary School Programming Olympiads in Gomel Region (Belarus). Olympiads of
Informatics, 16, 107–123.

Fagerlund, J., H¨akkinen, P., Vesisenaho, M., Viiri, J. (2020). Assessing 4th grade students’ computational think-
ing through Scratch programming projects. Informatics in Education, 19(4).

Kanemune, S., Shirai, S., Tani, T. (2017). Informatics and programming education at primary and secondary
schools in Japan. Olympiads in Informatics, 11, 143–150.

Petri, G., Gresse von Wangenheim, C., Ferreti Borgatto, A. (2019). MEEGA+, Systematic Model to Evaluate
Educational Games. In: Encyclopedia of Computer Graphics and Games. Ed. by Newton Lee. Springer.

Pluhár, Z. (2021). Extending computational thinking activities. Olympiads in Informatics, 15, 83–89.
Souza, I.ML, Andrade, W.L, Sampaio, L.MR, Souto O Araujo, A.L. (2018). A Systematic Review on the use of

LEGO® Robotics in Education. In: 2018 IEEE Frontiers in Education Conference (FIE). IEEE, pp. 1–9.
der Vegt, W.V. (2016). Bridging the Gap between Bebras and Olympiad: Experiences from the Netherlands.

Olympiads in Informatics, 10, 223–230.
Gresse von Wangenheim, C., Petri, G., Ferreti Borgatto, A. (2020). MEEGA+KIDS: A Model for the Evaluation

of Games for Computing Education in Secondary School. In: RENOTE (2020).
https://api.semanticscholar.org/CorpusID:225504503

G. Audrito et al.24

G. Audrito is involved in the training of the Italian team for the IOI
since 2006, and since 2013 is the team leader of the Italian team. Since
2014, he has been coordinating the scientific preparation of the OIS
and of the first edition of the IIOT. He got a Ph.D. in Mathematics in
the University of Turin, and currently works as a Junior Lecturer in the
University of Turin.

S. Capecchi received the M.Sc. degree in Computer Science at the
University of Florence in 2002 and a Ph.D. in Computer Science (2003
2006) at the Department of Computer Science, University of Florence.
She currently works as a assistant professsor in the University of Tu-
rin. Her main research interests include computer science education.

M.G. Ciobanu is involved in Italian Olympiads in Informatics since
2009. She got a Ph.D in Computer Science in the University of Sal-
erno, and in addition to being a high school teacher and also a research
fellow in the University of Salerno.

L. Laura is currently the president of the organizing committee of the
Italian Olympiads in Informatics that he joined in 2012; previously,
since 2007, he was involved in the training of the Italian team for the
IOI. He is Associate Professor of Theoretical Computer Science in
Uninettuno university.

Olympiads in Informatics, 2024, Vol. 18, 25–32
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.02

25

Popularizing Science and Science Competitions

Mohammad KAYKOBAD
Department of Computer Science and Engineering
BRAC University, 66 Mohakhali
Dhaka-1212, Bangladesh
Fellow, Bangladesh Academy of Sciences
e-mail: kaykobad@bracu.ac.bd

Abstract. This positional paper addresses the fact that while the present civilization is the out-
come of hard labor of scientists and engineers, our society appears to fall behind in ensuring
continuity of scientific endeavor through providing knowledge workers sufficient incentives for
their sleepless nights and unselfish commitment to science and technology and to mankind. In
this article we emphasize necessity of science and popularizing it to science students, scientific
workers and common mass through innovative competitions and dissemination through mass
media. This will keep young people with aptitude in science involved in the education of sci-
ence and technology and thus help sustainable development of civilization through science and
technology.

Keywords: science education, competition.

1. Introduction

This is not a research paper and it expresses personal opinions of the authors gained
from experiences in science work, science education, science competitions and other
events. Scientists and engineers have been playing significant role in creating the civi-
lization of the present day from those of ancient times, when human beings could not
establish their superiority over other species. Nevertheless, it does not appear that our
society is yet ready to recognize duly the hard work knowledge workers put together
to create a better world for all of us. Ease of life and societal recognition do not appear
to be for these dedicated souls that work so hard to discover the truth of Nature and
utilize it to the benefit of mankind. Even then each branch of science and technology is
fathomed, new branches are created by the scientists and engineers although they are
not as much recognized as workers of other fields of walk. It is now becoming more
and more difficult for new comers to extend the horizon of any branch of science and
technology.

M. Kaykobad26

In the early 2000s Lyman and Varian (Lyman and Varian, 2003) of UC Berkeley es-
timated that total amount of new information stored annually on different media double
approximately every three years, whereas the IDC’s (International Data Corporation)
(Gantz and Reinsel, 2012) regular updates of “Digital Universe” suggests that digital
universe is doubling in size every two years. Moreover, the data generated worldwide
was projected to grow from 33 zettabytes in 2018 to an estimated 175 zettabytes by
2025. IDC projects (IDC Study, 2020) that by 2020 the digital universe will reach 40
zettabytes (ZB), which is 40 trillion GB of data, or 5,200 GB of data for every person on
Earth. This amount exceeds previous forecasts by 5 ZBs, resulting in a 50-fold growth
from the beginning of 2010.

So it is clear that for processing so much of information we need many dedicat-
ed brilliant souls to work in many different fields and in their still greater number of
intersections. Never ever human civilization faced a situation where it needed more
knowledge workers than now. But unfortunately leaders of civilization do not seem to
be appreciative of the need of development of science and technology for the civiliza-
tion to sustain and prosper. This era has become a lot too much market oriented with
commitment and dedication being replaced by market economy. Chat-GPT suggests
that globalization and competition, funding cuts and financial pressures and increased
emphasis on employability are the main factors driving education to market orienta-
tion. While there are potential benefits like responsiveness to labor market, innovation
and efficiency and diversity of options there are concerns as well like narrowing of
educational goals, inequality and commercialization of education. This has resulted in
our bright students with praiseworthy aptitude in physics, chemistry, mathematics and
other branches of science and technology opting for education in other branches that
they did not pursue their education in only because now opportunities in those branches
have been too much for them to take their eyes away and stick to the field they have
proven capability and aptitude in. The society seems to have lost its grip to ensure its
own survival and enrichment. However, responsibility of this self-destruction of the
society should not only be borne by the overall leaders of the society, it will also lie
on the shoulders of knowledge workers who are failing to convince the society of their
usefulness for the survival of the civilization.

No field of human endeavors can be neglected even the least recognized, least ap-
preciated, sufficiently ignored field like science and technology at least since without it
no other field of human endeavors can survive not to speak of excel.

We know sports and entertainment are very popular in our society of homo sapiens,
be it very brutal event like wrestling, boxing or Spanish style bull fighting (corrida de
toros) although we are supposed to excel over other species especially in our brain
power and not necessarily on our brutal power or strength. A sportsman of the high-
est order of popularity, say in football, is appreciated and awarded by our society with
a sum of some 100 million Euro at the age of thirty (Rudling, 2024). Similar figures
(Forbes, 2023; Wilson, 2024; Medium, 2024) can be found in tennis, golf, boxing and
other sports. There are hundreds of the highest achievers in science and technology who
are recognized for their achievement by Nobel Prizes only at the flag end of their life,
when these earthly awards could hardly add to any enjoyment. Commitment of science

Popularizing Science and Science Competitions 27

workers/educationists can hardly be exaggerated and the society seems to be indiffer-
ent to it. Can this difference in recognition be logically established? Dr Haim Ginott
(Ginott, 1972) once rightly phrased, “Teachers are expected to reach unattainable goals
with inadequate tools. The miracle is that at times they accomplish this impossible
task.” And recognition of these committed efforts by the society has been well spelled
out by Evan Esar (Esar, n.d.) in the following statement “America believes in educa-
tion: the average professor earns more money in a year than a professional athlete earns
in a whole week.” While ordinary people may fail to appreciate the necessity of science
and technology for the progress of mankind should the leaders follow the footsteps of
the popular trends or they should come forward to save humanity by appreciating the
feat and encouraging knowledge workers?

2. What is Wrong?

In no case should popularity be the only consideration for degree of appreciation or
recognition. The need of civilization, its priority should also be addressed for our sur-
vival. However, at the same time academicians have immeasurably failed to play their
role in creating due appreciation of the society for knowledge works. In fact, can we
confidently say that science has become popular among science students and science
workers? Could we be confident that the best student in physics would prefer associa-
tion of a renowned scientist than that of a well-known entertainer? If the words physics
and scientist are replaced by corresponding entities of entertainment or sports would
there be any doubt in the answer to the question? So we have to address the problem
of making science events popular among science students at least as popular as enter-
tainment or sports are popular to them. So far we have failed to do so. Let me give an
example. Before 2010 in IOI (IOI, 2010) we the leaders and deputy leaders did not
have clue as to the performance of our teams. Possibly even contestants did not know
much about performance of other competitors. For the first time, in IOI’2010 held at the
University of Waterloo there was something for the observers waiting outside for long
5 hours about performance of their team members. Whereas in sports performance of
contestants are not only known to contestants but also to spectators for their enjoyment.
Our inability of making the science-based contests more entertaining to spectators has
resulted in making it difficult to organize science events due to absence of sponsorship
even from technology-driven companies who would prefer spending their money to ar-
eas other than science. Science exhibitions and science week events appear much more
thrilling for students with the presence of an entertainer or sportsman and not with the
presence of a scientist. Students and young people, who will be earning their livelihood
in the name of science, find sports people and entertainers more attractive than people
who excel in their own professions. This has resulted not because these young people
have wrong attitude rather because the whole society has been ignoring science work-
ers to a level that it is extremely difficult to imagine that knowledge workers could
be role models for young people. Scientists are often recognized at the national level
with medals that possibly may not have any monetary value, although we do not fail

M. Kaykobad28

to recognize best cooks or even pickle makers with sizable cash prizes, as we do to ac-
complishment in other non-academic fields. It seems society feels scientists are priests,
should be happy with fragrance less flowers and do not have any earthly needs to fulfill
whereas achievers of any other field should be worshipped with flowers of fragrance
and excessive money.

Popularity of sports is drawn from the fact that good performance is profusely re-
warded. Performance is recorded, analyzed and grouped in many ways for the consump-
tion of common people, and internet is overburdened with statistics of excessive orders.
The information is readily available to people of all strata. Moreover, quiz competitions
are organized that force these statistics and facts to be memorized by young people.
Good performances in sports is so adequately rewarded that in a flash of a second the
achiever becomes a hero and popular among common mass. The same is not true in
case of academic competitions. We have not been able to popularize academic competi-
tions even in the academia. I cannot be sure whether in any country we have recorded
feats of meritorious students excelling in public examinations. Say in Bangladesh we
used to evaluate exam papers on physics, mathematics or any other subject of our post
grade 10 public examinations for some forty years. Nobody knows even the maximum
marks obtained in a subject where some 200,000 to nearly 2 million students sat for the
exam not to speak of other records. The students, who obtained highest marks during
the 40 year period of exams in each year, are definitely gifted with praiseworthy apti-
tude in the relevant subject. Unfortunately examination authorities failed to appreciate
the feat, and failed to inspire other students with this feat and possibly failed to create
challenge in young people to beat the records. This feat in academic competitions is a
lot more reliable than that in any other field where degree of uncertainty is much more
than that in any conceivable academic competitions. For example, in a game like cricket
a good batsman can score a double century in the first innings followed by a duck in
the second one. Such variation is inconceivable in education. In sports like cricket we
talk about records in the second innings or that of the 4th wicket. Can we imagine the
corresponding statistics in the academic field? How many universities and departments
having world class reputation can claim to have records of performance of students in
various disciplines and in different combinations? Recently in the age of IT, ACM ICPC
(baylor.edu, n.d.) is finding it extremely difficult to find names of teams that excelled or
became world champions in early days of this competition – that too not of distant old
days but as recent as 1978. We have immeasurably failed in recording the list of world
champions. Can we name a form of sports in which we have failed to record the names?
We have invented information technology and failed immeasurably to use this technol-
ogy to the benefit and flourishing of our field, whereas people of other fields are using it
to their advantage.

3. What is to be Done?

Sports organizers and people in entertainment are highly successful in popularizing their
events amongst common mass. However, involvement of large sums of money contrib-

Popularizing Science and Science Competitions 29

utes to its popularity. If football and cricket players would have received 100 times less
money than they are getting now these events would have lost its glamour, and would
not have received this much popularity. If winning Wimbledon title is a feat that can be
recognized by giving a prize money of over two million pounds (Wimbledon, 2023),
how much should the winning team of ACM ICPC or the champion of IOI team receive?
Is the later a lesser feat than the former one? In cricket even cracking a board placed
out of the field by a flying ball is rewarded with monetary prizes. Organizers of games
and entertainment programs are very successful in attracting CEOs of large enterprises
to perform their corporate social responsibility through promoting and sponsoring their
events. Academic administrators should also be able to inspire and convince knowl-
edgeable CEOs to invest their resources towards academic events like Olympiads, pro-
gramming contests and other events that will sharpen and enrich skill of young people
that will move the civilization forward. Personalities like Alfred Nobel (Nobel Prize)
(nobelprize.org, n.d.) and John Charles Fields (Field’s medal) (Wikipedia, 2024) have
done it. Recently Clay Mathematics Institute initiated Millennium award, and the result
was immediately visible. The Russian mathematician Grigorii Perelman (Clay Math-
ematics Institute, 2024) solved the long standing Poincare Conjecture, although opted
out of taking million dollar prize money possibly expressing sheer unhappiness against
the indifferent attitude of the society to academic feats. In the past different scientific
societies used to inspire academic and research excellence, if properly motivated, lead-
ership of industries will come forward to help promote academic events. In order to
arouse interest of the common mass events around these academic activities should be
publicized over all possible media both electronic and printing. Moreover, interesting
statistics related to these events should be made easily available to concerned people as
sporting statistics are.

4. Events around Academic Activities

So if we want academic events to gain popularity we must create events around it. For
example, International Collegiate Programming Contest was first televised at Stock-
holm creating a lot of thrill as to which teams are getting winning positions. First so-
lution of a particular problem was awarded. In this way fastest solution time can also
be awarded. Once upon a time it was difficult to believe that common people will be
watching as boring a mental sport as chess is. Fortunately, even this sport with insignifi-
cant body movement could be made popular by televising it. Academic competitions
should be opened for public enjoyment without first taking it for granted that there will
be no interest among common mass to these mentally seriously involved games. Olym-
piads and programming contests should be publicized in mass media to attract attention
of common mass so that they can appreciate commendable aptitudes of contestants in
these events. International Olympiad in Informatics, International Physics Olympiad,
International Mathematics Olympiad should be shown on TVs to inspire young people
and find their heroes in the winners of these prestigious events. Achievements in this

M. Kaykobad30

area should be duly recognized and rewarded to inspire young people’s interest in apti-
tude and skill building. Leaders and enthusiasts of programming contests had to survive
the ignorance of the results of International Olympiad in Informatics until IOI2010
organizers decided in favor of spectators and made a scoreboard available for them in
the same spirit as it is being done in ICPC World Finals. I am sure it was enjoyable to
well-wishers of programming contests. How can a game be played with both spectators
and players kept in complete darkness as to the results? We should begin to think how
excellence in all our academic activities can be enjoyed not only by people of the field
but by people at large.

5. Conclusion

Human beings are supreme among all creatures not because they have superior organs
like legs, arms, body, ears or eyes. In fact we do not have any superiority in these
limbs. Usain Bolt will find himself in hopeless condition running a race against a fe-
verish leopard, nor the strongest of human beings will be comparable to an elephant
in strength. Human beings are superior in their brain power to any other animal on
earth. For development of each limb we need to do exercise. This is also true in case
of development of brain for which exercise is thinking for solving problems. While
exercise can only improve capacity of each of our organs only by a finite times say
2, 3 or 4, capacity of brain power can be improved a thousand fold. For a country
like Bangladesh the only surplus is population which can be developed into human
resources through exercise of their brains. This can be cost effectively done with the
introduction of healthy competitions with lucrative prize money to attract the young
people of the country.

We must find ways and means to bring academic competitions to common mass,
arouse their interest in these competitions and possibly make all sorts of statistics avail-
able especially to young people in order to create avenues for them to excel in their
knowledge. We should look for support of mass media so that information of academic
events gain popularity in our society, and achievers get a better visibility in our society
and the future generation does not opt for other areas of activities whence they have the
required aptitude and due recognition in the society. Leaders of our nations should be
convinced of the usefulness of duly recognizing scientific feats and adequately reward-
ing them so that science and technology are not thought of as neglected areas of human
endeavors.

This paper is attempting to initiate a discussion on the matter that there must be very
lucrative incentives for science workers to pursue science. Knowledge in every field
of science is growing exponentially. Possibly 2000 years back the whole knowledge
of physics could have been packed in a single volume. Now it will require a thousand
volume, and a science worker with a limited longevity will have to surf in a vast ocean
of knowledge to find avenues for its progress, if he is at all lucky to find. Should not we
make science working full of incentives for young people to pursue?

Popularizing Science and Science Competitions 31

References

Lyman P., Varian, H.R. (2003). How Much Information, 2003. Technical report, UC Berkeley. Retrieved at
Retrieved at 28 May, 2024. https://www.ischool.berkeley.edu/research/publications/2003/
how-much-information-2003

Gantz, J., Reinsel, D. (2012). The Digital Universe in 2020: Big Data, Bigger Digital Shadows and Biggest
Growth in the Far East. Retrieved at 10 April 2024. https://www.cs.princeton.edu/courses/ar-
chive/spring13/cos598C/idc-the-digital-universe-in-2020.pdf

IDC Study (2020). IDC Study: Digital Universe in 2020. Retrieved at 10 April 2024.
https://www.kdnuggets.com/2012/12/idc-digital-universe-2020.html

Rudling, M. (2024). 15 Highest-paid Footballers in the World in 2024. Retrieved at Retrieved at 28 May, 2024.
https://squaremile.com/sport/highest-paid-football-players/

Forbes (2023). The World’s Highest-Paid Tennis Players 2023. Retrieved at Retrieved at 28 May, 2024.
https://www.forbes.com/sites/brettknight/2023/08/25/the-worlds-highest-paid-ten-

nis-players-2023/?sh=1fd8aecc6956
Wilson, J. (2024). Highest Paid Golf Players of all Time: PGA Tour Money list. Retrieved at Retrieved at 28

May, 2024.
https://www.radiotimes.com/tv/sport/golf/highest-paid-golf-players-all-time/

Medium (2024). The Top 10 Highest Paid and Richest Boxers in the World. Retrieved at 10 April, 2024.
https://medium.com/@filipinoonlinesportsbook/the-top-10-highest-paid-and-richest-

boxers-in-the-world-f54284e5d903
Ginott, H.G. (1972). Teacher and Child: A Book for Parents and Teachers. New York, Macmillan, p. 15. Re-

trieved at 29 May, 2024. https://wist.info/ginott-haim/67256/
Esar, E. (n.d.). Quotations by Author: Evan Esar (1899–1995). Quotations Page. Retrieved at 28 May, 2024.

http://www.quotationspage.com/quotes/Evan_Esar
IOI (2010). IOI’2010, Waterloo, Ontario, Canada, The 22nd International Olympiad in Informatics, August

14–21. University of Waterloo. Retrieved at 28 May, 2024. http://www.ioi2010.org/
baylor.edu (n.d.). Retrieved at 10 April, 2024.

http://cm.baylor.edu/ICPCWiki/Wiki.jsp?page=History

Wimbledon (2023). The Championships, Wimbledon, 2023 Prize Money. Retrieved at 29 May, 2024.
https://www.wimbledon.com/pdf/The_Championships_2023_Prize%20Money.pdf

nobelprize.org (n.d.). The Nobel Prize. Retrieved at 29 May, 2024. http://www.nobelprize.org/
Wikipedia (2024). Fields Medal. Retrieved at 29 May, 2024.

http://en.wikipedia.org/wiki/Fields_Medal

Clay Mathematics Institute (2024). The Millennium Prize Problems: Solved problems: Poincaré Conjecture.
Retrieved at 29 May, 2024. https://www.claymath.org/millennium-problems/

M. Kaykobad32

M. Kaykobad – is one of the pioneers of introducing Mathematics
Olympiad, Informatics Olympiad and Science Olympiad in Bangla-
desh. He is also one of the pioneers of ACM ICPC having brought
his team to the world finals for the 20 years. He is a distinguished
professor of CSE Department of BRAC University. He is a Fellow of
Bangladesh Academy of Sciences (BAS). He regularly writes science
and education popularizing columns in popular daily newspapers of
the country. He was awarded the BAS Gold medal for his excellence
in research by the Prime Minister of the country and a Gold medal by
the President of the country for his contribution to the culture of pro-
gramming contest in the country. He also received Outstanding coach
award at Honolulu, Hawaii in 2002, senior coach award at Warsaw,
Poland in 2013 and ICPC Foundation life-time coach award in 2019
at Porto, Portugal. Dr Kaykobad has been able to inspire many of his
undergraduate students to publish their research findings in interna-
tional journals of repute. M. Kaykobad completed his PhD in 1986 in
the fields of computational complexity from The Flinders University
of South Australia. He has two Master’s degree – one from Odessa
State Maritime University, Ukraine, and the other from Asian Institute
of Technology, Bangkok, Thailand.

Olympiads in Informatics, 2024, Vol. 18, 33–50
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.03

33

Trends on Returning Contestants and Geography at
the International Olympiad in Informatics

Ethan LEE1, Tymofii REIZIN2, Farrell Eldrian WU3, Filbert Ephraim WU4

1Stanford University, Stanford, California, United States of America
2Charles University, Prague, Czechia
3Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
4Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
e-mail: eth127@stanford.edu, timreizin@gmail.com, farrellw@mit.edu, filbertw@mit.edu

Abstract. In this paper, we conduct several statistical analyses of IOI 2011 to 2023 performance
data, with a focus on tracking returning contestants and identifying geographic trends. This pa-
per identifies several properties of IOI performance data, such that it has strong internal validity
while still being subject to random noise. Visualizations are presented throughout to aid the IOI
community’s understanding of students’ competitive programming progress. Afterwards, the geo-
graphical analysis shows that countries’ IOI performance is correlated to demographic indicators
such as population and the Human Development Index. It is, however, more strongly related to
competitive programming interest in the country.

Keywords: global talent development, computer science education, academic competitions.

1. Introduction and Background

A. Background on the International Olympiad in Informatics

The International Olympiad in Informatics (IOI) is an annual algorithmic program-
ming competition over eighty countries involved around the world. Based on a local
selection process (often a series of competitions and training camps), each country
sends a team of up to four pre-collegiate students to the IOI. At the competition, con-
testants are to attempt six algorithmic tasks, presented in the format of two competi-
tion days featuring three tasks each day, typically with one excursion day in between,
and with each competition day lasting five hours. The current format, consistent from
IOI 2011 until now, weighs each problem equally with a full score of 100 points, for a
total of 600 points. Medals are then awarded to approximately one-half of all contes-
tants, with gold, silver, and bronze medals awarded in an approximate ratio of 1:2:3.
(IOI Regulations)

E. Lee et al.34

As a long-running international event, the IOI has substantial recognition as a venue
to identify and develop pre-collegiate students’ skills in computer science, with a focus
on programming skills and algorithmic problem-solving. (IOI Syllabus) In many coun-
tries, the local competitions and training programs leading up to the IOI is seen as a
major, and sometimes, the primary opportunity for high school students to explore com-
puter science and related subjects. Numerous universities around the world also consider
IOI results in their admissions, scholarship, and course placement processes. Therefore,
it is of substantial interest to improve the IOI community’s collective understanding of
the dynamics of IOI results on a global scale.

The “International Olympiad in Informatics—Statistics” website stores IOI competi-
tion data ever since the contest’s inception in 1989. The available data is extensive: for
competitions starting 2010, the website provides the score for each contestant for each
competition task, with contestants’ results over multiple IOIs are linked through a per-
sonal profile page and a time-indexed “Past Participations” graphic showing progress
over the past IOIs of all the contestants at a particular IOI. Other performance-related
data such as a contestant’s total score, medal, rank, and percentile are also provided,
together with the gold/silver/bronze medal cutoffs at each year. Altogether, the histori-
cal IOI results provide a starting point for statistical analysis and data visualizations,
towards yielding insights on contestants’ IOI performance trajectories and countries’
aggregate IOI performance.

B. Research Questions

This paper focuses on exploratory data analysis, particularly on returning contestants’
performance over time and aggregate per-country performance.

For the returning contestant analysis, the objective is to broadly seek an understand-
ing of the overall “IOI experience” of a multiple-time contestant, which in turn uncov-
ers salient insights on the educational role of the IOI in developing talent in computer
science. The primary statistical instrument in this analysis is the difference between a
single contestant’s performance in two consecutive IOIs, aggregated in different ways.
This statistic is then analyzed using statistical techniques such as regression analysis to
investigate and visualize different trends.

For the country comparison analysis, the objective is to showcase geographic trends
in IOI results by identifying a range of indicators that correlate to a country’s IOI perfor-
mance, with the goal of better understanding the global landscape of advanced computer
science education. In this analysis, we focus on the aggregate performance of a country
over a decade-long period spanning 2011 to 2023 which is then regressed on a specific
set of indicators and categorized by geographic region.

C. Data Processing Procedures

In this section, we describe the data processing produces used in the paper’s analysis,
which are aimed to reduce statistical noise caused by inherent variations in the IOI while

Trends on Returning Contestants and Geography in the International ... 35

maintaining having sufficiently relevant data for a meaningful analysis. There are two
aspects to this: first, subsetting the data, and second, calculating a standardized measure
of contestant performance.

Our analysis uses IOI result data starting from 2011, for data reliability purposes.
This is shortly after the IOI adapted its current “subtask” partial credit structure for most
tasks. Before then, there were concerns regarding the reliability of the IOI’s partial credit
system of the IOI (Verhoeff, 2006); the change in partial credit format can have effects
on the overall distribution of IOI results due to different contestant approaches. The 2011
competition is also right after the IOI started publishing complete scores for all contes-
tants rather than only the medalists. (The 2009 and 2010 IOIs also had an experimental
8-problem rather than 6-problem format.) For the country analysis, specifically, we only
analyze with at least half participation over the IOIs from 2011 to 2023, as average per-
formance metrics can be skewed by incomplete IOI teams.

As for contestant performance, we develop a scaled metric designed for consistency
in interpretation across years, due to limitations in the comparability of the numerical
IOI score (out of 600) across years. Specifically, using the numerical IOI score is ex-
tremely susceptible to changes in the contest’s difficulty and subtask structure. While the
percentile ranking properly adjusts for difficulty, this metric is still sensitive to changes
in the shape of the distribution of scores and does not distinguish between performance
at the highest levels. (In 2023, for example, the entire gold medalist range, spanning over
200 points, spans fewer than ten percentile points.)

To alleviate the above concerns, we calculate a “scaled score” that is a piecewise
linear interpolation. In our scale, we use a piecewise linear mapping where the lowest
score is mapped to 0, the highest score is mapped to 6, and the bronze, silver, and gold
cutoffs are mapped to 2, 3, and 4, respectively. This mapping can be interpreted as a
reference to an “ideal IOI” where the bronze, silver, and gold cutoffs are at 200, 300 and
400 points, respectively, which is, after rounding to the nearest hundreds, the average
cutoffs from 2011–2023. In addition, we assign the 25th-percentile (middle of the “no
medal” group) score to a scaled score of 1, and the 96.67th-percentile (middle of the
“gold medal” group) score to a scaled score of 5. This calculated statistic will hereafter
be called the “scaled score,” which is different from either the percentile (out of 100%)
or the raw score (out of 600).

2. Returning Contestant Analysis

In this section, we present the analysis of returning contestants at the IOI, along two
aspects. First, we visualize the joint distribution of a returning contestant’s performance
and improvement across multiple IOIs; from here, we draw inferences that character-
ize the nature of improvement in competitive programming at different skill levels.
Second, we describe progress of contestants with multiple IOIs to better understand the
nature of long-term learning in competitive programming. In doing so, we also dem-
onstrate the “reversion to the mean” phenomenon common in statistics (Barnett et. al,
2005) as seen in IOI contestant data.

E. Lee et al.36

In total, there are 1038 participants with more than one IOI from 2011 to 2023, which
provides ample data for the analysis in this section. The trends shown are mostly rather
strong and unlikely to be affected by random noise in the data. The selection of this set
of recurring contestants indeed may be biased due to different team selection policies
across countries and other confounding factors, though we believe that statistical prop-
erties depicted are still meaningful. The analysis presented in Figures 4–6 also quantify
and contextualize such bias.

A. Cross-distribution of Performance Across Multiple IOIs

As an initial analysis, we visualize the scatterplot (Fig. 1) of a multiple-IOI contestant’s
performance over consecutive IOIs. For this analysis, we use the “scaled score” from 0 to
6, as described previously. So that the datapoints within each scatterplot are comparable
to each other, we show separate plots depending on whether we are comparing the first/
second or second/third attempts, and whether the contestant had two or 3+ IOIs. We do
not analyze IOIs after the third due to small sample sizes in this group. These data divi-
sions were chosen to balance each plot having sufficient data and a useful interpretation.

Fig. 1. Scatterplot of returning contestants’ performance in consecutive IOIs.

Trends on Returning Contestants and Geography in the International ... 37

As seen in Fig. 1, a strong correlation is seen across the three scatterplots. The cor-
relation coefficients, a measure of statistical association between the two variables,
are calculated to range from 0.77 to 0.79. It is worth nothing, however, that the data
for three-or-more-IOI contestants have a greater proportion of outliers at the upper-
right corner of the scatterplot, indicating less predictability for high-performers in this
group.

The bivariate regression line (a least-squares-optimal prediction of the later attempt’s
scaled score based on the previous attempt’s scaled score) in each scatterplot is plotted
in yellow, while the 45-degree y=x line is plotted in green. The regression coefficients
are shown to range from 0.78 to 0.83, again indicating strong dependence across IOIs
participated. Two features of the scatterplots indicate a general trend of improvement
over consecutive IOIs. First, the regression line, for most of the corresponding datapoint
x-values, is above the 45-degree line, and second, most of the datapoints in the scatter-
plot are above the 45-degree line.

The strong correlations in Fig. 1 imply that a contestant’s performance at one IOI has
substantial predictive power towards performance at the next IOI. It is unclear, however,
from the scatterplot whether a single linear trend is appropriate for all IOI performance
levels, given the vastly different nature of crucial tasks encountered at different levels.
Therefore, we plot a linear spline regression (Marsh and Cormier, 2001) with knots at
the integer scaled scores. This method allows flexibility in the regression plot while
ensuring continuity of the predicted value and avoiding overfitting from higher order
regressors. The results are shown in Fig. 2, where the centroids of the datapoints in each
interval are also corresponded to both axes.

From Fig. 2, a positive slope within each scaled score interval is consistently seen,
showing that variations of performance, even those within a medal category, yield pre-
dictive power towards future IOI performance. The slopes, however, vary substantially.
For example, the slope in the [0, 1) scaled score interval (corresponding to a previous
IOI performance lower than the 25th percentile of that year) tends to be substantially
larger than all other slopes in the same spline. This observation may be interpreted as
that having a baseline level of programming and algorithmic proficiency, up to the point
of solving the easiest set of IOI subtasks, is crucial towards improving further towards
the IOI medal level.

Further examining the scaled score range of [0, 2) in the previous IOI, corresponding
to participants who fell short of winning a medal, we note that those with a scaled score
in [0, 1), corresponding to a performance below the 25th percentile, are very unlikely
(under 10% chance) to win a medal at the following IOI. Meanwhile, those with a scaled
score [1, 2), corresponding to a performance at least the 25th percentile, have roughly
even odds to do so. Specifically, the regression spline consistently predicts a scaled
score of 1.50 (typically between the 35th to 40th percentiles) to correspond to a roughly a
bronze medal cutoff performance at the following IOI.

The improvement in the 25th to 50th percentile bucket of the previous IOI, however,
is not typical among medalists. Around 40% of bronze medalists achieve a silver medal
or better at the next IOI, with a regression spline predicting a middling bronze medalist

E. Lee et al.38

(with a scaled score of 2.50) to achieve an expected scaled score of around 2.80 at the
next IOI, short of the silver cutoff of 3.00. Among silver medalists, around 35% man-
age to improve to a gold medal at the following IOI, while around 20% drop to bronze;
meanwhile, very few bronze medalists (under 5%) improve to a gold medal, indicating
a large skill gap between bronze and gold medalists.

Next, we consider the distribution of improvement across consecutive IOIs. In this
analysis, we divide the dataset in scaled score intervals of size 0.50 for all contestants
up to the silver medal level (scaled score of 4.00), plus a single interval for the gold
medalists. This data division is chosen to balance having an ample number of datapoints
in each bucket while having sufficiently many buckets to demonstrate overall trends.
For each bucket, we produce a quantile plot of the scaled score improvement, featuring
endpoints indicating the 10th and 90th percentiles, a box spanning the 25th to 75th percen-
tiles, and a red line at the median. The plot is shown in Fig. 3, and a summary of the
percentiles is provided in Table 1.

The quantile plot and Table 1 show a general trend of the average improvement de-
creasing as the initial IOI performance increases, which may be due to the “regression
to the mean” phenomenon that is elaborated in the next subsection. A notable excep-
tion, however, is the lowest performance interval [0, 0.5), corresponding to contestants

Fig. 2: Regression splines of scaled scores in consecutive IOI attempts

Trends on Returning Contestants and Geography in the International ... 39

with less than half the score of the 25th percentile contestant. Contestants in this bucket
have a lower median scaled score improvement (0.33) than all other no-medal buckets
(ranging from 0.42 to 0.51), again indicating the difficulty of improvement among the
lowest-performing IOI contestants which may be due to lacking rudimentary program-
ming skills to fully engage in IOI preparation.

Besides median performance, quantile plots allow analysis of variance and skew.
Overall, the variance in improvement tends to be large, with the 10th and 90th percentiles
spanning more than one, and often two, scaled score points, which correspond to a medal
range.) We also notice that the amount of improvement tends to be more variable among
medalists than non-medalists at the previous IOI, with silver and gold medalists having
the largest variance. Among non-medalists, those above the 25th percentile have a higher
variance than those below the 25th percentile due to being more equipped to achieve
higher results after a year of preparation. As for skew, there is no discernible trend that is
not attributable to noise in the data or the scaled score having a zero lower bound, such
as the lowest performance bucket being skewed to the right.

Fig. 3. Quantile plot of improvement across consecutive IOIs, separated by initial result bucket.

Table 1
Summary statistics of scaled score improvement across consecutive IOIs

E. Lee et al.40

B. Progress of Multiple-IOI Contestants Over Time

In this subsection, our analysis concerns understanding the progress of contestants over
multiple (two or more) IOIs. As a first step, we visualize the starting profile of IOI
contestants with at least two IOIs. Fig. 4 plots the distribution of first-IOI results of
these contestants, separated by the number of IOIs attended and capped at four. The
distribution is shown as a cumulative histogram on proportion of contestants in the bot-
tom quartile, second quartile, bronze medal, silver medal, and gold medal ranges. These
cumulative proportions are shown relative to the actual proportions over all contestants
in a typical IOI.

The visualization in Fig. 4 shows that the starting result of a two-time IOI contestant
has roughly similar, though slightly worse, performance distribution as the typical IOI con-
testant. For contestants with more than two IOIs attended, however, the starting results be-
come increasingly skewed towards lower result, with the proportion in the silver and gold
ranges combined being under two-thirds the usual proportion. This observation is likely
due to the country-based qualification process of the IOI, as it’s easier for a contestant to
qualify when faced with a weaker pool of contestants in higher cohorts. Note, however,
that the set of 4+-time participants is too small to draw statistically-valid comparisons.

Next, we consider tracking the distribution of a contestant’s progress over time. To
do so, we consider two plots. In Fig. 5, the contestants are grouped by total number of at-
tempts (capped again at four), then the mean scaled score of the contestant over multiple
attempts are tracked on a path with arrows to compare the magnitude of progress over
time. Fig. 6 then shows quantile plots separated by IOI order (first, second, or IOI order),
with a similar 10th/25th/50th/75th/90th-percentile scheme used as in Fig. 3, allowing for
comparison relative to the uniform distribution of percentiles when considering all IOI
contestants. The raw data in Fig. 5 is also presented in Table 2 for ease of reference.

Fig. 4. Histogram of first-IOI result for multiple-IOI contestants, grouped by number of IOIs.

Trends on Returning Contestants and Geography in the International ... 41

Fig. 4 shows that on average, contestants tend to improve over multiple IOIs, though
the improvement is typically small and amounts to less than a single medal category over
consecutive IOIs. Within a contestant’s trajectory, improvements tend to decrease over
time; for example, for a contestant with four or more IOIs, the improvement from the

Fig. 5. Progression of mean scaled score in consecutive IOIs, separated by number of IOIs.

Fig. 6. Quantile plot of percentile distribution separated by ordering of IOI attempt.

Table 2
Summary statistics of percentile distribution separated by IOI order

E. Lee et al.42

first to the second IOI is approximately the same as the combined improvements from
the second to third and the third to the fourth IOs. This phenomenon shows diminishing
marginal returns of more IOI experience, as the easier areas for improvement are likely
acted upon by a contestant’s second IOI. Contestants with more total IOIs, while starting

Fig. 7. Scatterplot of performance changes in consecutive IOIs, aggregated data.

Fig. 8. Scatterplot of performance changes in consecutive IOIs, separated by initial performance.

Trends on Returning Contestants and Geography in the International ... 43

out at a lower performance level, on average also tend to improve faster and reach higher
levels of final IOI performance.

Fig. 5 and Table 2 show that while multiple-IOI contestants start out slightly worse
than the average contestant, they eventually improve to be stronger. This observation
is true across all quantiles and all performance levels. For example, the median at a
multiple-IOI contestant’s first IOI is at the 43rd percentile, which improves to the 56th
percentile in the second IOI then to the 61st percentile in the third IOI. Diminishing
improvements are seen at the higher quantiles (50th and above) but not at the lower
quantiles (10th and 25th), which suggests different learning and improvement dynamics
at lower as compared to higher performance levels.

Finally, for the set of contestants with at least three IOIs, we compare, under the
scaled score metric, the change in performance from the first to second IOI with the
change in performance from the second to third IOI. Fig. 7 shows a single scatterplot
with a negative correlation, while Fig. 8 separates the data based on the performance at
the first IOI. Both plots consistently show the “regression to the mean” phenomenon,
indicating that there is a substantial amount of idiosyncratic variance in IOI performance
at all levels of competition.

3. Country Classification and Analysis

In this section, we present a cross-sectional analysis of the aggregate performance of
countries participating at the IOI. For this analysis, we compare the average percentile
of the contestants from a country from IOI 2011 through 2023; to avoid including data
with too much noise, we subset our analysis to countries with at least 26 contestants (half
of the maximum 52) in this time. We first compare this aggregate performance metric
against two predictors, population and Human Development Index (HDI), then after-
wards consider differences between geographic regions as well as measures of interest
in competitive programming.

While the IOI is officially an individual competition, preparation and selection for
this competition is typically done on the country level, so it is still of interest to consider
the aggregate performance for a country; such data is also subject to less variance than
individual participant or anecdotal data. We also use the participant-to-country corre-
spondence provided at the time of IOI registration and consistent with IOI regulations,
with no attempt to distinguish country of origin in the case of immigration or foreign
diasporas. While these directions may be interesting for future research, we believe these
are less necessary for an initial analysis.

For the country classification into regions, we use the United Nations Geoscheme,
which divides the countries in the world into sub-divisions of continents. However, we
make the following changes to balance the number of IOI-participating countries in each
category:

Only one category is provided for Africa, as well as for Latin America and the ●●
Caribbean
Central Asia and Southern Asia are combined into a single category●●

E. Lee et al.44

The United States, Canada, Australia, New Zealand, and the United Kingdom ●●
are assigned the “Anglosphere” category due to their cultural similarities and to
avoid having multiple small categories (such as Northern America and Ocea-
nia)

Thus, our geographical analysis involves eleven regions, with seven to thirteen IOI-
participating countries in each:

1–4: Asia: Southeastern Asia, Eastern Asia, Central and Southern Asia, Western ●●
Asia
5–8: Europe: Eastern Europe, Southern Europe, Northern Europe, Western Eu-●●
rope
9: Africa, 10: Latin America, 11: Anglosphere●●

A. Comparison of Average IOI Percentile to Population and
Human Development Index

As a first analysis, we generate scatterplots to compare the average IOI percentile of
each country’s contestants with the population and HDI. Our prior is that having a
large population means having a larger pool of talent to draw from, irrespective as to
how well this talent is nurtured in the country. Meanwhile, the HDI is a widely used
metric for development which correlates to the availability of educational resources
and strength of institutions. Therefore, these two metrics are a good start towards
uncovering the causes that explain the variation between different countries’ average
IOI performance.

For population, we use a log scale as is standard in economic studies, typically done
to avoid distortion from the roughly log-normal distribution of country populations. For
HDI, we use a linear scale due to the approximately linear distribution among IOI-par-
ticipating countries. We also plot a trendline on each scatterplot to evaluate the strength
of the correlation with these two indicators. The points in the scatterplot are also colored
by region for ease of reference and for a preliminary display of regional trends, for
example, as to which regions are mostly above or below each trendline. The results are
shown in Fig. 9.

Fig. 9. Scatterplot of average IOI percentile by country, with log Population and HDI.

Trends on Returning Contestants and Geography in the International ... 45

In Fig. 9, a moderate correlation of 0.373 is seen for the log population variable,
while a slightly weaker correlation of 0.270 is seen for the HDI variable. The corre-
lations, and particularly the population correlation, also appear to be a trend for the
dataset as a whole and are not driven by a small number of outliers in the data. These
correlation coefficients show that both explanatory variables have some correlation
with a country’s IOI performance, but a lot of the variation is unexplained by these
two indicators.

B. Regression Analysis and Residual Grouping by Region

Next, we consider a regression analysis using the same data as the previous subsection,
the results of which are shown in Table 3. The regression results show that both the
log population and the HDI metric are significant in their predictive power towards a
country’s IOI performance, even when the other is considered. The overall R-squared,
however, is only 0.312, meaning that most (around 70%, and likely higher due to pos-
sible overfitting) of the variance is unexplained by these two predictors.

The regression analysis yields a fitted model, so we can take calculate the residual
for each country datapoint, representing the variance in country average IOI percentiles
unexplained by the predictors. We then calculate the mean and standard deviation of
the residual by geographical region, a summary of which is presented in Table 4. The
residual mean represents each region’s overall strength at the IOI beyond what is pre-
dicted by population size and HDI, while the residual standard deviation is a measure of
heterogeneity of country strengths.

Due to the small bucket sizes, testing for statistical significance will be difficult.
The residual means column in Table 4, however, still provides a broad picture as to the
strengths of countries in each geographical region after controlling for population and
HDI. Three regions, Eastern Europe, Eastern Asia, and Southeastern Asia, have high
residual means (at least ten percentile points), with Eastern Europe having by far the

Table 3
Regression output of average IOI percentile on HDI and log population

E. Lee et al.46

highest, consistent with common knowledge on these countries’ scientific education tra-
ditions. (Lovheim, 2021) Meanwhile, the three regions with the lowest residual means
are Africa, Western Europe, and Latin America, likely related to the lack of prominence
of the scientific Olympiads in these regions, and in the case of Western Europe, relative
to other educational opportunities.

C. Incorporating Codeforces Registration Data

In this final analysis, we consider a country-level metric of student interest in competi-
tive programming, the number of active participants on the CodeForces (CF) com-
petitive programming platform. Fig. 10 shows a scatterplot, where we note that the
CF participant count measures both a country’s population and level of interest in
competitive programming.

Table 4
Residual summary statistics by geographical region

Region Residual Mean Residual Stdev. Count

Eastern Europe 0.220 0.094 10
Eastern Asia 0.122 0.106 7
Southeastern Asia 0.105 0.153 6
Western Asia 0.059 0.151 8
Anglosphere 0.007 0.131 5
Southern Europe -0.009 0.195 10
Central & Southern Asia -0.018 0.193 9
Northern Europe -0.044 0.173 8
Africa -0.170 0.120 5
Western Europe -0.171 0.057 7
Latin America -0.221 0.115 7

Fig. 10. Scatterplot of CodeForces participant count and country average percentile.

Trends on Returning Contestants and Geography in the International ... 47

The correlation in Fig. 10 is noticeably stronger than that in either scatterplot of
Fig. 9, showing the drastic importance of the level of student interest and engagement
in a practice platform towards achieving strong IOI results. To place this correlation in
context, we run a second regression, similar to the regression in the previous section,
where in addition to HDI and population we include a “CF Density” metric which is
the ratio of CF participants in a country to its total population. The regression results in
Table 4 show a much higher R-squared metric of 0.602 compared to 0.312 the previous
regression, meaning that the CF density explains nearly half of the residual variance not
predicted by population size and HDI.

4. Conclusion and Further Work

This paper appears to be the first large-scale analysis of IOI data, particularly with the
focus on returning contestants and geography. Overall, the analyses provide statistical
justification for several trends that are likely to be known in an approximate sense within
the IOI community, while providing convincing evidence for interested parties outside
the IOI community.

A. Summary of Findings

From the analysis on returning contestants’ IOI performance trajectories, the overarch-
ing observation is that IOI performance, as a metric, has good internal validity, given the
large correlation between consecutive IOI results. (Figures 1 and 2) There is, however,
still substantial variance in skill acquisition over time and unpredictability in the results
of a single IOI. These are seen by the large spreads in improvement over consecutive
IOIs (Fig. 3) and the reversion to the mean phenomenon (Fig. 7). We have also seen di-
minishing marginal improvements over multiple consecutive IOIs. (Figures 4 and 5)

Table 5
Regression output of average IOI percentile on HDI, log population, and log CF density

E. Lee et al.48

Meanwhile, from the geographical analysis, we demonstrated that while broad de-
mographic statistics such as population and Human Development Index (HDI) are sig-
nificantly correlated with a country’s aggregate IOI performance. (Fig. 8 and Table 3)
A more important factor, however, is the level of competitive programming interest in
the country. (Tables 5) We have also identified regions that are substantially stronger
or weaker than what would have been predicted from population and HDI alone, while
classifying some regions as more heterogenous or homogenous than others in terms of
their countries’ IOI performance.

B. Recommendations for Further Research

There are many directions in which the analyses in this paper can be extended to yield an
even deeper understanding of the educational nature of the IOI in its global setting.

As a first step, it may be interesting to combine the two directions considered in this
paper and analyze their interactions. This paper considers the trajectory of returning
contestants and the aggregate performance of countries separately, though there can be
some insight in analyzing the distribution of improvement in returning contestants from
different categories of countries. Analysis, however, might be more difficult due to hav-
ing few datapoints at this proposed level of granularity.

The concern of having few datapoints made conducting statistical tests difficult par-
ticularly for the returning contestant analysis, as the sheer variance in differences in
performances causes standard errors to be large. Therefore, only the less surprising and
insightful trends could be tested under this framework. Eventually, as the IOI continues
to run over the years and generates more high-quality data, it might be feasible to revisit
this approach. For example, after ten more IOIs, the amount of usable returning contes-
tant data will nearly double.

Finally, the IOI statistics can be combined with a qualitative analysis and substantive
interpretation of the nature of the IOI. There are many interesting directions, such as
considering which tasks may be favorable to different populations; for example, iden-
tifying tasks that are more approachable by first-time, less experienced contestants or
contestants from weaker countries. This direction can also be applied understand the role
of the IOI in global talent development and identification, such as for example, in what
ways are strong contestants from weaker countries tend to be different from a typical
strong contestant.

Acknowledgements

We thank Jay Leeds, Gerard Francis Ortega, and Payton Yao for discussion and in-
sights.

Trends on Returning Contestants and Geography in the International ... 49

References

Barnett, A.G., van der Pols, J.C., Dobson, A.J. (2004). Regression to the mean: What it is and how to deal with
it. International Journal of Epidemiology, 34(1), 215–220. https://doi.org/10.1093/ije/dyh299

Codeforces Country Ratings. Retrieved from https://codeforces.com/ratings/countries
International Olympiad in Informatics International Committee (2023). IOI Regulations. Retrieved from

https://ioinformatics.org/files/regulations23.pdf

International Olympiad in Informatics International Scientific Committee (2024). IOI Syllabus. Retrieved from
https://ioinformatics.org/files/ioi-syllabus-2024.pdf

International Olympiad in Informatics – Statistics. Retrieved from https://stats.ioinformatics.org/
Lövheim, D. (2021). Cold War fostering of scientific elites: International youth olympiads in chemistry and

physics 1967–1984. History of Education, 50(5), 685–703. https://doi.org/10.1080/0046760x.20
21.1890239

Marsh, L.C., Cormier, D.R. (2005). Spline regression models. Sage Publications.
Verhoeff, T. (2006). The IOI is (not) a science olympiad. Informatics in Education, 5(1), 147–159.

https://doi.org/10.15388/infedu.2006.25

United Nations Department of Economic and Social Affairs. (n.d.). United Nations geoscheme. Retrieved from
https://esa.un.org/MigFlows/Definition%20of%20regions.pdf

United Nations Development Programme. (n.d.). Human Development Index (HDI) Dataset.
Retrieved from https://hdr.undp.org/data-center/human-development-index

E. Lee et al.50

E. Lee – is an incoming first-year undergraduate at Stanford Univer-
sity. He plans to pursue a major in the area of applied mathematics.
He is an avid enjoyer of mathematics and algorithmic competitions,
and his accomplishments in these areas include earning a USA Math
Olympiad bronze medal as well as qualifying for the Platinum Divi-
sion of the USA Computing Olympiad. He shares his interests by edu-
cating others about problem-solving and organizing his own contests
as well.

T. Reizin – is studying his Bachelors in Computer Science at Charles
University in Prague. During his high school years he actively partici-
pated in the Ukrainian Olympiads in Informatics. After graduating he
continued his involvement with the Ukrainian olympiads, by teaching
in preparatory camps and helping with organization of team selection.
He also managed to advance the ICPC European Championship. His
research interests lie in combinatorics, in particular extremal combi-
natorics.

F.E. Wu – is a PhD student in Operations Research at the Massa-
chusetts Institute of Technology, studying information-theoretic al-
gorithms for reinforcement learning and decision making. In high
school, he won a gold medal at the IMO and a bronze medal at the
IOI. Prior to starting the PhD, he worked in a quantitative research
position in industry and as an undergraduate was extensively involved
in teaching probability and statistics. He also coaches the Philippines’
IOI 2024 team.

F.E. Wu is an incoming first-year undergraduate at the Massachusetts
Institute of Technology. He represented the Philippines at the Interna-
tional Mathematical Olympiad (IMO) and the IOI, winning a silver
medal and bronze medal, respectively, in 2023. Within competitive
programming, besides competing he is interested in building learn-
ing communities and making the learning process more enjoyable. He
plans to continue studying mathematics and computer science in col-
lege.

Olympiads in Informatics, 2024, Vol. 18, 51–62
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.04

51

Analysis and Evaluation of the Contestant’s
Progress in Real-time Coding Contests

Mirvari MAMMADLI, Nihad MAMMADLI, Jamaladdin HASANOV
ADA University, School of IT and Engineering
Ahmadbey Aghaoglu str. 61, 1008 Baku, Azerbaijan
e-mail: mmammadli13254@ada.edu.az; nmammadli14004@ada.edu.az; jhasanov@ada.edu.az

Abstract. This paper presents a model for analyzing contestant progress in real-time coding con-
tests, emphasizing the critical need for effective measures in assessing code similarity and pla-
giarism cases. Current coding contest platforms often need more robust procedures to identify
and address these issues, compromising the integrity of the evaluation process. To tackle these
challenges, we propose a novel system that leverages advanced techniques to analyze code and
collective behavior, providing a holistic evaluation of submissions. The system enhances perfor-
mance assessment accuracy and maintains fairness and credibility in real-time coding contests.
The findings and insights from this study shed light on the importance of integrating sophisticated
mechanisms to ensure the authenticity of code submissions and uphold the competitive nature of
coding competitions.

Keywords: plagiarism, contest, CMS, real-time, C++.

1. Introduction

The rise of online platforms has shifted competitive programming and coding contests
into the digital world, bringing forth a pressing issue – plagiarism. As the number of
online coding platforms increases and resources for cheating become more available,
some contestants’ temptation to engage in unethical practices has grown exponentially.
Ensuring fairness in coding contests is crucial and a central concern for researchers and
instructors. However, most coding contest platforms lack solid systems to identify pla-
giarism in real time, jeopardizing the validity of the evaluation process.

Moreover, the analysis of contest data is pivotal regarding the quality and fairness
of coding competitions. As mentioned in (Hasanov et al., 2021), based on the study of
the International Olympiad in Informatics (IOI), statistical analysis of the competition
data can provide valuable insights into the strategies used, competition dynamics, and
contestant performance. Contest data analysis in competitions enables the organizers,
coaches, and participants to identify the shortcomings, strengths, and areas for improve-
ment. Therefore, we ensure real-time data visualization to facilitate further analysis in

M. Mammadli, N. Mammadli, J. Hasanov52

the proposed system. Using data-driven approaches, coding contests can be optimized
to promote fair competition.

This review explores plagiarism detection in programming, specifically in real-time
coding contests, emphasizing the need for customized solutions to address their unique
challenges.

1.1. What is Code Similarity, and How Does it Work

Code similarity involves assessing the resemblance between different code pieces to
identify potential plagiarism instances. Understanding the concept of code similarity
in the context of programming and software development is essential. A comparison
of syntactic and semantic structures of code pieces usually takes place when assessing
code similarity. One of the most common approaches includes token-based compari-
son (Yetthapu, 2023). The source code is divided into essential components known as
tokens, which could consist of parts such as literals, identifiers, and keywords. Subse-
quently, the overlap or similarity of these tokens across various code segments is ex-
amined. This particular method does not necessarily consider structure or semantics.
Thus, this method captures syntactic similarities between code segments (Prechelt et al.,
2000). To maintain the integrity of coding contests, our project introduces checker.js,
which includes three methods: comparator, cppChecker, and remover. Traditional meth-
ods face challenges adapting to source code nuances, as noted by Prechelt et al. (2002).
Also, there has been widespread use of string matching algorithms like the Longest
Common Subsequence (LCS) algorithm (Myers, 1986). However, our approach presents
a remover method that goes beyond conventional string matching, using regular expres-
sions to improve accuracy in code similarity detection.

1.2. Plagiarism in Contests

One of the main reasons for jeopardizing the evaluation process’s integrity in program-
ming contests is plagiarism. As mentioned in (Wu et al., 2022), cheating has become
challenging. Real-time detection of plagiarism, crucial for contest integrity, is a key
focus. The comparer method from our project, which is aligned with timely interven-
tions during competitions, uses async for concurrent processing. This strategic approach
ensures real-time plagiarism evaluations, emphasized by Jeske et al. (2018). The cp-
pChecker method, managing multilingual code comparison, is vital given the array of
programming languages used in coding contests. As participants engage in diverse cod-
ing languages, the capability to manage this variability becomes crucial in maintain-
ing fair and unbiased contest conditions. Academic institutions and contest organizers
prioritize solid measures to restrain plagiarism, fostering an atmosphere where skills and
imagination can be seen. Checking and comparing each piece of code could be too time-
consuming for the instructors. Therefore, before introducing our system, an analysis of

Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests 53

previous systems and their advantages and disadvantages is considered in Section 2. The
approach used in the project is mentioned in Section 4.

2. Previous Work

Some of the prominent and extensively cited state-of-the-art plagiarism detection sys-
tems, according to Burrows et al. (2007), are JPlag (Prechelt et al., 2002) and MOSS
(Schleimer et al., 2003). Additionally, there exist several other noteworthy systems, such
as Sim (Gitchell & Tran, 1999), Plague (Clough, 2000), YAP (Wise, 1996), Plaggie
(Hage et al., 2011), and FPDS (Mozgovoy et al., 2005). Each system employs diverse
methodologies and algorithms to address the intricate challenges of detecting plagiarism
in programming code (Đurić & Gasevic, 2013).

In 1996, during his student project at Karlsruhe University, Guido Malpohl created a
plagiarism detection tool, JPlag, which evolved into the first online system. Subsequent-
ly, with the effort of Emeric Kwemou and Moritz Kroll, the online system transformed
into a web service (Prechelt et al., 2000). This tool specializes in plagiarism detection
across C, C++, Java, and Scheme programming languages. The underlying architecture
of JPlag relies on the Greedy String Tiling comparison algorithm (Prechelt et al., 2002).
Compared to other tools, JPlag demonstrates superior plagiarism detection performance
(Yetthapu, 2023). As stated in (Yetthapu, 2023), JPlag processes submitted source code
assignments and then generates HTML pages as output, with code similarity values
ranging from 0% to 5% indicative of no plagiarism and 100% representing blatant pla-
giarism. Intermediate values, such as 40%, warrant further manual investigation for a
conclusive judgment (Prechelt et al., 2000).

Code comparison tools like MOSS (Measure of Software Similarity) are frequently
used in software development projects to find instances of code plagiarism. MOSS is a
free online service created in 1994 by Aiken et al. at Stanford University. It functions as
a web service. It offers an easy-to-use web interface with Windows and UNIX operating
systems. MOSS splits code into continuous substrings called K-grams using the Win-
nowing algorithm and hashes each K-gram (Luke et al., 2014). MOSS uses several algo-
rithms to increase efficiency, such as control flow analysis, code structure analysis, and
string matching. About twenty-five programming languages, including Java, C, C++,
Python, JavaScript, Matlab, VHDL, and Verilog, are supported by it (Hage et al., 2010).
Results from MOSS are presented in HTML through a graphical interface that highlights
suspicious code fragments, the percentage of similarity, tokens, and matched lines. Each
matched pair is clickable, facilitating manual inspection (Yetthapu, 2023).

As mentioned in (Schleimer et al., 2003), which connects to our topic, the authors
investigate the concept of local document fingerprinting algorithms to identify copying
across large datasets accurately. They describe the efficient winnowing algorithm and
demonstrate its performance within 33% of the lower bound. The paper discusses the
difficulties in detecting partial copies and suggests using the k-grams mentioned above
and hashes as fingerprints. The article emphasizes the importance of selecting the ap-
propriate “k” value to eliminate coincidental matches.

M. Mammadli, N. Mammadli, J. Hasanov54

In the context of document fingerprinting, the article explains the mechanics of the
winnowing algorithm, as well as querying and optimal hash selection. It examines the
correctness of local algorithms for finding matching substrings and provides a lower
bound on their density. The experiments with web data demonstrate the algorithm’s per-
formance.

The paper emphasizes the importance of handling low-entropy strings in fingerprint-
ing, as demonstrated in experiments with non-uniformly random data. It introduces ro-
bust winnowing, which reduces density, emphasizing its usefulness in specific applica-
tions.

The study examines the copying structure of 20,000 web pages, identifying a non-
uniform data distribution and discussing the power law relationship between k-gram
frequency and rank. MOSS, a plagiarism detection service that uses robust winnowing,
efficiently detects document similarities (Schleimer et al., 2003).

The paper introduces and evaluates the winnowing algorithm for document finger-
printing, addressing challenges while emphasizing practical applications such as plagia-
rism detection (Schleimer et al., 2003).

(Sharma et al., 2021) also mentioned “code clone detection”. In the article, various
types of machine-learning techniques for source code analysis were researched. A sec-
tion about code clone detection was similar to our project. However, in the article, the
emphasized approach is ML (machine learning), which differs from ours. Apart from in-
vestigating the methods for automatically detecting plagiarism, the study mentioned ap-
proaches to validate the accuracy of clones reported by existing tools. The methodology
in the article entails creating a dataset of source code samples classified as non-clones
or clones. Following that, feature extraction techniques are used to identify relevant
features. Then, they are then input into machine-learning models for training and evalu-
ation. The models can detect clones within sample pairs (Sharma et al., 2021, p.19). It is
worth noting that while our project focuses on code clone detection, our approach differs
from the ML-centric methodology discussed in this study.

As mentioned (Đurić & Gasevic, 2013), contestants can modify the source code in
several ways, including lexical and structural forms. Most common examples of lexical
modifications could include modification of source code formatting, addition, modifica-
tion, or deletion of comments, language translations, reformatting or modification of
program output, etc. Lexical modifications often do not require advanced programming
skills, unlike structural modification, which involves changing the order of variables in
statements, changing the order of statements within code blocks, reordering code blocks,
adding redundant statements or variables, modifying control structures, changing data
types and modification of data structures, method inlining and method refactoring, re-
dundancy and so on. To counteract these changes, plagiarism detection tools examine
the program’s structure and its lexical elements, using techniques such as tokenization,
abstract syntax tree comparison, and semantic analysis to identify suspicious patterns
and similarities. The system proposed in the article showed more promising results than
JPlag when considering the structural and lexical modifications. While considering these
structural modifications, it is essential to know the programming language that will be
used so that modifications do not result in compilation errors or run-time exceptions

Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests 55

(Đurić & Gasevic, 2013). Since the IOI contest we are preparing for will be held in C/
C++, our system was adopted to consider the use of language.

The source code similarity detection tools can be categorized into two operational
modes: online and offline (Đurić and Gasevic, 2013, p. 7). Based on this categorization,
our project follows the online paradigm. Every process happens in real time and with
the use of a socket.

According to (Đurić and Gasevic, 2013), there are several types of plagiarism tools,
such as text-based plagiarism detection, attribute-oriented plagiarism detection, and so
on. Since the text-based plagiarism tools ignore the code syntax and just compare Eng-
lish words, it is not the most helpful approach to take when it comes to coding contests.
A better approach would be using attribute-oriented similarity detection, where fun-
damental properties are used, such as the number of unique operands, operators, and
so on. However, there are more suitable approaches than this since the same number
of variables, loops, or conditional statements might be considered plagiarism. The ap-
proach best suited for these conditions would be structure-oriented similarity detection.
It includes tokenization and string-matching algorithms to determine plagiarism (Đurić
and Gasevic, 2013). While reviewing the existing approaches, it became evident that
the approach we will use for our project is a structure-oriented similarity detection tool.

2.1. Challenges of Similarity Detection

Detecting plagiarism in code is challenging, and similarity rates might be excessively
high. This happens due to the concise nature of simple tasks which require fewer lines
of code. Hence, the contestants unintentionally produce remarkably similar code pieces.
For instance, a very primitive example could be printing “Hello World” in a console
in a few lines of code, which is possible, thus contributing to the prevalence of similar
code structures. One potential resolution strategy for this issue involves exempting code
segments with fewer than 10 to 15 lines from plagiarism detection or adjusting the pla-
giarism assessment based on the code’s line count.

Moreover, a challenge arises in cases where contestants are required to implement
functions within pre-provided code. In this particular situation, the tool will count the
provided code as part of the similarity, thus artificially inflating the similarity rate. A
potential mitigation strategy involves providing the plagiarism detector with a predeter-
mined code sample in such scenarios. Subsequently, the detector tool would be config-
ured to disregard the designated code piece when evaluating similarity, further enhanc-
ing the assessment’s accuracy.

3. Design of an Alarm and Monitoring Dashboard

One of the goals of our project is a visual dashboard that provides a far friendlier user ex-
perience and more analytical possibilities. The seats will be displayed in the monitoring

M. Mammadli, N. Mammadli, J. Hasanov56

dashboard (Fig. 1). There will be sections from A to H, and there will be ~ six seats per
section (the sections and number of seats will be adjusted to the contest requirements):

When one of the seats is clicked, the information about the contestant sitting there
will appear on the screen (Fig. 2). The information includes user ID, username, submis-
sion, and similarity rate in comparison with others:

A notification will pop up on top of the screen as soon as the contestant submits.
Along with this, on the Alarms page, the history log of the alarms will be kept, and the
colors will be according to the type of the alarm (Fig. 3):

Fig. 1. Seats Page (Monitoring Dashboard).

Fig. 2. Contestant information (By clicking on the seat).

Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests 57

For the submission, we have several kinds of alarms:
Similarity alarm●● – When the contestant submits their work, it goes through the
process of checking for plagiarism. When the similarity rate is more than or equal
to 70%, a notification on top of the page will pop up, and the seat color will blink
red.
Scoring preceding another event●● – If any kind of event (such as going to WC,
print, and so on) happened within 45 minutes before the submission and the simi-
larity rate is more than or equal to 50%, the seat will blink yellow, and the notifica-
tion with similarity rates between two submissions will be seen.

Fig. 3. Alarms Log.

Fig. 4. Submission without any kind of possible plagiarism.

M. Mammadli, N. Mammadli, J. Hasanov58

Sudden increase alarm – ●● After the submission, the contestant’s similarity rate
increases by 30% or more. The notification about the sudden increase will appear,
and the similarity rate before and now will be shown in the message above. The
color representing this alarm will be orange.

When none of the conditions are met for alarm during the submission process, the
seat will blink in green, and a notification about the submission will be seen (Fig. 4):

Every single process described works with the help of a socket, which gives us real-
time data.

4. Experiments

4.1. How our Code Operates

Our project’s innovative system presents a novel approach to plagiarism detection. The
remover method pre-processes code submissions by filtering out common structures and
removing comments. The cppChecker method handles C++ code, demonstrating adapt-
ability to different syntaxes. The comparer method manages real-time comparisons us-
ing async for concurrent processing. This systematic process ensures a comprehensive
evaluation of multiple C++ files.

As mentioned above, the plagiarism checker employs the Longest Common Se-
quence algorithm. No external libraries were implemented when writing the plagiarism
checker tool. Moreover, when creating the system, Node.js was chosen because of its
advantages, versatility, and benefits. Also, the Express library was selected to facilitate
API development. React, and AntDesign were used on the front end to create a clear and
visually appealing UI (user interface).

The project is organized in a repository1, containing the backend and the front end.
The backend includes the plagiarism checker mentioned above and the APIs.
At the front end of the web application, there are three pages: Users, Alarms, and

Seats. Corresponding to those pages, there are three primary APIs: the “Sections”,
“Alarms”, and the “Users” API. The corresponding API is called on each page, display-
ing the data on the screen. The Users page has been designed to showcase the relevant
information retrieved from the “Users” API. The information (Names, Surnames, User-
names, and emails) is in a tabular format. All the alarms related to the submissions are
displayed on the alarms page. There are three main types of alarms: plagiarism, which is
shown in red; scoring preceding after-event alarm, which is shown in yellow; and sud-
den increase alarm, shown in orange. The alarms page derives the needed data from the
“Alarms” API, which takes the data from alarms, users, and alarm_types tables. Finally,
there is a Seats page that displays the seats and the configuration of the contestants. This
page requires data from the “Sections” API. The “Sections” API takes data from submis-
sions.json and the sections, users, and submissions tables.

1	https://github.com/NihadMammadli/SDP

Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests 59

On the seat page, upon user selection, a collapsed form displays the contestant’s most
recent submission, revealing the code and common line similarity rate. This structured
approach ensures that cases of plagiarism are clearly seen at the end of the process.

4.2. CMS Structure

The Content Management System (CMS) is a foundational element, providing a struc-
tured framework for managing and organizing code submissions. Its architecture facili-
tates efficient real-time comparisons and assessments, contributing to the overall success
of the plagiarism detection tool. CMS has been used in contests such as IOI since 2017
and has become a strong nominee, becoming the established standard for the IOI (Ha-
sanov et al., 2021). Our implementation of the CMS is crucial for conducting efficient
real-time comparisons in our project. It dramatically enhances the effectiveness of our
plagiarism detection tool. Incorporating CMS into our project involves following a spe-
cific procedure. This included setting up and running the CMS, creating separate admin
and contestant user accounts, and defining commands designed for the contestant users.
As part of our workflow, we generated content tests, established test cases, and executed
the code submission process using the contestant user’s credentials. The data generated
during this submission process is redirected to a dedicated database integrated with our
Node.js code. This integration allows us to perform real-time plagiarism checks as data
flows through our system.

4.3. Our Architecture

The architecture goes as follows (see Fig. 5):
Competitor makes their submission to CMS.1.	
The newly submitted code gets stored in the “Submissions” table in DB (SQL 2.	
Postgres).
Socket.js continuously checks for new submissions in real time. DB returns the 3.	
submission ID to socket.js when a new submission has been made.
Socket.js requests the newly submitted code from Python Downloader.py.4.	
Python Downloader.py requests the newly submitted code from CMS and returns 5.	
the requested code to Python Downloader.py.
Python Downloader.py sends the code it got from CMS to the Socket.js.6.	
Socket.js sends the code to Checker.js to check for plagiarism in new submis-7.	
sions.
After checking for plagiarism, it sends the alarm to the “Alarms” table and the 8.	
similarity score to the “Similarities” table, and it gets stored in DB. At the same
time, for quicker access, the Checker inserts submissions in JSON format to
Submissions JSON.
The Admin requests the data (Alarms/Seats/Competitors) through React CMS, 9.	
which takes it from Data.js. Data.js requests the submissions from Submissions

M. Mammadli, N. Mammadli, J. Hasanov60

JSON and returns them to Node.js. Later, Node.js returns the data to React CMS,
and the Admin sees the needed data.

4.4. Our Setup

Our team uses the most recent version of CMS in the system. We have integrated the
plagiarism checker tool, visual boards to monitor submissions, and alarms to detect in-
stances of cheating. The alarm mechanism mentioned above provides real-time alerts to
identify potential cheating events of the contestants. Moreover, the logs with the alarm
type and submissions are kept for further investigation of cheating cases when needed.

The upcoming IOI contest of 2024 will be held in Egypt in September. We intend
to refine our system even more to ensure it is ready for use in coding competitions such
as IOI. Our system for “Analysis and evaluation of the contestant’s progress in real-
time Coding Contests” has been tested by simulating all possible scenarios. It included
identifying different kinds of alarms and automating the users’ submission process. The
testing aimed to replicate the potential occurrences at IOI24, demonstrating the effec-
tiveness of our system in maintaining fairness and integrity in coding competitions.

5. Conclusion

The literature review provides a comprehensive background on plagiarism detection in
programming. The increase in the usage of online platforms for contests has brought a
considerable challenge regarding the integrity of the evaluation process. Our team pro-

Fig. 5. Architecture Diagram.

Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests 61

posed a novel system that uses sophisticated methods when analyzing the structure of
codes submitted by the contestants and their behavior throughout the process to address
the issue arising. It is essential to ensure fairness and authenticity in such competitions.
Our system aims to provide a broad solution to plagiarism detection in competitions
by using tools like the LCS (Longest Common Subsequence) algorithm and Node.js,
as well as complex and sophisticated methodologies like structure-oriented similarity
detection.

Through experiments and simulations, the system was validated for the accuracy
of the approach used. It demonstrated the ability to detect instances of plagiarism ac-
curately in real time. Thanks to alarms and monitoring dashboards, the system offers a
framework for contest organizers to detect and analyze potential cheating incidents in
real time.

We are committed to refining and enhancing our system since Egypt has an upcom-
ing IOI 2024 competition. We hope to contribute to the coding competition society and
offer a fair environment for competitive programming contestants.

The studies highlight the importance of integrity during competitions and mecha-
nisms and technologies that ensure the quality of the competitive nature of the competi-
tions. A robust framework will be provided through the system proposed by our team to
maintain a fair and competitive environment.

References

Burrows, S., Tahaghoghi, S.M.M., Zobel, J. (2007). Efficient and effective plagiarism detection for large code
repositories. Software-Practice & Experience, 37(2), 151–175

Đurić, Z., Gasevic, D. (2013). A Source Code Similarity System for Plagiarism Detection. The Computer Jour-
nal, 56(1), 70–86. https://doi.org/10.1093/comjnl/bxs018

Gitchell, D., Tran, N. (1999). Sim: a utility for detecting similarity in computer programs. Proceedings of the
Thirtieth SIGCSE Technical Symposium on Computer Science Education, New Orleans, Louisiana, USA,
24–28 March, pp. 266–270. ACM New York, NY, USA.

Hage, J., Rademaker, P., van Vugt, N. (2010). A comparison of plagiarism detection tools. ISSN: 0924-3275.
Retrieved from http://www.cs.uu.nl/research/techreps/repo/CS2010/2010-015.pdf

Hage, J., Rademaker, P., Van Vugt, N. (2011). Plagiarism detection for Java: a tool comparison. In: Proceedings
of the 1st Computer Science Education Research Conference, CSERC ‘11, Heerlen, The Netherlands, 7–8
April, pp. 33–46, ACM New York, NY, USA.

Hasanov, Jamaladdin, Gadirli, Habil, Bagiyev, Aydin. (2021). On Using Real-Time and Post-Contest Data to
Improve the Contest Organization, Technical/Scientific Procedures and Build an Efficient Contestant Prepa-
ration Strategy. Olympiads in Informatics. 23–36. DOI: 10.15388/ioi.2021.03.

Jeske, H.J., Lall, M., Kogeda, O.P. (2018). A real-time plagiarism detection tool for computer-based assess-
ments. Journal of Information Technology Education. Innovations in Practice, 17, 23.
https://jite.org/documents/Vol17/JITEv17IIPp023-035Jeske3991.pdf

Luke, D., P.S., D., Johnson, S.L., Sreeprabha, Varghese, E.B. (2014). Software Plagiarism Detection Tech-
niques: A Comparative Study. ISSN: 0975–9646. Retrieved from
https://ijcsit.com/docs/Volume%205/vol5issue04/ijcsit2014050441.pdf

Mammadli, N. (2024). SDP. GitHub. https://github.com/NihadMammadli/SDP
Mozgovoy, M., Frederiksson, K., White, D.R., Joy, M.S., Sutinen, E. (2005). Fast plagiarism detection system.

Lecture Notes in Computer Science, 3772/2005, 267–270.
Myers, E.W. (1986). An O(ND) Difference Algorithm and Its Variations. Algorithmica, 2(1–4), pp. 251–266.

http://www.xmailserver.org/diff2.pdf

Prechelt, L., Malpohl, G., Philippsen, M. (2002). Finding Plagiarisms among a Set of Programs with
JPlag. Journal of Universal Computer Science, 8(11), 1016–1038. https://www.researchgate.net/

M. Mammadli, N. Mammadli, J. Hasanov62

publication/2832828_Finding_Plagiarisms_among_a_Set_of_Programs_with_JPlag

Prechelt, L., Malpohl, G., Philippsen, M. (2000, March 28). JPlag: Finding Plagiarisms among a Set of Pro-
grams. DOI: 10.3217/jucs-008-11-1016. URL:
https://www.jucs.org/jucs_8_11/finding_plagiarisms_among_a/Prechelt_L.html

Prechelt, L., Malpohl, G., Philippsen, M. (2002). Finding Plagiarisms among a Set of Programs with JPlag.
Journal of Universal Computer Science, 8(11), 1016–1038.

Schleimer, S., Wilkerson, D.S., Aiken, A. (2003). Winnowing: Local Algorithms for Document Fingerprinting.
In: Proceedings of the ACM SIGMOD International Conference on Management of Data, San Diego, Cali-
fornia, USA, 9–12 June, pp. 76–85. ACM New York, NY, USA.

Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Sarro, F. (2021). A Survey on Machine Learning Tech-
niques for Source Code Analysis. ACM Transactions on Software Engineering and Methodology, 0(0), 0–0.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Všianský, R., Dlabolová, D., Foltýnek, T. (2017). Source Code Plagiarism Detection for PHP Language. Euro-
pean Journal of Business Science and Technology, 3(2), 106–117. DOI: 10.11118/ejobsat.v3i2.100

Wise, M.J. (1996). YAP3: Improved Detection of Similarities in Computer Programs and Other Texts. ACM
SIGCSE Bulletin, 28(1), 130–134.

WU, Runfan & LV, Aohui & Zhao, Qiyang. (2022). Detecting Plagiarism as Out-of-distribution Samples for
Large-scale Programming Contests. Olympiads in Informatics. 89–106. DOI: 10.15388/ioi.2022.08.

Yang, H., Lian, W., Wang, S., Cai, H. (2023, May). Demystifying Issues, Challenges, and Solutions for Multilin-
gual Software Development. In: 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE) (pp. 1840–1852). IEEE. https://chapering.github.io/pubs/icse23haoran.pdf

Yetthapu, Sudheer (2023). Source Code Plagiarism Detection Using JPlag & Stack Overflow Data. Masters
Theses & Specialist Projects. Paper 3620. https://digitalcommons.wku.edu/theses/3620

M. Mammadli is currently a last year student at ADA University pur-
suing her bachelor’s degree in Information Technology. She holds the
position of an IT business analyst at ERP-INTEL LLC.

N. Mammadli is a last year student in the bachelor’s program of “Com-
puter Science” offered by ADA University. Concurrently, he works as
a software developer at ERP-INTEL LLC.

J. Hasanov is an Associate Professor of Computer and Information
Sciences in the School of IT and Engineering at ADA University. Dr.
Hasanov is mainly focused on computer vision problems medical im-
aging and video captioning domains. Additional to the research field,
Dr. Hasanov teaches the management aspects of the IT in production
and operation. Dr. Hasanov has been an ITC member for the period of
2017–2020 and led HTC during IOI 2019.

Olympiads in Informatics, 2024, Vol. 18, 63–80
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.05

63

Preparing of Youngest Students for Participation
in Programming Contests

Krassimir MANEV
zh.k. Yavorov, bl. 12A, entr. A., Sofia, Bulgaria
e-mail: krmanev@gmail.com

Abstract. The goal of this paper is to present in brief the analysis of large set of tasks from Bul-
garian national and regional programming contests for age group E (4th–5th grades), published in
(Manev, 2023). As a result of the analysis, the identified in more than 350 tasks topics are arranged
in order of smoothly increasing difficulty and could be used as training curriculum for preparation
of programming contestants of early age.

Keywords: programming contests, training curriculum, beginners.

1. Introduction

Programming contests in Bulgaria are organized in five age groups (Manev et al., 2007).
In the youngest group E students of 4th–5th grades which just started learning program-
ming take part. That is why choosing tasks for their first programming contests must be in
accordance with the stage of learning a programming language (C/C++) they reached.

Recently we published a book aimed to help the process of training the youngest stu-
dents for participation in programming contest, as well as to identify the types of tasks,
which are appropriate for the distinct stages of the preparation (Manev, 2023). In the
process of creating the book all tasks for group E from the national programming contest
since 2007 was analyzed in the order they appeared in contests’ calendar:

Autumn tournament (AT, held usually in November, 51 tasks); ●●
Winter tournament (WT, that was held in December since 2009 to 2017, 27 ●●
tasks);
First round of the National Olympiad in Informatics (NOI1, held usually in Janu-●●
ary, 45 tasks);
Second round of the National Olympiad in informatics (NOI2, held usually in Feb-●●
ruary, 45 tasks);
Third round of the National Olympiad in informatics (NOI3, held usually in Marc, ●●
87 tasks);

K. Manev64

Spring tournament (SpT, held usually in April, 48 tasks); ●●
Summer tournament (SuT, held in June from 2018 till now, 15 tasks).●●

Recently two regional contests are also organized, tasks of which were also ana-
lyzed:

Sofia autumn tournament (SAT, held in October, 18 tasks); ●●
Sofia spring tournament (SST, held in beginning of April, 15 tasks). ●●

A total of 351 tasks we analyzed, part of them solved as illustrations of the cor-
responding theoretical material, and for each of the others a guidance for solving was
given – shorter or vaster.

In this paper we shortly present the chapters of the book. The chapters are ordered
in the way we are teaching them when training young contestants. So, the content (and
the order of topics) could be used by the coaches as one-year curriculum for training
beginners.

2. Preliminary Knowledge and Skills

We suppose that before beginning of their preparation for programming contests the
pupils passed the course Intro to programming in C/C++, which is why we are not in-
cluding in the book text about the basic programming skills. The first chapter, called
Programming Contests, is dedicated to such knowledge and skills about the program-
ming competitions that introductory course in programming does not contain.

The name of the first section in the chapter is The Contest Tasks. Because the goal
of introduction to programming is to familiarize learners with the syntax and the seman-
tics of the programming language, the tasks that are solved in such course are, in some
sense, “artificial” – they are strongly oriented to some specific syntactical or semantical
rules. Traditionally the contest tasks are different (Verhoeff, 2008). They look like taken
from the real life and they are real life problems indeed, in most cases. Beside the inevi-
table problem formulation, the competitive task must contain strict description of input
and output formats, the constraints on input data, sample test data and correct output for
the sample test data– sections that are not usual for tasks solved in introductory courses
but are so important for the programming contests.

Second and third sections of the chapter – The contest systems and Evaluation of
a contest tasks – are introducing future contestants in the process of grading their solu-
tions. Nowadays using programming contest grading systems is inevitable. In Bulgarian
programming contests we recently are using own grading system BOS, which is con-
form with the systems used in International Olympiads, and that all contestants, includ-
ing the youngest must know (Petrov & Kelevedjiev, 2022). Good knowledge of grading
system and the process of grading leads contestant to a systematic approach they have to
apply during the work on a contest task, in order to escape rejections for: Unsuccessful
compilation (CE), Memory limit exceeding (MLE), Canceling the execution because an
exception (RTE), and especially the Time limit exceeding (TLE) and Generating of a
wrong answer (WA).

Preparing of Youngest Students for Participation in Programming Contests 65

Fourth, fifth and sixth sections of the chapter are dedicated to some important for
competitive programming elements of the programming language and the integrated
development environment which are not a subject of the introductory course. In section
Including Standard Functions Libraries we only stress on the modern form of in-
cluding libraries with preprocessor instruction #include <bits/stdc++.h>, which liberate
contestants of necessity to memorize where a standard function is defined. Section Ac-
celerating Input and Output is particularly important. Beginners prefer to use stream
input/output (cin and cout) instead the functions for formatted input/output. That is
why they must be able to desynchronize stream input/output from the formatted one.
Section Preprocessing in C/C++ is introducing helpful instructions that the preproces-
sor offer.

In seventh section – Memory usage – we briefly describe the organization of the
computer’s memory. Main issue for the beginners there is avoiding declarations of ar-
rays inside the functions body, to not overfull the stack of the process. Not easy for
understanding concepts standard input and standard output are discussed in the eight
sections of the chapter. This discussion is particularly important for avoiding the bad
practice of typing input data from keyboard when testing the code. This bad practice
is unacceptable for programming contests because it is time consuming and risky. Last
section of the chapter is brief introduction to possibilities of the command interpreter.
The focus is placed on using command procedures with redirection of the standard input/
output to text files. Without using this approach testing of the code, especially with large
test cases, is impossible.

3. Early Stage of the Preparation

We call the early stage of the preparation the period when usage of loops and arrays are
avoided. In this stage tasks in Bulgarian programming contest for beginners are created
on the base of knowledge and skills of the contestants gained in math classes.

3.1. Quotient and Remainder

Second chapter of the book is dedicated to topic Quotient and Remainder – the results
of the integer division n/m of two natural numbers n and m, m ≠ 0. The theory in this
topic is elementary and well known from math classes. One typical task in this group,
for solving of which only ability to compose correct arithmetic expressions, is the fol-
lowing:

KLETKI (AT 2015, Group E)*. K pigeons landed in a line of N cages, one pigeon in
a cage, K ≤ N. The number of the empty cages between two neighbor pigeons is called

*	 Full statements of the tasks mentioned in the article could be found (in Bulgarian), trough the link Tasks
(in Bulgarian Задачи) and then trough the links E for different national contests, on the training site of the
Bulgarian Olympiads in Informatics https://arena.olimpiici.com

K. Manev66

distance between them. When landing pigeons are trying to maximize the distances
between each two neighbors. Having in mind that it is not always possible to make
distances equal, write a program to find the number of minimal distances of the best
landing.

For example, if N = 8 and K = 4 then the best landing will be with two 1-distance
couples and one 2-distance couple, so the asked number is 2.

Solving tasks for finding quotient and/or remainder is an appropriate moment to in-
troduce the standard functions floor and ceil, which are not studied neither in school
nor in an introductory course.

3.2. Ordering of Numbers and Characters

Next topic that we teach is Ordering of numbers and characters. Without using ar-
rays and loops, the tasks of this kind require ordering (we do not even mention the term
sorting) of only 3–4 numbers or characters. Nevertheless, the moment is appropriate to
attract attention of the students to the big topic Sorting. This is the moment to attract
the attention of the students on the fact that values of the variables of type char are
numerical and the order is the natural – letters are ordered as in the alphabet – all capitals
before all small letters, and digits by their numerical values. So, there is no difference in
the procedures of ordering numbers and characters.

The natural technique bubble sort, which is easy understandable by the beginners,
is used. We start with demonstrating the operation exchanging of two values – first by
using an intermediate variable and then we introduce the standard function swap. As
a side effect of ordering, we get the minimum element of the set, which is the first ele-
ment in the arrangement, and the maximum, which is the last element.

Another side effect is that we carefully introduce students in the topic Time com-
plexity of the algorithms (in the worst case) which is of enormous importance for the
future contestants and must be systematically taught. Time complexity in this case is
eased to introduce as the number of executed by the program operations. It is impor-
tant for students to understand that the complexity of these tasks is a constant function
and to perceive the asymptotic notation O(1). The following task is typical for this
topic:

GUESSN (NOI2, 2023). Three of the numbers a1, a2 = a1 + d, a3 = a2 + d and a4 = a3
+ d are given in random order. Write a program to find the fourth number.

For example, if the numbers 4, 8 and 6 are given, after ordering them we could
conclude that forth number is 2 or 10. If the given numbers are 10, 1 and 4, then after
the ordering the gap between 1 and 4 is 3, the gap between 4 and 10 is 6 so the answer
is 7.

Then in the chapter we discuss some more difficult ordering tasks. First, we consider
tasks for ordering of objects with two parameters by two criteria – first by one of the cri-
teria, and when we have two objects with equal parameters by this criteria values – then
by the other. One such task is the following:

Preparing of Youngest Students for Participation in Programming Contests 67

BOOKS (NOI1, 2015). Four books of given height and thickness must be arranged so
that of two books of different heights, the one with the greater height is on the left, and
if they are of equal height, on the left to be the thicker one. Write a program to find such
an arrangement.

For example, if the heights/thickness of the four books are 2/23, 70/150, 70/100 and
22/37, then the asked order is 70/150, 70/100, 22/37 and 2/23.This task is appropriate
also to demonstrate that there is not much difference between ordering in decreasing and
increasing order.

A version of ordering by two criteria is when values of the second parameter, for ex-
ample the ordering number in the input of the objects, are not involved in the ordering.
In such case the values of the second parameter have just to be swapped always when
the main parameters’ values are swapped. For example:

CAKES (NOI1, 2014). Three cakes with different diameters, labeled with 1, 2 and 3 by
the order their diameters are given in the input, must be arranged one over the other in
such way that cake with bigger diameter is not arranged over cake with smaller. Write
a program to output the required order of the labels of the cakes starting with the big-
gest one.

In this chapter we also introduce the standard functions min and max, which could
be helpful in some tasks.

3.3. Positional Number Systems

The topic Positional number systems is fundamental for education in computer sci-
ence. But it is also appropriate for making tasks for the early stage of the preparation
of contestants. Main difficulty in the topic could be the bad knowledge of the operation
exponentiation of the base of the system, which is crucial for understanding the corre-
sponding algorithms. That is why some knowledge about the operation must be taught
in the beginning of the topic. Because arrays and loops are not used during this stage
the considered numbers are with no more than 3–5 digits. The numbers are usually in
decimal system and very rarely in some other – binary, ternary, etc.

Two are the main subtasks that the tasks of this kind could contain. First subtask
is to separate the digits of a given number and second is to restore a number from
given digits. A task could contain one of the two subtasks or both. For the first task a
contestant could consider the given number as value of type int or as a sequence of
values of type char. In first case the knowledge of the topic Quotient and Remain-
der is necessary because the last digit of the decimal number is the remainder of the
number’s division by 10 and integer division by 10 will remove the separated digit. If
the number itself is necessary for some steps of the algorithm – this is the best way to
separate its digits.

If the number itself is not necessary for some steps of the algorithm it could be input
in few variables of type char which will be the necessary separating of the digits. For

K. Manev68

the purpose students must know only how to transform ASCII value of the characters
to corresponding digits. This approach could be used in the case when the number is
necessary for some steps of the algorithm, but in such case the number must be restored
from its digits.

Because the numbers in these tasks are small their restoring could be done by mul-
tiplication of the digits by corresponding exponents of 10 and summing of obtained
terms. But we prefer to introduce for the purpose the Horner’s rule which is the only
alternative for the same kind of tasks but for larger numbers. Something more, Horner’s
rule eliminate the necessity to precalculated exponents of 10 when the number of digits
is arbitrary, decreases in such a way the number of multiplications and ameliorate the
time complexity.

The following task is typical for this topic:

DIFFERENCE (NOI1, 2015). Let A be the smallest and B the biggest number which
are formed by the digits of given number N, 100 ≤ N ≤ 999. Write a program to find the
difference B – A.

3.4. Metric Units

In tasks of the topic Metric units some calculation is usually required that involve dif-
ferent metric units of the same kind – for weight, distance, time, money. The standard
approach here is to transform all units to smallest one, mentioned in the statement of the
task, to make calculation with smallest unit and then to restore the result in the format
required by the task’s statement.

As a sample see the following tasks:

SONG (NOI1, 2009). A musical composition which is n minutes and m seconds long
must be recorded on a disk. The free space on the disk is k MiB, and to record one sec-
ond of sound 16 KiB is required. Write a program that outputs YES if the song can be
recorded or NO if it cannot. In case the free space on the disk is not enough for record-
ing the song, then the program must print how many KiB are not enough.

A specific case in this topic are the tasks in which a calculation with dates are neces-
sary. For example:

DATE (NOI1, 2009). Write a program that, given a valid date consisting of day d, month
m and year y, finds the date of the next day. A year is a leap year if it is divisible by 4 but
not divisible by 100 or divisible by 400.

Because tasks for manipulating dates appear sometimes in the contest task set we
recommend to students to create a function nextday that solve the task. The three
variables are passed to the function as global and the result is obtained in the same
variables to escape the not easy problem of passing parameters by pointers. This is
the moment we suggest to student for first time to start creating their own auxiliary
functions.

Preparing of Youngest Students for Participation in Programming Contests 69

3.5. Ad Hoc Tasks

In competitive programming we call a task ad hoc (from Latin – for specific or immedi-
ate needs) if it could not be classified in any topic and usually there is no well-known
algorithm/approach for its solving. We consider the ability to solve ad hoc tasks very
important because it develops the creativity of the contestants – future professional soft-
ware developers. Something more, most of the tasks given in international programing
contest are ad hoc per se.

For the chapter Ad hoc tasks, we made thorough analysis of the ad hoc tasks that
appeared in contests for the earliest age in Bulgaria, solving of which do not require
loops and arrays. The goal is to propose to the beginners idea how to proceed with this
kind of tasks.

The first kind of ad hoc tasks that we identified could be called “does what the state-
ment requires”. That means the procedure/algorithm that the contestant has to code is
described in the statement of the task. It could seem that these kinds of tasks are easy, but
it is not always true. Sometime such task requires a perfect programming skill and could
take a lot of the contestant’s time (so called time killer tasks). For example:

CONDITIONING (NOI1, 2014). Air conditioner executes inside one hour commands
of the format:

<code> <actual temperature> <required temperature>
where the code is one of the following:

f●● – downgrades the temperature to the required, but if the actual temperature is
lower than required, does nothing.
h●● – increases the temperature to the required, but if the actual temperature is high-
er than required, does nothing.
a●● – downgrades the temperature if the actual is higher then required or increases
the actual to required otherwise.
v●● – the air conditioner only ventilates the air and does not change the tempera-
ture.

Write a program that for given actual temperature, required temperature and a code of a
command output the actual temperature after an hour.

Most of the other ad hoc tasks of this stage could be called “consider the different
cases”. For example:

TOURIST (WT, 2010). Group composed of K students are preparing for a hike in the
mountain and must choose one, two or three of the available tents so that the weight
of the chosen tents is no more than W kilograms and they are able to accommodate all
students. The first tent weighs A1 kilograms and accommodates B1 students, the second
weighs A2 kilograms and accommodates B2 person and the third weighs A3 kilograms
and accommodates B3 person. Write a program that determines in how many ways can
be selected the tents.

Identifying the different cases that the program must consider is not easy sometime.
Some initial knowledge for generation of combinatorial configurations – permutations,

K. Manev70

combinations, and variations – over sets with 3–5 elements will be necessary, as well as
some skill of splitting the possible input data to equivalent cases.

4. Tasks that Require Loops

For the second half of the season, we include in the preparation the tasks that require
loops considering ability of students to organize loops one of the most important skills
for the future programmers. With solving tasks that require loops we can start to discuss
seriously the time complexity of the used algorithms.

4.1. Properties of a Set or a Sequence of Elements

The simplest tasks that require loops are the tasks for finding some properties of numeri-
cal sets or sequences of elements. For example, finding the minimal or maximal element,
the sum of the elements, the average for a numerical set and so on. Such kind of tasks we
have solved for small number of elements in the early stage of the preparation and now
we just extend the skills of the students to solve them with using loops. In a similar way
we also extend the skills from the early stage for finding optimal/extremal element of a
set or sequence when the elements have two or more parameters.

In this category we could also classify the tasks which require to solve many times
task that was solved earlier. For example, to include in a loop body code of the function
nextday (see Subsection 3.4) to so solve the task: for given date find which will be the
date after n days.

4.2. Finding Subsequences

Many tasks that need using of loops of national or regional contests are for finding sub-
sequences with some properties. These tasks could be solved without using arrays when
two conditions are valid: the required subsequences do not overlap and not the subse-
quence itself is required but some characteristic of it – for example, longest or shortest
one. Sample of such task is the following:

LOVABLE (WT 2009). A sequence of integers is called sympathetic if it contains a sub-
sequence of length at least 2 composed of the one and the same integer. Write a program
that checks whether a given sequence is sympathetic and if it is sympathetic to output
the integer composing longest subsequence delete it of one and the same integer. If there
is more than one such subsequence, then the biggest integer that composes such subse-
quence has to be output.

For solving such kind of tasks we suggest to students to keep the status of the search
in 5 variables:

new●● – for the currently considered integer;

Preparing of Youngest Students for Participation in Programming Contests 71

last●● – for the integer considered lately;
len●● – for the length of currently considered subsequence;
maxlen●● – for the length of longest found to the moment subsequence;
maxnum●● – for the integer of the longest found to the moment subsequence.

When new == last we just increase len by 1, and when is not then we update
maxlen with len when len > maxlen or len == maxlen but last > max-
num.

4.3. Nested Loops

Organizing nested loops is the most difficult topic in this kind of tasks. Especially when
the boundaries of changing of the control variable of the inner loop is depending on the
value of the control variable of the outer loop. We carefully introduce the approach for
building nested loops through tasks for drawing figures with characters. For example:

TRIANGLE. Write a program to output an equilateral triangle of height n as shown on
the Fig. 1.

For solving the task first an outer loop with n steps is organized for drawing on i-th
step a row of the triangle. In the body of this loop, we must organize two inner loops –
one to output sequence of intervals (with control variable j) and one for output sequence
of asterisks (with control variable k). Observing the example from statement of the task
for n = 6 we suggest creation of the Table 1 to identify the boundaries for j and k.

Now it is easy to write the corresponding code.

so on. Such kind of tasks we have solved for small number of elements in the
early stage of the preparation and now we just extend the skills of the students
to solve them with using loops. In a similar way we also extend the skills from
the early stage for finding optimal/extremal element of a set or sequence when
the elements have two or more parameters.

In this category we could also classify the tasks which excite to solve many
times task that was solved earlier. For example, to include in a loop body code
of the function nextday() (see Subsection 3.4) to so solve the task: for given
date find which will be the date after n days.

4.2. Finding Subsequences

Many tasks that need using of loops of national or regional contests are for
finding subsequences with some properties. These tasks could be solved without
using arrays when two conditions are valid: the required subsequences do not
overlap and not the subsequence itself is required but some characteristic of it –
for example, longest or shortest one. Sample of such task is the following:

LOVABLE (WT 2009). A sequence of integers is called sympathetic if it
contains a subsequence of length at least 2 composed of the one and the same
integer. Write a program that checks whether a given sequence is sympathetic
and if it is sympathetic to output the integer composing longest subsequence
composed of one and the same integer. If there is more than one such
subsequence, then the biggest integer that composes such subsequence has to be
output.

For solving such kind of tasks we suggest to students to keep the status of
the search in 5 variables:

 new – for the currently considered integer;
 last – for the integer considered lately;
 len – for the length of currently considered subsequence;
 maxlen – for the length of longest found to the moment subsequence;
 maxnum – for the integer of the longest found to the moment

subsequence.
When new == last we just increase len by 1, and when is not then we

update maxlen with len when len > maxlen or len == maxlen but
last > maxnum.

4.3. Nested Loops

Organizing nested loops is the most difficult topic in
this kind of tasks. Especially when the boundaries of
changing of the control variable of the inner loop is
depending on the value of the control variable of the
outer loop. We carefully introduce the approach for
building nested loops through tasks for drawing
figures with characters. For example:

*

Fig. 1.

Fig. 1.

Table 1

 For j For k
From To From To

1 1 5 1 1
2 1 4 1 3
3 1 3 1 5
4 1 2 1 7
5 1 1 1 9
6 1 0 1 11
i 1 n – i 1 2i – 1

K. Manev72

4.4. More about the Complexity of the Algorithms

We are using tasks that need loops for deeper consideration of the problem for evalua-
tion the complexity of algorithms. In this case the function of complexity is no longer
constant like in the tasks that do not need loops. It is relatively easy to explain that the
single loop of n steps that has body of constant complexity O(1) is O(n). It is not difficult
to understand also that the complexity of two nested loops, outer making m steps and
inner – n steps is O(mn).

Difficulties arise by the case when the boundaries of the control variable j (or k) of
the inner loop depend on the value of the control variable i of the outer, like in the ex-
ample above. In this case students must be able to find the complexity T(i) of each inner
loop, for each value of i and to sum obtained functions. Let T1(i) be the time complexity
function of first inner loop for the example above and T2(i) – of the second. From Table 1
we have obviously T1(i) = n – i and T2(i) = 2i – 1. So, for the complexity T(n) of the
algorithm we have:

T(n)	 = T1(1) + T1(2) + . . . + T1(n – 1) + T1(n) + T2(1) + T2(2) + . . . + T2(n) =
	 = (n – 1 + n – 2 + . . . + 1 + 0) + (1 + 3 + . . . + 2n – 1) =
	 = n (n – 1) / 2 + n2 = O(n2).

For explaining how the first sum is calculated we are using the “proof” of the young
Gauss, and for the second – just observation of the partial sums: 1, 4, 9, 16, and so on.

4.4. Ad Hoc Tasks

Having the loop construction some more difficult and more interesting tasks could be
formulated. Fort example:

JUMPS (SST, 2022). A grasshopper is perched on one end of L cm long stick, L ≤ 1018,
and makes successive jumps along the stick towards its other end, until with the last hop
falls from her. First jump is m centimeters long, and each subsequent one is longer than
the previous by n centimeters. Write a program that determines how many jumps the
grasshopper made on the stick before it fells of it.

Trivial simulation of the process will not pass the tests with very large L and small m
and n. For accelerating the simulation let us precompute, using the summation formula
that students know, the length P0 of the first 100 jumps of the grasshopper:

P0 = m + (m + n) + (m + 2n) + . . . + (m + 99n) = 100m + 4450n.

The distance P1 for next 100 jumps will be:

P1 = (m + 100n) + (m + 101n) + (m + 102n) + . . . + (m + 199n)
 = 100m + 100.100n + 4450n = P0 + 10000n,

Preparing of Youngest Students for Participation in Programming Contests 73

and so on – for each 100 jumps the past distance will be 10000n cm longer than the past
distance by the previous 100 jumps and the length of the current jump will increase by
100n. Using this observation, the length of the simulation, which means the complexity
of the algorithm also, will decrease about 100 times.

If we precompute the lengths of the first 1000, second 1000, and so on jumps instead
100, which is not so different, we will accelerate the simulation 1000 times.

5. Using Arrays

Arrays are extremely important instrument for future programmers. Including tasks that
require arrays we start teaching young contestants to structure its data – correctly and ef-
ficiently. Because only the adequate combination of algorithms and data structures could
produce efficient programs (Wirth, 1976). Using arrays, we teach the contestants to im-
plement basic abstract data types such as queues, stacks, maps, frequency chart, etc. in
static arrays before the start of using the dynamic implementations of STL. This gives
to authors possibilities to create more interesting and more edifying tasks, for solving
which more sophisticated algorithmic approach are necessary. In this topic we include
also different tasks over strings because the strings are de facto arrays of characters.

5.1. Sorting and Merging

Ordering 3–5 values at the early stage of the preparation we demonstrated the importance
of the sorting of data for efficient solving of some tasks. At this stage it is time to stress
this importance, especially for large amounts of data, to demonstrate that classic O(n2) al-
gorithms are rather not applicable for hundreds of thousands or million elements. We in-
troduce standard sorting function of STL, which use fast O(n.log n) algorithm, carefully
explaining log n function which the students do not know from mathematic classes yet.

We use the discussions about the different sorting algorithms and their time complex-
ity to introduce the linear O(n + m) algorithm Counting sort of n integers when elements
are smaller than m. The very simple implementation of this algorithm makes it inevitable
alternative of the standard STL method when data is appropriate.

This is the moment also to introduce algorithmic approach known as merging of
sorted areas. It happens that beside the initial purpose of the approach – to be a part of
the efficient O(n.log n) Merge sort – the approach is appliable to some different tasks.
For example finding the union and intersection of two sets, represented in sorted areas,
etc. Example of such task is the following:

GARDEN (NOI3, 2014). In one row (bed) n decorative bushes have been sown and in a
second – m decorative bushes. If two bushes of the same height are found in each of the
two beds, one of them must be moved to a third bed. Write a program that finds the heights
of the bushes in the new bed, arranged from the lowest bush to the tallest one. There will
be always at least one bush in the new bed.

K. Manev74

Searched set is the intersection of two sets. First, we are sorting the two arrays and
then apply a small modification of the classic merging – only when the values of the two
considered elements are equal, we move a bush of this height to the third bed. Final loop
of the classic merging of two sorted arrays is not necessary at all.

5.2. Finding Subsequences

In subsection 4.2 we excluded from considering the tasks for finding subsequences
when the possible subsequences overlap or/and the subsequence itself must be found.
With usage of an array this kind of tasks are solvable. If the subsequence must be
output as a result we just append to the status of the search, defined in 4.2, two more
variables to memorize the begin and the end of the best found to the moment subse-
quence.

If the subsequences could overlap, we introduce the algorithmic approach that we
call sliding of window (called by some colleagues a two pointers approach). There are
two kinds of such tasks – when the required subsequence is of fixed length and when
is of variable length. Searching subsequence of fixed length L, we start with opening
of the window over first L elements of the sequence and then we slide the window
“closing” it by one element from the beginning and extending it by one element after
the end. If subsequences do not overlap sliding a window of fixed length is possible
without using an array also. Appropriate for sliding window of fixed length is the fol-
lowing task:

SUMDIGITS. Write a program to find a subsequence of length k of a sequence of n inte-
gers having maximal sum of digits of its elements.

Crucial for the speed of program in these tasks is the efficient finding the properties
of the new window. For this purpose, we recommend to students to keep in appropriate
structure the necessary data for the fast calculation properties of the window. For the task
above, for example, recommendation is to keep in another array the sum of the digits of
each integer so for sliding of the window one subtraction from and one addition to the
current sum are enough.

If the searched subsequence is of variable length, then longest or shortest subse-
quence with the given properties must be found usually. In this case, for sliding the
window, more than one element from the beginning could be eliminated (until the neces-
sary property is no more valid) and then one or more elements to be appended to the end
(until the property get valid again). Example:

ALL LETTERS. Write a program that for given text (sequence) composed of small let-
ters find the shortest subsequence of consecutive letters such that each letter is included
in the subsequence at least once.

For fast calculation property of the searched window in this task we recommend
keeping a map where for each letter to save how many times it is included in the current
window and a counter of the different letters in the window.

Preparing of Youngest Students for Participation in Programming Contests 75

5.3. Linear Abstract Data Types

As mentioned above, for solving tasks of this group implementations of some linear
abstract types are necessary sometime. Besides the usual queues and stacks especial at-
tention is paid to implementation of different kind of maps, that lead to more efficient
solutions. Here we clearly differentiate the dynamic implementations of STL from the
static implementations that the students must be able to code themselves, stressing the
specific features of the two different implementations.

The advantage of dynamic implementations of maps from STL is that they allow
a large enough range of the keys, using memory only for couples that are included in
the map. The disadvantage is that, because the maintaining of the map is in some tree
structure, usual operations (inserting in the map and check for presence of a key) are of
complexity O(log n). Static implementation in an array (or in vector) will need memory
proportional of the range of keys and is not applicable when the range of keys is large
enough. But in the static implementations the complexity of usual operation is constant.
So, the ability of the contestant to choose which of the two kinds of implementations to
choose, depending on the task, must be trained systematically.

5.4. Two Dimensional Arrays

In contests for this age group there are not so many tasks that require two dimensional
arrays. But it is an important step in teaching contestants to structure their data. And
more, including two dimensional arrays in the training give even more possibilities to
create interesting tasks with increasing complexity. These tasks almost always require
using the nested loops and develop skills of the contestants to organize such loops and to
evaluate the time complexity of their algorithms.

Main object in these tasks usually is a rectangular table of cells with given number
of rows and columns for which an element (or elements) with some properties is (are)
searched. Example is the following task:

MINESWEEPER (AT, 2016). The board of the Minesweeper game is divided into nine
equal cells with quadratic form – three rows with three cells in each row. In some of
cells, that are labeled with 9, there is a bomb. The others, labeled with 0, are empty. The
player’s goal is, for each empty cell, to find the number of bombs in its neighbors – these
that share a vertex or side with it. Write a program to find the required numbers.

Principle difficulty in such a task could be the fact that cells on corners of the board,
lying on the sides of the board and the inner cells have different number of neighbors –
3, 5 or 8 respectively. A very helpful approach in such cases is to border the table – up,
down, left, and right – with neutral cells. In our example these cells must contain zeros.
Then all cells of the board will have equal number of neighbors.

For exercising the organization of nested loops we use the classic task:

K. Manev76

BY SPIRAL. In each cell of a table with m rows and n columns one of the letters of a
texts is written in spiral order. The spiral starts in upper left corner of the table and go
first right, then down, left, and up, then right again and so on, without repeating a cell
(see Fig. 2 for m = n = 4). Write a program to restore the text.

Solving this task, the approach from Section 4.3 for identifying the borders of four
inner loops of the spiral must be applied.

 Many other tasks in this subtopic could by classified as ad hoc and need approaches
that we discussed above.

6. Divisibility

The chapter Divisibility of (Manev, 2003) is dedicated to the divisibility of natural num-
bers. It is extending in a natural way the topic Quotient and remainder that we started
with. First, we discuss the main notions of the subject – prime number, divisor and
multiple, greatest common divisor, smallest common multiple, as well as the trivial algo-
rithms that follow from the definitions. For example:

to check if a given natural number ●● n is prime by finding its remainders of division
to the numbers, less than or equal to the square root of n (here we introduce in intui-
tive level the notion square root);
to factorize a given natural number ●● n to its prime divisors by checking for divis-
ibility to each smaller number as many times as necessary;
to find the number of different divisors of a natural number ●● n from the degrees of
its prime divisors.

Examples of such tasks are:

PRIME (ST, 2008). Write a program that determines how many prime numbers are
in given sequence of n positive integers, where n < 100 and numbers are less than
200000.
and

PRIMES (WT, 2010). Write a program that determines how many digits in total have
the prime numbers in given interval [A; B], A < B.

Then we introduce Euclid’s’ algorithm for finding greatest common divisor (GCD)
and least common multiple (LCM) of two natural numbers, as well as the Eratosthenes’

Gavau.
 7 str.:

1. Pankov (1 d.) Laukiu finalinės versijos
2. Manev (1 d.)
3. Mirjilali (2 d.)
4. Mammadli (1 d.)
5. Taneja (1 d.)
6. Dueñas Orozco (2 d.)
7. Alrefaya (???? d.)

Tatjana

Почтовая сова

https://www.youtube.com/watch?v=aUrIxvY2YAk

Дракон

https://www.youtube.com/watch?v=FGiwQqgV1Cs

F i n d

r i n

t ! g t

s e h
 Fig. 2.

Preparing of Youngest Students for Participation in Programming Contests 77

sieve for finding the prime numbers less than given n. Showing here that complexity of
Euclid’s algorithm for finding GCD(m, n), when m < n, is O(log n) is a real challenge for
the mathematical culture of the contestants.

Examples of such tasks are:

CHESTNUTS (NOI3, 2013). On the main street of the host city of the National Olympics
are planted n chestnuts arranged in a straight line. The distances between the different
neighboring trees are different. Write a program that finds the minimum number of trees
that must be planted between the given so that the distances between every two neighbor-
ing trees are equal.

MIRROR (NOI3, 2013). Write a program that determines the number of these prime
integers p in given interval [A; B], A < B, for which is true that p is equal to the number
q obtained by reading digits of p in reverse order.

7. Other Tasks

In the last chapter of the book, we consider tasks that were not classified in the previ-
ous chapters. One such kind of talks are the tasks that require usage of prefix values for
solving some range query tasks. For example, maximal sum in the range or minimum/
maximum in the range. Such an approach is inevitable when many queries for finding
some extremal range must be executed. Example for such task is the following:

MAXIMAL SUM. Write a program that for given sequence of n integers, absolute value
of each of which is less or equal to 1000000, execute q queries for finding the maximal
sum in q given intervals, n ≤ 1000000, q ≤ 1000000.

It is obvious that with building prefix sums of the given sequence for O(n) time, we
could find each of the required maximal sum with time complexity O(1).

Another, very specific kind are the tasks that excite scanning of a raster. In this kind
of task, we call a raster some (one- or two-dimensional) structure that contains one pixel
of data for each moment of an interval of time or for each point of some space. The es-
sence of these tasks is to build a raster to keep the given data and then carefully to scan
the raster to find the solution.

Example of such task is the following:

AIRPORT (NOI3, 2012). In one day, N planes land and take off at an airport. It has
been known that a subsequent aircraft may re-use a sleeve 10 minutes after the previous
aircraft has disengaged from the arm. Write a program that determines the minimum
number of sleeves that are required for servicing all aircraft taking off and landing. Times
in the schedule are set in hours and minutes.

For solving the task, we must build a raster, having one pixel for each minute of the
day and for each landing airplane to increase by 1 the value of pixels that correspond
of its staying in the airport and to decrease them by 1 after the depart of the airplane.
Then the required value is the maximal value of the raster recorded in some minute of
the day.

K. Manev78

In the end of the chapter, we also consider some ad hoc tasks that happened to by
difficult according to the results of the contestants from the corresponding contest. Two
examples of such tasks are:

DIG (NOI3, 2015). Given a positive integer n with no more than 30 digits. Write a
program that finds the smallest k-digits positive integer that contains at least once each
of the decimal digits that are not digits of n.

EXPFIELD (ST, 2021). Students of one class had been asked to plant m.n plants la-
beled from 1 to m.n in the experimental field of their school, in m row lines and n col-
umn lines. The students have planted them “by rows” – the plants labeled from 1 to n
in the first row, plants labeled labeled from n + 1 to 2n in the second and so on. Then
the teacher of them explained that the correct order is “by columns” – plants labeled
from 1 to m in the first column, plants from m + 1 to 2m in the second and so on. Write
a program to find the number of plants that will not be replanted.

We will leave to the interested reader to find the best solutions of these tasks.

8. Discussion

Bulgarian experience in preparation of young contestants is big enough. From the begin-
ning of 90’s separate contests for youngest contestants (5th–7th grade) was organized and
some years later the contests for students of 4th–5th was separated too. Since then, the
intensity of the contests calendar for the youngest is the same as for all other age groups
(with shorter contest’s time). We consider that efforts for early preparation are crucial
reason small-populated Bulgaria (less than 7 million in the moment) to be still in the top
of the countries by the results in IOI, for example – 4th–5th by the total number of med-
als, and 9th by their quality (see https://stats.ioinformatics.org/countries/,
links Total and Medals).

Training of very young programmers, especially for participation in programming
contests, is a specific activity. Pupils in this age have not clear vision for their future
profession yet and just try to find their road in different directions. And the road of the
professional programmer is not easy at all. That is why augmentation of difficulties in
the training process must be smooth and careful. The main goal of our textbook was to
arrange the material in such way that passing from one topic to the next to be as easy
as possible.

Some important conclusions for the early preparation of young contestants could
be extracted from the analysis of the tasks from Bulgarian national and regional pro-
gramming contests. On the first place this is the fact that, in the beginning, contestants
have not good command of the programming language, and are not still ready to
understand and use sophisticated algorithm and data structures. That is why the con-
test tasks are based mainly on school mathematics. Our analysis of the mathematic
skills necessary for successful start in the competitive programming was published
in (Manev, 2024).

Preparing of Youngest Students for Participation in Programming Contests 79

Our statistic is definitive – most of the school students that demonstrate an early
will to participate in programming contests in Bulgaria are coming from the specialized
mathematical schools that accept students of 5th grade. Most of the necessary mathemat-
ical knowledge and skills mentioned in our analysis the students in some mathematical
schools get in math classes or in out of school classes educational forms. These contes-
tants can master the material from the book for one-year being in 5th grade. Students
that are not in these mathematical school must start preparation in 4th grade to master
necessary material and to have some success in the contests.

We sincerely hope that our experience will be helpful for colleagues that are engaged
with the preparation of contestants at an early age and we are ready to discuss more
details through personal contact.

References

Kelevedjiev, E., Branzov, T., Petrov, P., Shalamanov, M. (2020). Bulgarian Platform for Competitions in
Informatics. Mthematics and Education in Mathematics, pp. 123–130. [In Bulgarian: Келеведжиев, Е,
Брънзов, T., Петров, П., Шаламанов, М., Българска платформа за състезателна информатика. Ма-
тематика и математическо образование, стр. 123–130.]
http://www.math.bas.bg/smb/2020_PK/tom_2020/pdf/123-130.pdf

Manev, K. (2023). Introduction to Competitive Programming. KLMN, Sofia [In Bulgarian, Кр. Манев, Увод
в състезателното програмиране. КЛМН, София.] ISBN 978-954-8212-12-0

Manev, K., Karadjova, R. (2024). Mathematics for Beginning Programers. Mthematics and Education in
Mathematics, pp. 25–35. ��[���In��� ��Bulgarian���: Манев, К., Караджова, Р., Математика за начинаещи програ-
мисти. Математика и математическо образование, стр. 25–35.]
http://www.math.bas.bg/smb/2024_PK/tom_2024/pdf/025-035.pdf

Manev, K., Kelevedjiev, E., Kapralov, S. (2007). Programming Contests for School Students in Bulgaria.
Olympiads in Informatics, 1, 112–123.

Verhoeff, T. (2008). Programming Task Packages: Peach Exchange Format. Olympiads in Informatics, 2,
192–207.

Wirtt, N. (1976). Algorithms + Data structures = Programs. Prentice-Hall Inc. Englewood Cliffs, New Jer-
sey. ISBN 0-13-022418-9

K. Manev is a retired professor, PhD in Computer Science. He was
teaching Discrete mathematics, Programming and Algorithms in many
Bulgarian universities – mainly Sofia University, American University
in Bulgaria, and New Bulgarian University. He has published over 75
scientific papers and more than 30 textbooks in the fields of Informat-
ics and Information Technologies. He was member of Bulgarian Na-
tional Committee for Olympiads in Informatics since 1982 and Presi-
dent of the Committee from 1998 to 2002; also leader or deputy leader
of Bulgarian team for IOI (International Olympiads in Informatics) in
1989, 1998, 1999, 2000, 2005 and 2014; member of the organizing
team of IOI’1989 and IOI’1990; chairman of IOI’2009. From 2001 to
2003 and from 2011 to 2013 he was elected member of International
Committee of IOI, from 2005 to 2010 – member of IC, representing
the Host country of IOI’2009, and from 2015 to 2017 – a President of
IOI. In 2017 he was one of the creators of European Junior Olympiad
in Informatics and its President from 2017 to 2020.

Olympiads in Informatics, 2024, Vol. 18, 81–88
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.06

81

Olympiads without Words

Pavel S. PANKOV, Elzat J. BAYALIEVA
Institute of Mathematics, Kyrgyzstan
J.Balasagyn National University, Kyrgyzstan
e-mail: pps5050@mail.ru, elzat.bayalieva@gmail.com

Abstract. To involve as many children as possible from an earlier age in the Olympiad move-
ment, tasks without any conventional signs and denotations are proposed (these tasks can be called
“natural”). Drag-and-Drop technique is used for this purpose, with varieties: ”n-to-1” (selecting an
object to be dragged to the spot); ”1-to-m” (selecting the spot or a place the object to be dragged
to); ”n-to-m” (selecting both an object or a collection of objects and the spot(s) to be dragged to).
Parametrizing is necessary: when restarting the program, a slightly different task is to be gener-
ated. A sequence of these tasks (in learning mode for any definite language: with announcements
after successful completion: “Congratulations, you have mastered the notion of…”) would also
be an unobtrusive training course for children. These tasks can be also used for checking and
improving AI.

Keywords: Olympiad, children, parametrized task, common sense, guessing, Drag-and-Drop.

1. Introduction

At all times, while learning the essence of any subject one also has to learn the system of
symbols (notations) and special terms traditionally used in it. This causes the following
disadvantages:

Pupils and even some teachers confuse the content of a subject with its form, they ●●
do not recognize real life applications of its items and cannot apply their skills and
knowledge.
Many persons of good ability and poor initial knowledge are frightened of such a ●●
system and do not try to learn at all.
If the state (official) language of teaching or symbols used are well known by many ●●
pupils, then those pupils have a great advantage over those unfamiliar.

Therefore, summarizing teachers’ attempts to make teaching more intelligible and
visual, we suggested developing of independent learning (Pankov, 1996): ways of teach-
ing and assessment which make minimal use of any media system not related to the
content of the subject.

P.S. Pankov, E.J. Bayalieva82

We also proposed to compose Olympiad tasks with minimal use of additional condi-
tions and restrictions (Pankov, 2008), to increase the use of common sense by Socrates’
method in learning mathematics (Pankov et al., 2015).

In this paper we propose to use this method for expanding the age range for children
involved in the Olympiad movement. The problems are designed in such a way that no
mathematical knowledge is required to understand and to enter the answer surely. Cer-
tainly, each task is to be tested before including to the set of tasks of the Olympiad.

Also, this paper continues the question put in Pankov et al. (2023): What mathemati-
cal and other topics are present latently in common sense?

Sections 2 and 3 contain definitions and classification of objects of Drag-and-Drop
technique: Target, Spot and Movable objects, requirements to parametrize tasks.

Sections 4, 5, 6 and 7 consider various types of tasks without words: on similarity;
on relations; on equalization; on forecasting.

Remark. Some issues in this article cannot be covered by any general definitions or
explanations. They can be demonstrated by examples only.

Remark. Certainly, there are a lot of publications and software touching on this topic
and we cannot claim originality for each item. However, many of such publications con-
tain general advice and recommendations only.

For example, a recent work (Hatisaru, 2020), which has, in turn, a vast list of 89 ref-
erences including 7 ones by the author. But all tasks are in standard form:

Can you solve 7𝑥 + 4 = 5𝑥 + 8?
On squared paper, draw as many different parallelograms as you can with an area

of 12 square units.
[Here is a mistake: there are infinitely many such parallelograms: (0; 0)-(n; 1)-

(n + 12; 1)-(12; 0)].
And a suggestion to the teacher: Giving students cards depicting the same mathemat-

ical idea or concept (e.g., polyhedron) in different ways (e.g., verbal, visual, pictorial de-
scriptions) and asking them to match the cards to enable them to draw links between the
different representations of the same concept and to develop new mental images for it.

Remark. There is a widespread genre: pictures and series of pictures “without words”.
This paper may be considered as an “invitation to act” after observing such pictures.

2. Definitions and Classification

Although we try to avoid any conventions, nevertheless some are necessary and will be
involved latently.

The Spot (to drag Movable objects to it) will be in the middle of the screen and will
be denoted by any color (light green) which will not be used anywhere else.

A Movable object of any color has an outline of the same dark color.
Movable objects to be dragged will be in the lower part of the screen and Targets will

be in the upper part.
First tasks will be evident and the user will unconsciously master these conventions.

Olympiads without Words 83

Varieties for Drag-and-Drop technique:
”n-to-1”: there are several Movable objects and one Target near the Spot. The user is to
choose and to move one of Movable objects to the Spot;
”1-to-m”: (without a separate Spot): there are one Movable object and several Targets.
The user is to choose and to drag the Movable object to any place (neighbor) of Targets;
”n-to-m”: there are several Movable objects and several Targets. Such complex task is
given if the user has passed previous similar tasks successfully. The user is to drag some
Movable objects, the announcement (congratulation) appears after all implied Movable
objects are dragged to correct Targets.

Movable objects may be
Solid; only parallel shift is possible by the custom. ●●
Rotatable (for instance, a segment).●●
Transformable (for instance, a chain).●●

(Rotatable and Transformable objects may be marked by a little circle of dark color
at the edge; it is also a clue for the user).

We consider only solid Movable objects in the paper; the only example of Rotatable
object is in Task 9.

Remark. Of course, Rotatable and Transformable objects and more difficult for pro-
gramming and can generate a wide variety of tasks, the proposed method is not limited.

We propose tasks to guess which may be classified as, searching analogs (similar-
ity); using relations (as often used in IQ tests); equalization on scales (visualization of
solving linear equations for children); forecasting (the simplest example is “continue the
sequence …”). At the same time, it is known that many human ideas cannot be expressed
in words (in instructions, descriptions). The simplest example is music.

We hope that some of these tasks proposed by us or invented by others in the frame-
work of the proposed method would cover new ideas which cannot be classified in any
verbal form.

3. Requirements

Tasks must be parametrized: when restarting the program, a slightly different task (with
the same level of difficulty) is to be generated randomly.

This provides all contestants with different tasks and prevents mutual hints. Also, if
the software is used for learning, restarting it yields different tasks that makes learning
to be more interesting.

Tasks must be “culturally neutral”.
After successful completion of the task, a nice piece of music and an incentive badge

(not a smiley because smileys have definite colors) must be played to the user.
If the software is intended for learning in different languages then after a successful

completion of the task an announcement appears:
Congratulations, you have mastered the notion of …

in the chosen language.

P.S. Pankov, E.J. Bayalieva84

4. Introduction, Examples of Tasks on Similarity

Only the number of the task and drawings (figures, objects) are shown to the user (child).
Themes of tasks, words “Target”, “Movable object” below are for programmers and
teachers.

Certainly, tasks would be more interesting for children in a colorful, geometric form.
Examples are given below in pseudo-graphic for brevity. The Spot is denoted as (?).

(Optional, for younger children; an adult may help)
Task 0. Introduction (1-to-1): The Spot, the Movable object. If the user does nothing

then the Movable object moves to the Spot and returns.

Task 1. Colors (n-to-1). The Spot, the Target as a yellow square near (over) the Spot,
Movable objects as equal circles of different colors, one of them is yellow.

(After restarting: a blue circle; equal triangles of different colors, one of them is blue,
etc.)

This is a particular case of
General Task 2. Property-choose (n-to-1). The Spot, the Target as an image with any

Property, Movable objects as similar images (but different from the Target) of different
properties, one of them has the same Property.

Particular cases:
Task 3. Notion of natural number (n-to-1).

Example (4-to-1):
Target &&&&& (?)
Four Movable objects: ** **** ***** ***

Task 4. Length (n-to-1). The Spot, the Target as a segment near (over) the Spot, Mov-
able objects as slightly broken lines of sufficiently different lengths, one of them is equal
to the length of the Target.

(Congratulations! It is length.)

Task 5. Area (n-to-1). The Spot, the Target as a rectangle near (over) the Spot, Mov-
able objects as triangles of sufficiently different areas, one of them is equal to the area
of the Target.

(Congratulations! It is area.)

Task 6. Symmetry-choose (n-to-1). The Spot, the Target as a symmetrical figure near
(over) the Spot, Movable objects as figures, one of them has the same symmetry.
Illustrative example 6-1 (5-to-1): Target: Φ ; Movable objects: N, ↆ, ↁ, Z, E
Illustrative example 6-2 (5-to-1): Target: Z ; Movable objects: ↆ, ↁ, §, E, H

Sub-general Task 7. Linear transformations (n-to-1). The Spot, the Target as a geometri-
cal figure, Movable objects as figures, one of them is a linear transformation of the Target.
Illustrative example (4-to-1):
Target: A ; Movable objects: P, ∀, ∃, T

General Task 8. Property-complete (1-to-m). The Target is a geometrical image “al-
most with any Property”, the Movable object is a little piece which is to complete the
Target.

Olympiads without Words 85

Task 9. Figure-complete (1-to-m).
Example. The Spot is shown as (light green) neighbor around the Target.

The Target

Gavau.
 7 str.:

1. Pankov (1 d.) Laukiu finalinės versijos
2. Manev (1 d.)
3. Mirjilali (2 d.)
4. Mammadli (1 d.)
5. Taneja (1 d.)
6. Dueñas Orozco (2 d.)
7. Alrefaya (???? d.)

Tatjana

Почтовая сова

https://www.youtube.com/watch?v=aUrIxvY2YAk

Дракон

https://www.youtube.com/watch?v=FGiwQqgV1Cs

neighbor around the Target.
The Target

The Movable object or The Rotatable object

The Movable object or The Rotatable object

Gavau.
 7 str.:

1. Pankov (1 d.) Laukiu finalinės versijos
2. Manev (1 d.)
3. Mirjilali (2 d.)
4. Mammadli (1 d.)
5. Taneja (1 d.)
6. Dueñas Orozco (2 d.)
7. Alrefaya (???? d.)

Tatjana

Почтовая сова

https://www.youtube.com/watch?v=aUrIxvY2YAk

Дракон

https://www.youtube.com/watch?v=FGiwQqgV1Cs

neighbor around the Target.
The Target

The Movable object or The Rotatable object

Tasks 10. Symmetries (1-to-m). Four tasks in the following drawing.

The Target. Task 10-1 The Target. Task 10-2

Sub-general Task 7. Linear transformations (n-to-1). The Spot, the Target as a
geometrical figure, Movable objects as figures, one of them is a linear transformation of
the Target.

Illustrative example (4-to-1): Target: A ; Movable objects: P, , , T

General Task 8. Property-complete (1-to-m). The Target is a geometrical image
“almost with any Property”, the Movable object is a little piece which is to complete the
Target.

Task 9. Figure-complete (1-to-m). Example. The Spot is shown as (light green)
neighbor around the Target.
The Target

The Movable object or The Rotatable object

Tasks 10. Symmetries (1-to-m). Four tasks in the following drawing.

Targets: Task 10-1 Task 10-2 Task 10-3 Task 10-4

the Movable object for all tasks

5. Examples of Tasks on Relations

Set operations either on strings or on drawings:

Task 11. Subset (n-to-1). Example 11-1 (4-to-1):

Target UKDFGE (?)
Four Movable objects: WKD DFG FGZ KSFG

Example 11-2 (4-to-1):

(Spot)

Target

Four Movable objects

Remark. The radius of the semicircle in the fourth Object is greater than one of the
circle in the Target.

Sub-general Task 7. Linear transformations (n-to-1). The Spot, the Target as a
geometrical figure, Movable objects as figures, one of them is a linear transformation of
the Target.

Illustrative example (4-to-1): Target: A ; Movable objects: P, , , T

General Task 8. Property-complete (1-to-m). The Target is a geometrical image
“almost with any Property”, the Movable object is a little piece which is to complete the
Target.

Task 9. Figure-complete (1-to-m). Example. The Spot is shown as (light green)
neighbor around the Target.
The Target

The Movable object or The Rotatable object

Tasks 10. Symmetries (1-to-m). Four tasks in the following drawing.

Targets: Task 10-1 Task 10-2 Task 10-3 Task 10-4

the Movable object for all tasks

5. Examples of Tasks on Relations

Set operations either on strings or on drawings:

Task 11. Subset (n-to-1). Example 11-1 (4-to-1):

Target UKDFGE (?)
Four Movable objects: WKD DFG FGZ KSFG

Example 11-2 (4-to-1):

(Spot)

Target

Four Movable objects

Remark. The radius of the semicircle in the fourth Object is greater than one of the
circle in the Target.

The Target. Task 10-3 The Target. Task 10-4

Sub-general Task 7. Linear transformations (n-to-1). The Spot, the Target as a
geometrical figure, Movable objects as figures, one of them is a linear transformation of
the Target.

Illustrative example (4-to-1): Target: A ; Movable objects: P, , , T

General Task 8. Property-complete (1-to-m). The Target is a geometrical image
“almost with any Property”, the Movable object is a little piece which is to complete the
Target.

Task 9. Figure-complete (1-to-m). Example. The Spot is shown as (light green)
neighbor around the Target.
The Target

The Movable object or The Rotatable object

Tasks 10. Symmetries (1-to-m). Four tasks in the following drawing.

Targets: Task 10-1 Task 10-2 Task 10-3 Task 10-4

the Movable object for all tasks

5. Examples of Tasks on Relations

Set operations either on strings or on drawings:

Task 11. Subset (n-to-1). Example 11-1 (4-to-1):

Target UKDFGE (?)
Four Movable objects: WKD DFG FGZ KSFG

Example 11-2 (4-to-1):

(Spot)

Target

Four Movable objects

Remark. The radius of the semicircle in the fourth Object is greater than one of the
circle in the Target.

Sub-general Task 7. Linear transformations (n-to-1). The Spot, the Target as a
geometrical figure, Movable objects as figures, one of them is a linear transformation of
the Target.

Illustrative example (4-to-1): Target: A ; Movable objects: P, , , T

General Task 8. Property-complete (1-to-m). The Target is a geometrical image
“almost with any Property”, the Movable object is a little piece which is to complete the
Target.

Task 9. Figure-complete (1-to-m). Example. The Spot is shown as (light green)
neighbor around the Target.
The Target

The Movable object or The Rotatable object

Tasks 10. Symmetries (1-to-m). Four tasks in the following drawing.

Targets: Task 10-1 Task 10-2 Task 10-3 Task 10-4

the Movable object for all tasks

5. Examples of Tasks on Relations

Set operations either on strings or on drawings:

Task 11. Subset (n-to-1). Example 11-1 (4-to-1):

Target UKDFGE (?)
Four Movable objects: WKD DFG FGZ KSFG

Example 11-2 (4-to-1):

(Spot)

Target

Four Movable objects

Remark. The radius of the semicircle in the fourth Object is greater than one of the
circle in the Target.

The Movable object for all tasks

Sub-general Task 7. Linear transformations (n-to-1). The Spot, the Target as a
geometrical figure, Movable objects as figures, one of them is a linear transformation of
the Target.

Illustrative example (4-to-1): Target: A ; Movable objects: P, , , T

General Task 8. Property-complete (1-to-m). The Target is a geometrical image
“almost with any Property”, the Movable object is a little piece which is to complete the
Target.

Task 9. Figure-complete (1-to-m). Example. The Spot is shown as (light green)
neighbor around the Target.
The Target

The Movable object or The Rotatable object

Tasks 10. Symmetries (1-to-m). Four tasks in the following drawing.

Targets: Task 10-1 Task 10-2 Task 10-3 Task 10-4

the Movable object for all tasks

5. Examples of Tasks on Relations

Set operations either on strings or on drawings:

Task 11. Subset (n-to-1). Example 11-1 (4-to-1):

Target UKDFGE (?)
Four Movable objects: WKD DFG FGZ KSFG

Example 11-2 (4-to-1):

(Spot)

Target

Four Movable objects

Remark. The radius of the semicircle in the fourth Object is greater than one of the
circle in the Target.

5. Examples of Tasks on Relations

Set operations either on strings or on drawings:

Task 11. Subset (n-to-1).
Example 11-1 (4-to-1):
Target UKDFGE (?)
Four Movable objects: WKD DFG FGZ KSFG

P.S. Pankov, E.J. Bayalieva86

Example 11-2 (4-to-1):

The Target. (Spot) Four Movable objects

Sub-general Task 7. Linear transformations (n-to-1). The Spot, the Target as a
geometrical figure, Movable objects as figures, one of them is a linear transformation of
the Target.

Illustrative example (4-to-1): Target: A ; Movable objects: P, , , T

General Task 8. Property-complete (1-to-m). The Target is a geometrical image
“almost with any Property”, the Movable object is a little piece which is to complete the
Target.

Task 9. Figure-complete (1-to-m). Example. The Spot is shown as (light green)
neighbor around the Target.
The Target

The Movable object or The Rotatable object

Tasks 10. Symmetries (1-to-m). Four tasks in the following drawing.

Targets: Task 10-1 Task 10-2 Task 10-3 Task 10-4

the Movable object for all tasks

5. Examples of Tasks on Relations

Set operations either on strings or on drawings:

Task 11. Subset (n-to-1). Example 11-1 (4-to-1):

Target UKDFGE (?)
Four Movable objects: WKD DFG FGZ KSFG

Example 11-2 (4-to-1):

(Spot)

Target

Four Movable objects

Remark. The radius of the semicircle in the fourth Object is greater than one of the
circle in the Target.

Sub-general Task 7. Linear transformations (n-to-1). The Spot, the Target as a
geometrical figure, Movable objects as figures, one of them is a linear transformation of
the Target.

Illustrative example (4-to-1): Target: A ; Movable objects: P, , , T

General Task 8. Property-complete (1-to-m). The Target is a geometrical image
“almost with any Property”, the Movable object is a little piece which is to complete the
Target.

Task 9. Figure-complete (1-to-m). Example. The Spot is shown as (light green)
neighbor around the Target.
The Target

The Movable object or The Rotatable object

Tasks 10. Symmetries (1-to-m). Four tasks in the following drawing.

Targets: Task 10-1 Task 10-2 Task 10-3 Task 10-4

the Movable object for all tasks

5. Examples of Tasks on Relations

Set operations either on strings or on drawings:

Task 11. Subset (n-to-1). Example 11-1 (4-to-1):

Target UKDFGE (?)
Four Movable objects: WKD DFG FGZ KSFG

Example 11-2 (4-to-1):

(Spot)

Target

Four Movable objects

Remark. The radius of the semicircle in the fourth Object is greater than one of the
circle in the Target.

Remark. The radius of the semicircle in the fourth Object is greater than one of the circle
in the Target.
By our experience, children note it and choose the first Object surely.

Task 12. Intersection (n-to-1).
Example (5-to-1):
Target UKDFG (?) FDKZPW
Four Movable objects: WKF KUD DGF KFD TDW
Remark. We could not find a suitable way to involve “union of two sets”.

Task 13. New genre? (n-to-n).
Example (3-to-3):
Targets ∪∪∪∪∪∪ ∪∪∪∪∪∪∪∪ ∪∪∪∪∪
 (?) (?) (?)
Three Movable objects: **** ***** *******

6. Tasks with Scales (Equalization)

Illustration before the tasks

(the right cup of the right scales is light green)
The following tasks use one set of scales in tilt or two sets of scales: in balance and

in tilt and natural numbers as sums of weights on scales. Firstly, the green (right) cup of
the scales is up (is lighter in weight than the left one); it is denoted as (>).

Movable objects are (equal) weights.
When the scales become in balance, play affirming beep sounds.
These tasks are of type (n(consequently)-to-1).

Remark. Certainly, “the unary system” used here is suitable only for small natural num-
bers. But it is our goal: we do not teach the child to count, to calculate, to use digits; we
give tasks which can be solved without calculations. By our experience, some children
solve such tasks successfully.

Olympiads without Words 87

Оne set of scales:

Task 14. Introducing the scales.
Example: (*****) > (?)

Task 15. Addition or solving the equation a = b + x.
Example: (******) > (****)(?)

Two sets of scales:

Task 16. Multiplication by 2 or 3.
Example: (Cat (or Apple…)) = (***); (Cat, Cat) > (?)

Task 17. Division by 2 or 3.
Example: (Cat, Cat) = (********); (Cat) > (?)

Task 18. Linear equation.
Example 18-1: (Cat, ***) = (********); (Cat) > (?)
Example 18-2. (Cat,Cat,*) = (*********); (Cat) > (?)

7. Forecasting Tasks

The well-known
General Task 19. Continue sequence (n-to-1). The Target is three or four members

of a sequence.
Remark. Due to the purpose of this paper, digits as conventional signs cannot be used.
Example (3-to-1). Target: *** ***** ******* (?)
Three Movable objects: ****** ********* ********

Fast forecasting with corresponding action is a main component of many computer
games.

We (Bayachorova et al., 2016) proposed to use slow forecasting for independent
presentation of Future Tenses in a language.

We (Pankov et al., 2023) proposed to involve “time” to Olympiad tasks (except the
necessary time limit). We did not see such Olympiad tasks.

We propose

General Task 20. Forecasting-action (n-to-1) or (1-to-m). The Target moves slowly.
The user is to forecast its further motion and catch it with the Movable object.
The simplest Example (1-to-2).

The Target moves down slowly

Remark. Due to the purpose of this paper, digits as conventional signs cannot be
used.

Example (3-to-1). Target: *** ***** ******* (?)
Three Movable objects: ****** ********* ********

Fast forecasting with corresponding action is a main component of many computer
games.

We (Bayachorova et al., 2016) proposed to use slow forecasting for independent
presentation of Future Tenses in a language.

We (Pankov et al., 2023) proposed to involve “time” to Olympiad tasks (except the
necessary time limit). We did not see such Olympiad tasks.

We propose
General Task 20. Forecasting-action (n-to-1) or (1-to-m). The Target moves slowly.

The user is to forecast its further motion and catch it with the Movable object.

The simplest Example (1-to-2). The Target moves down slowly

The Movable object

When the ball touches the roof, there will not be time to shift the box to one of the
holes.

8. Conclusion

We hope that this paper will be a source of new tasks for programmers and involve
children from an earlier age in the Olympiad movement, promote creation of a new type
of software to learn mathematics independently for children in all languages. Also, we
hope that these tasks would help to discover new capacities of artificial intelligence. As
a consequence of this paper, we can rise the following philosophical problem: what
notions or ideas can be expressed without words?

References

1. Pankov P.S. (1996). Independent learning for Open society. Collection of papers as
results of seminars conducted within the frames of the program “High Education
Support”. Foundation «Soros-Kyrgyzstan», Bishkek, issue 3, 27–38.
2. Pankov, P.S. (2008). Naturalness in Tasks for Olympiads in Informatics. Olympiads

in Informatics: Country Experiences and Developments, 2, 16–23.
3. Pankov, P., Janalieva, J., Naimanova, A. (2015). Inductive and experimental studying

of mathematical subjects (mathematical facts and notions which can be discovered
independently), LAP Lambert Academic Publishing, Saarbrücken.

4. Pankov, P.S., Belyaev, A.A. (2023). Latent and evident knowledge to compose and to
solve tasks in informatics. Olympiads in Informatics, 17, 87–97.

5. Hatisaru, V. (2020) Exploring Evidence of Mathematical Tasks and Representations
in the Drawings of Middle School Students. International Electronic Journal of
Mathematics Education, Vol. 15, No. 3, 21 p.

The Movable object

P.S. Pankov, E.J. Bayalieva88

When the ball touches the roof, there will not be time to shift the box to one of the
holes.

8. Conclusion

We hope that this paper will be a source of new tasks for programmers and involve
children from an earlier age in the Olympiad movement, promote creation of a new type
of software to learn mathematics independently for children in all languages. Also, we
hope that these tasks would help to discover new capacities of artificial intelligence. As
a consequence of this paper, we can rise the following philosophical problem: what no-
tions or ideas can be expressed without words?

References

Pankov P.S. (1996). Independent learning for Open society. Collection of papers as results of seminars conduct-
ed within the frames of the program “High Education Support”. Foundation «Soros-Kyrgyzstan», Bishkek,
issue 3, 27–38.

Pankov, P.S. (2008). Naturalness in Tasks for Olympiads in Informatics. Olympiads in Informatics: Country
Experiences and Developments, 2, 16–23.

Pankov, P., Janalieva, J., Naimanova, A. (2015). Inductive and experimental studying of mathematical subjects
(mathematical facts and notions which can be discovered independently), LAP Lambert Academic Publish-
ing, Saarbrücken.

Pankov, P.S., Belyaev, A.A. (2023). Latent and evident knowledge to compose and to solve tasks in informatics.
Olympiads in Informatics, 17, 87–97.

Hatisaru, V. (2020) Exploring Evidence of Mathematical Tasks and Representations in the Drawings of Middle
School Students. International Electronic Journal of Mathematics Education, Vol. 15, No. 3, 21 p.

Bayachorova, B.J., Pankov, P.S. (2016). Mathematical models for independent computer presentation of com-
plex expressions in natural languages. Bulletin of Kyrgyz-Russian Slavic University, series natural and tech-
nical sciences, 16(5), 19–21.

P.S. Pankov (1950), doctor of physics-mathematics sciences, prof.,
corr. member of Kyrgyzstani National Academy of Sciences (KR
NAS), was the chairman of jury of Bishkek City OIs, 1985–2013, of
Republican OIs, 1987–2012, participates in National OIs since 2020,
was the leader of Kyrgyzstani teams at IOIs, 2002–2013, 2018–2023.
Graduated from the Kyrgyz State University in 1969, is a head of labo-
ratory of Institute of mathematics of KR NAS.

E.J. Bayalieva (1984), Senior Lecturer in the Software Engineering
program, Institute of Computer Technologies and Artificial Intelli-
gence, J. Balasagyn National University.

Olympiads in Informatics, 2024, Vol. 18, 89–100
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.07

89

From Concept to Code: A Two-Day Workshop for
Secondary Students on Computational Thinking
and Programming

Felix STEINERT, Julia KUMMER,
Martina LANDMAN, Lukas LEHNER
TU Wien, Institute of Information Systems Engineering
Favoritenstraße 9-11, 1040, Vienna, Austria
e-mail: felix.steinert@tuwien.ac.at, julia.kummer@tuwien.ac.at,
martina.landman@tuwien.ac.at, lukas.lehner@tuwien.ac.at

Abstract. Introducing programming and informatics concepts to the next generation of computer
scientists is essential. This experience report presents a detailed overview of a two-day informatics
workshop for 134 Austrian school kids, ages eleven to thirteen. The workshop program consists of
several unplugged activities about algorithms, AI, robotics and coding and block-based program-
ming using Scratch and Sphero BOLT. We evaluated feedback from 110 participants regarding
their experience of these two days. Many children reported a significant gain in knowledge. We
will also explain the pupils’ favourite activities and educational concepts in detail. This report also
covers the experience of the ten workshop leaders of the past two days. The workshop was widely
positive received and the participants reported a high interest in computer science.

Keywords: computer science education, school outreach, AI, Scratch, algorithms, workshops.

1. Introduction

Incorporating informatics education into secondary schools is essential for preparing
students for success in today’s technology-driven world.

There is a persistent demand for IT professionals, and it is crucial to broaden partici-
pation, particularly among underrepresented groups like girls. Efforts to engage students
creatively are vital for fostering interest and participation in computer science, as report-
ed by many institutions, for example Giannakos et al. (2013), describing a project with
a two-day workshop using scratch and recycled materials or Rottenhofer et al. (2022),
reporting on a computer science (CS) Workshop in the setting of Circus performance. As
Sabitzer et al., (2014) highlight, initiatives like CS Unplugged demonstrate success in
engaging students’ creativity and fostering interest in technology. They also underscore
the value of computational thinking (CT) and early exposure to informatics concepts.

F. Steinert et al.90

CT is a set of problem-solving skills everyone needs, not only computer scientists, but
everyone in their everyday lives (Wing, 2006).

As part of the TU Wien Informatics Didactics group, the eduLAB team provides
workshops (Prinzinger, 2021) aimed at enhancing CT and programming skills (Landman
et al., 2022; Unkovic & Landman, 2023) among students, starting from the 2nd grade
onwards (Landman et al., 2023). Our workshops are designed to prioritize hands-on,
age-appropriate activities that empower students to develop and implement their prob-
lem-solving strategies, inspired by CS-unplugged activities (Bell et al., 2015). Through
engaging tasks, students explore fundamental concepts and methods of computer sci-
ence, fostering a deeper understanding of computational thinking (CT). CT, understood
as a set of problem-solving skills in CS, is crucial for learning informatics, especially
including programming education (Grover & Pea, 2013).

Passing on these core skills to the future generation is one of our goals. Through suit-
able learning settings, we try to increase young people’s interest in programming and the
broad field of computer science. As part of a secondary school’s “informatics days” in
February 2024, the TU Wien Informatics eduLAB conducted a two-day workshop pro-
gram. The workshops were held by CS university students in the bachelor’s, master’s, or
PhD program. In this article we report on the feedback from the eleven-to thirteen-year-
old pupils on this two-day workshop intervention.

2. Program Overview

The program spanned two days, with 134 secondary school pupils from the 6th grade
divided into eight groups, each comprising 16 to 17 participants. Following an intro-
ductory session during which pupils completed an initial questionnaire, they proceeded
to follow a predefined workshop schedule. Each pupil engaged in every session offered
as part of the program. Further details regarding the workshop program are provided
below.

2.1. Day 1: Concepts of Computer Science

The first day of the workshop was dedicated to unplugged concepts of computer science
through a series of four 55-minute interactive workshop sessions. In each session the
pupils worked in groups of 4–5 persons, engaging with materials that are designed to
be exploratory, playful, and hands-on. With the “unplugged” concept we try to enable
interactive learning processes for informatics exercises that do not require computers.

Codes

In this session the topic “Codes” was introduced utilizing everyday life analogies, like
crosswalks and traffic lights to effectively convey the concept of symbols having associ-
ated meaning.

From Concept to Code: A Two-Day Workshop for Secondary Students on ... 91

Pantomime: As introductory task, pupils played a charades-like game, allowing them
to uncover characteristics of good codes, like uniqueness and universal understanding.
During this task, the pupils guessing the words were not allowed to speak either but
could use gestures to communicate their questions before writing down their guesses.

Variable-Length Codes: Following this, the pupils were introduced to the concept of
variable-length codes through the exercise “juice bar”, where they were asked to find er-
roneous codes and determine the binary representation for various fruits based on given
combinations.

Uniform-Length Codes: As bonus task for fast pupils, this task let them explore the
binary coding system further by playing an adapted version of the memory game “I
packed my bag”: instead of verbally adding items to a figurative bag or suitcase, they
physically pin different combinations of 3D printed elements onto a board to encode
and “store” their items.

Algorithms

Similar to the Codes session, the concept of algorithms was introduced using everyday
analogies, such as the step-by-step process of preparing a frozen pizza or making break-
fast. Conditionals were explained using the analogy of being vegetarian (“if you are
vegetarian use cheese, else use ham”).

Sorting Cards: With the use of the cards of a game called “Ligretto”, the pupils could
playfully develop their own sorting strategies for a shuffled stack of cards in a small
group (Fig. 1). As described by Landman et al. (2023), this task not only represents a
hands-on implementation of sorting algorithms but also provides a practical understand-
ing of key concepts in computer science, such as “Divide and Conquer”, distributed
computing and resource optimization.

Scheduling: During this task, pupils learned about scheduling algorithms. While plan-
ning activities for an entertainment park and a zoo, they discovered the necessity for
algorithmic solutions to optimize scheduling processes. After having tried to find and
describe their own scheduling algorithm, they were introduced to a “line-sweep” algo-
rithm, which they applied hands-on to solve the scheduling challenges.

Fig. 1. Sorting activity using Ligretto cards.

F. Steinert et al.92

Artificial Intelligence

Decision Tree: The artificial intelligence (AI) session focused on decision trees with
pupils asked to build a decision tree from 3D printed materials that could classify several
types of fruit. Pupils were supplied with a data set represented by playing cards. Once
they built a model that could correctly classify the given data, the pupils received ad-
ditional test data that included some intentional stumbling blocks. The outcomes of their
models’ predictions were discussed in the end, including problems like missing classes
or attributes and potential strategies for improving their models were elaborated.

Computational Thinking supported with Ozobots

Ozobot-Maze: The Ozobot-Maze session provided pupils with a hands-on experience
with algorithms. The robot follows black lines (Fig. 2) and performs actions based on
colour codes. The pupils first needed to decipher the meaning of these codes for the Ozo-
bot. In subsequent steps, the pupils were asked to apply these commands using stickers
to navigate the robot through different maps.

2.2. Day 2: Programming Basics

On the second day, the focus shifted to hands-on programming experiences as pupils
were introduced to programming using Scratch and Sphero BOLT.

Programming basics with Scratch

Scratch: During this session, the pupils learned programming basics using Scratch, a
beginner-friendly, block-based visual programming language. In the first part, the pu-
pils were introduced to the development environment and worked together to complete
three exercises. In the second part, they brainstormed and programmed their own unique
games, with workshop leaders providing assistance as needed.

Fig. 2. An Ozobot robot following a black line.

From Concept to Code: A Two-Day Workshop for Secondary Students on ... 93

Programming basics with Sphero

Sphero: The Sphero BOLT is an educational robot sphere that can be programmed us-
ing a block- or text-based programming language. Therefore, it is suitable for begin-
ners in programming. In this session the pupils could work through tasks at their own
pace, beginning with very easy tasks (only using commands in a linear sequence) up to
intermediate tasks (using nested loops). The robots provide motivation and offer space
for creativity, e.g. by letting pupils program colourful pictures onto the integrated LED
matrix.

3. Feedback Evaluation

3.1. Method

The pupils were provided one initial questionnaire in the beginning of the two-day work-
shop program and a second one concluding the workshops. Both questionnaires were
conducted anonymously using Microsoft Forms.

The initial questionnaire focused on the pupils’ interest in informatics, which they
were asked to rate on a scale from 1 to 5.

The final questionnaire, with a total of 12 questions, was divided into three sections:
Anonymous personal information, general workshop feedback and questions about in-
formatics.

In the first section participants were asked to provide demographic details such as
gender and age.

The section on workshop information allowed participants to offer general feedback
on the two-day workshop and indicate whether they would recommend the workshop
to other pupils. Additionally, they could select their favourite workshop session of each
day and rate the difficulty of all workshop tasks on a Likert scale ranging from “very
difficult” to “very easy”.

The final section focused on the broader topic of informatics. Here, the pupils could
again rate their interest in informatics and provide insights into the extent of new knowl-
edge they gained. Using a Likert scale, participants were asked to express whether they
could envision themselves working in a computer science-related field in the future. Var-
ious job titles like “Student in Informatics”, “Programmer”, “Computer Science teacher”
and “IT technician” were provided for rating. Lastly, a free text form was included to
provide the possibility for individual feedback.

3.2. Participants

The workshop participants were eighth-grade pupils from a secondary school, aged be-
tween 11 and 13 years old. All attendees were from the same school. A total number of

F. Steinert et al.94

134 pupils participated in the workshop, 125 of them answered the initial questionnaire
and 116 the final feedback questionnaire.

From the final questionnaire’s responses, six were excluded from the analysis due
to suspicion of non-serious answers. Among the remaining 110 responses, the gender
distribution was balanced, with 53% identifying as female and 47% as male (Fig. 3.
Distribution of pupils’ gender in final questionnaire).

4. Evaluation Results

Feedback

Overall, the workshop was well received with 43% of pupils giving the workshop 5 out
of 5 stars and the average being 4,07.

By far the most popular task on day one was Ozobot-Maze with 53 pupils voting it
as their favourite. In second place was Sorting Cards with 25 votes (Fig. 4). On day two
Scratch and Sphero BOLT received roughly the same numbers of votes.

When asked about the difficulty of the tasks over 50% of participants reported “easy”
or “very easy” on every exercise (Fig. 5).

Acquired Knowledge

33% of the 110 participants that finished the second questionnaire reported that they
learned a lot about informatics.

Attitude towards computer science

We asked the pupils before and after the workshop about their interest in CS on a scale
from 1 to 5 stars. Before the workshop 50% of pupils rated their interest a 4 or 5 after
the workshop this increased to 63%. On the other side the percent of pupils who rated

Fig. 3. Distribution of pupils’ gender in final questionnaire.

From Concept to Code: A Two-Day Workshop for Secondary Students on ... 95

their interest in CS as a 1 or 2 decrees from 32% to 17% (Fig. 6). This shows we were
able to increase the interest in CS in the pupils through our workshop directly after
the two days.

When pupils where asked if they could imagine to work various IT jobs in the fu-
ture only 15% answered with “fairly imaginable” and “very easy to imagine” (Fig. 7).
A problem with this question could be, that they did not know what those jobs do and
require.

Fig. 4. Favourite workshop tasks as voted by the pupils.

Fig. 5. Difficulty of the workshop tasks as voted by the pupils.

F. Steinert et al.96

5. Workshop Reflections

Concluding the workshop, we gathered informal feedback from the workshop leaders.
The feedback was collected through oral discussions, where observations, insights and

Fig. 6. Pupils’ interest in computer science before and after the workshop.

Fig. 7. Pupils’ attitude towards their possible futures in IT.

From Concept to Code: A Two-Day Workshop for Secondary Students on ... 97

opinions on the interaction with the pupils were described. This feedback was then com-
pared with the results from the questionnaires completed by the participants.

Workshop leaders could observe that the children were more excited about the practi-
cal tasks on the second day, where they needed to use their own laptop, compared to the
more theoretical tasks on the first day. However, as some workshop leaders noticed, a
few pupils faced challenges to stay focused, especially given the many distractions on
their laptops. Additionally, it was observed that the later it was the more the children
struggled with concentration.

Another observation was that depending on the order in which the sessions were
completed, pupils could reproduce concepts they learned in the previous session, poten-
tially relevant for the current one. For example, those who had already completed the
algorithm task, involving sorting cards, were able to reproduce algorithm principles in
the Ozobot-maze session.

Furthermore, a few workshop leaders noticed that the experience and interest with
Scratch varied among the pupils, which made it difficult to engage all pupils in the task.
One workshop leader reported that some pupils immediately started to create their own
games instead of following the course.

Based on the findings of the questionnaires shown in Fig. 4 many pupils reported
that they perceived the AI task easy or very easy. However, a workshop leader shared
that when asking the pupils to employ the decision tree model many of them used their
human intelligence to solve the problem. This shows up a potential gap in understanding
the AI concept.

In comparison to similar initiatives, one aspect that sets us apart is that our workshop
offered a broad range of topics, spanning from concepts of CS, like algorithms, cod-
ing and AI, to hands-on programming activities. Our workshop provides pupils with a
combination of practical programming exercises and “hands-on” learning of theoreti-
cal basics. This comprehensive approach within the two-day setup ensures that pupils
have the opportunity to explore different areas within the field of CS and discover their
strengths and interests.

Moreover, our extensive experience in conducting workshops, based on our regular
program at the eduLAB, where over 2500 school children of all ages participate in annu-
ally , sets us apart. Based on this experience, our workshop is designed to be accessible
to pupils of all skill levels. Whether they are complete beginners or have some prior
experience with computer science, our workshop offers multiple difficulty levels in most
tasks, which allowed them to proceed at their own pace or in a group setting.

Additionally, our workshop incorporates quantitative data analysis from question-
naires filled out by pupils. This approach enables us to gather valuable insights into the
effectiveness of the workshop and adapt future exercises to better meet the needs of
participants.

F. Steinert et al.98

6. Conclusion

In this experience report we showed how we introduced computational thinking through
unplugged activities and programming to pupils over a two-day workshop. On the first
day we covered informatic concepts like algorithms, codes, and AI with unplugged ex-
ercises. The second day was focused on pupils programming themselves with Scratch
and Sphero BOLT. We also collected feedback before and after the workshop from the
pupils, using two questionnaires. The results showed that there is a high interest in CS
but that despite of that not many students can imagine working in the field of IT in the
future. Also, the students reported that they learned a lot of new information about CS.
The questionnaire responses indicated that many pupils found most tasks to be easy or
very easy. This suggests an opportunity to enhance the exercises to make them more
challenging. Overall, the workshop was a success and showed that there is a lot of in-
terest in CS.

As limitations to the results, we must consider that we could only collect data from
a small age group (eleven- to thirteen-year-old) in one school. We aim to repeat this
workshop to get better and more accurate feedback, as well as to increase the sample
size. Additionally, the questionnaire we used was not validated. It is based on our cu-
riosity in the pupils’ perception of our work. In this experience report, we focused on
the feedback of the students. Repeating the workshops but including pre-and post-tests
with an existing validated questionnaire instead of our questionnaire, can be considered
for future work. Nevertheless, this experience report provides meaningful insights into
how to engage pupils into CS and CT. Looking further ahead, it would be desirable to
deepen the insights gained and incorporate them into the various CS curricula.

In conclusion, supporting young people through workshop interventions, teaching
key computer science concepts, is a big step forward to increase the number of young
talents competing in programming challenges and competitions. Increasing the interest
in CS is especially important to get young minds participating and contributing to the CS
community with their skills and ideas.

From Concept to Code: A Two-Day Workshop for Secondary Students on ... 99

References

Bell, T., Witten, I., Fellows, M. (2015). CS Unplugged: An Enrichment and Extension Programme for Primary-
aged Students. https://www.csunplugged.org/

Giannakos, M., Jaccheri, L., Proto, R. (2013). Teaching Computer Science to Young Children through Creativ-
ity: Lessons Learned from the Case of Norway. In.

Grover, S. & Pea, R. (2013). Computational Thinking in K–12. Educational Researcher, 42(1), 38–43.
https://doi.org/10.3102/0013189X12463051

Landman, M., Futschek, G., Unkovic, S. & Voboril, F. (2022). Initial Learning of Textual Programming at
School: Evolution of Outreach Activities. Olympiads in Informatics, 43–53.
https://doi.org/10.15388/ioi.2022.05

Landman, M., Rain, S., Kovács, L. & Futschek, G. (2023). Reshaping Unplugged Computer Science Workshops
for Primary School Education. In: J.-P. Pellet & G. Parriaux (Ed.), Lecture Notes in Computer Science.
Informatics in Schools. Situation, Evolution, and Perspectives: 16th (Vol. 14296, p. 139–151). Springer In-
ternational PU. https://doi.org/10.1007/978-3-031-44900-0_11

Prinzinger, P. (2021). Informatik für alle! Aktivitäten zu Computational Thinking, Programmieren und „Zauber-
tricks“. OCG Journal, 46(1–2), 13–15.
https://repositum.tuwien.at/handle/20.500.12708/137759 (Erstveröffentlichung 2021)

Rottenhofer, M., Kuka, L. & Sabitzer, B. (2022). Clear the Ring for Computer Science: A Creative Introduction
for Primary Schools. In (p. 103–112). Springer, Cham.
https://doi.org/10.1007/978-3-031-15851-3_9

Sabitzer, B., Antonitsch, P.K. & Pasterk, S. (2014). Informatics concepts for primary education. In: C. Schulte
(Ed.), ACM Digital Library, Proceedings of the 9th Workshop in Primary and Secondary Computing Educa-
tion (p. 108–111). ACM. https://doi.org/10.1145/2670757.2670778

Unkovic, S. & Landman, M. (2023). Supporting Non-CS Teachers with Programming Lessons. In: J.-P. Pellet
& G. Parriaux (Ed.), 16th International Conference on Informatics in Schools: Situation, Evolution, and
Perspectives, ISSEP 2023, Local Proceedings (p. 61–74). Zenodo.

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
https://doi.org/10.1145/1118178.1118215

F. Steinert studies Software & Information Engineering at TU Wien
in the bachelor program. Since the winter semester of 2023 he works
at eduLAB as a student assistant conducting workshops for school
classes and helping with research.

J. Kummer is a student of the master program Media- and Human
Centered Computing at TU Wien. Alongside her studies she works
as student assistant at the TU Wien Informatics eduLAB, conducting
workshops for school classes and helping with research.

M. Landman Researcher at TU Wien and member of the Informatics
eduLAB group in the research unit of Information & Software Engi-
neering since 2021. She has experience in teaching computer science
from 5th to 12th grade. She organizes the computer science faculty’s
school outreach activities, where she develops, organizes, and con-
ducts weekly workshops for school classes. Her research focuses on
algorithmic problem solving for kids.

L. Lehner is a researcher and PhD candidate in informatics didactics at
TU Wien. His research focuses on how to best promote young people’s
AI literacy. He develops unplugged learning materials that let learners
discover the technical functioning of various machine learning methods
without the use of computers.

Olympiads in Informatics, 2024, Vol. 18, 101–112
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.08

101

Algorithmic Problem-Solving Advancements:
A Comprehensive Exploration across
Diverse Domains

Aadesh TANEJA1, Anurima KOTHARI2

1Saint MSG Glorious International School, Sirsa, India
2DSB International Public School, Rishikesh, India
e-mail: aadesh47taneja@gmail.com, kotharianurima@gmail.com

Abstract. Recent developments in algorithmic problem-solving techniques have significantly
influenced diverse domains, from mathematical computations to real-world problem-solving.
This paper explores the advancements in algorithm development, emphasizing the application
of mathematical reasoning and rigorous design in functions and recursive functions. Addition-
ally, the review spans the landscape of solving mathematical word problems (MWPs), analysing
methodologies, and providing insights into the challenges and complexities inherent in natural
language processing, machine learning, and artificial intelligence. In a comparative study, com-
putational and algorithmic advances for solving Richards’ equation are evaluated, revealing
their joint contributions to a substantial improvement in efficiency. The collective insights from
these perspectives underscore the transformative impact of algorithmic advancements across
interdisciplinary domains.

Keywords: algorithmic advancements, mathematical word problems (MWPs), natural language
processing (NLP), machine learning, artificial intelligence (AI), Richards’ equation, hydrology,
soil science, finite difference method (FDM), finite element method (FEM), numerical optimiza-
tion techniques, Surrogate models, genetic algorithms

1. Introduction

In recent years, algorithmic problem-solving has witnessed remarkable advancements,
revolutionizing diverse domains ranging from mathematical computations to real-world
problem-solving scenarios. These advancements have been fuelled by breakthroughs in
mathematical reasoning, rigorous algorithm design, and the ever-evolving landscape of
computational methodologies. The importance of algorithm development across various
domains cannot be overstated, as it underpins the efficiency, accuracy, and scalability
of solutions to complex problems encountered in fields as varied as finance, healthcare,
engineering, and beyond.

A. Taneja, A. Kothari102

This paper aims to provide a comprehensive exploration of the recent developments
in algorithmic problem-solving techniques, shedding light on their significance and im-
pact across interdisciplinary domains.

The structure of this paper is organized to offer a systematic analysis of algorith-
mic problem-solving advancements. Firstly, we delve into the fundamental principles
of mathematical reasoning and rigorous design that serve as the bedrock of effective
algorithm development. Subsequently, we look at methodologies employed in solving
mathematical word problems (MWPs), discovering the complexities inherent in natural
language processing (NLP), machine learning, and artificial intelligence (AI) as they
intersect with algorithmic approaches.

Furthermore, this paper conducts a comparative study evaluating computational and
algorithmic advances in tackling Richards’ equation, a pivotal problem with wide-rang-
ing applications in fields such as hydrology and soil science. Through this comparative
analysis, we aim to underscore the collective contributions of algorithmic innovations
towards enhancing computational efficiency and solution accuracy.

quicksort(array, low, high):
 if low < high:
 pivot_index = partition(array, low, high)
 quicksort(array, low, pivot_index - 1)
 quicksort(array, pivot_index + 1, high)

partition(array, low, high):
 pivot = array[high]
 i = low - 1
 for j = low to high - 1:
 if array[j] <= pivot:
 i = i + 1
 swap(array, i, j)
 swap(array, i + 1, high)
 return i + 1

swap(array, i, j):
 temp = array[i]
 array[i] = array[j]
 array[j] = temp

This pseudocode snippet illustrates the Quicksort algorithm, where the ‘quick-
sort’ function recursively sorts subarrays by partitioning elements around a pivot, and
the ‘partition’ function partitions the array into two halves. The ‘swap’ function
is used to swap elements within the array.

Algorithmic Problem-Solving Advancements: A Comprehensive Exploration ... 103

2. Mathematical Reasoning and Rigorous Design in Algorithm Development

Algorithm development relies heavily on mathematical reasoning, which involves the
systematic application of logical principles to solve problems. Mathematical reason-
ing plays a crucial role in guiding the design and analysis of algorithms, ensuring their
efficiency, correctness, and scalability. By leveraging mathematical concepts such as
logic, probability theory, graph theory, and combinatorics, algorithm designers can
formulate precise solutions to complex problems.

The importance of rigorous design principles cannot be overstated in algorithm de-
velopment. Rigorous design principles encompass techniques for ensuring the correct-
ness and efficiency of algorithms. This includes strategies such as divide and conquer,
dynamic programming, greedy algorithms, and backtracking, which provide struc-
tured approaches to problem-solving while adhering to mathematical rigor.

Examples illustrating the application of mathematical reasoning in algorithm de-
velopment abound across various domains. One such example is the use of algorithms
in cryptography, where mathematical principles such as number theory and algebra
are employed to design secure encryption and decryption schemes. Another example
is the application of algorithms in optimization problems, where mathematical op-
timization techniques are utilized to find the most efficient solution among a set of
feasible options.

Fig. 1. QuickSort Algorithm.
Source: https://www.geeksforgeeks.org/quick-sort/

A. Taneja, A. Kothari104

Fig. 2. RSA’s encryption and decryption process.
Source: https://www.researchgate.net/figure/Flowchart-of-RSA-encryption-

and-decryption-operations_fig1_353809093

Fig. 3. Flowchart of Genetic Algorithm, a computational technique inspired by natural selection
that involves processes such as selection, crossover, and mutation to optimize solutions.

Source: https://www.researchgate.net/figure/Complete-steps-of-RSA-
algorithm-22-Mathematical-Proof-of-RSA-Algorithm-RSA-computations_

fig1_318978830

Algorithmic Problem-Solving Advancements: A Comprehensive Exploration ... 105

Fig. 4. Mathematical Proof of RSA Algorithm RSA computations can be mathematically proofed
by forward substitution of the encryption process of plaintext message M to get the ciphered mes-

sage C and then by backward substitution of Ciphertext C to get back the plaintext message M.
Source: https://www.researchgate.net/figure/Complete-steps-of-RSA-algorithm-

22-Mathematical-Proof-of-RSA-Algorithm-RSA-computations_fig1_318978830

Fig. 5. Comparison of performance metrics (e.g., time complexity, space complexity, accuracy) of
different algorithmic approaches in solving specific problems.

Source: https://afteracademy.com/blog/comparison-of-sorting-algorithms/

A. Taneja, A. Kothari106

3. Solving Mathematical Word Problems (MWPs)

Mathematical Word Problems (MWPs) pose unique challenges due to their require-
ment for interpreting natural language and translating it into mathematical expressions
or equations. Despite their ubiquity in educational settings and real-world applications,
MWPs remain notoriously difficult for many individuals to solve. Understanding and
solving MWPs are crucial skills that are applicable across various domains, from educa-
tion to engineering and beyond.

Overview of MWPs and their significance: MWPs typically involve extracting math-
ematical information from natural language texts and formulating equations or ex-
pressions to represent the problem. These problems often require critical thinking and
problem-solving skills, as well as a deep understanding of mathematical concepts and
their real-world applications. Solving MWPs is essential for developing mathematical
proficiency and problem-solving abilities, making them a fundamental aspect of math-
ematics education.

Methodologies for solving MWPs: Several methodologies are employed for solving
MWPs, ranging from heuristic approaches to formal algorithmic techniques. Heuristic
methods involve using problem-solving strategies, such as identifying key words or
phrases, drawing diagrams, or breaking down complex problems into simpler compo-
nents. Algorithmic techniques, on the other hand, leverage formal mathematical and
computational approaches to analyse and solve MWPs. These techniques may involve
symbolic manipulation, equation solving, or mathematical modelling to represent and
solve the problem systematically.

Challenges in natural language processing (NLP) for MWP solving: One of the
primary challenges in solving MWPs is the ambiguity and complexity inherent in natu-
ral language. NLP techniques are often employed to parse and understand the mean-
ing of text, extracting relevant information and identifying mathematical relationships.
However, NLP systems may struggle with linguistic ambiguities, figurative language,
or domain-specific terminology present in MWPs, leading to errors or inaccuracies in
interpretation.

Insights into machine learning and artificial intelligence approaches for MWP
solving: Machine learning and artificial intelligence (AI) techniques offer promising
avenues for improving MWP solving capabilities. These approaches involve training
models on large datasets of MWPs and their corresponding solutions, allowing algo-
rithms to learn patterns and relationships between natural language text and mathemati-
cal representations. AI systems can then be used to automatically generate solutions to
MWPs or assist human users in solving them more efficiently. However, challenges
remain in developing AI systems that can generalize effectively across diverse problem
domains and accurately interpret complex natural language inputs.

Algorithmic Problem-Solving Advancements: A Comprehensive Exploration ... 107

4. Computational and Algorithmic Advances for Solving Richards’ Equation

Introduction to Richards’ Equation and its Significance: Richards’ equation is a par-
tial differential equation that describes the movement of water in unsaturated soils. It
is widely used in hydrology, soil science, and agriculture to model processes such as
infiltration, drainage, and groundwater recharge. The equation takes into account factors
such as soil properties, boundary conditions, and external forcings to simulate the flow
of water through the soil profile. Solving Richards’ equation accurately is crucial for un-
derstanding and predicting water movement in natural and engineered systems, making
it a fundamental tool in various scientific and engineering applications.

4.1. Comparative Study of Computational and Algorithmic Approaches
for Solving Richards’ Equation:

Richards’ equation, a non-linear partial differential equation, describes the movement of
water through unsaturated soils. It governs the water content as a function of space and

Fig. 6. Flowchart of NLP Algorithm for SQP.
Source: https://www.researchgate.net/figure/

Flowchart-of-NLP-Algorithm-for-SQP_fig1_222229919

A. Taneja, A. Kothari108

time in the soil profile. The equation is mathematically expressed as:

Richards equation
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo
A. Richards who published the equation in 1931.[1] It is a quasilinear partial differential equation; its
analytical solution is often limited to specific initial and boundary conditions.[2] Proof of the existence and
uniqueness of solution was given only in 1983 by Alt and Luckhaus.[3] The equation is based on Darcy-
Buckingham law[1] representing flow in porous media under variably saturated conditions, which is stated
as

where

 is the volumetric flux;
 is the volumetric water content;
 is the liquid pressure head, which is negative for unsaturated porous media;

 is the unsaturated hydraulic conductivity;

 is the geodetic head gradient, which is assumed as for three-dimensional

problems.

Considering the law of mass conservation for an incompressible porous medium and constant liquid density,
expressed as

,

where

 is the sink term [T], typically root water uptake.[4]

Then substituting the fluxes by the Darcy-Buckingham law the following mixed-form Richards equation is
obtained:

.

For modeling of one-dimensional infiltration this divergence form reduces to

.

Although attributed to L. A. Richards, the equation was originally introduced 9 years earlier by Lewis Fry
Richardson in 1922.[5][6]

Formulations

Where:

Richards equation
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo
A. Richards who published the equation in 1931.[1] It is a quasilinear partial differential equation; its
analytical solution is often limited to specific initial and boundary conditions.[2] Proof of the existence and
uniqueness of solution was given only in 1983 by Alt and Luckhaus.[3] The equation is based on Darcy-
Buckingham law[1] representing flow in porous media under variably saturated conditions, which is stated
as

where

 is the volumetric flux;
 is the volumetric water content;
 is the liquid pressure head, which is negative for unsaturated porous media;

 is the unsaturated hydraulic conductivity;

 is the geodetic head gradient, which is assumed as for three-dimensional

problems.

Considering the law of mass conservation for an incompressible porous medium and constant liquid density,
expressed as

,

where

 is the sink term [T], typically root water uptake.[4]

Then substituting the fluxes by the Darcy-Buckingham law the following mixed-form Richards equation is
obtained:

.

For modeling of one-dimensional infiltration this divergence form reduces to

.

Although attributed to L. A. Richards, the equation was originally introduced 9 years earlier by Lewis Fry
Richardson in 1922.[5][6]

Formulations

 is the volumetric flux;

Richards equation
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo
A. Richards who published the equation in 1931.[1] It is a quasilinear partial differential equation; its
analytical solution is often limited to specific initial and boundary conditions.[2] Proof of the existence and
uniqueness of solution was given only in 1983 by Alt and Luckhaus.[3] The equation is based on Darcy-
Buckingham law[1] representing flow in porous media under variably saturated conditions, which is stated
as

where

 is the volumetric flux;
 is the volumetric water content;
 is the liquid pressure head, which is negative for unsaturated porous media;

 is the unsaturated hydraulic conductivity;

 is the geodetic head gradient, which is assumed as for three-dimensional

problems.

Considering the law of mass conservation for an incompressible porous medium and constant liquid density,
expressed as

,

where

 is the sink term [T], typically root water uptake.[4]

Then substituting the fluxes by the Darcy-Buckingham law the following mixed-form Richards equation is
obtained:

.

For modeling of one-dimensional infiltration this divergence form reduces to

.

Although attributed to L. A. Richards, the equation was originally introduced 9 years earlier by Lewis Fry
Richardson in 1922.[5][6]

Formulations

 is the volumetric water content;

Richards equation
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo
A. Richards who published the equation in 1931.[1] It is a quasilinear partial differential equation; its
analytical solution is often limited to specific initial and boundary conditions.[2] Proof of the existence and
uniqueness of solution was given only in 1983 by Alt and Luckhaus.[3] The equation is based on Darcy-
Buckingham law[1] representing flow in porous media under variably saturated conditions, which is stated
as

where

 is the volumetric flux;
 is the volumetric water content;
 is the liquid pressure head, which is negative for unsaturated porous media;

 is the unsaturated hydraulic conductivity;

 is the geodetic head gradient, which is assumed as for three-dimensional

problems.

Considering the law of mass conservation for an incompressible porous medium and constant liquid density,
expressed as

,

where

 is the sink term [T], typically root water uptake.[4]

Then substituting the fluxes by the Darcy-Buckingham law the following mixed-form Richards equation is
obtained:

.

For modeling of one-dimensional infiltration this divergence form reduces to

.

Although attributed to L. A. Richards, the equation was originally introduced 9 years earlier by Lewis Fry
Richardson in 1922.[5][6]

Formulations

 is the liquid pressure head, which is negative for unsaturated porous media;

Richards equation
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo
A. Richards who published the equation in 1931.[1] It is a quasilinear partial differential equation; its
analytical solution is often limited to specific initial and boundary conditions.[2] Proof of the existence and
uniqueness of solution was given only in 1983 by Alt and Luckhaus.[3] The equation is based on Darcy-
Buckingham law[1] representing flow in porous media under variably saturated conditions, which is stated
as

where

 is the volumetric flux;
 is the volumetric water content;
 is the liquid pressure head, which is negative for unsaturated porous media;

 is the unsaturated hydraulic conductivity;

 is the geodetic head gradient, which is assumed as for three-dimensional

problems.

Considering the law of mass conservation for an incompressible porous medium and constant liquid density,
expressed as

,

where

 is the sink term [T], typically root water uptake.[4]

Then substituting the fluxes by the Darcy-Buckingham law the following mixed-form Richards equation is
obtained:

.

For modeling of one-dimensional infiltration this divergence form reduces to

.

Although attributed to L. A. Richards, the equation was originally introduced 9 years earlier by Lewis Fry
Richardson in 1922.[5][6]

Formulations

 is the unsaturated hydraulic conductivity;

Richards equation
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo
A. Richards who published the equation in 1931.[1] It is a quasilinear partial differential equation; its
analytical solution is often limited to specific initial and boundary conditions.[2] Proof of the existence and
uniqueness of solution was given only in 1983 by Alt and Luckhaus.[3] The equation is based on Darcy-
Buckingham law[1] representing flow in porous media under variably saturated conditions, which is stated
as

where

 is the volumetric flux;
 is the volumetric water content;
 is the liquid pressure head, which is negative for unsaturated porous media;

 is the unsaturated hydraulic conductivity;

 is the geodetic head gradient, which is assumed as for three-dimensional

problems.

Considering the law of mass conservation for an incompressible porous medium and constant liquid density,
expressed as

,

where

 is the sink term [T], typically root water uptake.[4]

Then substituting the fluxes by the Darcy-Buckingham law the following mixed-form Richards equation is
obtained:

.

For modeling of one-dimensional infiltration this divergence form reduces to

.

Although attributed to L. A. Richards, the equation was originally introduced 9 years earlier by Lewis Fry
Richardson in 1922.[5][6]

Formulations

 is the geodetic head gradient, which is assumed as

Richards equation
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo
A. Richards who published the equation in 1931.[1] It is a quasilinear partial differential equation; its
analytical solution is often limited to specific initial and boundary conditions.[2] Proof of the existence and
uniqueness of solution was given only in 1983 by Alt and Luckhaus.[3] The equation is based on Darcy-
Buckingham law[1] representing flow in porous media under variably saturated conditions, which is stated
as

where

 is the volumetric flux;
 is the volumetric water content;
 is the liquid pressure head, which is negative for unsaturated porous media;

 is the unsaturated hydraulic conductivity;

 is the geodetic head gradient, which is assumed as for three-dimensional

problems.

Considering the law of mass conservation for an incompressible porous medium and constant liquid density,
expressed as

,

where

 is the sink term [T], typically root water uptake.[4]

Then substituting the fluxes by the Darcy-Buckingham law the following mixed-form Richards equation is
obtained:

.

For modeling of one-dimensional infiltration this divergence form reduces to

.

Although attributed to L. A. Richards, the equation was originally introduced 9 years earlier by Lewis Fry
Richardson in 1922.[5][6]

Formulations

 for three-dimen-
sional problems.

Richards equation
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo
A. Richards who published the equation in 1931.[1] It is a quasilinear partial differential equation; its
analytical solution is often limited to specific initial and boundary conditions.[2] Proof of the existence and
uniqueness of solution was given only in 1983 by Alt and Luckhaus.[3] The equation is based on Darcy-
Buckingham law[1] representing flow in porous media under variably saturated conditions, which is stated
as

where

 is the volumetric flux;
 is the volumetric water content;
 is the liquid pressure head, which is negative for unsaturated porous media;

 is the unsaturated hydraulic conductivity;

 is the geodetic head gradient, which is assumed as for three-dimensional

problems.

Considering the law of mass conservation for an incompressible porous medium and constant liquid density,
expressed as

,

where

 is the sink term [T], typically root water uptake.[4]

Then substituting the fluxes by the Darcy-Buckingham law the following mixed-form Richards equation is
obtained:

.

For modeling of one-dimensional infiltration this divergence form reduces to

.

Although attributed to L. A. Richards, the equation was originally introduced 9 years earlier by Lewis Fry
Richardson in 1922.[5][6]

Formulations

 is the sink term [T-1], typically root water uptake

4.2. Methodologies for Solving Richards’ Equation:

Numerous computational and algorithmic approaches have been developed for solving
Richards’ equation to simulate water movement in unsaturated soils. These approaches
range from traditional numerical methods to more recent machine learning-based tech-
niques. Common methods include:

Finite Difference Method (FDM):1.	 This approach discretizes the spatial and
temporal domains and approximates the derivatives in the equation using finite
differences. It is widely used due to its simplicity and effectiveness in capturing
soil water dynamics.

Finite Element Method (FEM):2.	 FEM divides the soil domain into finite ele-
ments and formulates a system of algebraic equations based on variational prin-
ciples. It offers flexibility in handling complex geometries and material proper-
ties but may require more computational resources.

Numerical Optimization Techniques:3.	 Optimization methods such as genetic
algorithms or gradient-based optimization are used to estimate model parameters
and calibrate Richards’ equation to observational data. These techniques help
improve the accuracy of simulations by adjusting model parameters to match
field measurements.

Machine Learning-Based Surrogate Models:4.	 Recent advancements in ma-
chine learning have introduced surrogate models trained on observational data to
approximate the solution of Richards’ equation. Neural networks, support vec-

Algorithmic Problem-Solving Advancements: A Comprehensive Exploration ... 109

tor machines, and Gaussian processes are examples of machine learning models
used to emulate the behaviour of complex physical systems.

import numpy as np
import matplotlib.pyplot as plt

Parameters
L = 1.0 # Length of soil profile (m)
T = 100.0 # Total simulation time (s)
N = 100 # Number of spatial grid points
M = 1000 # Number of time steps
Ks = 1e-4 # Saturated hydraulic conductivity (m/s)
n = 2.0 # Porosity
alpha = 0.01 # Brooks-Corey parameter
theta_i = 0.1 # Initial water content
theta_s = 0.4 # Saturated water content

Spatial and temporal discretization
dx = L / N
dt = T / M

Initialize water content array
theta = np.zeros((N+1, M+1))
theta[:, 0] = theta_i

Finite difference method
for k in range(M):
 for i in range(1, N):
 theta[i, k+1] = theta[i, k] + (Ks * dt / n) * ((theta[i+1,
k] - theta[i, k]) / dx)**alpha

Plot results
x = np.linspace(0, L, N+1)
t = np.linspace(0, T, M+1)
X, T = np.meshgrid(x, t)
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(111, projection=’3d’)
ax.plot_surface(X, T, theta.T, cmap=’viridis’)
ax.set_xlabel(‘Distance (m)’)
ax.set_ylabel(‘Time (s)’)
ax.set_zlabel(‘Water Content’)
ax.set_title(‘Numerical Solution of Richards\’ Equation’)
plt.show()

This code numerically solves Richards’ equation using the finite difference method
(FDM) and then visualizes the water content distribution over time in a one-dimensional
soil profile.

A. Taneja, A. Kothari110

5. Impact of Algorithmic Advancements Across Interdisciplinary Domains

Summarization of Insights from Previous Sections: Throughout this paper, we have
explored various facets of algorithmic advancements, ranging from mathematical rea-
soning and rigorous design principles to computational methodologies and algorithmic
approaches for solving complex problems. We have discussed the significance of algo-
rithm development across diverse domains, emphasizing its transformative potential in
addressing multifaceted challenges.

Discussion on the Transformative Impact of Algorithmic Advancements: Algorith-
mic advancements have profoundly influenced interdisciplinary domains, revolutionizing
the way problems are solved and insights are gained across fields such as mathematics,
engineering, environmental science, and beyond. By leveraging mathematical reasoning
and rigorous design principles, algorithms have enabled the efficient and accurate solu-
tion of complex problems that were once considered intractable. Moreover, the integra-
tion of machine learning and artificial intelligence techniques has further expanded the
capabilities of algorithms, allowing for the automation of tasks, the discovery of patterns
in data, and the optimization of processes.

Case Studies Highlighting Interdisciplinary Applications of Algorithmic Advance-
ments: Several case studies exemplify the interdisciplinary applications of algorithmic
advancements. For instance, in hydrology and soil science, computational and algorith-
mic approaches have been instrumental in simulating water movement in unsaturated
soils, as demonstrated by the numerical solution of Richards’ equation. In finance, algo-
rithmic trading strategies leverage mathematical models and computational algorithms
to make data-driven investment decisions in real-time. Similarly, in healthcare, machine
learning algorithms analyse medical imaging data to assist in disease diagnosis and
treatment planning. These examples underscore the diverse range of applications where
algorithmic advancements have made significant contributions.

Future Directions and Potential Areas for Further Research: Looking ahead, there
are several promising avenues for further research in algorithmic advancements. Future
studies could focus on enhancing the efficiency and scalability of algorithms, improv-
ing their robustness to uncertainties and variability in real-world data, and exploring
novel algorithmic approaches for addressing emerging challenges. Additionally, inter-
disciplinary collaboration and the integration of diverse perspectives from mathematics,
computer science, and domain-specific fields will be crucial for driving innovation and
unlocking the full potential of algorithmic advancements in addressing complex societal
and scientific problems.

Algorithmic Problem-Solving Advancements: A Comprehensive Exploration ... 111

6. Conclusion

In conclusion, this paper has provided a comprehensive exploration of algorithmic ad-
vancements and their transformative impact across diverse interdisciplinary domains.
Through our investigation, several key findings have emerged, highlighting the signifi-
cance of algorithm development in addressing complex problems and driving innovation
in various fields.

We began by delving into the fundamental principles of mathematical reasoning and
rigorous design, emphasizing their critical role in the development of effective algo-
rithms. By leveraging mathematical concepts and computational methodologies, algo-
rithms have facilitated the solution of mathematical word problems, optimization tasks,
and computational challenges such as the Richards’ equation.

As we look to the future, the implications of algorithmic advancements for research
and applications are profound. Continued innovation in algorithm development holds
the potential to revolutionize industries, streamline processes, and address pressing so-
cietal challenges. Interdisciplinary collaboration and the integration of diverse perspec-
tives will be essential for the full potential of algorithmic advancements and driving
progress in the years to come.

References

Bishop, C.M. (2006). Pattern Recognition and Machine Learning. Springer.
Brooks, R.H., Corey, A.T. (1964). Hydraulic properties of porous media. Hydrology Papers, 3.
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.
Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press.
Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference,

and Prediction (2nd ed.). Springer.
Loh, W.Y., Shih, Y.S. (1997). Split selection methods for classification trees. Statistica Sinica, 7(4), 815–840.
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2007). Numerical Recipes: The Art of Scientific

Computing (3rd ed.). Cambridge University Press.
Rasmussen, C.E., Williams, C.K.I. (2006). Gaussian Processes for Machine Learning. MIT Press.
Sutton, R.S., Barto, A.G. (2018). Reinforcement Learning: An Introduction. MIT Press.
Wolfram, S. (1991). Mathematica: A System for Doing Mathematics by Computer. Addison-Wesley.

A. Taneja – a high school senior recognized as the India Topper in
IGCSE HSL. Aadesh is the founder of edumadeasy since April 2023,
where they have helped over 15,000 students with IGCSE preparation.
He has also been involved in research in the fields of Mathematics,
AI, and Computer Science, at institutions such as the Mathematical
Association of America (MAA), the New York Academy of Sciences
(NYAS), and the Stanford Asian Liver Center.

A. Kothari – a dedicated enthusiast in the field of technology and an
expert in coding across various languages. Anurima is a high school
junior participating in diverse extracurricular pursuits. She has co-
founded edumadeasy; a company which has helped over 15,000 stu-
dents with their IGCSE examinations by providing them resources.
Moreover, she’s actively participating in various research projects in
the field of AI, ML and computer science.

Olympiads in Informatics, 2024, Vol. 18, 113–128
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.09

113

Staying DRY with OO and FP

Tom VERHOEFF
Mathematics and Computer Science, Eindhoven University of Technology
Groene Loper 5, 5612 AE, Eindhoven, Netherlands
e-mail: t.verhoeff@tue.nl

Abstract. We discuss the coding principle Don’t Repeat Yourself (DRY) and compare various
tactics to achieve DRY code, both in the context of object-oriented (OO) programming and func-
tional programming (FP). Neither OO nor FP play a significant role in the International Olympiad
in Informatics (IOI), but these paradigms are highly relevant in industry. This article aims to make
clear that they offer useful computational insights that should appeal to talented students and that
could somehow make their appearance in the IOI. We conclude with an AHA insight and some
WET advice for talent development and programming contests.

Keywords:

1. A DRY Introduction

Like any product, software goes through a life cycle. In the case of programming con-
tests, the life of a program can be pretty short: a couple of hours. And during that life,
depending on the format of the contest, one person or at most only a few people have
seen the code, while it was conceived. Nowadays, evaluation in contests is done with-
out anyone actually seeing that code. If, however, you earn a living by writing source
code, then the life cycle extends quite a bit further. In fact, initial development then only
accounts for a small fraction of the life cycle. The rest concerns operation and mainte-
nance. Especially maintenance brings other qualities to the game, other than functional
correctness, speed, and memory usage.

When programming under time pressure (as in a contest), it is tempting to copy-
paste-edit code, also known as code cloning. For one thing, in a contest, code size often
hardly matters, and finding a more clever solution can cost valuable time. When earning
a living with software, cloning code might be tempting if you are paid by number of lines
of code delivered. In general, however, copy-pasting hurts in the longer run. Imagine
that you have ten clones of the same piece of code in your software. If you find a defect,
or a way to improve performance, then you will want to update all copies (first you need

T. Verhoeff114

to find them all). If the copies were edited after pasting, then updating can become a
challenge. You don’t want that under time pressure either.

Hunt and Thomas (2019) introduced the software engineering principle Don’t Repeat
Yourself (DRY) in 1999 to create awareness of the problems of code cloning. Note that
code clones are a purely syntactic phenomenon, that is, they concern a static property of
code. This is also why it is not too hard to build clone detection into IDEs. DRY should
not be confused with the Single Responsibility Principle (SRP), which concerns a se-
mantic property. Solving the same problem twice is also a different concern, as can be
seen from these two exercises:

Give two functions, solving the same problem, but with minimal code duplica-1.	
tion.
Give two functions, solving different problems, but with considerable code 2.	
duplication.

Here is a solution to the first exercise, in Python (we use version 3.12; all source code is
available (Verhoeff, 2024); Java and C++ would look similar):

Apart from the header and the docstring, the code for fac_iter and fac_rec couldn’t
be more different, even though they compute the same thing. For the second exercise,
compare fac_iter and sum_array defined by

1 i in range(a, b) implies a <= i < b; that is, upper bound b is excluded.

build clone detection into IDEs. DRY should not be confused with the Single
Responsibility Principle (SRP), which concerns a semantic property. Solving
the same problem twice is also a different concern, as can be seen from these
two exercises:

1. Give two functions, solving the same problem, but with minimal code
duplication.

2. Give two functions, solving different problems, but with considerable code
duplication.

Here is a solution to the first exercise, in Python (we use version 3.12; all source
code is available (Verhoeff, 2024); Java and C++ would look similar):

1 def fac_iter(n: int) -> int:
2 """Compute factorial of n, iteratively.
3 """
4 result = 1
5

6 for i in range(1, n + 1): # see footnote 1
7 result = result * i
8

9 return result
10

11 def fac_rec(n: int) -> int:
12 """Compute factorial of n, recursively.
13 """
14 if n == 0:
15 return 1
16 else:
17 return n * fac_rec(n - 1)

Apart from the header and the docstring, the code for fac_iter and fac_rec

coudn’t be more different, even though they compute the same thing. For the
second exercise, compare fac_iter and sum_array defined by

18 def sum_array(array: list[int], n: int) -> int:
19 """Sum first n items in array, iteratively.
20 """
21 result = 0
22

23 for i in range(0, n):
24 result = result + array[i]
25

26 return result

Now we have two functions that compute two very different things, but there is
significant overlap in code: they are near code clones.

2 DRY via object-oriented design patterns

What can one do to avoid code clones, such as we have seen above? Typically
this is done by defining a function that has the copied code as body, and re-
placing each copy by a call to that function. In case of near clones, one can

1i in range(a, b) implies a <= i < b; that is, upper bound b is excluded.

2

build clone detection into IDEs. DRY should not be confused with the Single
Responsibility Principle (SRP), which concerns a semantic property. Solving
the same problem twice is also a different concern, as can be seen from these
two exercises:

1. Give two functions, solving the same problem, but with minimal code
duplication.

2. Give two functions, solving different problems, but with considerable code
duplication.

Here is a solution to the first exercise, in Python (we use version 3.12; all source
code is available (Verhoeff, 2024); Java and C++ would look similar):

1 def fac_iter(n: int) -> int:
2 """Compute factorial of n, iteratively.
3 """
4 result = 1
5

6 for i in range(1, n + 1): # see footnote 1
7 result = result * i
8

9 return result
10

11 def fac_rec(n: int) -> int:
12 """Compute factorial of n, recursively.
13 """
14 if n == 0:
15 return 1
16 else:
17 return n * fac_rec(n - 1)

Apart from the header and the docstring, the code for fac_iter and fac_rec

coudn’t be more different, even though they compute the same thing. For the
second exercise, compare fac_iter and sum_array defined by

18 def sum_array(array: list[int], n: int) -> int:
19 """Sum first n items in array, iteratively.
20 """
21 result = 0
22

23 for i in range(0, n):
24 result = result + array[i]
25

26 return result

Now we have two functions that compute two very different things, but there is
significant overlap in code: they are near code clones.

2 DRY via object-oriented design patterns

What can one do to avoid code clones, such as we have seen above? Typically
this is done by defining a function that has the copied code as body, and re-
placing each copy by a call to that function. In case of near clones, one can

1i in range(a, b) implies a <= i < b; that is, upper bound b is excluded.

2

Staying DRY with OO and FP 115

Now we have two functions that compute two very different things, but there is signifi-
cant overlap in code: they are near code clones.

2. DRY via Object-Oriented Design Patterns

What can one do to avoid code clones, such as we have seen above? Typically this is
done by defining a function that has the copied code as body, and replacing each copy by
a call to that function. In case of near clones, one can introduce parameters, so that the
body becomes more general, and the calls can be specialized by providing appropriate
arguments to the calls.

For instance, the two statements on lines 4 and 21 are near clones, and values 0 and 1
can be generalized to integer parameter initial. The statement in the body then would
become result = initial. The same holds for lines 6 and 23, which could be gener-
alized to for i range(start, start + n).

But for the statements on lines 7 and 24 this won’t work so easily, because these
involve two different ways of updating result. In the world of object-oriented (OO)
programming, the language mechanisms involving classes, inheritance, overriding, and
polymorphism can be used effectively to address this situtation. Because these OO lan-
guage mechanisms are easy to abuse, various standard ways have evolved to use them
safely, known as Design Patterns (Gamma et al., 1994).

2.1. Template Method Design Pattern

For our example, the Template Method pattern can be used, because it captures a com-
mon algorithmic structure with some variation points. The common algorithm is pro-
grammed in a so-called template method in an abstract base class. That template method
calls so-called hook methods at the variation points. These hook methods are abstract,
that is, they are not implemented in the base class. Each clone is now replaced by a call
to the template method in a subclass, inheriting from the base class, while overriding the
abstract hook methods with the code that is specific for each clone.

Let’s apply this to our example. Here is the abstract base class that captures the com-
mon part of the iteration algorithm:

introduce parameters, so that the body becomes more general, and the calls can
be specialized by providing appropriate arguments to the calls.
For instance, the two statements on lines 4 and 21 are near clones, and

values 0 and 1 can be generalized to integer parameter initial. The statement
in the body then would become result = initial. The same holds for lines 6
and 23, which could be generalized to for i range(start, start + n).
But for the statements on lines 7 and 24 this won’t work so easily, be-

cause these involve two different ways of updating result. In the world of
object-oriented (OO) programming, the language mechanisms involving classes,
inheritance, overriding, and polymorphism can be used effectively to address
this situtation. Because these OO language mechanisms are easy to abuse,
various standard ways have evolved to use them safely, known as Design Pat-
terns (Gamma et al., 1994).

2.1 Template Method design pattern

For our example, the Template Method pattern can be used, because it captures
a common algorithmic structure with some variation points. The common al-
gorithm is programmed in a so-called template method in an abstract base class.
That template method calls so-called hook methods at the variation points.
These hook methods are abstract, that is, they are not implemented in the base
class. Each clone is now replaced by a call to the template method in a subclass,
inheriting from the base class, while overriding the abstract hook methods with
the code that is specific for each clone.
Let’s apply this to our example. Here is the abstract base class that captures

the common part of the iteration algorithm:

27 from abc import ABC, abstractmethod
28 from typing import override # requires Python 3.12
29

30 class Iteration(ABC):
31 """Abstract Base Class for iteration
32 using the Template Method design pattern.
33 """
34 @abstractmethod
35 def initialize(self) -> int:
36 """Abstract hook method to initialize result."""
37

38 @abstractmethod
39 def update(self, i: int, result: int) -> int:
40 """Abstract hook method to update result."""
41

42 def iterate(self, start: int, n: int) -> int:
43 """The template method with the common algorithm.
44 """
45 result = self.initialize()
46

47 for i in range(start, start + n):
48 result = self.update(i, result)
49

50 return result

3

T. Verhoeff116

Note that we used a hook method to initialize result, but avoided a hook method to
provide the start value for i, and instead passed it to the template method directly as argu-
ment. That way, both options are illustrated.

The base class can be specialized as follows for computing factorials.

And the subclass Factorial is then used as:

For summing an array, the following specialization can be used, where the array is pro-
vided via the constructor:

introduce parameters, so that the body becomes more general, and the calls can
be specialized by providing appropriate arguments to the calls.
For instance, the two statements on lines 4 and 21 are near clones, and

values 0 and 1 can be generalized to integer parameter initial. The statement
in the body then would become result = initial. The same holds for lines 6
and 23, which could be generalized to for i range(start, start + n).
But for the statements on lines 7 and 24 this won’t work so easily, be-

cause these involve two different ways of updating result. In the world of
object-oriented (OO) programming, the language mechanisms involving classes,
inheritance, overriding, and polymorphism can be used effectively to address
this situtation. Because these OO language mechanisms are easy to abuse,
various standard ways have evolved to use them safely, known as Design Pat-
terns (Gamma et al., 1994).

2.1 Template Method design pattern

For our example, the Template Method pattern can be used, because it captures
a common algorithmic structure with some variation points. The common al-
gorithm is programmed in a so-called template method in an abstract base class.
That template method calls so-called hook methods at the variation points.
These hook methods are abstract, that is, they are not implemented in the base
class. Each clone is now replaced by a call to the template method in a subclass,
inheriting from the base class, while overriding the abstract hook methods with
the code that is specific for each clone.
Let’s apply this to our example. Here is the abstract base class that captures

the common part of the iteration algorithm:

27 from abc import ABC, abstractmethod
28 from typing import override # requires Python 3.12
29

30 class Iteration(ABC):
31 """Abstract Base Class for iteration
32 using the Template Method design pattern.
33 """
34 @abstractmethod
35 def initialize(self) -> int:
36 """Abstract hook method to initialize result."""
37

38 @abstractmethod
39 def update(self, i: int, result: int) -> int:
40 """Abstract hook method to update result."""
41

42 def iterate(self, start: int, n: int) -> int:
43 """The template method with the common algorithm.
44 """
45 result = self.initialize()
46

47 for i in range(start, start + n):
48 result = self.update(i, result)
49

50 return result

3

Note that we used a hook method to initialize result, but avoided a hook
method to provide the start value for i, and instead passed it to the template
method directly as argument. That way, both options are illustrated.
The base class can be specialized as follows for computing factorials.

51 class Factorial(Iteration):
52 """Specialize the iteration algorithm for factorials.
53 """
54 @override
55 def initialize(self) -> int:
56 """Override abstract initialization hook method.
57 """
58 return 1
59

60 @override
61 def update(self, i: int, result: int) -> int:
62 """Override abstract update hook method.
63 """
64 result = result * i
65 return result

And the subclass Factorial is then used as:

66 def fac_iter_TM(n: int) -> int:
67 return Factorial().iterate(1, n)

For summing an array, the following specialization can be used, where the array
is provided via the constructor:

68 class ArraySummer(Iteration):
69 """Specialize the iteration algorithm for summing an array.
70 """
71 def __init__(self, array: list[int]) -> None:
72 self.array = array
73

74 @override
75 def initialize(self) -> int:
76 return 0
77

78 @override
79 def update(self, i: int, result: int) -> int:
80 return result + self.array[i]
81

82 def sum_array_TM(array: list[int], n: int) -> int:
83 return ArraySummer(array).iterate(0, n)

There are several reasons to be less happy with this way of avoiding copied
code. For one thing, the code is now considerably longer. In fact, you could
argue that classes Factorial (lines 51–65) and ArraySummer (lines 68–80) are
near code clones and in practice probably would have been programmed by
copy-paste-edit. The code is also harder to understand, because the control
flow is rather contorted due to inheritance and overriding. Consider the call
fac_iter_TM(5). The following happens during its execution:

1. Factorial() instantiates an object of type Factorial.

2. Its method iterate(1, 5) is called.

4

Note that we used a hook method to initialize result, but avoided a hook
method to provide the start value for i, and instead passed it to the template
method directly as argument. That way, both options are illustrated.
The base class can be specialized as follows for computing factorials.

51 class Factorial(Iteration):
52 """Specialize the iteration algorithm for factorials.
53 """
54 @override
55 def initialize(self) -> int:
56 """Override abstract initialization hook method.
57 """
58 return 1
59

60 @override
61 def update(self, i: int, result: int) -> int:
62 """Override abstract update hook method.
63 """
64 result = result * i
65 return result

And the subclass Factorial is then used as:

66 def fac_iter_TM(n: int) -> int:
67 return Factorial().iterate(1, n)

For summing an array, the following specialization can be used, where the array
is provided via the constructor:

68 class ArraySummer(Iteration):
69 """Specialize the iteration algorithm for summing an array.
70 """
71 def __init__(self, array: list[int]) -> None:
72 self.array = array
73

74 @override
75 def initialize(self) -> int:
76 return 0
77

78 @override
79 def update(self, i: int, result: int) -> int:
80 return result + self.array[i]
81

82 def sum_array_TM(array: list[int], n: int) -> int:
83 return ArraySummer(array).iterate(0, n)

There are several reasons to be less happy with this way of avoiding copied
code. For one thing, the code is now considerably longer. In fact, you could
argue that classes Factorial (lines 51–65) and ArraySummer (lines 68–80) are
near code clones and in practice probably would have been programmed by
copy-paste-edit. The code is also harder to understand, because the control
flow is rather contorted due to inheritance and overriding. Consider the call
fac_iter_TM(5). The following happens during its execution:

1. Factorial() instantiates an object of type Factorial.

2. Its method iterate(1, 5) is called.

4

Note that we used a hook method to initialize result, but avoided a hook
method to provide the start value for i, and instead passed it to the template
method directly as argument. That way, both options are illustrated.
The base class can be specialized as follows for computing factorials.

51 class Factorial(Iteration):
52 """Specialize the iteration algorithm for factorials.
53 """
54 @override
55 def initialize(self) -> int:
56 """Override abstract initialization hook method.
57 """
58 return 1
59

60 @override
61 def update(self, i: int, result: int) -> int:
62 """Override abstract update hook method.
63 """
64 result = result * i
65 return result

And the subclass Factorial is then used as:

66 def fac_iter_TM(n: int) -> int:
67 return Factorial().iterate(1, n)

For summing an array, the following specialization can be used, where the array
is provided via the constructor:

68 class ArraySummer(Iteration):
69 """Specialize the iteration algorithm for summing an array.
70 """
71 def __init__(self, array: list[int]) -> None:
72 self.array = array
73

74 @override
75 def initialize(self) -> int:
76 return 0
77

78 @override
79 def update(self, i: int, result: int) -> int:
80 return result + self.array[i]
81

82 def sum_array_TM(array: list[int], n: int) -> int:
83 return ArraySummer(array).iterate(0, n)

There are several reasons to be less happy with this way of avoiding copied
code. For one thing, the code is now considerably longer. In fact, you could
argue that classes Factorial (lines 51–65) and ArraySummer (lines 68–80) are
near code clones and in practice probably would have been programmed by
copy-paste-edit. The code is also harder to understand, because the control
flow is rather contorted due to inheritance and overriding. Consider the call
fac_iter_TM(5). The following happens during its execution:

1. Factorial() instantiates an object of type Factorial.

2. Its method iterate(1, 5) is called.

4

Staying DRY with OO and FP 117

There are several reasons to be less happy with this way of avoiding copied code. For one
thing, the code is now considerably longer. In fact, you could argue that classes Facto-
rial (lines 51–65) and ArraySummer (lines 68–80) are near code clones and in practice
probably would have been programmed by copy-paste-edit. The code is also harder to
understand, because the control flow is rather contorted due to inheritance and overriding.
Consider the call fac_iter_TM(5). The following happens during its execution:

 1.	 Factorial() instantiates an object of type Factorial.
 2.	 Its method iterate(1, 5) is called. 
 3.	 The definition of this method isn’t found in Factorial.
 4.	 The search for an implementation proceeds up the inheritance chain (this is done
at runtime), arriving at the implementation in the base class Iteration. This is
known as dynamic dispatch.
 The body of that method executes, behaving like 5.	

 6.	 Inside the body, hook methods self.initialize() and self.update() are
called. But these aren’t implemented in the base class. However, keep in mind
that iterate() was called in the scope of Factorial. Thus, their implemen-
tations are first looked for there, so that the body of iterate in fact behaves
like:

There are even more objections, such as the runtime overhead, in terms of function calls,
in particular of the hook methods. Note that update() occurs inside the loop. Finally,
this solution is rather rigid. Whenever, you want to specialize Iteration, you “hard
code” the initialization and update functionality into a new subclass. You cannot easily
reuse hook methods separately from one specialization in another. There is, what we call,
tight coupling: concrete hook methods are bound in the concrete subclass at design time.

Note that we used a hook method to initialize result, but avoided a hook
method to provide the start value for i, and instead passed it to the template
method directly as argument. That way, both options are illustrated.
The base class can be specialized as follows for computing factorials.

51 class Factorial(Iteration):
52 """Specialize the iteration algorithm for factorials.
53 """
54 @override
55 def initialize(self) -> int:
56 """Override abstract initialization hook method.
57 """
58 return 1
59

60 @override
61 def update(self, i: int, result: int) -> int:
62 """Override abstract update hook method.
63 """
64 result = result * i
65 return result

And the subclass Factorial is then used as:

66 def fac_iter_TM(n: int) -> int:
67 return Factorial().iterate(1, n)

For summing an array, the following specialization can be used, where the array
is provided via the constructor:

68 class ArraySummer(Iteration):
69 """Specialize the iteration algorithm for summing an array.
70 """
71 def __init__(self, array: list[int]) -> None:
72 self.array = array
73

74 @override
75 def initialize(self) -> int:
76 return 0
77

78 @override
79 def update(self, i: int, result: int) -> int:
80 return result + self.array[i]
81

82 def sum_array_TM(array: list[int], n: int) -> int:
83 return ArraySummer(array).iterate(0, n)

There are several reasons to be less happy with this way of avoiding copied
code. For one thing, the code is now considerably longer. In fact, you could
argue that classes Factorial (lines 51–65) and ArraySummer (lines 68–80) are
near code clones and in practice probably would have been programmed by
copy-paste-edit. The code is also harder to understand, because the control
flow is rather contorted due to inheritance and overriding. Consider the call
fac_iter_TM(5). The following happens during its execution:

1. Factorial() instantiates an object of type Factorial.

2. Its method iterate(1, 5) is called.

4

3. The definition of this method isn’t found in Factorial.

4. The search for an implementation proceeds up the inheritance chain (this
is done at runtime), arriving at the implementation in the base class
Iteration. This is known as dynamic dispatch.

5. The body of that method executes, behaving like

84 result = self.initialize()
85

86 for i in range(1, 1 + 5): # start == 1
87 result = self.update(i, result)
88

89 return result

6. Inside the body, hook methods self.initialize() and self.update()
are called. But these aren’t implemented in the base class. However, keep
in mind that iterate() was called in the scope of Factorial. Thus, their
implementations are first looked for there, so that the body of iterate
in fact behaves like:

90 result = 1
91

92 for i in range(1, 1 + 5):
93 result *= i
94

95 return result

There are even more objections, such as the runtime overhead, in terms of func-
tion calls, in particular of the hook methods. Note that update() occurs inside
the loop. Finally, this solution is rather rigid. Whenever, you want to specialize
Iteration, you “hard code” the initialization and update functionality into a
new subclass. You cannot easily reuse hook methods separately from one spe-
cialization in another. There is, what we call, tight coupling : concrete hook
methods are bound in the concrete subclass at design time.

2.2 Strategy design pattern

To allow specialization at runtime and independent variation, we can use the
Strategy design pattern. The code at each variation point (hook) is considered a
strategy obeying a fixed interface but admitting multiple implementations. This
lets one inject concrete hook “strategies” via the constructor. First, we define
interfaces (abstract base classes) to specify the signatures of the initialization
and update hook strategies:

96 class Initializer(ABC):
97 """Interface (Abstract Base Class) for initialization.
98 """
99 @abstractmethod

100 def initialize(self) -> int:
101 """Return initial value."""
102

103 class Updater(ABC):
104 """Interface (Abstract Base Class) for updating.

5

3. The definition of this method isn’t found in Factorial.

4. The search for an implementation proceeds up the inheritance chain (this
is done at runtime), arriving at the implementation in the base class
Iteration. This is known as dynamic dispatch.

5. The body of that method executes, behaving like

84 result = self.initialize()
85

86 for i in range(1, 1 + 5): # start == 1
87 result = self.update(i, result)
88

89 return result

6. Inside the body, hook methods self.initialize() and self.update()
are called. But these aren’t implemented in the base class. However, keep
in mind that iterate() was called in the scope of Factorial. Thus, their
implementations are first looked for there, so that the body of iterate
in fact behaves like:

90 result = 1
91

92 for i in range(1, 1 + 5):
93 result *= i
94

95 return result

There are even more objections, such as the runtime overhead, in terms of func-
tion calls, in particular of the hook methods. Note that update() occurs inside
the loop. Finally, this solution is rather rigid. Whenever, you want to specialize
Iteration, you “hard code” the initialization and update functionality into a
new subclass. You cannot easily reuse hook methods separately from one spe-
cialization in another. There is, what we call, tight coupling : concrete hook
methods are bound in the concrete subclass at design time.

2.2 Strategy design pattern

To allow specialization at runtime and independent variation, we can use the
Strategy design pattern. The code at each variation point (hook) is considered a
strategy obeying a fixed interface but admitting multiple implementations. This
lets one inject concrete hook “strategies” via the constructor. First, we define
interfaces (abstract base classes) to specify the signatures of the initialization
and update hook strategies:

96 class Initializer(ABC):
97 """Interface (Abstract Base Class) for initialization.
98 """
99 @abstractmethod

100 def initialize(self) -> int:
101 """Return initial value."""
102

103 class Updater(ABC):
104 """Interface (Abstract Base Class) for updating.

5

T. Verhoeff118

2.2. Strategy Design Pattern

To allow specialization at runtime and independent variation, we can use the Strategy
design pattern. The code at each variation point (hook) is considered a strategy obeying
a fixed interface but admitting multiple implementations. This lets one inject concrete
hook “strategies” via the constructor. First, we define interfaces (abstract base classes)
to specify the signatures of the initialization and update hook strategies:

Next, we define the class with the template method (that class is no longer abstract and is
also no longer subclassed):

These three classes are used as follows to implement factorial:

3. The definition of this method isn’t found in Factorial.

4. The search for an implementation proceeds up the inheritance chain (this
is done at runtime), arriving at the implementation in the base class
Iteration. This is known as dynamic dispatch.

5. The body of that method executes, behaving like

84 result = self.initialize()
85

86 for i in range(1, 1 + 5): # start == 1
87 result = self.update(i, result)
88

89 return result

6. Inside the body, hook methods self.initialize() and self.update()
are called. But these aren’t implemented in the base class. However, keep
in mind that iterate() was called in the scope of Factorial. Thus, their
implementations are first looked for there, so that the body of iterate
in fact behaves like:

90 result = 1
91

92 for i in range(1, 1 + 5):
93 result *= i
94

95 return result

There are even more objections, such as the runtime overhead, in terms of func-
tion calls, in particular of the hook methods. Note that update() occurs inside
the loop. Finally, this solution is rather rigid. Whenever, you want to specialize
Iteration, you “hard code” the initialization and update functionality into a
new subclass. You cannot easily reuse hook methods separately from one spe-
cialization in another. There is, what we call, tight coupling : concrete hook
methods are bound in the concrete subclass at design time.

2.2 Strategy design pattern

To allow specialization at runtime and independent variation, we can use the
Strategy design pattern. The code at each variation point (hook) is considered a
strategy obeying a fixed interface but admitting multiple implementations. This
lets one inject concrete hook “strategies” via the constructor. First, we define
interfaces (abstract base classes) to specify the signatures of the initialization
and update hook strategies:

96 class Initializer(ABC):
97 """Interface (Abstract Base Class) for initialization.
98 """
99 @abstractmethod

100 def initialize(self) -> int:
101 """Return initial value."""
102

103 class Updater(ABC):
104 """Interface (Abstract Base Class) for updating.

5

105 """
106 @abstractmethod
107 def update(self, i: int, result: int) -> int:
108 """Return updated value."""

Next, we define the class with the template method (that class is no longer
abstract and is also no longer subclassed):

109 class IterationS:
110 """Class for iteration with a template method,
111 using the Strategy design pattern for hook strategies.
112 """
113 def __init__(self, initializer: Initializer,
114 updater: Updater) -> None:
115 """Store the hook strategies.
116 """
117 self.initializer = initializer
118 self.updater = updater
119

120 def iterate(self, start: int, n: int) -> int:
121 """The template method with the common algorithm.
122 """
123 result = self.initializer.initialize()
124

125 for i in range(start, start + n):
126 result = self.updater.update(i, result)
127

128 return result

These three classes are used as follows to implement factorial:

129 class Initialize1(Initializer):
130 """Initialize with 1.
131 """
132 @override
133 def initialize(self) -> int:
134 return 1
135

136 class FacUpdater(Updater):
137 """Updater for factorial.
138 """
139 @override
140 def update(self, i: int, result: int) -> int:
141 return result * i
142

143 def fac_iter_S(n: int) -> int:
144 return IterationS(Initialize1(), FacUpdater()
145).iterate(1, n)

The array summer is implemented in a similar way:

146 class Initialize0(Initializer):
147 """Initialize with 0.
148 """
149 @override
150 def initialize(self) -> int:
151 return 0

6

105 """
106 @abstractmethod
107 def update(self, i: int, result: int) -> int:
108 """Return updated value."""

Next, we define the class with the template method (that class is no longer
abstract and is also no longer subclassed):

109 class IterationS:
110 """Class for iteration with a template method,
111 using the Strategy design pattern for hook strategies.
112 """
113 def __init__(self, initializer: Initializer,
114 updater: Updater) -> None:
115 """Store the hook strategies.
116 """
117 self.initializer = initializer
118 self.updater = updater
119

120 def iterate(self, start: int, n: int) -> int:
121 """The template method with the common algorithm.
122 """
123 result = self.initializer.initialize()
124

125 for i in range(start, start + n):
126 result = self.updater.update(i, result)
127

128 return result

These three classes are used as follows to implement factorial:

129 class Initialize1(Initializer):
130 """Initialize with 1.
131 """
132 @override
133 def initialize(self) -> int:
134 return 1
135

136 class FacUpdater(Updater):
137 """Updater for factorial.
138 """
139 @override
140 def update(self, i: int, result: int) -> int:
141 return result * i
142

143 def fac_iter_S(n: int) -> int:
144 return IterationS(Initialize1(), FacUpdater()
145).iterate(1, n)

The array summer is implemented in a similar way:

146 class Initialize0(Initializer):
147 """Initialize with 0.
148 """
149 @override
150 def initialize(self) -> int:
151 return 0

6

Staying DRY with OO and FP 119

The array summer is implemented in a similar way:

We achieved increased flexibility (loose coupling), because the various initializers and
updaters are more general and can now easily be mixed and matched at runtime. But we
did pay a price for this: still more code and also more runtime overhead (but a simpler
control flow). Concerning more runtime overhead, note the extra indirection in the calls
of the hook strategies (lines 123 and 126): self.initializer.initialize() and
self.updater.update().

105 """
106 @abstractmethod
107 def update(self, i: int, result: int) -> int:
108 """Return updated value."""

Next, we define the class with the template method (that class is no longer
abstract and is also no longer subclassed):

109 class IterationS:
110 """Class for iteration with a template method,
111 using the Strategy design pattern for hook strategies.
112 """
113 def __init__(self, initializer: Initializer,
114 updater: Updater) -> None:
115 """Store the hook strategies.
116 """
117 self.initializer = initializer
118 self.updater = updater
119

120 def iterate(self, start: int, n: int) -> int:
121 """The template method with the common algorithm.
122 """
123 result = self.initializer.initialize()
124

125 for i in range(start, start + n):
126 result = self.updater.update(i, result)
127

128 return result

These three classes are used as follows to implement factorial:

129 class Initialize1(Initializer):
130 """Initialize with 1.
131 """
132 @override
133 def initialize(self) -> int:
134 return 1
135

136 class FacUpdater(Updater):
137 """Updater for factorial.
138 """
139 @override
140 def update(self, i: int, result: int) -> int:
141 return result * i
142

143 def fac_iter_S(n: int) -> int:
144 return IterationS(Initialize1(), FacUpdater()
145).iterate(1, n)

The array summer is implemented in a similar way:

146 class Initialize0(Initializer):
147 """Initialize with 0.
148 """
149 @override
150 def initialize(self) -> int:
151 return 0

6

105 """
106 @abstractmethod
107 def update(self, i: int, result: int) -> int:
108 """Return updated value."""

Next, we define the class with the template method (that class is no longer
abstract and is also no longer subclassed):

109 class IterationS:
110 """Class for iteration with a template method,
111 using the Strategy design pattern for hook strategies.
112 """
113 def __init__(self, initializer: Initializer,
114 updater: Updater) -> None:
115 """Store the hook strategies.
116 """
117 self.initializer = initializer
118 self.updater = updater
119

120 def iterate(self, start: int, n: int) -> int:
121 """The template method with the common algorithm.
122 """
123 result = self.initializer.initialize()
124

125 for i in range(start, start + n):
126 result = self.updater.update(i, result)
127

128 return result

These three classes are used as follows to implement factorial:

129 class Initialize1(Initializer):
130 """Initialize with 1.
131 """
132 @override
133 def initialize(self) -> int:
134 return 1
135

136 class FacUpdater(Updater):
137 """Updater for factorial.
138 """
139 @override
140 def update(self, i: int, result: int) -> int:
141 return result * i
142

143 def fac_iter_S(n: int) -> int:
144 return IterationS(Initialize1(), FacUpdater()
145).iterate(1, n)

The array summer is implemented in a similar way:

146 class Initialize0(Initializer):
147 """Initialize with 0.
148 """
149 @override
150 def initialize(self) -> int:
151 return 0

6

152

153 class ArraySumUpdater(Updater):
154 """Updater for array_sum.
155 """
156 def __init__(self, array: list[int]) -> None:
157 self.array = array
158

159 @override
160 def update(self, i: int, result: int) -> int:
161 return result + self.array[i]
162

163 def sum_array_S(array: list[int], n: int) -> int:
164 return IterationS(Initialize0(),
165 ArraySumUpdater(array)
166).iterate(0, n)

We achieved increased flexibility (loose coupling), because the various initializers
and updaters are more general and can now easily be mixed and matched at
runtime. But we did pay a price for this: still more code and also more runtime
overhead (but a simpler control flow). Concerning more runtime overhead, note
the extra indirection in the calls of the hook strategies (lines 123 and 126):
self.initializer.initialize() and self.updater.update().
This may leave you wondering why object-oriented programming and OO

design patterns were invented in the first place. And it also clarifies why these
are not used in (most) programming contests.

3 DRY via functional programming

Rather than using classes, methods, and objects, we now stick to pure functions,
that is, functions without side effects. For some, that may feel like tying your
hands behind your back. But it is interesting to see where it gets you.
The class IterationS above is not really needed if we can inject the initial-

ization and update functionality directly into its method (function) iterate.
For updating, that requires a parameter of a function type, mapping two inte-
gers to an integer, typed in Python as Callable[[int, int], int]. Here is
the definition of iterate as a pure function (not inside any class):

167 from typing import Callable # to type functions
168

169 def iterate(initialize: Callable[[], int], start: int,
170 update: Callable[[int, int], int]
171) -> Callable[[int], int]:
172 """Return a function that iterates, using
173 given start value and initialize and update functions.
174 """
175 def f(n: int) -> int:
176 result = initialize()
177

178 for i in range(start, start + n):
179 result = update(i, result)
180

181 return result
182

7

T. Verhoeff120

This may leave you wondering why object-oriented programming and OO design
patterns were invented in the first place. And it also clarifies why these are not used in
(most) programming contests.

3. DRY via Functional Programming

Rather than using classes, methods, and objects, we now stick to pure functions, that is,
functions without side effects. For some, that may feel like tying your hands behind your
back. But it is interesting to see where it gets you.

The class IterationS above is not really needed if we can inject the initialization
and update functionality directly into its method (function) iterate. For updating, that
requires a parameter of a function type, mapping two integers to an integer, typed in
Python as Callable[[int, int], int]. Here is the definition of iterate as a pure
function (not inside any class):

To stay close to the object-oriented solutions, we have also made initialize a (param-
eterless) function parameter. Furthermore, note that iterate returns a function, in this
case mapping an integer n to an integer. So, you could think of it as a function factory:
from initialize, start, and update, it constructs a function (of n). This is how to
use it to get the factorial function:

We can call our newly created function simply as fac_iter_FP(5). But what about
letting this factory function create a function to sum an array? We don’t want to give

152

153 class ArraySumUpdater(Updater):
154 """Updater for array_sum.
155 """
156 def __init__(self, array: list[int]) -> None:
157 self.array = array
158

159 @override
160 def update(self, i: int, result: int) -> int:
161 return result + self.array[i]
162

163 def sum_array_S(array: list[int], n: int) -> int:
164 return IterationS(Initialize0(),
165 ArraySumUpdater(array)
166).iterate(0, n)

We achieved increased flexibility (loose coupling), because the various initializers
and updaters are more general and can now easily be mixed and matched at
runtime. But we did pay a price for this: still more code and also more runtime
overhead (but a simpler control flow). Concerning more runtime overhead, note
the extra indirection in the calls of the hook strategies (lines 123 and 126):
self.initializer.initialize() and self.updater.update().
This may leave you wondering why object-oriented programming and OO

design patterns were invented in the first place. And it also clarifies why these
are not used in (most) programming contests.

3 DRY via functional programming

Rather than using classes, methods, and objects, we now stick to pure functions,
that is, functions without side effects. For some, that may feel like tying your
hands behind your back. But it is interesting to see where it gets you.
The class IterationS above is not really needed if we can inject the initial-

ization and update functionality directly into its method (function) iterate.
For updating, that requires a parameter of a function type, mapping two inte-
gers to an integer, typed in Python as Callable[[int, int], int]. Here is
the definition of iterate as a pure function (not inside any class):

167 from typing import Callable # to type functions
168

169 def iterate(initialize: Callable[[], int], start: int,
170 update: Callable[[int, int], int]
171) -> Callable[[int], int]:
172 """Return a function that iterates, using
173 given start value and initialize and update functions.
174 """
175 def f(n: int) -> int:
176 result = initialize()
177

178 for i in range(start, start + n):
179 result = update(i, result)
180

181 return result
182

7

183 return f

To stay close to the object-oriented solutions, we have also made initialize
a (parameterless) function parameter. Furthermore, note that iterate returns
a function, in this case mapping an integer n to an integer. So, you could think
of it as a function factory : from initialize, start, and update, it constructs
a function (of n). This is how to use it to get the factorial function:

185 from operator import mul # multiplication
186

187 # type: Callable[[int], int]
188 fac_iter_FP = iterate(lambda: 1, 1, mul)

We can call our newly created function simply as fac_iter_FP(5). But what
about letting this factory function create a function to sum an array? We don’t
want to give iterate an extra parameter, because that would be in the way
when defining functions like factorial. Think about it. There is no object to
inject the array into via a constructor. Therefore, the generated function needs
to take the array as extra parameter, See if you can find a way out.
As Nikita Sobolev (2020) wrote: “Functional programmers are smart people.

Really. They can do literally everything with just pure functions.” And so it is.
The trick is to generalize the result type int of the functions that our factory
creates to an arbitrary type X:

189 def iterateG[X](initialize: Callable[[], X], start: int,
190 update: Callable[[int, X], X]
191) -> Callable[[int], X]:
192 """Return a generic function int -> X that iterates
193 using given start value and initialize and update functions.
194 (Generic function definitions require Python 3.12.)
195 """
196 def f(n: int) -> X:
197 result: X = initialize()
198

199 for i in range(start, start + n):
200 result = update(i, result)
201

202 return result
203

204 return f

The types of the function parameters initialize and update had to be gener-
alized accordingly. Function iterateG is known as a generic factory function,
parameterized by type X. For factorial, X is simply int and we can still define:

205 fac_iter_FPG = iterateG(lambda: 1, 1, mul)

For array summing, we use the following function type as result type X:

206 type IntFromArray = Callable[[list[int]], int]

Values of this type are functions that map an array of integers to an integer.
So, the factory now can create a function that takes integer n as parameter and
produces a function that takes an array as parameter, which in turn computes
the array sum. The factory creates what is known as a curried function: you
need to feed it two parameters in sequence, rather than together.

8

183 return f

To stay close to the object-oriented solutions, we have also made initialize
a (parameterless) function parameter. Furthermore, note that iterate returns
a function, in this case mapping an integer n to an integer. So, you could think
of it as a function factory : from initialize, start, and update, it constructs
a function (of n). This is how to use it to get the factorial function:

185 from operator import mul # multiplication
186

187 # type: Callable[[int], int]
188 fac_iter_FP = iterate(lambda: 1, 1, mul)

We can call our newly created function simply as fac_iter_FP(5). But what
about letting this factory function create a function to sum an array? We don’t
want to give iterate an extra parameter, because that would be in the way
when defining functions like factorial. Think about it. There is no object to
inject the array into via a constructor. Therefore, the generated function needs
to take the array as extra parameter, See if you can find a way out.
As Nikita Sobolev (2020) wrote: “Functional programmers are smart people.

Really. They can do literally everything with just pure functions.” And so it is.
The trick is to generalize the result type int of the functions that our factory
creates to an arbitrary type X:

189 def iterateG[X](initialize: Callable[[], X], start: int,
190 update: Callable[[int, X], X]
191) -> Callable[[int], X]:
192 """Return a generic function int -> X that iterates
193 using given start value and initialize and update functions.
194 (Generic function definitions require Python 3.12.)
195 """
196 def f(n: int) -> X:
197 result: X = initialize()
198

199 for i in range(start, start + n):
200 result = update(i, result)
201

202 return result
203

204 return f

The types of the function parameters initialize and update had to be gener-
alized accordingly. Function iterateG is known as a generic factory function,
parameterized by type X. For factorial, X is simply int and we can still define:

205 fac_iter_FPG = iterateG(lambda: 1, 1, mul)

For array summing, we use the following function type as result type X:

206 type IntFromArray = Callable[[list[int]], int]

Values of this type are functions that map an array of integers to an integer.
So, the factory now can create a function that takes integer n as parameter and
produces a function that takes an array as parameter, which in turn computes
the array sum. The factory creates what is known as a curried function: you
need to feed it two parameters in sequence, rather than together.

8

Staying DRY with OO and FP 121

iterate an extra parameter, because that would be in the way when defining functions
like factorial. Think about it. There is no object to inject the array into via a constructor.
Therefore, the generated function needs to take the array as extra parameter. See if you
can find a way out.

As Nikita Sobolev (2020) wrote: “Functional programmers are smart people. Really.
They can do literally everything with just pure functions.” And so it is. The trick is to gener-
alize the result type int (of the functions that our factory creates) to an arbitrary type X:

The types of the function parameters initialize and update had to be generalized ac-
cordingly. Function iterateG is known as a generic factory function, parameterized by
type X. For factorial, X is simply int and we can still define:

For array summing, we use the following function type as result type X:

Values of this type are functions that map an array of integers to an integer. So, the factory
now can create a function that takes integer n as parameter and produces a function that
takes an array as parameter, which in turn computes the array sum. The factory creates
what is known as a curried function: you need to feed it two parameters in sequence,
rather than together.

Thus we have sneaked in a way of injecting the array into the iteration that repeat-
edly updates the variable result, which also has that function type. So, the loop now
computes with functions of type IntFromArray. The initial value of result is

because the initial value does not depend on the array (though for other specializations it
could). Using lambda expressions, the result variable can now be updated by

183 return f

To stay close to the object-oriented solutions, we have also made initialize
a (parameterless) function parameter. Furthermore, note that iterate returns
a function, in this case mapping an integer n to an integer. So, you could think
of it as a function factory : from initialize, start, and update, it constructs
a function (of n). This is how to use it to get the factorial function:

185 from operator import mul # multiplication
186

187 # type: Callable[[int], int]
188 fac_iter_FP = iterate(lambda: 1, 1, mul)

We can call our newly created function simply as fac_iter_FP(5). But what
about letting this factory function create a function to sum an array? We don’t
want to give iterate an extra parameter, because that would be in the way
when defining functions like factorial. Think about it. There is no object to
inject the array into via a constructor. Therefore, the generated function needs
to take the array as extra parameter, See if you can find a way out.
As Nikita Sobolev (2020) wrote: “Functional programmers are smart people.

Really. They can do literally everything with just pure functions.” And so it is.
The trick is to generalize the result type int of the functions that our factory
creates to an arbitrary type X:

189 def iterateG[X](initialize: Callable[[], X], start: int,
190 update: Callable[[int, X], X]
191) -> Callable[[int], X]:
192 """Return a generic function int -> X that iterates
193 using given start value and initialize and update functions.
194 (Generic function definitions require Python 3.12.)
195 """
196 def f(n: int) -> X:
197 result: X = initialize()
198

199 for i in range(start, start + n):
200 result = update(i, result)
201

202 return result
203

204 return f

The types of the function parameters initialize and update had to be gener-
alized accordingly. Function iterateG is known as a generic factory function,
parameterized by type X. For factorial, X is simply int and we can still define:

205 fac_iter_FPG = iterateG(lambda: 1, 1, mul)

For array summing, we use the following function type as result type X:

206 type IntFromArray = Callable[[list[int]], int]

Values of this type are functions that map an array of integers to an integer.
So, the factory now can create a function that takes integer n as parameter and
produces a function that takes an array as parameter, which in turn computes
the array sum. The factory creates what is known as a curried function: you
need to feed it two parameters in sequence, rather than together.

8

183 return f

To stay close to the object-oriented solutions, we have also made initialize
a (parameterless) function parameter. Furthermore, note that iterate returns
a function, in this case mapping an integer n to an integer. So, you could think
of it as a function factory : from initialize, start, and update, it constructs
a function (of n). This is how to use it to get the factorial function:

185 from operator import mul # multiplication
186

187 # type: Callable[[int], int]
188 fac_iter_FP = iterate(lambda: 1, 1, mul)

We can call our newly created function simply as fac_iter_FP(5). But what
about letting this factory function create a function to sum an array? We don’t
want to give iterate an extra parameter, because that would be in the way
when defining functions like factorial. Think about it. There is no object to
inject the array into via a constructor. Therefore, the generated function needs
to take the array as extra parameter, See if you can find a way out.
As Nikita Sobolev (2020) wrote: “Functional programmers are smart people.

Really. They can do literally everything with just pure functions.” And so it is.
The trick is to generalize the result type int of the functions that our factory
creates to an arbitrary type X:

189 def iterateG[X](initialize: Callable[[], X], start: int,
190 update: Callable[[int, X], X]
191) -> Callable[[int], X]:
192 """Return a generic function int -> X that iterates
193 using given start value and initialize and update functions.
194 (Generic function definitions require Python 3.12.)
195 """
196 def f(n: int) -> X:
197 result: X = initialize()
198

199 for i in range(start, start + n):
200 result = update(i, result)
201

202 return result
203

204 return f

The types of the function parameters initialize and update had to be gener-
alized accordingly. Function iterateG is known as a generic factory function,
parameterized by type X. For factorial, X is simply int and we can still define:

205 fac_iter_FPG = iterateG(lambda: 1, 1, mul)

For array summing, we use the following function type as result type X:

206 type IntFromArray = Callable[[list[int]], int]

Values of this type are functions that map an array of integers to an integer.
So, the factory now can create a function that takes integer n as parameter and
produces a function that takes an array as parameter, which in turn computes
the array sum. The factory creates what is known as a curried function: you
need to feed it two parameters in sequence, rather than together.

8

183 return f

To stay close to the object-oriented solutions, we have also made initialize
a (parameterless) function parameter. Furthermore, note that iterate returns
a function, in this case mapping an integer n to an integer. So, you could think
of it as a function factory : from initialize, start, and update, it constructs
a function (of n). This is how to use it to get the factorial function:

185 from operator import mul # multiplication
186

187 # type: Callable[[int], int]
188 fac_iter_FP = iterate(lambda: 1, 1, mul)

We can call our newly created function simply as fac_iter_FP(5). But what
about letting this factory function create a function to sum an array? We don’t
want to give iterate an extra parameter, because that would be in the way
when defining functions like factorial. Think about it. There is no object to
inject the array into via a constructor. Therefore, the generated function needs
to take the array as extra parameter, See if you can find a way out.
As Nikita Sobolev (2020) wrote: “Functional programmers are smart people.

Really. They can do literally everything with just pure functions.” And so it is.
The trick is to generalize the result type int of the functions that our factory
creates to an arbitrary type X:

189 def iterateG[X](initialize: Callable[[], X], start: int,
190 update: Callable[[int, X], X]
191) -> Callable[[int], X]:
192 """Return a generic function int -> X that iterates
193 using given start value and initialize and update functions.
194 (Generic function definitions require Python 3.12.)
195 """
196 def f(n: int) -> X:
197 result: X = initialize()
198

199 for i in range(start, start + n):
200 result = update(i, result)
201

202 return result
203

204 return f

The types of the function parameters initialize and update had to be gener-
alized accordingly. Function iterateG is known as a generic factory function,
parameterized by type X. For factorial, X is simply int and we can still define:

205 fac_iter_FPG = iterateG(lambda: 1, 1, mul)

For array summing, we use the following function type as result type X:

206 type IntFromArray = Callable[[list[int]], int]

Values of this type are functions that map an array of integers to an integer.
So, the factory now can create a function that takes integer n as parameter and
produces a function that takes an array as parameter, which in turn computes
the array sum. The factory creates what is known as a curried function: you
need to feed it two parameters in sequence, rather than together.

8

Thus we have sneaked in a way of injecting the array into the iteration that
repeatedly updates the variable result, which also has that function type. So,
the loop now computes with functions of type IntFromArray. The initial value
of result is

207 ifa_0: IntFromArray = lambda array: 0

because the initial value does not depend on the array (though for other spe-
cializations it could). Using lambda expressions, the result variable can now
be updated by

208 # type: Callable[[int, IntFromArray], IntFromArray]
209 update_ifa = (lambda i, result_ifa:
210 lambda array: result_ifa(array) + array[i])

This may be a bit tricky to read at first, but by considering the types, the
definition should make sense (hang on for an example).
Finally, we define

211 # type: Callable[[int], IntFromArray]
212 sum_array_FPG = iterateG(lambda: ifa_0, 0, update_ifa)

The call sum_array_FPG(n)(array) sums the first n values of array. Let’s
reason through the three updates in the call sum_array_FPG(3). The initial
value of result is ifa_0:

213 1: update_ifa(0, ifa_0)
214 == { definition of ifa_0 }
215 update_ifa(0, lambda array: 0)
216 == { definition of update_ifa }
217 (lambda array:
218 (lambda array:
219 0
220)(array) + array[0]
221)
222

223 2: update_ifa(1, (lambda array:
224 (lambda array:
225 0
226)(array) + array[0]
227))
228 == { definition of update_ifa }
229 (lambda array:
230 (lambda array:
231 (lambda array:
232 0
233)(array) + array[0]
234)(array) + array[1]
235)
236

237 3: update_ifa(2, (lambda array:
238 (lambda array:
239 (lambda array:
240 0
241)(array) + array[0]
242)(array) + array[1]

9

T. Verhoeff122

This may be a bit tricky to read at first, but by considering the types, the definition should
make sense (hang on for an example). Finally, we define

The call sum_array_FPG(n)(array) sums the first n values of array. Let’s reason
through the three updates in the call sum_array_FPG(3). The initial value of result
is ifa_0:

Thus we have sneaked in a way of injecting the array into the iteration that
repeatedly updates the variable result, which also has that function type. So,
the loop now computes with functions of type IntFromArray. The initial value
of result is

207 ifa_0: IntFromArray = lambda array: 0

because the initial value does not depend on the array (though for other spe-
cializations it could). Using lambda expressions, the result variable can now
be updated by

208 # type: Callable[[int, IntFromArray], IntFromArray]
209 update_ifa = (lambda i, result_ifa:
210 lambda array: result_ifa(array) + array[i])

This may be a bit tricky to read at first, but by considering the types, the
definition should make sense (hang on for an example).
Finally, we define

211 # type: Callable[[int], IntFromArray]
212 sum_array_FPG = iterateG(lambda: ifa_0, 0, update_ifa)

The call sum_array_FPG(n)(array) sums the first n values of array. Let’s
reason through the three updates in the call sum_array_FPG(3). The initial
value of result is ifa_0:

213 1: update_ifa(0, ifa_0)
214 == { definition of ifa_0 }
215 update_ifa(0, lambda array: 0)
216 == { definition of update_ifa }
217 (lambda array:
218 (lambda array:
219 0
220)(array) + array[0]
221)
222

223 2: update_ifa(1, (lambda array:
224 (lambda array:
225 0
226)(array) + array[0]
227))
228 == { definition of update_ifa }
229 (lambda array:
230 (lambda array:
231 (lambda array:
232 0
233)(array) + array[0]
234)(array) + array[1]
235)
236

237 3: update_ifa(2, (lambda array:
238 (lambda array:
239 (lambda array:
240 0
241)(array) + array[0]
242)(array) + array[1]

9

Thus we have sneaked in a way of injecting the array into the iteration that
repeatedly updates the variable result, which also has that function type. So,
the loop now computes with functions of type IntFromArray. The initial value
of result is

207 ifa_0: IntFromArray = lambda array: 0

because the initial value does not depend on the array (though for other spe-
cializations it could). Using lambda expressions, the result variable can now
be updated by

208 # type: Callable[[int, IntFromArray], IntFromArray]
209 update_ifa = (lambda i, result_ifa:
210 lambda array: result_ifa(array) + array[i])

This may be a bit tricky to read at first, but by considering the types, the
definition should make sense (hang on for an example).
Finally, we define

211 # type: Callable[[int], IntFromArray]
212 sum_array_FPG = iterateG(lambda: ifa_0, 0, update_ifa)

The call sum_array_FPG(n)(array) sums the first n values of array. Let’s
reason through the three updates in the call sum_array_FPG(3). The initial
value of result is ifa_0:

213 1: update_ifa(0, ifa_0)
214 == { definition of ifa_0 }
215 update_ifa(0, lambda array: 0)
216 == { definition of update_ifa }
217 (lambda array:
218 (lambda array:
219 0
220)(array) + array[0]
221)
222

223 2: update_ifa(1, (lambda array:
224 (lambda array:
225 0
226)(array) + array[0]
227))
228 == { definition of update_ifa }
229 (lambda array:
230 (lambda array:
231 (lambda array:
232 0
233)(array) + array[0]
234)(array) + array[1]
235)
236

237 3: update_ifa(2, (lambda array:
238 (lambda array:
239 (lambda array:
240 0
241)(array) + array[0]
242)(array) + array[1]

9

Thus we have sneaked in a way of injecting the array into the iteration that
repeatedly updates the variable result, which also has that function type. So,
the loop now computes with functions of type IntFromArray. The initial value
of result is

207 ifa_0: IntFromArray = lambda array: 0

because the initial value does not depend on the array (though for other spe-
cializations it could). Using lambda expressions, the result variable can now
be updated by

208 # type: Callable[[int, IntFromArray], IntFromArray]
209 update_ifa = (lambda i, result_ifa:
210 lambda array: result_ifa(array) + array[i])

This may be a bit tricky to read at first, but by considering the types, the
definition should make sense (hang on for an example).
Finally, we define

211 # type: Callable[[int], IntFromArray]
212 sum_array_FPG = iterateG(lambda: ifa_0, 0, update_ifa)

The call sum_array_FPG(n)(array) sums the first n values of array. Let’s
reason through the three updates in the call sum_array_FPG(3). The initial
value of result is ifa_0:

213 1: update_ifa(0, ifa_0)
214 == { definition of ifa_0 }
215 update_ifa(0, lambda array: 0)
216 == { definition of update_ifa }
217 (lambda array:
218 (lambda array:
219 0
220)(array) + array[0]
221)
222

223 2: update_ifa(1, (lambda array:
224 (lambda array:
225 0
226)(array) + array[0]
227))
228 == { definition of update_ifa }
229 (lambda array:
230 (lambda array:
231 (lambda array:
232 0
233)(array) + array[0]
234)(array) + array[1]
235)
236

237 3: update_ifa(2, (lambda array:
238 (lambda array:
239 (lambda array:
240 0
241)(array) + array[0]
242)(array) + array[1]

9

243))
244 == { definition of update_ifa }
245 (lambda array:
246 (lambda array:
247 (lambda array:
248 (lambda array:
249 0
250)(array) + array[0]
251)(array) + array[1])
252)(array) + array[2]
253)

This can be considered meta-programming, where the factory function actu-
ally creates a program to solve the array summing problem for a specific value
of n. When the Python interpreter evaluates a plain lambda expression like
lambda array: ...array..., it won’t evaluate the body ...array.... It
just produces a code object that is only put to work when the lambda expres-
sion is called on a specific argument. A plain lambda expression is a function
treated as data. In languages that have better support for functional program-
ming, the expressions above could be evaluated (simplified) further (at runtime).
For instance, we have:

254 (lambda array:
255 (lambda array:
256 0
257)(array) + array[0]
258)
259 == { beta-reduction on inner lambda expression }
260 (lambda array:
261 0 + array[0]
262)

Repeated beta-reductions would simplify the expression on lines 245–253 to

263 (lambda array:
264 0 + array[0] + array[1] + array[2]
265)

which is clearly a program that sums the first three items of an array that is
given as argument. In fact, the beta-reductions would be done during each
update, so that the value of result would never be as complicated as above.
That value would always have the shape

266 (lambda array:
267 0 + array[0] + ... + array[i]
268)

since

269 update_ifa(i + 1, (lambda array:
270 0 + array[0] + ... + array[i]
271))
272 == { definition of update_ifa }
273 (lambda array:
274 (lambda array:
275 0 + array[0] + ... + array[i]
276)(array) + array[i + 1]

10

Staying DRY with OO and FP 123

This can be considered meta-programming, where the factory function actually creates a
program to solve the array summing problem for a specific value of n. When the Python
interpreter evaluates a plain lambda expression like lambda array: ...array...,
it won’t evaluate the body ...array.... It just produces a code object that is only put
to work when the lambda expression is called on a specific argument. A plain lambda
expression is a function treated as data. In languages that have better support for func-
tional programming, the expressions above could be evaluated (simplified) further (at
runtime). For instance, we have:

Repeated beta-reductions would simplify the expression on lines 245–253 to

which is clearly a program that sums the first three items of an array that is given as
argument. In fact, the beta-reductions would be done during each update, so that the
value of result would never be as complicated as above. That value would always
have the shape

since

243))
244 == { definition of update_ifa }
245 (lambda array:
246 (lambda array:
247 (lambda array:
248 (lambda array:
249 0
250)(array) + array[0]
251)(array) + array[1])
252)(array) + array[2]
253)

This can be considered meta-programming, where the factory function actu-
ally creates a program to solve the array summing problem for a specific value
of n. When the Python interpreter evaluates a plain lambda expression like
lambda array: ...array..., it won’t evaluate the body ...array.... It
just produces a code object that is only put to work when the lambda expres-
sion is called on a specific argument. A plain lambda expression is a function
treated as data. In languages that have better support for functional program-
ming, the expressions above could be evaluated (simplified) further (at runtime).
For instance, we have:

254 (lambda array:
255 (lambda array:
256 0
257)(array) + array[0]
258)
259 == { beta-reduction on inner lambda expression }
260 (lambda array:
261 0 + array[0]
262)

Repeated beta-reductions would simplify the expression on lines 245–253 to

263 (lambda array:
264 0 + array[0] + array[1] + array[2]
265)

which is clearly a program that sums the first three items of an array that is
given as argument. In fact, the beta-reductions would be done during each
update, so that the value of result would never be as complicated as above.
That value would always have the shape

266 (lambda array:
267 0 + array[0] + ... + array[i]
268)

since

269 update_ifa(i + 1, (lambda array:
270 0 + array[0] + ... + array[i]
271))
272 == { definition of update_ifa }
273 (lambda array:
274 (lambda array:
275 0 + array[0] + ... + array[i]
276)(array) + array[i + 1]

10

243))
244 == { definition of update_ifa }
245 (lambda array:
246 (lambda array:
247 (lambda array:
248 (lambda array:
249 0
250)(array) + array[0]
251)(array) + array[1])
252)(array) + array[2]
253)

This can be considered meta-programming, where the factory function actu-
ally creates a program to solve the array summing problem for a specific value
of n. When the Python interpreter evaluates a plain lambda expression like
lambda array: ...array..., it won’t evaluate the body ...array.... It
just produces a code object that is only put to work when the lambda expres-
sion is called on a specific argument. A plain lambda expression is a function
treated as data. In languages that have better support for functional program-
ming, the expressions above could be evaluated (simplified) further (at runtime).
For instance, we have:

254 (lambda array:
255 (lambda array:
256 0
257)(array) + array[0]
258)
259 == { beta-reduction on inner lambda expression }
260 (lambda array:
261 0 + array[0]
262)

Repeated beta-reductions would simplify the expression on lines 245–253 to

263 (lambda array:
264 0 + array[0] + array[1] + array[2]
265)

which is clearly a program that sums the first three items of an array that is
given as argument. In fact, the beta-reductions would be done during each
update, so that the value of result would never be as complicated as above.
That value would always have the shape

266 (lambda array:
267 0 + array[0] + ... + array[i]
268)

since

269 update_ifa(i + 1, (lambda array:
270 0 + array[0] + ... + array[i]
271))
272 == { definition of update_ifa }
273 (lambda array:
274 (lambda array:
275 0 + array[0] + ... + array[i]
276)(array) + array[i + 1]

10

243))
244 == { definition of update_ifa }
245 (lambda array:
246 (lambda array:
247 (lambda array:
248 (lambda array:
249 0
250)(array) + array[0]
251)(array) + array[1])
252)(array) + array[2]
253)

This can be considered meta-programming, where the factory function actu-
ally creates a program to solve the array summing problem for a specific value
of n. When the Python interpreter evaluates a plain lambda expression like
lambda array: ...array..., it won’t evaluate the body ...array.... It
just produces a code object that is only put to work when the lambda expres-
sion is called on a specific argument. A plain lambda expression is a function
treated as data. In languages that have better support for functional program-
ming, the expressions above could be evaluated (simplified) further (at runtime).
For instance, we have:

254 (lambda array:
255 (lambda array:
256 0
257)(array) + array[0]
258)
259 == { beta-reduction on inner lambda expression }
260 (lambda array:
261 0 + array[0]
262)

Repeated beta-reductions would simplify the expression on lines 245–253 to

263 (lambda array:
264 0 + array[0] + array[1] + array[2]
265)

which is clearly a program that sums the first three items of an array that is
given as argument. In fact, the beta-reductions would be done during each
update, so that the value of result would never be as complicated as above.
That value would always have the shape

266 (lambda array:
267 0 + array[0] + ... + array[i]
268)

since

269 update_ifa(i + 1, (lambda array:
270 0 + array[0] + ... + array[i]
271))
272 == { definition of update_ifa }
273 (lambda array:
274 (lambda array:
275 0 + array[0] + ... + array[i]
276)(array) + array[i + 1]

10

243))
244 == { definition of update_ifa }
245 (lambda array:
246 (lambda array:
247 (lambda array:
248 (lambda array:
249 0
250)(array) + array[0]
251)(array) + array[1])
252)(array) + array[2]
253)

This can be considered meta-programming, where the factory function actu-
ally creates a program to solve the array summing problem for a specific value
of n. When the Python interpreter evaluates a plain lambda expression like
lambda array: ...array..., it won’t evaluate the body ...array.... It
just produces a code object that is only put to work when the lambda expres-
sion is called on a specific argument. A plain lambda expression is a function
treated as data. In languages that have better support for functional program-
ming, the expressions above could be evaluated (simplified) further (at runtime).
For instance, we have:

254 (lambda array:
255 (lambda array:
256 0
257)(array) + array[0]
258)
259 == { beta-reduction on inner lambda expression }
260 (lambda array:
261 0 + array[0]
262)

Repeated beta-reductions would simplify the expression on lines 245–253 to

263 (lambda array:
264 0 + array[0] + array[1] + array[2]
265)

which is clearly a program that sums the first three items of an array that is
given as argument. In fact, the beta-reductions would be done during each
update, so that the value of result would never be as complicated as above.
That value would always have the shape

266 (lambda array:
267 0 + array[0] + ... + array[i]
268)

since

269 update_ifa(i + 1, (lambda array:
270 0 + array[0] + ... + array[i]
271))
272 == { definition of update_ifa }
273 (lambda array:
274 (lambda array:
275 0 + array[0] + ... + array[i]
276)(array) + array[i + 1]

10

243))
244 == { definition of update_ifa }
245 (lambda array:
246 (lambda array:
247 (lambda array:
248 (lambda array:
249 0
250)(array) + array[0]
251)(array) + array[1])
252)(array) + array[2]
253)

This can be considered meta-programming, where the factory function actu-
ally creates a program to solve the array summing problem for a specific value
of n. When the Python interpreter evaluates a plain lambda expression like
lambda array: ...array..., it won’t evaluate the body ...array.... It
just produces a code object that is only put to work when the lambda expres-
sion is called on a specific argument. A plain lambda expression is a function
treated as data. In languages that have better support for functional program-
ming, the expressions above could be evaluated (simplified) further (at runtime).
For instance, we have:

254 (lambda array:
255 (lambda array:
256 0
257)(array) + array[0]
258)
259 == { beta-reduction on inner lambda expression }
260 (lambda array:
261 0 + array[0]
262)

Repeated beta-reductions would simplify the expression on lines 245–253 to

263 (lambda array:
264 0 + array[0] + array[1] + array[2]
265)

which is clearly a program that sums the first three items of an array that is
given as argument. In fact, the beta-reductions would be done during each
update, so that the value of result would never be as complicated as above.
That value would always have the shape

266 (lambda array:
267 0 + array[0] + ... + array[i]
268)

since

269 update_ifa(i + 1, (lambda array:
270 0 + array[0] + ... + array[i]
271))
272 == { definition of update_ifa }
273 (lambda array:
274 (lambda array:
275 0 + array[0] + ... + array[i]
276)(array) + array[i + 1]

10

T. Verhoeff124

In a truly functional programming language, we could have written the factory such
that it grows the program from the inside, rather than the outside. That way, if the ar-
ray argument is already available before the factory starts, then the evaluation of the
updates could already use that array to simplify the accumulating result expression
even further.2

In conclusion, the DRY functional code is pretty and relatively short. The defini-
tion of the generic factory function iterateG, isn’t much longer than the duplicated
code (see lines 196–202), it is more general, and it includes documentation (type hints
and a docstring). There is still execution overhead when doing this in a language like
Python (or Java or C++). But by writing in a language better suitable for functional
programming, that execution overhead can be reduced considerably by a good com-
piler.

The evaluation of a functional program can look contorted in its own way. So, you
might think that it isn’t much better than the contorted control flow in the execution of
an object-oriented program. But here we need to remind you that the evaluation order
of a program involving only pure functions (so, no mutable data either) does not mat-
ter. You can leave it to the compiler and runtime system to find an efficient order. In
particular, function arguments need not be (fully) evaluated before putting the function
body to work. Python won’t do that without explicit help and its default eager execu-
tion order is not so good for functional programs. Moreover, pure function evaluation
is easy to parallelize.

Due to their higher generality, reading and writing of functional programs does
place higher demands on the programmer’s abstraction skills. But for the talented par-
ticipants of olympiads that should not be an obstacle. See Appendix A for more Python
examples.

4. A WET Conclusion with an AHA Insight

The examples that we gave are clearly out of proportion. Functions fac_iter and sum_
array have only five nearly duplicated lines of code. You see such loops everywhere in
code. It would seem to make little sense to eliminate them all. For the object-oriented
style that is certainly the case, because the overhead of abstraction is considerable. It
only pays off when code clones are larger.

In the functional style, the situation is quite different. There, one can have small
building blocks that are very general. Since purely functional programming languages

2	 See https://t-verhoeff-software.pages.tue.nl/code-for-staying-dry-with-oo-and-fp
for an interactive evaluation explorer.

277)
278 == { beta-reduction }
279 (lambda array:
280 0 + array[0] + ... + array[i] + array[i + 1]
281)

In a truly functional programming language, we could have written the fac-
tory such that it grows the program from the inside, rather than the outside.
That way, if the array argument is already available before the factory starts,
then the evaluation of the updates could already use that array to simplify the
accumulating result expression even further.2

In conclusion, the DRY functional code is pretty and relatively short. The
definition of the generic factory function iterateG, isn’t much longer than the
duplicated code (see lines 196–202), it is more general, and it includes docu-
mentation (type hints and a docstring). There is still execution overhead when
doing this in a language like Python (or Java or C++). But by writing in a
language better suitable for functional programming, that execution overhead
can be reduced considerably by a good compiler.
The evaluation of a functional program can look contorted in its own way.

So, you might think that it isn’t much better than the contorted control flow
in the execution of an object-oriented program. But here we need to remind
you that the evaluation order of a program involving only pure functions (so,
no mutable data either) does not matter. You can leave it to the compiler and
runtime system to find an efficient order. In particular, function arguments
need not be (fully) evaluated before putting the function body to work. Python
won’t do that without explicit help and its default eager execution order is not
so good for functional programs. Moreover, pure function evaluation is easy to
parallelize.
Due to their higher generality, reading and writing of functional programs

does place higher demands on the programmer’s abstraction skills. But for
the talented participants of olympiads that should not be an obstacle. See
Appendix A for more Python examples.

4 A WET conclusion with an AHA insight

The examples that we gave are clearly out of proportion. Functions fac_iter
and sum_array have only five nearly duplicated lines of code. You see such
loops everywhere in code. It would seem to make little sense to eliminate them
all. For the object-oriented style that is certainly the case, because the overhead
of abstraction is considerable. It only pays off when code clones are larger.
In the functional style, the situation is quite different. There, one can have

small building blocks that are very general. Since purely functional program-
ming languages have no loops, one needs to use recursion (which is not an easy
thing (Verhoeff, 2023)). Many forms of recursion have been encapsulated in
recursion schemes such as folds and unfolds. These act like our factory func-
tion iterateG, and these are preferred over writing your own recursive function
definitions. You hardly see explicit recursion in good functional programs.

2See https://t-verhoeff-software.pages.tue.nl/
code-for-staying-dry-with-oo-and-fp for an interactive evaluation explorer.

11

Staying DRY with OO and FP 125

have no loops, one needs to use recursion (which is not an easy thing (Verhoeff, 2023)).
Many forms of recursion have been encapsulated in recursion schemes such as folds and
unfolds. These act like our factory function iterateG, and these are preferred over writ-
ing your own recursive function definitions. You hardly see explicit recursion in good
functional programs.

Once a beginning programmer has seen the benefits of abstraction, and how it can
help avoid code duplication, there lurks the temptation to apply it at every opportunity
to ensure that code is DRY from the start. Creating abstractions is indeed intellectually
satisfying, but one needs to be careful.

Programmers with more experience will know that abstractions are hard to get right
and that they may not fit a future situation that you had envisioned. Adjusting an ab-
straction and then also all its instantiations is about as dangerous as updating duplicated
code. Therefore, another common advice is to Avoid Hasty Abstractions (AHA). If you
generalize code too early, you may end up with abstractions that later turn out to be less
useful and that need adjusting. In fact, function iterateG could be considered a hasty
abstraction. In functional programming, a more appropriate abstraction turns out to be
foldN (see Appendix A).

Don’t be afraid to write some duplicated code. That way you can better see in what
direction and how far it makes sense to generalize your code. This is captured in yet an-
other common advice: Write Everything Twice (WET), or even better Write Everything
Thrice. By explicitly writing out similar code multiple times, it becomes easier to recog-
nize the relevant patterns and how to abstract from the differences.

That brings me to programming contests. Are these techniques to achieve DRY
code of any use there? Code written in a contest is throw-away code. But generaliza-
tion is a great problem solving technique. So, getting better at that can help. Also,
applying abstraction in your code can be helpful to stay in control. It would then be
useful if you can use a programming language with good support for abstraction. Un-
fortunately, on the theoretical side we have much more advanced notions for abstrac-
tion than are available in common practical programming languages. The mind can see
things that are hard to express in code. I find this a shortcoming of the current format
of the IOI.

I hope that team leaders are going to study the examples in this article together with
their contestants. Higher-order functions, functions with functions as parameters and
returning functions, are very powerful devices. It takes some practice to get used to the
functional style, but I am convinced that clever contestants will enjoy it.

Acknowledgment

I would like to thank Berry Schoenmakers (TU Eindhoven, Netherlands) and Mārtinš
Opmanis (Latvia) for helping me improve this article.

T. Verhoeff126

References

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design Patterns: Elements of Reusable Object-Orient-
ed Software, Addison-Wesley.

Hunt, A., Thomas, D. (20th Anniversary Ed. 20219; 1st ed. 1999). The Pragmatic Programmer: From Journey-
man to Master, Addison-Wesley.

Sobolev, N. (2020). “Typed Functional Dependency Injection in Python”, blog post, 17 Feb. 2020.
https://dev.to/wemake-services/typed-functional-dependency-injection-in-python-4e7b

Verhoeff, T. (2023). Understanding and designing recursive functions via syntactic rewriting. IOI Journal, 17,
99–119.

Verhoeff, T. (2024). Git repository with source code for “Staying DRY with OO and FP”. ,https://git-
lab.tue.nl/t-verhoeff-software/code-for-staying-dry-with-oo-and-fp (Ac-
cessed 27 April 2024)

T. Verhoeff is Assistant Professor in Computer Science at Eindhoven
University of Technology, where he works in the group Software En-
gineering & Technology. His research interests are support tools for
verified software development and model driven engineering. He re-
ceived the IOI Distinguished Service Award at IOI 2007 in Zagreb,
Croatia, in particular for his role in setting up and maintaining a web
archive of IOI-related material and facilities for communication in
the IOI community, and in establishing, developing, chairing, and
contributing to the IOI Scientific Committee from 1999 until 2007.

Staying DRY with OO and FP 127

Appendix A
Two more Python examples, using foldN

Generic factory function iteratG was a hasty abstraction. It does not need both param-
eters initialize and start. They can be combined into one parameter, say initial.
A better generalization is generic factory function foldN:

It cleanly captures the essence of the natural numbers. Each natural number has a unique
construction using zero = 0 and succ = lambda n: n + 1:

Similarly,

Thus, folding replaces constructor zero by i and succ by u.
Let’s use foldN to compute the famous Fibonacci numbers:

Here, the the generic type parameter X is instantiated by tuple[int, int].
And what do you think of this application of foldN:

Verhoeff, T. (2023). “Understanding and Designing Recursive Functions via
Syntactic Rewriting”, IOI Journal, Volume 17, pp. 99–119.

Verhoeff, T. (2024). Git repository with source code for “Staying DRY with
OO and FP”. https://gitlab.tue.nl/t-verhoeff-software/
code-for-staying-dry-with-oo-and-fp (Accessed 27 April 2024)

Tom Verhoeff is Assistant Professor in Computer Science at
Eindhoven University of Technology, where he works in the
group Software Engineering & Technology. His research inter-
ests are support tools for verified software development and
model driven engineering. He received the IOI Distinguished
Service Award at IOI 2007 in Zagreb, Croatia, in particular
for his role in setting up and maintaining a web archive of IOI-
related material and facilities for communication in the IOI
community, and in establishing, developing, chairing, and con-
tributing to the IOI Scientific Committee from 1999 until 2007.

A Two more Python examples, using foldN

Generic factory function iteratG was a hasty abstraction. It does not need both
parameters initialize and start. They can be combined into one parameter,
say initial. A better generalization is generic factory function foldN:

282 def foldN[X](initial: X,
283 update: Callable[[X], X]
284) -> Callable[[int], X]:
285 """Return a generic function int -> X
286 that applies update repeatedly to initial.
287 """
288 def f(n: int) -> X:
289 result: X = initial
290

291 for i in range(0, n):
292 result = update(result)
293

294 return result
295

296 return f

It cleanly captures the essence of the natural numbers. Each natural number
has a unique construction using zero = 0 and succ = lambda n: n + 1:

297 n == succ(succ(...succ(zero)...)) # n copies of succ

Similarly,

298 foldN(i, u)(n) == u(u(...u(i)...)) # n copies of u

Thus, folding replaces constructor zero by i and succ by u.
Let’s use foldN to compute the famous Fibonacci numbers:

299 def fib(n: int) -> int:
300 return foldN((0, 1),
301 lambda t: (t[1], t[0] + t[1]))(n)[0]

13

Verhoeff, T. (2023). “Understanding and Designing Recursive Functions via
Syntactic Rewriting”, IOI Journal, Volume 17, pp. 99–119.

Verhoeff, T. (2024). Git repository with source code for “Staying DRY with
OO and FP”. https://gitlab.tue.nl/t-verhoeff-software/
code-for-staying-dry-with-oo-and-fp (Accessed 27 April 2024)

Tom Verhoeff is Assistant Professor in Computer Science at
Eindhoven University of Technology, where he works in the
group Software Engineering & Technology. His research inter-
ests are support tools for verified software development and
model driven engineering. He received the IOI Distinguished
Service Award at IOI 2007 in Zagreb, Croatia, in particular
for his role in setting up and maintaining a web archive of IOI-
related material and facilities for communication in the IOI
community, and in establishing, developing, chairing, and con-
tributing to the IOI Scientific Committee from 1999 until 2007.

A Two more Python examples, using foldN

Generic factory function iteratG was a hasty abstraction. It does not need both
parameters initialize and start. They can be combined into one parameter,
say initial. A better generalization is generic factory function foldN:

282 def foldN[X](initial: X,
283 update: Callable[[X], X]
284) -> Callable[[int], X]:
285 """Return a generic function int -> X
286 that applies update repeatedly to initial.
287 """
288 def f(n: int) -> X:
289 result: X = initial
290

291 for i in range(0, n):
292 result = update(result)
293

294 return result
295

296 return f

It cleanly captures the essence of the natural numbers. Each natural number
has a unique construction using zero = 0 and succ = lambda n: n + 1:

297 n == succ(succ(...succ(zero)...)) # n copies of succ

Similarly,

298 foldN(i, u)(n) == u(u(...u(i)...)) # n copies of u

Thus, folding replaces constructor zero by i and succ by u.
Let’s use foldN to compute the famous Fibonacci numbers:

299 def fib(n: int) -> int:
300 return foldN((0, 1),
301 lambda t: (t[1], t[0] + t[1]))(n)[0]

13

Verhoeff, T. (2023). “Understanding and Designing Recursive Functions via
Syntactic Rewriting”, IOI Journal, Volume 17, pp. 99–119.

Verhoeff, T. (2024). Git repository with source code for “Staying DRY with
OO and FP”. https://gitlab.tue.nl/t-verhoeff-software/
code-for-staying-dry-with-oo-and-fp (Accessed 27 April 2024)

Tom Verhoeff is Assistant Professor in Computer Science at
Eindhoven University of Technology, where he works in the
group Software Engineering & Technology. His research inter-
ests are support tools for verified software development and
model driven engineering. He received the IOI Distinguished
Service Award at IOI 2007 in Zagreb, Croatia, in particular
for his role in setting up and maintaining a web archive of IOI-
related material and facilities for communication in the IOI
community, and in establishing, developing, chairing, and con-
tributing to the IOI Scientific Committee from 1999 until 2007.

A Two more Python examples, using foldN

Generic factory function iteratG was a hasty abstraction. It does not need both
parameters initialize and start. They can be combined into one parameter,
say initial. A better generalization is generic factory function foldN:

282 def foldN[X](initial: X,
283 update: Callable[[X], X]
284) -> Callable[[int], X]:
285 """Return a generic function int -> X
286 that applies update repeatedly to initial.
287 """
288 def f(n: int) -> X:
289 result: X = initial
290

291 for i in range(0, n):
292 result = update(result)
293

294 return result
295

296 return f

It cleanly captures the essence of the natural numbers. Each natural number
has a unique construction using zero = 0 and succ = lambda n: n + 1:

297 n == succ(succ(...succ(zero)...)) # n copies of succ

Similarly,

298 foldN(i, u)(n) == u(u(...u(i)...)) # n copies of u

Thus, folding replaces constructor zero by i and succ by u.
Let’s use foldN to compute the famous Fibonacci numbers:

299 def fib(n: int) -> int:
300 return foldN((0, 1),
301 lambda t: (t[1], t[0] + t[1]))(n)[0]

13

Verhoeff, T. (2023). “Understanding and Designing Recursive Functions via
Syntactic Rewriting”, IOI Journal, Volume 17, pp. 99–119.

Verhoeff, T. (2024). Git repository with source code for “Staying DRY with
OO and FP”. https://gitlab.tue.nl/t-verhoeff-software/
code-for-staying-dry-with-oo-and-fp (Accessed 27 April 2024)

Tom Verhoeff is Assistant Professor in Computer Science at
Eindhoven University of Technology, where he works in the
group Software Engineering & Technology. His research inter-
ests are support tools for verified software development and
model driven engineering. He received the IOI Distinguished
Service Award at IOI 2007 in Zagreb, Croatia, in particular
for his role in setting up and maintaining a web archive of IOI-
related material and facilities for communication in the IOI
community, and in establishing, developing, chairing, and con-
tributing to the IOI Scientific Committee from 1999 until 2007.

A Two more Python examples, using foldN

Generic factory function iteratG was a hasty abstraction. It does not need both
parameters initialize and start. They can be combined into one parameter,
say initial. A better generalization is generic factory function foldN:

282 def foldN[X](initial: X,
283 update: Callable[[X], X]
284) -> Callable[[int], X]:
285 """Return a generic function int -> X
286 that applies update repeatedly to initial.
287 """
288 def f(n: int) -> X:
289 result: X = initial
290

291 for i in range(0, n):
292 result = update(result)
293

294 return result
295

296 return f

It cleanly captures the essence of the natural numbers. Each natural number
has a unique construction using zero = 0 and succ = lambda n: n + 1:

297 n == succ(succ(...succ(zero)...)) # n copies of succ

Similarly,

298 foldN(i, u)(n) == u(u(...u(i)...)) # n copies of u

Thus, folding replaces constructor zero by i and succ by u.
Let’s use foldN to compute the famous Fibonacci numbers:

299 def fib(n: int) -> int:
300 return foldN((0, 1),
301 lambda t: (t[1], t[0] + t[1]))(n)[0]

13
Here, the the generic type parameter X is instantiated by tuple[int, int].
And what do you think of this application of foldN:

302 type Converter = Callable[[list[int]],
303 tuple[int, list[str], int, int]]
304

305 init_c: Converter = lambda bits: (1, [], 1, 0)
306

307 def update_c(result_c: Converter) -> Converter:
308 def f(bits: list[int]) -> tuple[int, list[str], int, int]:
309 index, strings, power, value = result_c(bits)
310 bit = bits[-index] # indexed from the end
311 strings.append(f"{bit} * 2ˆ{index - 1}")
312 return index + 1, strings, power * 2, value + bit*power
313

314 return f
315

316 def convert(bits: list[int]) -> str:
317 _, strings, _, value = foldN(init_c,
318 update_c)(len(bits))(bits)
319 return ’ + ’.join(strings) + f" = {value}"

Generic type parameter X is now instantiated by Converter, which is a function
type. That is why the function produced by foldN (see lines 320–321) takes
two parameters in succession: an integer and then an array of bits. Here is an
example usage of convert:

320 print(convert([1, 1, 0, 1]))

It produces as output:

1 * 2ˆ0 + 0 * 2ˆ1 + 1 * 2ˆ2 + 1 * 2ˆ3 = 13

14

T. Verhoeff128

Generic type parameter X is now instantiated by Converter, which is a function type.
That is why the function produced by foldN (see lines 320–321) takes two parameters in
succession: an integer and then an array of bits. Here is an example usage of convert:

It produces as output:

Here, the the generic type parameter X is instantiated by tuple[int, int].
And what do you think of this application of foldN:

302 type Converter = Callable[[list[int]],
303 tuple[int, list[str], int, int]]
304

305 init_c: Converter = lambda bits: (1, [], 1, 0)
306

307 def update_c(result_c: Converter) -> Converter:
308 def f(bits: list[int]) -> tuple[int, list[str], int, int]:
309 index, strings, power, value = result_c(bits)
310 bit = bits[-index] # indexed from the end
311 strings.append(f"{bit} * 2ˆ{index - 1}")
312 return index + 1, strings, power * 2, value + bit*power
313

314 return f
315

316 def convert(bits: list[int]) -> str:
317 _, strings, _, value = foldN(init_c,
318 update_c)(len(bits))(bits)
319 return ’ + ’.join(strings) + f" = {value}"

Generic type parameter X is now instantiated by Converter, which is a function
type. That is why the function produced by foldN (see lines 320–321) takes
two parameters in succession: an integer and then an array of bits. Here is an
example usage of convert:

320 print(convert([1, 1, 0, 1]))

It produces as output:

1 * 2ˆ0 + 0 * 2ˆ1 + 1 * 2ˆ2 + 1 * 2ˆ3 = 13

14

Here, the the generic type parameter X is instantiated by tuple[int, int].
And what do you think of this application of foldN:

302 type Converter = Callable[[list[int]],
303 tuple[int, list[str], int, int]]
304

305 init_c: Converter = lambda bits: (1, [], 1, 0)
306

307 def update_c(result_c: Converter) -> Converter:
308 def f(bits: list[int]) -> tuple[int, list[str], int, int]:
309 index, strings, power, value = result_c(bits)
310 bit = bits[-index] # indexed from the end
311 strings.append(f"{bit} * 2ˆ{index - 1}")
312 return index + 1, strings, power * 2, value + bit*power
313

314 return f
315

316 def convert(bits: list[int]) -> str:
317 _, strings, _, value = foldN(init_c,
318 update_c)(len(bits))(bits)
319 return ’ + ’.join(strings) + f" = {value}"

Generic type parameter X is now instantiated by Converter, which is a function
type. That is why the function produced by foldN (see lines 320–321) takes
two parameters in succession: an integer and then an array of bits. Here is an
example usage of convert:

320 print(convert([1, 1, 0, 1]))

It produces as output:

1 * 2ˆ0 + 0 * 2ˆ1 + 1 * 2ˆ2 + 1 * 2ˆ3 = 13

14

Here, the the generic type parameter X is instantiated by tuple[int, int].
And what do you think of this application of foldN:

302 type Converter = Callable[[list[int]],
303 tuple[int, list[str], int, int]]
304

305 init_c: Converter = lambda bits: (1, [], 1, 0)
306

307 def update_c(result_c: Converter) -> Converter:
308 def f(bits: list[int]) -> tuple[int, list[str], int, int]:
309 index, strings, power, value = result_c(bits)
310 bit = bits[-index] # indexed from the end
311 strings.append(f"{bit} * 2ˆ{index - 1}")
312 return index + 1, strings, power * 2, value + bit*power
313

314 return f
315

316 def convert(bits: list[int]) -> str:
317 _, strings, _, value = foldN(init_c,
318 update_c)(len(bits))(bits)
319 return ’ + ’.join(strings) + f" = {value}"

Generic type parameter X is now instantiated by Converter, which is a function
type. That is why the function produced by foldN (see lines 320–321) takes
two parameters in succession: an integer and then an array of bits. Here is an
example usage of convert:

320 print(convert([1, 1, 0, 1]))

It produces as output:

1 * 2ˆ0 + 0 * 2ˆ1 + 1 * 2ˆ2 + 1 * 2ˆ3 = 13

14

Olympiads in Informatics, 2024, Vol. 18, 129–145
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.10

129

The Impact of Non-Formal Educational Approach
on the Academic Performance and Employability
of Engineering and Computer Science Students

Eslam M. WAGEED, Yousry S. ELGAMAL,
Ossama M. ISMAIL, Mohamed H. ABDRABOU
Arab Academy for Science, Technology and Maritime Transport (AASTMT), Egypt
e-mail: eslam@aast.edu, yelgamal@aast.edu, ossama@aast.edu, mhabdrabou@egypt.aast.edu

Abstract. Education is no longer a one-time event due to the quick changes in the modern world,
the diversity of knowledge it contains, and the ongoing need for personal growth. It turns into a
dynamic process that happens all through life. The old curricula and systems of formal education
are finding it difficult to keep up with the quick changes occurring in the field of computer science.
Non-formal education is a solution to the requirements of the era and can be implemented through
seminars, training camps and workshops. It could be additional activities like competitions or ex-
tracurricular learning. The aim for this study is to investigate the impact of the non-formal educa-
tional approaches on engineering and computer science students’ academic performance as well
as their chances to obtain a job after graduation.

Keywords: non-formal education, academic performance, employability.

1. Introduction

Education is an essential component of human development, shaping people, societies,
and nations. For decades, education has been considered as a transformational force, al-
lowing people to gain the knowledge, skills, and attitudes required for personal develop-
ment, economic growth, and improvements in society.

Education is not about sitting in classrooms and recollecting facts. It’s not about texts
or tests. Education focuses on developing critical thinking and problem-solving skills.
Education encourages the ability to face real-world difficulties by stimulating curiosity,
analysis, and innovation.

In 2015, the United Nations (UN) adopted a set of 17 goals as a universal call to
action to end poverty, protect the planet, and ensure that people will enjoy peace and
prosperity by 2030. These 17 goals are the Sustainable Development Goals (SDGs).
The SDGs place priority on education because of its ability to empower individuals,

E. Wageed et al.130

encourage sustainable development, and promote a more just and equitable world. Ac-
cording to the UN website, education is the key that will allow many other SDGs to be
achieved. When people are able to get quality education they can break from the cycle
of poverty.

1.1. Types of Education: Informal, Formal, Non-Formal

According to the International Commission on the Development of Education (com-
monly known as the Faure Commission) which was established by UNESCO in 1972,
education was classified into three categories: formal, non-formal, and informal educa-
tion (International Commission..., 1972).

Formal Education●● refers to the highly institutionalized, systematically graded,
and hierarchically structured “education system,” which extends from primary
school to the upper levels of university.
Non-Formal Education●● is any organized educational activity performed out-
side the formal educational system to give specific types of learning to certain
groups of people, including adults and children.
Informal Education●● is a lifelong process in which individuals gain and accumu-
late knowledge, skills, attitudes, and insights through daily experiences and expo-
sure to the environment at home, work, play, family, and friends.

The rapidly changes in the world of technology with its diversified nature of knowl-
edge and constant need for personal development, education is no longer a one-time
event. It becomes a dynamic process that occurs throughout life. Formal education, with
its traditional structures and curricula, is struggling to keep up with the rapid pace of
change in the computer science world.

On the other hand, Non-formal education empowers individuals to have lifelong
learning throughout their lives and stay up to date with the newest advancements in
technology. It is characterized by flexibility in subjects and schedules. It focuses on
practical skills without diving too far into theories. Also, it is accessible across a variety
of platforms for free or at affordable prices.

1.2. Characteristics of Non-Formal Education

Faure’s [1] main characteristics about non-formal education are as follows:
Flexibility:●● The non-formal education is flexible and adaptable, catering to the
diverse needs and circumstances of learners.
Voluntary Participation:●● Participation in non-formal education is usually vol-
untary. Learners willingly engage in these educational activities based on their
interests, needs, and motivations.

The Impact of Non-Formal Educational Approach on the Academic Performance ... 131

Diversity of Content:●● Non-formal education covers a wide range of topics, many
of which go beyond what’s covered in traditional education. It embraces areas for
personal development, as well as practical knowledge as well as skills.
Accessibility:●● Non-formal education seeks to reach people who might not have
had easy access to traditional educational because of a variety of factors, such as
geography, schedule conflicts, or unique personal situations.
Informality in Structure:●● Non-formal education is frequently more casual than
formal education, which has strict curricula and structures. It supports a variety
of arrangements and formats, enabling innovative and imaginative teaching strat-
egies.
Lifelong Learning:●● Non-formal education is in favor of lifetime learning, which
holds that opportunities for learning should not be restricted to a person’s age or
stage of development but should be always available to them.
Flexibility:●● The non-formal education is flexible and adaptable, catering to the
diverse needs and circumstances of learners.
Voluntary Participation:●● Participation in non-formal education is usually vol-
untary. Learners willingly engage in these educational activities based on their
interests, needs, and motivations.
Diversity of Content:●● Non-formal education covers a wide range of topics, many
of which go beyond what’s covered in traditional education. It embraces areas for
personal development, as well as practical knowledge as well as skills.
Accessibility:●● Non-formal education seeks to reach people who might not have
had easy access to traditional educational because of a variety of factors, such as
geography, schedule conflicts, or unique personal situations.
Informality in Structure:●● Non-formal education is frequently more casual than
formal education, which has strict curricula and structures. It supports a variety
of arrangements and formats, enabling innovative and imaginative teaching strat-
egies.
Lifelong Learning:●● Non-formal education is in favor of lifetime learning, which
holds that opportunities for learning should not be restricted to a person’s age or
stage of development but should be always available to them.

The function of non-formal education is to develop the potential of students with
an emphasis on mastering functional knowledge and skills and developing profes-
sional attitudes and personalities (Elice et al., 2023). Non-formal education responds
to the learning needs of a group and can be carried out, in seminars, training sessions,
workshops, through partnerships between facilitators and participants, in groups or
communities or in other organizations other than in the education system. It does not
end with the granting of certificates but usually it takes place within an institutional-
ized framework, outside the school system, comprising extra class or extra didactic
activities like competitions, extracurricular education, and training activities��������� (Vilcea-
nu, 2019).

Non-formal educational activities have a positive impact university students’ aca-
demic success and employability, enhancing their readiness for the job market through
holistic development beyond the curriculum (Norberto et al., 2023).

E. Wageed et al.132

2. Research Method

Depending on the Statistical Yearbook – Education 2023 of the Central Agency for
Public Mobilization and Statistics in Egypt (CAPMAS) which is considered a compre-
hensive statistical reference for all official statistics, the annual number of graduates
from engineering and computer science faculties is almost 35 thousand graduates. It
is increasing every year by 15%. A small percentage of these graduates are joining the
non-formal educational system that operates in various institutions such as the AAST
Regional Informatics Center (RIC).

The aim for this study is to investigate the impact of these non-formal educational
activities on engineering and computer science students’ academic performance as well
as their chances to obtain a job after graduation.

The study will examine different aspects may be impacted by participating in these
non-formal educational approaches, such as the ability to work in groups, time manage-
ment skills, problem-solving skills, and creativity, as well as how engagement in non-
formal activities may lead to job opportunities.

A questionnaire of two sections was used to collect the data. The first section of
the questionnaire introduces the research’s goal and the criteria that questionnaire
participants should meet. Following this introduction, some personal information is
gathered, such as the participant’s age, gender, education level, university, and prior
RIC activities.

The questionnaire’s second section consisted of 12 statements and separated into
two parts.

The first part has 6 statements that measure the impact of the RIC activities on the
academic performance:

GPA Improvement.1.	
Self-Learning Skills.2.	
Problem-Solving and Creativity.3.	
Time Management Skills.4.	
Encouragement to join engineering field.5.	
Ability to get a scholarship.6.	

The second part of the questionnaire contains 6 statements that measure the impact of
the RIC activities on the employability skills and opportunities as follows:

Chances for getting a job or internship.1.	
Ability to work under stress.2.	
Communication skills improvement.3.	
Ability to work in groups.4.	
Creating social networks.5.	
Early participation giving an edge.6.	

The research population consists of undergraduates and graduates who participated
in non-formal educational approaches during their high school or university studies. The
questionnaire was not open to everyone. The Purposive Sample Technique was applied

The Impact of Non-Formal Educational Approach on the Academic Performance ... 133

to identify the individuals that best suited to answer the research question. The question-
naire participants should meet the following requirements:

The participant must be a student or graduate of an engineering or computer sci-1.	
ence faculty.
The participant must have joined at least one of the RIC activities or similar ac-2.	
tivities while in high school, university, or both.

The RIC activities are the Egyptian/International Olympiad in Informatics (EOI/IOI),
Egyptian/International Collegiate Programming Contest (ECPC/ICPC), RoboCup, Re-
motely Operated Vehicle (ROV), International Challenge on Informatics and Computation-
al Thinking (Bebras), Formula Students and Robocon or similar activities like the Egyp-
tian/International Math Olympiad (EMO/IMO), Catch the Flag (CTF) and Intel ISEF.

3. Results and Findings

As mentioned above, the number of graduates from engineering and computer science
faculties in Egypt in 2023 is almost 35 thousand graduates and increasing every year
by 15%. A small percentage of these graduates are joining the non-formal educational
system that operates in various institutions such as the Arab Academy for Science,
Technology, and Maritime Transport, Regional Informatics Center (AASMT-RIC).
These non-formal educational activities are directed towards high school students and
undergraduates. All the activities are focusing on the computer science and robotics
fields.

In order the get accurate responses, the questionnaire was distributed to 800 indi-
viduals that participate in the AASTMT-RIC activities or similar activities while we
receive 270 responses.

The following section shows the analysis for the demographic part of the question-
naire in addition to the academic performance and employability.

3.1. Demographic Analysis

3.1.1. Age Group

The majority of survey respondents – more than 80% – are in the 20–25 age range.
They continue to attend the institution to study. The primary concern that came from

Age Group N %

20 – <25 217 80.4%
25 – <30 25 9.3%
30 – <35 11 4.1%
35 – <40 9 3.3%
40 – <45 8 3.0%

E. Wageed et al.134

this inquiry is that we don’t maintain close relationships with our graduate students, or,
to put it another way, we don’t communicate well with them. This could indicate how
crucial it is to have alumni involved in every activity to maintain the flow of knowledge
by putting former students in touch with current ones.

3.1.2. Gender

Given that most participants in the non-formal activities are males, the male to female
ratio is reasonable. To prevent the discouragement that could result from not winning or
achieving the top level in the competitions, we might need to make more effort to engage
more girls or split the prizes between males and females.

Gender N %

Male 230 85.2%
Female 40 14.8%

The Impact of Non-Formal Educational Approach on the Academic Performance ... 135

3.1.3. Education Level

Education Level N %

Undergraduate Student 173 64.1%
Graduate Student 97 35.9%

Undergraduates make up the majority of participants, according to the Age group re-
sponses. Of the participants, around 64 percent are still enrolled in university courses.
This is could be considered as a limitation in the research.

3.2. Academic Performance

3.2.1. Participating in RIC Activities Helped me to Improve my GPA and Grades

GPA stands for Grade Point Average. It’s a numerical way to summarize a student’s
academic performance over time. Grade point average (GPA), obtained credits (ECTS)
and gender to be the most consistent and decisive predictors of academic performance
(Kocsis & Molnár, 2024)��� . Nearly 48% of participants stated that their GPA is posi-
tively impacted by their participation in extracurricular activities. A 30% of the par-
ticipants believe that extracurricular activities have no impact directly on their GPA,
while the remaining 22% believe that involvement in these activities lowers their
GPA. This could be because of the extra time needed for non-formal activities, which
could result in less study hours for formal education courses. This inquriy should have
an impact on the fourth question which is related to the improvement of the Time-
Management skills.

AP1 GPA Improvement Strongly Disagree Disagree Neutral Agree Strongly Agree

N 23 37 81 74 55
% 8.50% 13.70% 30.00% 27.40% 20.40%

E. Wageed et al.136

3.2.2. I became a self-learner after I joined the RIC activities

Self-learning skills empower students to become independent, adaptable, and lifelong
learners. It’s a valuable asset that benefits them throughout their academic journey and
beyond. Self-regulated online learning skills were a significant predictor of academic suc-
cess (Tijen, 2022). The questionnaire responses make it clearly evident that taking part in
non-formal educational events has a significant influence on students’ abilities for self-
learning. Nearly 80% of participants said that after participating in extracurricular activi-
ties, they turned into self-learners. Of the respondents, about 6% believe that the activities
had no influence on their ability to learn on their own, while the remaining respondents
observe no change in either direction.

AP2 Self Learning Skills Strongly Disagree Disagree Neutral Agree Strongly Agree

N 7 9 39 78 137
% 2.60% 3.30% 14.40% 28.90% 50.70%

The Impact of Non-Formal Educational Approach on the Academic Performance ... 137

3.2.3. Participating in RIC Activities Improved my Problem-Solving Skills
and Creativity

AP3 Problem Solving Skills Strongly Disagree Disagree Neutral Agree Strongly Agree

N 2 4 21 40 203
% 0.70% 1.50% 7.80% 14.80% 75.20%

Extracurricular activities are considered essential for optimal intellectual development,
complementing school activities ��(Miltiadis, 2022)���. Problem-solving skills are key for stu-
dents. They boost academic success, critical thinking, confidence, and teamwork. They
prepare students for a world full of challenges. The graph above makes it clearly obvious
that engaging in extracurricular activities greatly enhances the ability for creativity and
problem-solving. 87% of the participants agreed that participating in competitions im-
proves their creativity and problem-solving abilities.

3.2.4. Joining the RIC Activities Improved my Time Management Skills

The goal of time management skills is to maximize every day. They are crucial since it
seems like we never have enough time to accomplish what we need to or want to. You can
accomplish your goals, be more productive, and experience less stress if you have good
time management abilities. The effective coping strategies, such as good time manage-
ment, can lead to better academic outcomes and career development for nursing students
(Achamma & Nirmala, 2023). As we could see from the results, time-management skill is
affected positively by engaging in non-formal activities. More than 88% of the responses
indicate that the students gain the ability to divide the daytime between the formal and
non-formal education.

AP4 Time Management Skills Strongly Disagree Disagree Neutral Agree Strongly Agree

N 10 21 74 82 83
% 3.70% 7.80% 27.40% 30.40% 30.70%

E. Wageed et al.138

3.2.5. Participating in the RIC Activities Helped me to Early Select my Field of Study
and Join the Engineering and Computer Science Career

Early career thinking helps students discover their strengths and interests, setting goals
and staying motivated in school. Out-of-school STEM activities positively influenced the
STEM career choices of female students (İsmail, 2021). As we can see in the graph, more
than 60% agreed that participating in the non-formal activities encourage more students
to join the engineering or computer science fields. A research by (Viacheslav et al., 2020)
found that Graduates with STEM training closely connected to their future profession
show a higher tendency to choose relevant study directions.

AP5 Select Field of Engineering
and CS

Strongly Disagree Disagree Neutral Agree Strongly Agree

N 18 24 60 55 113
% 6.70% 8.90% 22.20% 20.40% 41.90%

The Impact of Non-Formal Educational Approach on the Academic Performance ... 139

3.2.6. Joining the RIC activities enhances my chances for getting a
university scholarship.

AP6 Get a university scholarship Strongly Disagree Disagree Neutral Agree Strongly Agree

N 44 29 73 55 69
% 16.30% 10.70% 27.00% 20.40% 25.60%

Not every high school student who participated in extracurricular activities will be award-
ed a scholarship to attend a university. Several other criteria also have a role, such as the
degree of student participation and the universities’ ability to award grants. The graph in-
dicates that there isn’t a pattern in the replies. The majority of universities award scholar-
ships to students who participate at the highest levels, such as the IMO and IOI. Very few
young people were able to participate to this extent, and even fewer were able to receive
a medal. This appears to be one of the causes of the equal percentage of answers without
a dominant response.

3.3. Employability

3.3.1. By Taking Part in RIC Activities, my Chances of Getting a Job or Obtaining an
Internship Increased

Extracurricular activities (ECAs) mostly have a positive impact on university students’
academic success and employability, with only a few showing negative effects (Vilceanu,
2019)��. Employers perceive extracurricular involvement as a moderate influencer of grad-
uate employability (Bodunrin, 2017). According to the responses, 70% of the students
believed their chances of obtaining a job or an internship were improved by their involve-
ment in non-formal activities. The activities outside of school help students become more
competent and ready for the workforce.

E. Wageed et al.140

EMP1 Get a job or obtain Internship Strongly Disagree Disagree Neutral Agree Strongly Agree

N 11 11 59 81 108
% 4.10% 4.10% 21.90% 30.00% 40.00%

3.3.2. Participating in the RIC Activities Helped me to Improve my Ability
to Work under Stress

The ability to work under stress is a valuable skill that many employers highly value. Uni-
versity students have a high willingness to develop all soft skills, with stress management
being prioritized as a significant developmental need (Esra, 2023). The results show that
more than 80% of the students agreed that non-formal educational activities developed
their work under stress skill. The ability to work under stress is a skill that can be devel-
oped and improved over time with practice and self-awareness.

EMP2 Work Under Stress Ability Strongly Disagree Disagree Neutral Agree Strongly Agree

N 4 9 38 81 138
% 1.50% 3.30% 14.10% 30.00% 51.10%

The Impact of Non-Formal Educational Approach on the Academic Performance ... 141

3.3.3. Joining the RIC Activities Improved my Communication Skills

EMP3 Communication Skills Strongly Disagree Disagree Neutral Agree Strongly Agree

N 5 17 62 71 115
% 1.90% 6.30% 23.00% 26.30% 42.60%

Improving communication skills can have a significant impact on both personal and pro-
fessional life. It is obvious that participating in the non-formal activities positively affect
the students’ communication skills. Improving communication skills takes time and ef-
fort, but the benefits are invaluable in personal relationships, teamwork, leadership, and
overall career success.

3.3.4. Taking Part in RIC Activities Improved my Ability to Work in a Team
and Respect others’ Opinions

The ability to work effectively in groups significantly impacts an individual’s career ad-
vancement opportunities. Teamwork is a vital part of learning. If the major of students
is software engineering, working in group is their daily working way. When they are
students, mastering how to work in group is crucial to their careers (Chenyang, 2021).
Majority of students agree – more than 81% of survey respondents – that participation in
extracurricular activities improves group work. It also improves the acceptance of differ-
ent points of view and cultural traditions. Employers in multinational companies place
a high value on this ability. Working across cultural and linguistic divides has become
imperative in today’s world.

EMP4 Teamwork Skills Strongly Disagree Disagree Neutral Agree Strongly Agree

N 4 10 36 85 135
% 1.50% 3.70% 13.30% 31.50% 50.00%

E. Wageed et al.142

3.3.5. By Participating in the RIC Activities, I Created a Social Network of People
who had the Same Interest in my Studying Field

Social connectedness is crucial for employability and career success, benefiting indi-
viduals in job acquisition, career advancement, and professional learning (Ruth et al.,
2019)���. Almost 88% of the questionnaire responders confirm the positive impact of join-
ing the RIC activities on creating social networks of people who have the same interest
from the same studying field. Passion sharing among professionals can result in in-
formation sharing about current trends, employment openings, and industry expertise.
This network may prove to be an invaluable asset in discovering forthcoming prospects
or obtaining recommendations.

EMP5 Social Networking Strongly Disagree Disagree Neutral Agree Strongly Agree

N 1 12 19 49 189
% 0.40% 4.40% 7.00% 18.10% 70.00%

The Impact of Non-Formal Educational Approach on the Academic Performance ... 143

3.3.6. Early Participation in the RIC Activities Gives an Edge to the Students

EMP6 Early participation gives an edge Strongly Disagree Disagree Neutral Agree Strongly Agree

N 2 8 26 42 192
% 0.70% 3.00% 9.60% 15.60% 71.10%

Students participate in non-formal education programs to complement their formal
studies and enhance their qualifications. Students also engage in these programs to
utilize leisure time, develop social networks, and enjoy learning new things, focus-
ing on acquiring attitudes and skills (Coombs & Ahmed, 1974). More than 85% of
respondents said they thought being involved in RIC activities early on gave them an
advantage over their peers.

4. Conclusion

In conclusion, the evidence presented underscores the significant positive impact of non-
formal education on both academic performance and employability among students.
Through various non-traditional learning experiences, such as workshops, internships,
and skill-based programs, students have been able to enhance their cognitive abilities,
practical skills, and overall competencies. This exposure not only enriches their academ-
ic journey by complementing formal education but also equips them with the necessary
tools and attributes sought after by employers in the professional arena.

Furthermore, the versatility of non-formal education allows students to cultivate a
broader skill set that extends beyond conventional academic subjects, fostering adapt-
ability and innovation. By participating in diverse learning environments outside the
classroom, students gain practical insights and hands-on experiences that are instrumen-
tal in preparing them for the dynamic demands of the workforce.

E. Wageed et al.144

The outcomes are clear: students who engage in non-formal education demonstrate
improved academic outcomes, while also showcasing enhanced employability through
the development of critical soft skills, problem-solving abilities, and professional net-
works.

As education continues to evolve, incorporating non-formal educational opportuni-
ties into mainstream curricula and career development strategies should be prioritized.
This integration not only enriches the educational experience but also cultivates a gen-
eration of students better equipped to thrive academically and professionally in an ever-
changing global landscape. Thus, the promotion and support of non-formal education
initiatives are essential for empowering students and maximizing their potential in both
academic pursuits and future career endeavors.

References

Achamma, V., Nirmala, D.R. (2023). Impact of time management program on stress and coping strategies
adopted by nursing students with regard to academic performance. IP Journal of Paediatrics and Nursing
Science, 48–56.

Bodunrin, I., Akinrinmade, A., Ayeni, O. (2017). Influence of extracurricular involvement on graduate employ-
ability. Malaysian Online Journal of Educational Management, 29–31.

Chenyang, Z. (2021). Explore Ways to Study Effectively in Groups from Data Scienc. IEEE International Con-
ference on Educational Technology (ICET), pp. 26–30.

Coombs, P.H., Ahmed, M. (1974). Attacking Rural Poverty. How Non-Formal Education Can Help. John Hop-
kins Press, Baltimore.

Elice, D., Maseleno, A., Pahrudin, A. (2023). Formal, Informaland Non-Formal Education Systems. Journal of
Learning and Educational Policy, 4(1).

Esra, A.B. (2013). Stress Management: A Priority Developmental Need for University Students. Acıbadem
üniversitesi sağlık bilimleri dergisi.

International Commission on the Development of Education, Edgar Faure. Learning to be: The world of educa-
tion today and tomorrow, Paris: UNESCO, 1972.

İsmail, D. (2021). Impact of Out-of-School STEM Activities on STEM Career Choices of Female Students.
Eurasian Journal of Educational Research.

Kocsis, A., Molnár, G. (2024). Oxford Review of Education. Oxford Review of Education, pp. 1–19.
Maria, P.-K. (2022). Participation of university students in non-formal lifelong learning programs: types of

programs, reasons for participation and the importance of learning outcomes in their student, professional,
personal, and social life. European Journal of Education Studies.

Miltiadis, Z. (2022). Extracurricular Activities in the Function of Intellectual Education. Reflexia, pp. 9–18.
Norberto, R., Malafaia, C., Neves, T., Menezes, I. (2023). The Impact of Extracurricular Activities on Univer-

sity Students’ Academic Success and Employability. European Journal of Higher Education, p. 1–21.
Ruth, B., Denise, J., Kate, L., Matalena, T. (2019). Social connectedness and graduate employability: exploring

the professional networks of graduates from business and creative industries. Higher Education and the
Future of Graduate Employability, pp. 70–89.

Tijen, T. (2022). The Effect of Self-regulated Online Learning Skills on Academic Achievement,” Anadolu
Journal of Educational Sciences International, pp. 389–416.

Viacheslav, O., Nataliia, V., Liudmyla, K., & Nataliya, A. (2020). Studies of impact of specialized STEM train-
ing on choice further education. 75:04014–. DOI: 10.1051/SHSCONF/20207504014, SHS Web Confer-
ence.

Vilceanu, F. V. (2019). Startegic References for Non-Formal Education. Horizons for sustainability, Constantin
Brâncuşi” University of Târgu-Jiu, no. 2.

The Impact of Non-Formal Educational Approach on the Academic Performance ... 145

E. Wageed is the head of school programs department at the Regional
Informatics Center (RIC) at the AASTMT. He is the executive director
of the Egyptian Olympiad in Informatics since 2008, IOI IC member
since 2014 and the co-founder of RoboCupJunior Egypt and Beaver
Challenge in Egypt. He promotes the non-formal educational activities
in many countries in the middle east. His doctoral degree on the impact
of non-formal educational activities.

Y. Elgamal is a Professor of Computer Engineering, senior advisor
at The Arab Academy for Science and Technology, and Chairman of
The Computer Scientific Society (CSS), Alexandria-Egypt. He served
as The Minister of Education of Egypt 2005–2010, Chairman, Board
of Trustees, Egypt Japan University of Science and Technology (E-
JUST) 2010–2014, and the senior consultant of the National Telecom-
munications Institute of Egypt. He is a member of the group of experts
preparing The Global Knowledge Index, and The Chairman of The In-
formation and Communication Committee at The National Committee
of Education, Culture, and Science (UNESCO, ALECSO, ISESCO).
Elgamal has also served in a number of capacities at The Arab Acad-
emy for Science and Technology and Maritime Transport including
Vice-President for Education and Research, Founding Dean of Col-
lege of Engineering and Technology, Founding Chairman of Electron-
ics and Communication Department, and Assistant to the President for
Informatics. He served also as a Lecture of Nuclear Electronics at The
Atomic Energy Agency (IAEA).

O. Ismail is the Founding Dean of the Regional Informatics Center
(RIC) at AASTMT. The RIC was conceived to advance Robotics and
Competitive Programming in the MENA region, promoting student
talent and fostering a skilled cohort to keep pace with global advance-
ments in these fields. Ossama was the director and head of the scien-
tific committee of the Egyptian Olympiad in Informatics (EOI) since
2003 and head of the HSC of IOI 2008 Egypt.

M. Abdrabou is the Dean of Productivity and Quality Institute (PQI)
at AASTMT. He specialized in Quality and Organizational Excellence
as well as excelled in various academic and administrative positions
in PQI of higher learning during his career. He is deeply involved in
engagements with regulatory bodies and accreditation agencies for
furtherance of institutional interests. He has performed a key role in
improving quality in education.

Olympiads in Informatics, 2024, Vol. 18, 147–154
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.11

147

REPORTS

Palestine at the International Olympiad in
Informatics: Advancing Computational Thinking
Among K-12 Students

Musa ALREFAYA, Samed ALHAJAJLA
Palestinian Olympiad in Informatics, Palestine Polytechnic University, Meshka
e-mail: mousa@ppu.edu, haasamed@gmail.com

Abstract. The Palestinian Olympiad in Informatics has been a significant endeavour since its in-
ception in 2017. It has steadily grown, with programming clubs established in all schools to foster
student interest and skill development. The milestone of winning the first bronze medal in 2022
marked a notable achievement in our journey. This report provides an overview of Palestine’s
participation in the International Olympiad in Informatics, outlining our objectives, preparation
efforts, performance, and the profound impact of our involvement on the local and international
levels, sparking increased interest in computer science across Palestine and fostering international
collaboration and innovation in informatics.

Keywords: Palestine, education technology, Palestinian Olympiad in Informatics, computational
problem-solving.

Introduction

The state of Palestine has joined the family of the International Olympiad in Informatics
through an initiative of the College of Information Technology and Computer Engineer-
ing at Palestine Polytechnic University led by Dr Musa Alrefaya since 2016. As a result
of its successful experience in training school students by holding summer camps in the
field of competitive programming, A special team of trainers from Palestine and the Arab
countries in the Palestinian Collegiate Programming Contest for Universities (PCPC)
are training the participants in the International Olympiad in Informatics.

M. Alrefaya, S. AlHajajla148

Computational problem-solving initiatives began in Palestine in 2012, with the inau-
gural Palestinian Collegiate Programming Contest (PCPC) held at Palestine Polytechnic
University (PPU). The event drew participation from 10 universities and 81 students
from the West Bank. The following year saw the launch of the first training summer
school at PPU, aimed at nurturing talent in problem-solving skills. Out of over 1000
students, 65 were selected to participate in this intensive program.

As the years progressed, the scope of problem-solving training widened, with more
students engaging in various educational activities. Multiple summer schools were or-
ganised across different universities and affiliated associations, providing opportunities
for students to enhance their problem-solving abilities and computational thinking skills.

Recognising the importance of fostering programming proficiency among students,
the Ministry of Education introduced a local competition called the Student Coding
Initiative. This competition encouraged students to explore computer programming and
computational concepts. The Student Coding competition witnessed significant partici-
pation, attracting hundreds of students eager to expand their programming knowledge
and showcase their skills.

In 2020, Samed AlHajajla, a former participant at the IOI and the deputy leader
of the Palestinian team, founded Meshka, a social startup on a mission to enhance the
computational problem-solving skills of K12 students through computer science, math,
science, and design thinking. Since 2020, Meshka has trained thousands of K12 students
in computational problem-solving, successfully fulfilling its goal of improving students’
problem-solving abilities.

The landscape of problem-solving education in Palestine has evolved significant-
ly since its inception in 2012. Initiatives such as the PCPC, Meshka’s computational
problem-solving programs, training summer schools, and the Student Coding competi-
tion have empowered Palestinian students to develop their problem-solving abilities and
excel in computer science. This steady growth and progress inspires us to continue our
efforts and strive for significant achievements.

The inception of summer schools in 2013 at Palestine Polytechnic University marked
a significant milestone in advancing computer science education in Palestine. These sum-
mer schools aimed to enhance students’ informatics and computational thinking skills.
The selection of trainers for these schools was meticulously done through logical exams
conducted by the Ministry of Education department in each city, ensuring the quality of
education imparted to the students.

The levels of participating students have consistently improved, reflecting the ef-
fectiveness of the summer school programs. Additionally, more universities have joined
in training students through the International Collegiate Programming Contest (ICPC)
community, contributing to a broader reach and impact.

On average, each summer school at every university attracted between 60 and 100
students, indicating a growing interest and demand for such educational initiatives. Si-
multaneously, efforts to raise awareness among schools and students continued, promot-
ing the importance of computer science education.

The Palestinian Olympiad in Informatics team has partnered with Meshka to develop
advanced computational problem-solving programs for K12 students. One of these pro-

Palestine at the International Olympiad in Informatics: ... 149

grams is Solve for Palestine, which offers three levels: beginner, intermediate, and ad-
vanced. All students are welcome to participate at the beginner level and will go through
an online learning experience based on peer-to-peer learning. Facilitators are also avail-
able to provide group office hours and assist with projects and exercises every week.
After one month, students who pass the final exam will be selected to move on to the in-
termediate level. Here, they will be exposed to IOI-style problems, which will ultimately
help them develop the skills necessary to solve IOI problems. After that, in partnership
with Code.X, advanced training is tailored to each selected student to prepare them for
the national and international informatics competition.

The following table shows the number of students trained in a joint effort of the Pal-
estinian Olympiad in Informatics and Meshka:

Year Number of Trained
students

2020 300
2021 1000
2022 1000
2023 2000
2024 2000

In 2020, the number of students interested in computational problem-solving has
increased significantly. This can be attributed to the growing awareness and advocacy
for the importance of technology and learning coding. Students who have joined this
program have had access to mre opportunities to compete, win competitions, receive
scholarships, gain outstanding recognition, and further their learning. This has conse-
quently encouraged more students to develop an interest in this field of study.

The following table shows the number of participants in the national IOI competition
during previous years:

Year Number of
Participants

2017 75
2018 123
2019 158
2020 73
2021 103
2022 172
2023 238
2024 Expected number

(300–350)

M. Alrefaya, S. AlHajajla150

Through the analysis of data collected on the number of participants in the annual
competition from 2017 to 2023, with forecasts for 2024, we can observe significant de-
velopments and essential changes in the interest to participate. The competition began
in 2017 with 75 participants and saw a noticeable increase in numbers in the following
years, reaching 123 participants in 2018 and then rising to 158 in 2019; this is due to the
ongoing work of the Palestinian Olympiad in informatics to advocate and raise aware-
ness about informatics in Palestine.

The year 2020 witnessed a sharp decline in numbers, likely due to the impacts of
the COVID-19 pandemic, where the number of participants fell to 73. However, the
numbers began to recover gradually in 2021, with 103 participants and continued to
rise strongly in the following two years, with 172 participants in 2022 and 238 in 2023.
For 2024, organisers expect this increase to continue, with estimates ranging from 300
to 350 participants.

These figures reflect the success of the organisers’ strategies in enhancing the event
and increasing its appeal, as well as the sector’s recovery from external shocks such
as the pandemic. The expected growth for 2024 shows the organisers’ confidence in
continuity and expansion, indicating that the competition has established itself as a
significant event that attracts increasing interest each year.

Preparation for International IOI

To effectively enhance and expand participation in the International Olympiad in In-
formatics (IOI), strategic steps include developing early programming skills in school
curricula, strengthening training through advanced programs and mentorship, broad-
ening participation via inclusive policies and regional contests, leveraging technology
for broader engagement, promoting informatics education through awareness cam-
paigns, continuously evaluating and adapting strategies, and building a supportive
community for sustained excellence. These efforts aim to increase the quality of in-
dividual performances and the scope of international collaboration and innovation in
informatics.

The journey to international IOI began with a nationwide selection process, cul-
minating in identifying Palestine’s most talented young programmers. Four students
were chosen to represent our nation through competitive exams and performance eval-
uations.

The national team comprised four exceptional students, each with a proven track
record in national programming contests and a deep passion for computer science.

The training process for students to participate in the competition begins through
a strategic partnership with the Palestinian Olympiad in Informatics, Meshka, and the
Ministry of Education, where agreements are made to identify and select outstanding
students from various schools. This selection is based on specific criteria that ensure
the choice of students who are most capable and prepared for competition. After selec-
tion, these students are enrolled in intensive technological summer camps designed

Palestine at the International Olympiad in Informatics: ... 151

to enhance their programming and analytical skills. In these camps, students receive
training from specialists and experts in programming and technology, where they are
guided and trained on the latest methods and techniques that enable them to excel in
international competitions.

The expertise of graduates from this competition and the PCPC programming con-
test was utilised to enhance the student’s skills and prepare them effectively for the
competition. These alumni, who possess extensive practical experience and a deep un-
derstanding of competition challenges, provided training and guidance to new partici-
pants. The training sessions were designed to cover a wide range of technical topics and
necessary skills, which increased the students’ efficiency and improved their ability to
compete at a high level in these contests. Thanks to this approach, the competition cre-
ated a dynamic educational environment that continuously develops students’ skills and
equips them with the tools needed for success.

This program focused on advanced algorithms, data structures, and problem-solving
strategies essential for international success.

Participation in IOI

Experience

The Palestinian team engaged fully in the IOI experience, from the intellectually
challenging competition to cultural exchange activities. This exposure to the global
informatics community was invaluable, providing our students with new perspectives
and inspiration.

Performance and Achievements

Our team performed admirably, with each member demonstrating exceptional skill and
determination. While we did not secure a medal this year, the team ranked competitively,
and their achievements have made our nation proud.

In 2017, Palestine debuted in the International Olympiad in Informatics (IOI) held
in Iran. This was a significant milestone for the Palestinian informatics community. The
breakthrough came in 2022 when Nicola Abu Saad secured Palestine’s first medal in the
competition, bringing recognition and pride to the nation.

Since 2020, independent training sessions have been conducted through a Meshka
dedicated to nurturing young talent in informatics. Over the last two years, the Min-
istry of Telecom and Information Technology has stepped in to support and sponsor
training sessions, further bolstering the country’s participation in international com-
petitions.

M. Alrefaya, S. AlHajajla152

Outcomes and Impact

Learning and Development

IOI experience has significantly contributed to our participants’ personal and academic
growth, equipping them with skills far beyond the competition. Students who represent
Palestine in the IOI study with scholarships in university, win every programming com-
petition in Palestine, have opportunities to study at Ivy League schools, and intern at big
tech companies such as Facebook and Google.

Future Participation

Reflecting on our IOI journey, we recognise areas for improvement, particularly in our
training program and resource allocation. These insights will be invaluable in enhancing
our future performance.

National Impact

Participation in IOI has stimulated increased interest in computer science across Pales-
tine, encouraging more students to pursue excellence in this field. It has also highlighted
the importance of supporting STEM education at a national level.

Challenges and Recommendations

Despite logistical and financial challenges, our team’s resilience and dedication were
unwavering. We recommend establishing robust support structures for future teams, in-
cluding securing long-term funding and expanding our training resources.

Despite the progress made, several challenges persist. One major obstacle is the diffi-
culty for students in attending on-site training sessions due to obstacles and checkpoints
between cities. Financial constraints remain a significant challenge, as most training
activities rely heavily on volunteer efforts.

Another formidable challenge is the inclusion of students from Gaza, given the restric-
tions on movement. However, a breakthrough occurred last year with the participation of
a contestant from Gaza in IOI 2023, marking a significant step towards inclusivity.

Another challenge for many students is the language barrier, particularly the adop-
tion of English in training sessions. Efforts to overcome this hurdle are ongoing but
require sustained support and resources.

This year, students from Gaza faced significant obstacles that directly affected their
participation in the competition due to the complex political situation in the region. The
frequent closures of schools and universities due to tensions and security incidents have
severely limited their opportunities for continuous education and proper preparation for
international competitions. Additionally, difficulties in internet communication, wheth-

Palestine at the International Olympiad in Informatics: ... 153

er due to disruptions or technological restrictions, posed a significant barrier to their
effective communication with organisers and other participants. Together, these factors
presented a tremendous challenge for the students of Gaza, who strive to demonstrate
their capabilities and achieve excellence despite the overwhelming circumstances sur-
rounding them.

Future Endeavors

Despite the challenges, there is optimism for the future. Initiatives like Bebras, intro-
duced recently, hold promise for further engaging students and fostering interest in in-
formatics. Additionally, ongoing efforts to overcome logistical and financial barriers will
pave the way for greater participation and success in international competitions.

Conclusion

The Palestinian team’s journey at the IOI was one of learning, growth, and inspiration.
We extend our deepest gratitude to everyone who supported this endeavour. We are com-
mitted to building on this experience, nurturing our young talents, and aiming for even
more outstanding achievements in future IOIs.

The Palestinian Olympiad in Informatics has come a long way since its inception,
thanks to the dedication of educators, volunteers, and supporters. While challenges
persist, the achievements and progress made serve as a testament to the resilience and
determination of the Palestinian informatics community. With continued support and
collaboration, Palestine is poised to make even more significant strides in the field of
informatics and excel on the international stage.

M. Alrefaya – Dean of Dual Studies Deanship since 2021 and has
been a full-time senior lecturer at the College of Information Technol-
ogy and Computer Engineering college-Palestine Polytechnic Univer-
sity in Palestine since 2004. He was a researcher at the Electronic and
Informatics Department at the Vrije University of Brussels from 2007
to 2015. Alrefaya has many publications in medical image processing.
He is the director and founder of the Palestinian Olympiad in Infor-
matics, Palestinian Bebras community, and the Palestinian Collegiate
Programming Contest (PCPC).

S. AlHajajla – Social Entrepreneur, Software Engineer, and Social
Service Designer, he is the CEO and Co-Founder of Meshka, a plat-
form working on integrating problem-solving skills in K12 education.
Director and Founder of the Palestinian Mathematical Olympiad, of-
ficial representative of Palestine at the International Mathematical
Olympiad, deputy leader and coach of the Palestinian team at the In-
ternational Olympiad in Informatics.

Olympiads in Informatics, 2024, Vol. 18, 155–166
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.12

155

High School Programming Olympiads
in Gomel Region

Michael DOLINSKY
Faculty of Mathematics and Technologies of Programming, F. Skorina Gomel State University
Sovetskaya str., 104, Gomel. 246019. Republic of Belarus
e-mail: dolinsky@gsu.by

Abstract. This article describes the content of programming competitions for students in grades
9–11 of the Gomel region. A general idea of ​​the thematic content of the tasks and examples of
tasks by topic are given. The methodology of teaching and preparing schoolchildren for such
Olympiads is also briefly described. A serious technical basis is the instrumental system of dis-
tance learning developed under the supervision of the author (http://dl.gsu.by). The paper
presents very good results of Gomel schoolchildren in International Olympiad in Informatics. The
main contribution of the paper is share our successful long-term experience in preparing school-
children for Olympiads in informatics.

Keywords: programming Olympiads, high school, instrumental system of distance learning.

1. Introduction

In many cases programming starts in elementary school (Dagienė et al., 2019). It then
continues into high school in a variety of ways: it could be unplugged learning (Plu-
gar, 2021; van der Vegt, 2016), game learning (Combefis et al., 2016), using Scratch
(Fagerlund et al., 2020), the use of specialized software development environments
(Kabátová et al., 2016; Tsvetkova et al., 2021;Alemany et al., 2016), robot program-
ming (Kanemune et al., 2017; Panskyi et al., 2021).

Since September 1996, on the basis of secondary school 27 in Gomel, and in Septem-
ber 1999, additionally and on the basis of the distance learning site DL.GSU.BY (here-
inafter referred to as DL), work is being carried out on the optional study of computer
science and programming for schoolchildren of different ages (Dolinsky, 2016). The key
feature of this training is the early start of programming education – actually from the 1st
grade, and in some cases from kindergarten (Dolinsky, 2018). For such students, special
programming Olympiads are held in order to increase motivation for classes, as well
as for the early acquisition of competitive experience. Problems for Olympiad in pro-
gramming for 1–4 grades students of primary school are described at (Dolinsky, 2022).

M. Dolinsky156

Problems for programming Olympiads for students in grades 5–8 of secondary school
are described at (Dolinsky, 2023). Verification of solutions is carried out automatically
on the DL.GSU.BY website (Dolinsky, 2017). This article offers materials for program-
ming Olympiads and a brief description of teaching programming and preparing for such
Olympiads for students in grades 9–11 of high school.

Training includes a consistent study of the necessary information and solidifying
them by solving the proposed problems from the systematically collected problems of
Olympiads of past years. Solutions are checked automatically on the DL.GSU.BY web-
site. Note that all the Olympiad tasks of the current academic year are included in the
systematic training immediately after the last Olympiad. We also note how ideas for
new problems appear. On the one hand, we focus on the IOI-curriculum (IOI Syllabus,
2023), and on the other hand, every year we solve the problems of the USACO, COCI,
St. Petersburg individual and team Olympiads. These tasks (or their subtasks) that serve
as a source for the tasks of our Olympiads in subsequent years. It is necessary to note
the inextricable connection between regional Olympiads and training. Olympiads are
held to show students and teachers what topics need to be studied in order to success-
fully participate in Olympiads. On the other hand, all the tasks of the Olympiads upon
their completion are naturally integrated into the education system. We also note that
the content of Olympiads and training is expanding in accordance with the develop-
ment trends of Olympiads in the world, focusing on new theoretical topics offered at the
Olympiads IOI, USACO, COCI, Russian and Belarussian Olympiads in informatics and
programming. When asked why we don’t use many other resources in preparation for the
Olympiads, we answer this way:

The 1.	 DL.GSU.BY website has been developing since 1999, when many of the
currently existing successful resources did not even exist, and we were forced
to pave “our own path.” As such, the author began teaching programming to
schoolchildren, as well as the development and accumulation of teaching meth-
ods in the 80s of the last century.
We have our own teaching methodology, and we teach text-based programming, 2.	
starting from elementary school (and even from kindergarten).
We use ideas and even tasks from other resources, but we study them in the se-3.	
quence we build for studying theoretical and practical material.
Our best schoolchildren actively participate in Olympiads held on third-party 4.	
sites, both in real time and in the mode of virtual contests and after-Olympiads
solving.

2. Content of the Olympiads

Tasks for grades 9–11 include 15 tasks in ascending order of complexity (each student
is invited to solve all these tasks). The first 10 tasks (the same with the corresponding
Olympiad for grades 5–8) on the following topics:

Introduction to programming.1.	
One-dimensional array.2.	

High School Programming Olympiads in Gomel Region 157

Two-dimensional array.3.	
Geometry.4.	
Strings.5.	
Sorting.6.	
Text task.7.	
Elements of number theory.8.	
Greedy.9.	
Queue.10.	

Their purpose and content are described in more detail in (Dolinsky, 2023).
Additionally, in the Olympiads of grades 9–11, 5 more tasks are given on the follow-

ing topics:
Recursion.1.	
Dynamic programming and recurrence relations.2.	
Graphs.3.	
Complex data structures.4.	
Complex dynamic programming. 5.	

Let us describe in more detail the topics of these tasks. In most cases the condition
of the task is formulated as concisely as possible, without a legend (description of
the task with many sentences, that have not importance for the task). This is done in
order to determine whether the student knows the corresponding algorithm and is able
to write and debug a program for it or not. For every theme 11–15 theme example of
theme task is given to show difficulty level of the tasks. The list of subtopics studied
in each topic directly indicates the composition and order of the theory being studied.
The subtopics are arranged in order of increasing difficulty, as are the tasks in each
subtopic. This is what, in the opinion of the author of the article, every participant in
the Olympiads needs to know. Every year the list of subtopics and tasks in them is re-
plenished. There is no need to prove why studying such subtopics and in this order is
better than other constructions. Each reader, like the author, can have his own opinion
on this matter.

Topic 11.”Recursion”

Topic ”Recursion” includes tasks in which a recursive call to a procedure or function
will be required to solve the problem. Currently, the “Recursion” topic contains tasks
for the following subtopics. Set of all subsets: derivation of one of the ways to sum M,
derivation of all ways to sum M, number of ways to sum M, number of ways to sum at
least M, maximum sum not greater than M, subset with maximum number of matching
elements, forbidden subsets, the sum of K subsets. Combinations: quantity, output. Ac-
commodations. Permutations. Permutations with repetitions. Bracket expressions. Gray
code. Fast exponentiation. Number generation. By definition. All subsets of rows of a
two-dimensional array. On a two-dimensional array. Divide and conquer. Recursion with
memoization. Recursion with memoization by profile.

M. Dolinsky158

An example of a task on the topic “Recursion”:
Problem “Decomposition into a sum of different”

Count the number of different representations of a given natural number N as a sum
of at least two pairwise distinct positive terms. Ptint out all of these.
Input Format
number N (1 ≤ N ≤ 10)
Output Format
all possible representations of the number N and the number of such representations.
Note: the output should be carried out in descending order of the terms (see the example
of input – output).
Input example:
7
Sample output:
6 + 1
5 + 2
4 + 3
4 + 2 + 1
4

Topic 12.”Dynamic Programming and Recurrence Relations”

Topic ”Dynamic Programming and Recurrence Relations” includes subtopics: one-
dimensional array: all sums, maximum length subsequence, number of maximum length
subsequences, maximum length subsequence in O(N*LogN), knapsack, sum of several
previous elements, sum of several previous elements with recovery response, maximum
of sums, splitting into subarrays, prefix sums, prefix maximums, suffix minimums, per-
mutation-number; two-dimensional array: sum of several previous elements, maximum
of several previous elements, minimum sum of several previous elements, sum of maxi-
mums of several previous elements, maximum frame, prefix sums.

An example of a task on the topic “Dynamic programming and recurrence rela-
tions”:
Problem “Fibo-other numbers”

Fibo-other numbers are built according to the formula:

f(0) = 1;
f(1) = 1;
...
f(n) = f(n – 1) + f(n – 2) + g(n),

where g(n) is the number of digits in the number n.
You need to write a program that determines the number of Fibo-other numbers in a

given numerical interval.

High School Programming Olympiads in Gomel Region 159

Input format:
The input consists of two numbers A and B that define the boundaries of the segment.
Output Format:
Print one number – the number of Fibo-other numbers in the interval [A, B].
Limits: 1 <= A <= B <= 1,000,000
Input example Output example	
2 10	 3

Topic 13. “Graphs”

Topic “Graphs” includes tasks in which it is required to perform the analysis and pro-
cessing of graphs and contains the following subtopics. Vertices enumeration: vertex de-
gree, adjacency matrix. Queue: bipartite graph check, shortest paths, articulation points.
Dijkstra’s and Floyd’s algorithms. Recursion: path with maximum number of edges,
reachability matrix, sources and sinks, vertex reachability, unreachable vertices, con-
nectivity, connected components, strongly connected components, dominant sets, cycle
search, Euler cycle, Hamilton cycle, directed graph path, topological sort, maximum
matching, Kuhn’s algorithm. Tree definition, number of edges per vertex, tree diameter,
least common ancestor, vertex visit order by depth-first search, centroid decomposition,
Huffman character coding, binary tree, quaternary tree. Minimum spanning tree: Prim’s
and Kruskal’s algorithms. Disjoint set units. Strategic games. Hidden graphs. Euler for-
mula. Maximum flow.

An example of a task on the topic “Graphs”:
Problem “Diameter”

Given an undirected graph G with n vertices and n – 1 edges. This graph is connected
and each edge has a non-negative integer length. Let d(x, y) be the length of the short-
est path between vertices x and y in graph G. The diameter of graph G is defined as the
maximum of all possible distances d(x, y), where x and y are two arbitrary vertices of
graph G. Write a program that which calculates the diameter of the graph G.
Input format:

Your program must read input from standard input. The first line contains a number
(0 < n < 1000). The vertices of the graph are numbered from 1 to n. Each of the follow-
ing n – 1 lines describes one edge: the first two numbers are the numbers of the vertices
connected by this edge, and the third number is the length of this edge. The length of any
edge is an integer less than 1000.
Output Format:
The single line of the standard input must contain the diameter of the graph.
Input example Output example	
10 15
4 5 5
4 3 2
4 2 1

M. Dolinsky160

5 6 4
5 1 0
5 7 4
3 8 4
3 9 3
3 10 3	

Topic 14. “Complex data structures”

Topic “Complex data structures” includes tasks for which solution it is required to
have the corresponding theoretical knowledge on the following topics. Segment tree: no
modification (max, min, sum, max sums); single assignment (changing of one element
of array): sum, minimum, maximum, minimum segment where there are all numbers
from 1 to K); single increment (sum); increment on segment directly, increment on seg-
ment lazy propagation (sum, minimum, maximum, number of positives, element ac-
cess); assignment on a segment (sum, number of segments from units). Fenwick tree.
Trie. Bit trie. Search tree. Suffix array.

An example of a task on the topic “Complex data structures”:
Problem “Tree of maximums”

Implement a data structure that stores information about N (1 ≤ N ≤ 100000) integers
A1, ..., AN. The structure must support the following operations.

INIT(N) Initialization with the number N. In this case, each number Ai is assigned (1)	
the value 0.
MODIFY(L, R, value) For each i, L ≤ i ≤ R, change Ai to Ai + value.(2)	
FINDMAX(L, R) Output to the output file the maximum max{A[l], A[l + 1], ..., (3)	
A[r]}.

Input Format
The input file contains no more than 100,000 operations. Each operation is described on
a separate line. The operation description starts with an integer from 1 to 3 – it is number
from the list above. The operation parameters follow in the order they are listed in paren-
theses. The numbers on each line are separated by spaces.

All operations are correct. It means that:
The INIT operation is the very first operation in the input file and does not appear ●●
anywhere else in it.
For the MODIFY operation, the constraints 1 ≤L ≤ R ≤ N and –10000 ≤ value ●●
≤ 10000.
The FINDMAX operation satisfies the constraints 1 ≤L ≤ R ≤ N.●●

Output Format
Perform the operations in the order they are listed in the input file. If you need to output
some information to the output file to perform the operation, then output this information.
Write the output for each operation on a separate line.

High School Programming Olympiads in Gomel Region 161

Input example
15
2 1 1 –6
3 2 4
3 1 2
3 1 3
3 1 5
2 2 5 –4
2 4 5 –4
3 1 2
3 2 5
2 1 3 –4
3 4 5
3 5 5
2 1 1 –10
2 1 3 3	

Output example
 0
 0
 0
 0
–4
–4
–8
–8

Topic 15. «Complex dynamic programming»

Topic «Complex dynamic programming» includes tasks that require knowledge of
the relevant theory and the ability to come up with a way to apply it to the following
subtopics: Bitmask DP, DP on tree, Binary Lifting, DP on profile, DP on strings, DP on
numbers, DP on bit numbers, the include-exclude method.

An example of a task on the topic “Complex dynamic programming”:
Problem “KT-number 2”

Numbers K and T are given. You need to find out how many T-digit numbers exist
that do not contain K successive odd digits (these are the numbers 1, 3, 5, 7, 9).
Input format:
K, T, M – three numbers separated by a space.
Restrictions:
1 <= K; T <= 30; 10 <= M <= 1000000.
Output Format:
The number of T-digit numbers that do not contain K consecutive odd digits, taken mod-
ulo M (the remainder of dividing the desired number by M is implied).
Input example: 			 Output example:
2 3 100				 50

Systematic and purposeful preparation of regional Olympiads is an important means
of developing the Olympiad movement in the region. Regional Olympiads are held in
the Gomel region five times a year: in October–November, school and city grades 1–11,
and in March–April, school, city and regional (zonal) for students in grades 1–9. When
conducting these Olympiads, Internet technologies and the DL.GSU.BY website are
used, which allows not only schoolchildren from the Gomel region, but also everyone

M. Dolinsky162

to participate in all the Olympiads. And, it should be noted, there are dozens of such
people from all regions of Belarus and Minsk.

3. Training and Motivation System

It is important to note that, despite the focus on programming, training is essentially
developing in nature and therefore it is very useful both for those who later choose in-
formation technology as their professional field, and for everyone who will be engaged
in at least some time.

Practice also shows that training is built in a rather interesting form. All classes are
conducted only on a voluntary basis during extracurricular time.

Another equally important aspect is a differentiated approach. The use of Internet
technologies makes it possible to provide individual training along a personal educa-
tional trajectory. If the student is unable to solve the problem, he is consulted by other
students or the teacher. Face-to-face classes are held on Wednesdays and Sundays on the
basis of the computer science cabinet of secondary school 27 in Gomel.

In addition, weekly from Thursday 8.00 to Wednesday 20.00, one of the regional
Olympiads that took place earlier in 2010–2023 opens for solution, solving which (at
a convenient time for himself) each student can check how well he knows the material
he has studied, as well as what other topics to be studied. The teacher receives similar
information about each of his students.

All of the above-described educational and competitive work is carried out on
the distance learning website (Dolinsky, 2016). There, access to theory is provided,
assignments are given; solutions are checked. All tests except the last one are given
for educational purposes; all kinds of tables of results and ratings are built; using the
forum, interactive interactions between students and each other and the teacher are
supported.

To motivate the best students to become more active, they are encouraged to par-
ticipate in competitions on the platform (Codeforces, 2010–2023), where they can
compete with thousands of schoolchildren from all over the world. In addition, the
Codeforces platform automatically recalculates the ratings of all competition partici-
pants.

In order for schoolchildren of the Gomel region to understand their level of prepara-
tion relative to their opponents, we have developed and continue to develop a website
(Ratings at Codeforces of Gomel region schoolchildren, 2023). The best 25 students
from Gomel are nominated to participate in the regional Olympiad. The best 25 students
of the Gomel region are competing to win diplomas at the regional Olympiad. The best
15 in the Gomel region are competing to be included in the Gomel region team for the
Belarusian Republican Olympiad in Informatics, the best of 11 of them are to win diplo-
mas of the Republican Olympiad. Since 2018, schoolchildren in the Gomel region have
taken 11 or more diplomas from the Republican Olympiad for 15 participants (Results
of diplomas of Belarus regions, 1997–2021).

High School Programming Olympiads in Gomel Region 163

In order to make it more convenient for teachers and students to track the results of
competitive and educational work of schoolchildren in the Gomel region on Codeforces
(and in the future on other similar sites), we began to develop a website (Results of test-
ing at external resources, 2023).

4. Results On International Competitions

Such a good system of training and motivation bears fruit. For the period from 1997
(when the Gomel schoolchild Kuzniatsou Artsiom first entered the IOI and won a silver
medal there) to 2021 (in 2022 and 2023 Belarusian schoolchildren competed without
indicating the country they represent), Belarusian schoolchildren won 88 medals, 34
of which were won by Gomel schoolchildren , the results for the regions of Belarus are
presented in Table 1. (Results of Belarus regions in IOI, 1997–2021).

Twenty Gomel region schoolchildren win the medals of IOI during 1997–2021 (Re-
sults of private achievements of Gomel region schoolchildren, 1997–2021).

Gomel schoolboy, 8th grade student Mikhail Brel won a bronze medal at IOI 2023
(Results of Mikhail Brel at IOI, 2023).

The Gomel region team won a silver medal (absolute 6th place) in the twenty-
fourth open All-Russian team Olympiad for schoolchildren in programming (Results
of the twenty-fourth open All-Russian team Olympiad for schoolchildren in program-
ming, 2023).

In 2016 and 2018, the author of the article became a diploma winner of the All-
Russian competitions of scientific and practical works on methods of teaching computer
science and informatization of education INFO-2016 and INFO-2018, held by the All-
Russian Scientific and Methodological Society of Teachers and the Education and Infor-
matics publishing house (Results XV All-Russian competition of scientific and practical
works INFO (2016, 2018)).

Table 1
Results of Belarus regions in IOI (1997–2021)

Region Total Gold Silver Bronze

Gomel region 34 9 15 10
Minsk region 13 1 6 6
Vitebsk region 13 0 6 7
Lyceum BSU 12 1 4 7
Brest region 6 1 0 5
Minsk (capital of Belarus) 4 0 3 1
Grodno region 4 0 2 2
Mogilev region 2 1 1 0

Total 88 13 37 38

M. Dolinsky164

The respected reviewer requested a comparison of Belarus' results with other coun-
tries at the IOI. I consider this to be unlawful; the author does not teach all schoolchildren
in Belarus. But in 2006–2009, the author was the coach of the Belarusian national team
at IOI. And during that period, the Belarusian team won 14 medals for 16 participants
(6 gold, 6 silver and 2 bronze), showing the sixth result during this period after China,
Poland, Russia, USA and Taiwan (Results of countries on IOI, 2006–2009).

By the way, preparation for Olympiads in computer science and programming goes
very far beyond the scope of the material studied in computer science classes in Belaru-
sian schools.

5. Conclusion

This article presents the materials of Olympiads in programming for students 9–11
grades and briefly presents the methodology for teaching and preparing these students
for such Olympiads. The Olympiad includes 15 problems on the topics: introduction to
programming, one-dimensional array, two-dimensional array, geometry, strings, sorting,
text problem, elements of number theory, greedy algorithm, queue, recursion, dynamic
programming and recurrence relations, graphs, complex data structures, dynamic pro-
gramming is hard. This approach allows us to provide the paradigm “each student will
solve at least one problem”, “no student will solve all problems”, although in practice
there are cases of violation of both rules. But in general, it turns out a balanced Olympiad
for students with any level of training. The annual transfer of tasks from past Olympiads
to the course “Olympiads 9–11” provides an opportunity for a systematic study of theory
in preparation for subsequent Olympiads. And the weekly training Olympiads (based on
the materials of the Olympiads of previous years) provide training in practical skills for
solving problems at the olympiad and quality control of assimilation of the material. The
paper also presented successes of Gomel region schoolchildren at international contests
in informatics and programming.

References

Alemany, F.J., Vilahur, V.J. (2016). eSeeCode: Creating a Computer Language from Teaching Experiences.
Olympiads in Informatics, 10, 3–18.

Combéfis, S., Beresnevičius, G., Dagienė, V. (2016). Learning Programming through Games and Contests:
Overview, Characterization and Discussion. Olympiads in Informatics, 10, 39–60

Codeforces (2010–2023). https://codeforces.com/
Dolinsky, M. (2013). An approach to teach introductory-level computer programming. Olympiads in Informat-

ics, 7, 14–22.
Dolinsky, M. (2014). Technology for the development of thinking of preschool children and primary school

children. Olympiads in Informatics, 8, 63–68.
Dolinsky, M. (2016). Gomel training school for Olympiads in Informatics. Olympiads in Informatics, 10,

237–247.

High School Programming Olympiads in Gomel Region 165

Dolinsky, M. (2017). A new generation distance learning system for programming and Olympiads in Informat-
ics. Olympiads in Informatics, 11, 29–39

Dolinsky, M., Dolinskaya, M. (2018). How to start teaching programming at Primary School. Olympiads in
Informatics, 12, 13–24.

Dolinsky, M., Dolinskaya, M. (2019). Training in writing the simplest programs from early ages. Olympiads
in Informatics, 13, 21–30.

Dolinsky, M., Dolinskaya, M. (2020). The technology of differentiated instruction in text programming in
Elementary School based on the website dl.gsu.by. Olympiads in Informatics, 14, 37–46.

Dolinsky, M. (2022). Primary School Programming Olympiads in Gomel region (Belarus). Olympiads in In-
formatics, 16, 107–123.

Dolinsky, M. (2023). Secondary School Programming Olympiads in Gomel Region (Belarus). Olympiads in
Informatics, 17, 107–123.

Fagerlund, J., Hakkinen, P., Vesisenano, M., Viiri, J. (2020). Assessing 4th Grade Students’ Computational
Thinking through Scratch Programming Projects. Informatics in Education, 19(4), 611–640. DOI: 10.15388/
infedu.2020.27.

Kabátová, M., Kala , I., Tomcsányiová, M. (2016). Programming in Slovak Primary Schools. Olympiads in
Informatics, 10, 125–159.

IOI Syllabus (2023). https://ioinformatics.org/page/syllabus/12
Kanemune, S., Shirai, S., Tani, S. (2017). Informatics and programming education at Primary and Secondary

Schools in Japan. Olympiads in Informatics, 11, 143–150.
Panskyi, T., Rowinska, Z. (2021). A Holistic Digital Game-Based Learning Approach to Out-of-School Pri-

mary Programming Education. Informatics in Education, 20(2), 255–276. DOI: 10.15388/infedu.2021.12.
Plugar, Z. (2021). Extending Computational Thinking Activities. Olympiads in Informatics, 15, 83–89.
Pozdniakov, S., Dagienė, V. (eds) (2019). Informatics in schools. New ideas in school informatics. ISSEP

2019. Lecture Notes in Computer Science, vol 11913. Springer, Cham.
https://doi.org/10.1007/978-3-030-33759-9_7

Ratings at Codeforces of Gomel region schoolchildren (2023). https://dl.gsu.by/codeforces/
Results of Belarus regions (1997–2021). (In Russian).

https://dl.gsu.by/olymp/result/ioi/region.asp

Results of diplomas of Belarus regions (1997–2021). https://dl.gsu.by/olymp/rgomel.asp
Results of countries on IOI (2006–2009). https://dl.gsu.by/olymp/result/ioi2006/
Results of Mikhail Brel at IOI (2023). https://stats.ioinformatics.org/people/7971
Results of private achievement of Gomel region schoolchildren (1997–2021).

https://dl.gsu.by/servlet/olympResultsPersonalMedal?c.id=1&u.c=25&lng=rus&r.id=3&a.r=3

Results of testing at external resources (2023). https://dl.gsu.by/etr/
Results of the twenty-fourth open All-Russian team Olympiad for schoolchildren in programming (2023). (In

Russian).
https://neerc.ifmo.ru/school/archive/2023-2024/ru-olymp-team-russia-2023-standings.html

Results of XV All-Russian competition of scientific and practical works INFO-2018 (2018). (In Russian).
https://infojournal.ru/competition/info-2018-result/

Results of XV All-Russian competition of scientific and practical works INFO-2016 (2016). (In Russian).
https://infojournal.ru/competition/info-2016-result/

Tsvetkova, MS, Kiryukhin VM (2021). Algorithmic thinking and new digital literacy. Olympiads in Informat-
ics, 15, 105–118.

van der Vegt, W. (2016). Bridging the Gap Between Bebras and Olympiad; Experiences from the Netherlands.
Olympiads in Informatics, 10, 223–230

M. Dolinsky is a lecturer in Gomel State University “Fr. Skoryna”
from 1993. Since 1999 he is a leading developer of the educational
site of the University (dl.gsu.by). Since 1997 he is heading prepara-
tion of the scholars in Gomel to participate in programming contests
and Olympiad in informatics. He was a deputy leader of the team of
Belarus for IOI’2006, IOI’2007, IOI’2008 and IOI’2009. His PhD is
devoted to the tools for digital system design. His current research is in
teaching Computer Science and Mathematics from early age.

Olympiads in Informatics, 2024, Vol. 18, 167–175
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.13

167

omegaUp: A Decade of Growth and Impact
in Latin American Coding Education

Hugo E. DUEÑAS OROZCO, Tania AVALOS PIÑON
omegaUp.org
Bellevue, Washington
e-mail: hugo@omegaup.org, vanessa@omegaup.org

Abstract. Ten years ago we presented in this journal omegaUp, an open-source contest manage-
ment platform for the Mexican Olympiad in Informatics. Today, it has grown into a comprehen-
sive education technology tool empowering tens of thousands of students in Latin America, from
beginners to competitive programmers. In this article we discuss the main achievements in the past
decade including free online courses, content quality assurance, improved UX, as well as becom-
ing the host of important competitions such as the Iberoamerican Olympiad in Informatics and the
national olympiads in Ecuador, Mexico, and Peru. .

Keywords: contest management system, omegaUp, cloud, user-experience, online judge, infor-
matics education.

1. Introduction

omegaUp is an online platform that provides educational resources for competitive
programming. It was originally developed as a contest management and training plat-
form for the Mexican Olympiad in Informatics and other competitions in Latin America
(Chávez et al., 2014), but it has since grown into a comprehensive tool for teaching and
learning computer science. This report provides an overview of the history and develop-
ment of OmegaUp, as well as its current features and offerings.

2. omegaUp’s Growth

Over the past decade omegaUp has seen tremendous growth as measured by many met-
rics that we explore in this section:

omegaUp has over 221,000 registered users, over 9,000 public problems and has →→
hosted over 11,000 contests as of January 2024.
On a typical month omegaUp sees about 27,000 active users.→→

H. E Dueñas Orozco, T. Avalos Piñon168

omegaUp has graded over 5 million submissions since its launch in 2012 and has →→
seen sustained growth over the years as can be observed in Fig. 1.

At omegaUp we have 4 main types of user:
Contestant – Those users who use omegaUp to train their competitive programming →→
skills and/or to compete in programming competitions supported by the platform.
School Student – Those users who use omegaUp for their school classes.→→
Coach – Those users who coach students for programming competitions and use →→
omegaUp for that purpose.
School Teacher – Those users who are school teachers and use omegaUp to manage →→
their classes.

Observations:
90% of our users are students, 10% are teachers.●●
We have about 22.6 students per teacher in the school segment but only 5.8 contes-●●
tants per coach in the competitive segment. Which is expected given that competi-
tive programming groups tend to be smaller than school classes.

Fig. 1. Number of code submissions to omegaUp per year.

Fig. 2. Distribution of omegaUp users by type.

omegaUp: A Decade of Growth and Impact in Latin American Coding Education 169

70% of school teachers are also coaches. This is expected given that omegaUp ●●
started out as a competitive programming platform exclusively and that’s how it
gained its original user base.

According to Google Analytics, 78% of omegaUp’s traffic comes from Mexico and
the rest comes mostly from Latin American countries as shown in Fig. 3.

3. Enhancing User Experience

While the core online judging functionality was strong, omegaUp.com lacked user-
friendliness. To address this and attract new users, we conducted in-depth research with
our three main user groups: students, teachers, and competitive programmers.

Identifying User Needs

Students: Struggled to find active contests and suitable practice problems due to usability
issues.

Teachers: Required a user-friendly interface (UI) for ease of access and content ●●
creation, considering some might not be tech-savvy.
Competitive Programmers: Sought a modern UI in line with current online judge ●●
standards.

Prioritising Resources

Given resource limitations, we focused on these key projects:
UI Stack Migration: Before making user-facing changes, we upgraded the techni-→→
cal foundation of the UI. This involved migrating from Javascript to Typescript,
Smarty to Vue.js, and integrated Bootstrap for a more robust framework.

Fig. 3. Distribution of omegaUp users by country of residence.

H. E Dueñas Orozco, T. Avalos Piñon170

Redesigning Core Components: After the technical migration, a complete rede-→→
sign of the main platform pages commenced. Usability and user-friendliness for
all age groups (students and teachers) were the top priorities.

Homepage Redesign

The landing page was restructured for intuitive navigation and the navbar was updated to
reflect current features with clearer and more descriptive names.

Contest List Redesign

The previous contest list, displayed as a table with confusing tabs, only showed contest
names. The new design addresses user needs:

Identifying current and past contests.●●
Start dates and filtering by time frame.●●
Upcoming contest visibility.●●
Additional details like organiser, participant count, scoreboard access, and contest ●●
mode.

Problem List Redesign

OmegaUp allows users to create coding problems in a specific format. Initially, these
problems were displayed in a simple table. However, as the number of problems grew,
this approach became unwieldy. Filtering and searching for specific problems proved
increasingly difficult.

To address this, we implemented a two-pronged solution:
Problem Classification: Discussed in detail in the “Problem Classification” sec-●●
tion, this initiative involved classifying existing problems and establishing a semi-
automated system for classifying new ones.

Fig. 4. omegaUp homepage in March 2019 (left) compared to January 2024 (right).

omegaUp: A Decade of Growth and Impact in Latin American Coding Education 171

Curated Collections: Instead of a single, overwhelming list, we now present prob-●●
lems in curated collections based on educational level and difficulty. This makes it
easier for users to find problems that suit their needs.

Inclusive Language

A well-documented challenge in STEM education and careers is the lack of diversity
(Verdugo-Castro et al., 2022), (Card & Payne, 2020). The organisation recognizes that
there are multiple ways to address this and create a more welcoming environment for
all learners. One of the steps we followed was to review and modify the text used in our
platform that can be interpreted as biassed.

We undertook a comprehensive review process for the text used in the platform to
identify text messages with gender bias. We identified about 150 such strings and started
an effort to replace all of them with gender-free alternatives, which was a big challenge
given that Spanish is a highly gendered language (Rosenblat, 1962), (Barrera Linares,

Fig. 5. omegaUp contest list in March 2019 (left) compared to January 2024 (right).

Fig. 6. omegaUp problem list in March 2019 (left) compared to January 2024 (right).

H. E Dueñas Orozco, T. Avalos Piñon172

2019). An example string that we found frequently used was “profesor” (male teacher)
when referring to any teacher, we replaced that with the gender-free alternative “do-
cente”. Another example is “juez” (male judge), replaced with “jurado” (jury) which is
gender-free.

Currently, 99% of existing platform text has been reviewed and revised to ensure
gender neutrality, and all newly added texts are also required to adhere to these guide-
lines. In the future, we are also committed to expanding these efforts to include our Por-
tuguese dictionary, ensuring a welcoming platform for all users regardless of language.

4. Problem Classification

In the past, our users struggled to find problems that matched their needs, both in dif-
ficulty and required knowledge. To address this challenge, we developed a robust system
for problem classification:

Standardized Tags:●●
Authors can assign relevant public tags to problems (e.g., “Binary Search.” ○○
“Shortest Paths,” “Dynamic Programming”).

Expert Review Process:●●
A dedicated team of reviewers analyzes every public problem submitted to ○○
the platform.
Reviewers assess problem quality, promote suitable problems, and add/re-○○
move relevant tags for better searchability.
For problems requiring improvement, reviewers provide constructive feed-○○
back to the author.

Maintaining a Safe Platform:●●
Reviewers also address reports of inappropriate content (offensive, spam, ○○
etc.).
If necessary, reviewers can mark problems as “banned” to ensure a positive ○○
user experience.

As of January 2024 we have 1678 promoted problems and have banned 137 prob-
lems due to being inappropriate.

5. Courses

Many omegaUp users who manage coding contests for students also leverage the plat-
form for classroom instruction. Recognizing this need, we developed a comprehensive
course management system with the following features:

Rich Content Delivery:●●
Lectures: Create video-embedded lectures to explain course materials.○○
Text and Multimedia: Supplement lectures with text, images, and additional ○○
videos.

omegaUp: A Decade of Growth and Impact in Latin American Coding Education 173

Engaging Assessments:●●
Homework Assignments: Design problem sets with deadlines and point val-○○
ues.
Exams: Create timed exams to assess student understanding.○○
Automated Grading: Save time with automatic grading based on point values ○○
assigned to problems.

Streamlined Collaboration:●●
Teaching Assistants: Assign TAs to address student questions and provide ○○
feedback.
Line-by-Line Code Reviews: Offer detailed feedback on student code sub-○○
missions.
(Coming Soon) AI Teaching Assistant: We’re developing an AI-powered ○○
teaching assistant to provide additional support for students.

Prestigious Users:●●
Leading institutions like CIMAT, UAM, ITESM, and TecNM utilize ome-○○
gaUp Courses.

Free MOOCs for Everyone

omegaUp, in collaboration with other organizations, offers a range of free Massive Open
Online Courses (MOOCs) on the platform, including:

Programming Languages: C++, Python, Java.→→
Algorithmic Problem Solving: Introduction to Algorithms I & II.→→
Olympiad Preparation: Mexican Olympiad in Informatics, Peruvian Olympiad →→
in Informatics, Karel Programming (for beginners).

6. Important Contests Hosted

Over the past few years, omegaUp has become the go-to platform for managing coding
contests in the Spanish-speaking world. Here are some of the high-profile events hosted
on omegaUp:

Regional Mexican Olympiads: Jalisco, Guanajuato, Veracruz, Nuevo Leon, Aguas-●●
calientes, and more.
National and International Olympiads.●●

Mexican Olympiad in Informatics (OMI) since 2012.○○
Iberoamerican Olympiad in Informatics (CIIC) since 2015.○○
Peruvian Olympiad in Informatics since 2017.○○
Ecuadorian Olympiad in Informatics since 2020.○○

Major Programming Competitions:●●
Coding Cup TecNM (flagship competition of the National Technological ○○
Institute of Mexico) since 2015. In 2019, it attracted over 500 teams of 3
students each.
Central American Programming Cup since 2020.○○

H. E Dueñas Orozco, T. Avalos Piñon174

Acknowledgments

Special thanks to Juan Pablo Gómez and Carlos Abel Córdova for the many code con-
tributions that they have done and all the interns that they have managed and mentored.
Special thanks also to professor Rodrigo Castro for spearheading the efforts to classify
and promote high quality content in the platform. Shout out also to the amazing interns
that have delivered impactful contributions to the platform: Aarón, Alexia, Anmol, Ed-
uardo, Ingrid, Karyme, Luis Abraham, Luis Alberto, Mauricio, Miguel, Mohit, Nicole,
Omar, Óscar, Ruiz, Shivam, Vincent. Kudos to the omegaUp co-founders Luis Héctor
Chávez, Alan González and Joe Ponce, none of omegaUp’s impact could have been
done without them.

References

Chávez, L.H., González, A., & Ponce, J. (2014). omegaUp: Cloud-Based Contest Management System and
Training Platform in the Mexican Olympiad in Informatics. Olympiads in Informatics, 8.

Cepeda, A. and García, M. (2011). Mexican Olympiad in Informatics. Olympiads in Informatics, 5, 128–130.
omegaUp codebase on github, https://github.com/omegaup/omegaup
Verdugo-Castro, S., García-Holgado, A., & Sánchez-Gómez, M. C. (2022). The gender gap in higher STEM

studies: A systematic literature review. Heliyon, 8(8), e10300).
https://doi.org/10.1016/j.heliyon.2022.e10300

Card, D., Payne, A.A. (2020). High school choices and the gender gap in STEM. Economic Inquiry, 59(1),
9–28. https://doi.org/10.1111/ecin.12934

Gualtieri, M. (2009). Best practices in user experience (UX) design. Design compelling user experiences to
wow your customers, 1(1), 1–17.

Hartson, R., Pyla, P.S. (2018). The UX Book: Agile UX Design for a Quality User Experience. Morgan Kauf-
mann.

Rosenblat, Á. (1962). Morfología del género en español: Comportamiento de las terminaciones -o, -a. Nueva
Revista de Filología Hispánica, 16(1/2), 31–80. http://www.jstor.org/stable/40297584

Barrera Linares, L. (2019). Gender/sex relationship and plural inclusive masculine in Spanish. Literatura y
lingüística, 40, 327–354. https://dx.doi.org/10.29344/0717621x.40.2070

H.E Dueñas Orozco – participated in the IOI 2010. Has a bachelor’s
degree in computer science (2015) from Universidad de Guanajuato.
Serves as engineering manager at omegaUp since 2019. Currently
works as a Software Engineer at Google.

T. Avalos Piñon – has a bachelor’s degree in mathematics from Uni-
versidad de Guanajuato (2018). Serves as engineering manager at
omegaUp since 2019.

Olympiads in Informatics, 2024, Vol. 18, 175–184
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.14

175

IOI Project Report on Improving TPS
(Task Preparation System)

Kian MIRJALALI1, Ali BEHJATI2

1Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
2Douro Labs, Porto, Portugal
e-mail: mirjalali@ce.sharif.edu, ali@dourolabs.xyz

Abstract. The Task Preparation System (TPS) is primarily designed for preparing IOI tasks. Ini-
tially developed and successfully utilized during IOI 2017, it has since been employed in various
nationwide and international programming contests, such as IOI 2019~2024. Based on feedback
received over the years, the tool required further development to enhance its usability, functional-
ity, and maintainability. This article is the conclusion report of an IOI project defined for a specific
set of improvements on TPS.

Keywords: IOI project, competitive programming, task preparation, Olympiad in Informatics,
programming contest.

1. Introduction

The host technical and scientific committees of IOI 2017 developed several software
tools during their preparations for the contest. One of these tools, the Task Preparation
System (TPS), which was specifically created and utilized for preparing the contest
tasks, received highly positive feedback from both the HSC and ISC members. The
tool is publicly available on GitHub1 under the MIT License2 and has been widely
used in numerous programming contests, including IOI 2019~2024, Iran’s national
IOI team selection contests, and the ICPC Regional contests (Tehran site). Due to
the extensive use of TPS, we presented its application and shared insights with other
members of the IOI community during a talk at the IOI conference in 2019, as well as
by publishing an article in the IOI journal (Mirjalali et al., 2019). We recommend
reading that article first to become acquainted with the specific details and features
of TPS.

1	https://github.com/ioi-2017/tps
2	https://github.com/ioi-2017/tps/blob/master/LICENSE.txt

K. Mirjalali, A. Behjati176

TPS is a standalone collection of tools primarily written in Python and Bash scripts,
specifically designed for preparing the tasks (also known as problems) in programming
contests. Typically, TPS operates through a command-line interface and is employed
in an offline environment. However, the task/contest directory is often shared with
collaborators using version control systems like git. The process of preparing a high-
quality contest problem is intricate and requires careful handling of multiple steps and
components. Some of the key elements involved, but not limited to, include:

Task statement, usually written in latex or markdown format.●●
Designing function signature and IO format.●●
Specifying the task constraints such as time/memory limits and restrictions on in-●●
put values.
Designing subtasks and their score.●●
Graders: programs (written for each programming language allowed in the contest, ●●
such as C++ and Java) that link with the contestant’s solution and provide it with
the grading interface, say for reading the input and writing to the output.
Task (public) attachment: the set of files provided to the contestants during the ●●
contest, such as sample test data, compilation scripts, and basic graders for local
testing.
Input generators and validators.●●
Parameters for generating the test data.●●
Assignment of test data to subtasks.●●
Solutions; including correct, wrong, slow, and suboptimal solutions written for ●●
specific subtasks.
Checker: a program that verifies the output of the contestant’s solution per test case ●●
and specifies its score.

TPS, being a command-line interface, streamlines the preparation of programming
problems by automating various error-prone tasks and effectively detecting errors and
warnings. Fig. 1 provides an example of how TPS generates the test data for a task.
Moreover, as an open-source project, TPS offers easy customization options, allowing
users to tailor it to their specific requirements.

> tps gen
generator compile[WARN]
solution compile[OK]
validator compile[OK]
0-01 gen[OK] val[OK] sol[OK]
1-01 gen[OK] val[FAIL] sol[OK]
1-02 gen[OK] val[OK] sol[OK]
2-01 gen[OK] val[OK] sol[OK]
2-02 gen[OK] val[OK] sol[OK]
3-01 gen[OK] val[OK] sol[OK]
3-02 gen[OK] val[OK] sol[OK]

Finished.

Fig. 1. An example of executing “tps gen”.

IOI Project Report on Improving TPS (Task Preparation System) 177

A sign of a software being alive and under usage is the flow of bug reports, sugges-
tions, and feature requests. According to Lehman’s laws of software evolution (Lehman
et al., 1997):

A system must be continually adapted and its functional content must be con-●●
tinually increased, or else it becomes progressively less satisfactory over its life-
time.
As a system evolves, its complexity increases unless work is done to reduce it.●●
The quality of a system will decline unless it is rigorously maintained and adapted ●●
to operational environment changes.

As the original developers, we have voluntarily maintained TPS since 2017, find-
ing it enjoyable and meaningful work. Based on user feedback, we recognized the
need to enhance the usability of TPS’s existing features, introduce new functional-
ities, and ensure its maintainability through code refactorings. However, accomplish-
ing these tasks proved to be time-consuming, highlighting the necessity for dedicated
resources to tackle more substantial improvements. After thorough consultations, we
decided to propose this further development of TPS as a project supported by the IOI.
Our project proposal was accepted, granting us the opportunity of making significant
enhancements to TPS. This article serves as a report on the progress made during this
IOI project. We will first provide a brief overview of the software state before the
project commencement, and then, we will explain the improvements made throughout
the project.

2. Software State before the Project

Before the start of this IOI project, TPS had already undergone several changes
since 2017. The following is a summary of the improvements made during this period.
Please refer to the GitHub history3 for more details.

Recurring refactorings to keep the software maintainable.●●
Resolved several reported bugs.●●
Some updates on the offline markdown viewer tool●● 4.
Improvements and bug fixes for Windows users.●●
Better error handling, including detection of missing generated tests.●●
Improved the compilation process; detecting compile warnings and adding the op-●●
tion for showing verbose details.
Added Python as a language for solutions.●●
Generalized the scripts to handle output-only, two-step, and communication tasks ●●
out of the box (without the need to customize the scripts per task).
Added the testing framework with more than 300 tests for the “●● tps” command.

3	https://github.com/ioi-2017/tps/commits/master
4	https://github.com/ioi-2017/markdown-viewer

K. Mirjalali, A. Behjati178

Added multiple configurable settings for tasks: grader name, [not] having checker, ●●
[not] availability of {C++, Java, Python, Pascal} as solution languages.
Added the general “●● export” command to produce a package for importing into
contest systems in order to reduce the manual work; specifically, added the ex-
porter script for CMS.

3. TPS Improvements in the IOI Project

An initial list of technical tasks was created as a starting point for the project. However,
as is typical in software projects, some tasks were removed from the list after conducting
more thorough cost-benefit analyses, while new tasks were added due to circumstanc-
es. Although the initial estimation was around 500 hours, it ultimately required over
700 hours to complete all the tasks on the updated list. We now go through the major
tasks that were accomplished as part of this project.

Improvements in Software Design and Behavior

Several improvements have been made in the TPS behavior, addressing bugs, handling
user-induced errors, and enhancing the user interface. For instance, there are now more in-
formative details available regarding the behavior of a solution when invoked against the
provided test data. Furthermore, over 70 refactoring commits have been made throughout
the project in order to improve the code quality and maintainability. These refactorings
played a crucial role in keeping the codebase clean while developing other features.

Improving the Test Suites and Testing Infrastructure for the TPS Software

Having automated tests is crucial for achieving acceptable software delivery perfor-
mance in terms of tempo and stability (Forsgren et al., 2018). Without them, making
software modifications can gradually become as challenging as walking through a
minefield. Throughout this project, nearly 1500 tests have been incorporated in the TPS
git repository, encompassing unit tests for common utility functions, tests on “tps” com-
mand itself, and tests on subcommands such as “tps gen” and “tps invoke”. Addition-
ally, behavioral tests have been added for a modified version of the “testlib” header,
tailored specifically for CMS and IOI tasks5.

In order to accomplish this goal, we made more than 45 commits dedicated to
improving the testing infrastructure. These changes encompass a range of enhance-
ments, including the addition of tools for probing the state of variables and files after
the execution of a command. Fig. 2 provides usage examples to illustrate these im-
provements. In the first test of this example, it is expected that running the command
“set_variable my_new_var "my new value"” will set the value of variable “my_new_var”
to “my new value” without printing anything in the standard output/error streams. The
second test states that executing the command “tps gen” (in a predefined environment)

5	https://github.com/ioi-2017/tps/tree/master/extra-assets/testlib

IOI Project Report on Improving TPS (Task Preparation System) 179

shall print the contents of file “td3/stdout” in the standard output, and nothing in the
standard error stream. Furthermore, it should create a directory with name “tests” and
contents exactly matching the directory “td3/probed_f iles/0_tests”. Please refer to
the testing documentation6 for more comprehensive details.

Completing/Updating the Documentation

The official documentation is now up-to-date, thoroughly explaining all features. More-
over, a brief technical documentation has been provided, covering internal code styles,
patterns, and conventions. Separate comprehensive documentations have also been added
for creating TPS task templates and for testing the TPS software itself. Furthermore, the
“extra-assets” directory contains appropriate versions of Makefile, gitignore, and the
“testlib” header specifically tailored for CMS and IOI tasks. These additions aim to
provide users with the necessary resources and guidelines to effectively utilize TPS.

Easier Installation Process

An online installer has been successfully implemented and released for TPS. This in-
staller is prominently introduced in the first-page README file of the project. Users can
now easily install TPS by executing the following command. This streamlined instal-
lation process eliminates the need for manual cloning of the project from GitHub and
running the installation script. As a result, the installation process for new TPS users is
greatly simplified.

bash -c "$(curl -fsSL
 https://raw.githubusercontent.com/ioi-2017/tps/master/online-installer/install.sh)"

Extending the Task Exporters

A task exporter is a script for transforming the data of a prepared task into a package with
a predefined format suitable for importing into an online judge system. Using task export-
ers reduces the manual work and automates the error-prone process of adding problems
to contest systems. A task exporter for CMS was already implemented in TPS before this
IOI project. In order to enhance the usability of TPS, it is crucial to implement export-
ers for other online judge systems as well. In this regard, we have now implemented the

6	https://github.com/ioi-2017/tps/blob/master/tests/README.md

expect_exec -vs my_new_var "my new value" \
 -oempty -eempty \
 set_variable my_new_var "my new value"

expect_exec -f "tests" "td3/probed_f iles/0_tests" \
 -o "td3/stdout" -eempty \
 tps gen

Fig. 2. Examples of probing the state of variables and files in TPS tests.

K. Mirjalali, A. Behjati180

exporter for DOMjudge, the online contest system primarily used in ICPC. To use the ex-
porter, users can run the command “tps export DOMjudge” in the directory of a prepared
task. The exporter will then create an archive that can be uploaded to the administration
system of DOMjudge. TPS architecture is designed to be flexible, allowing for easy addi-
tion of exporter scripts for other online judge systems in the future.

We have also introduced a second protocol for the existing task exporter for CMS.
This new protocol aims to enhance the integration between TPS and CMS by providing
increased configurability through the TPS directory structure. To export a prepared task
for CMS, users shall now run the command “tps export CMS <protocol-version>”
within the task directory, where the parameter “<protocol-version>” can be specified
as either “1” for the old protocol, or “2” for the new protocol.

Adding the Command “stress”

This command is designed to subject a solution to stress testing. Specifically, it executes
the solution against a series of randomly generated test cases with the aim of identifying
a test case that causes the solution to fail, commonly known as being hacked. This tool is
particularly helpful in the process of finding tests for distinguishing incorrect solutions.
The stress testing procedure is conducted in a series of rounds, with the following steps
being carried out in each round:

A “test case generation string” is randomly produced; we will later explain how 1.	
this is done. This string is a single-line text similar to the test generation lines
written in the file “gen/data”.
The test case input is generated from the test case generation string, with the 2.	
same method as the process of generating the task test cases using “tps gen”.
The generated test case input is validated by the input validators.3.	
The corresponding test case output is produced by the model solution.4.	
The stressed solution is invoked with the generated test case as input. The score 5.	
and verdict of the invocation is specified through a process similar to the com-
mand “tps invoke”.
The stressed solution is considered to be hacked by the generated test case if it 6.	
does not get the required score.

A sample execution of the command is depicted in Fig. 3. Alongside the information
displayed in the terminal output, the test case generation strings which expose faults
in the solution, are also recorded in a separate file. This allows for further analysis and
examination of the specific test cases that triggered the failure, or using them as the task
test data.

The stress command gets two positional arguments. The first argument specifies the
path of the solution file to be stressed. The second positional argument is one of the fol-
lowing:

The path to a test case generation file; a python file which produces the test case ●●
generation strings. The python file shall implement a function “gen_command()”
that returns a test case generation string upon each call. A sample test case genera-
tion file is shown in Fig. 4.

IOI Project Report on Improving TPS (Task Preparation System) 181

from stress_test_gen_utils import *

def gen_command():
 return "gen1 80 {} {}".format(
 random.randint(1, 70),
 ustr(8, 9),
)

Fig. 4. A sample test case generation file for “tps stress”.

A test case generation format string; a general string used for producing test case ●●
generation strings. The string must be in the shape of a Python format string that
produces a test case generation string upon each evaluation. Below is the test
case generation format string equivalent to the sample test case generation file in
Fig. 4.

"gen1 80 {random.randint(1, 70)} {ustr(8, 9)}"

The second positional argument of the stress command is interpreted as a test case
generation file path if an ordinary file exists with the same path as that argument. Other-
wise, it will be interpreted as a test case generation format string.

> tps stress "my-solution.cpp" "gen1 80 {random.randint(1, 70)} {ustr(8, 9)}"
test-gen-f ile create[OK]
test-gen-f ile verify[OK]
generator compile[OK]
validator compile[OK]
model solution compile[OK]
stressed solution compile[OK]
checker compile[OK]
Round 1:
gen1 80 56 KjqdZ77ZT
gen[OK] val[OK] model[OK] stressed[OK] 0.016 check[OK] 1 [Correct]
Round 2:
gen1 80 7 4wjafMy_c
gen[OK] val[OK] model[OK] stressed[OK] 0.017 check[OK] 1 [Correct]
Round 3:
gen1 80 59 0d6Uo8i00
gen[OK] val[OK] model[OK] stressed[OK] 0.018 check[OK] 0 [Wrong Answer]
Hacked!
Round 4:
gen1 80 4 ISFYrwLk4
gen[OK] val[OK] model[OK] stressed[OK] 0.019 check[OK] 1 [Correct]
Round 5:
gen1 80 18 JClqyX58d
gen[OK] val[OK] model[OK] stressed[OK] 0.015 check[OK] 0 [Wrong Answer]
Hacked!
 ⋮

Fig. 3. A sample execution of “tps stress”.

K. Mirjalali, A. Behjati182

Adding the Command “init”

Creating the TPS directory structure manually for a new task can be error-prone and
cumbersome. However, this process has now been automated with the introduction of the
command “tps init”, which is similar to the widely known command “git init”. By
executing “tps init”, users can simply initialize a new task directory based on a speci-
fied task template. Currently, the directory “task-templates” in the TPS git repository
contains a ready task template named “default” which is specifically designed for IOI
batch tasks. However, it is also easy for users to create and use their own custom task
templates. Comprehensive documentation on task templates is available to provide guid-
ance in this regard7.

The process of initiating a new task using “tps init” generally starts with a user
interaction, prompting for a few task template parameters needed for building the cor-
rect directory structure. Such an interaction is depicted in Fig. 5 (user inputs are in
boldface and blue color for clarity). It initializes a task in a new directory “day1-book”
using the template “default” located at “tps/task-templates”. Additionally, the op-
tion “‑D has_java=false” defines the variable “has_java” as “false” and bypasses
prompting the user for this variable during the interaction.

7	https://github.com/ioi-2017/tps/blob/master/docs/task_templates.md

> tps init "day1-book" -T "tps/task-templates" -t "default" -D has_java=false
Running the instantiation script 'tps/task-templates/default/task-template-instantiate.sh'...
Template parameter 'short_name'...
Enter a value of type 'identif ier' for 'short_name':
book
Template parameter 'task_title' (Shown as heading of statement)...
Enter a value of type 'string' for 'task_title':
The Book
Template parameter 'has_grader' (Are solutions linked with graders)...
Enter a value of type 'bool' for 'has_grader':
y
Template parameter 'grader_function_name'...
Enter a value of type 'identif ier' for 'grader_function_name':
solve
Template parameter 'has_java' (Is Java language available for solutions)...
Parameter 'has_java' has predef ined value 'false'.
Template parameter 'has_public' (Is public data provided to the contestants)...
Enter a value of type 'bool' for 'has_public':
y
Template parameter 'statement_format' (Is statement in markdown or tex format)...
Enter a value among {md, tex, none} for 'statement_format':
md
Copying task template 'tps/task-templates/default' to the new directory 'day1-book'...
Done.
Entering the new directory 'day1-book'
Replacing '__TPARAM_HAS_JAVA__' with 'false' in content of f ile 'problem.json'...
Done.
Removing f iles related to language Java
Replacing '__TPARAM_SHORT_NAME__' with 'book' in all f ile contents under '.'...
 ⋮
The instantiation script execution f inished successfully.
Finished. Task directory 'day1-book' is ready.

Fig. 5. An example of interacting with “tps init”.

IOI Project Report on Improving TPS (Task Preparation System) 183

4. Conclusion

Despite the conclusion of this IOI project, the influx of bug reports, feature requests, and
improvements for TPS continues, as is typical for any live project. We hope to engage
more collaborators and contributors for the project in the future. Additionally, we are
interested in establishing correspondence with programming contest organizers to show-
case TPS, offer assistance in its usage, and gather feedback.

Acknowledgments

The members of the development team for this IOI project were Kian Mirjalali, Ali
Behjati, Peyman Jabbarzade, and Mahdi Shokri. We would like to thank Amir Keivan
Mohtashami, Amir Mohammad Dehghan, Ali Sharifi Zarchi, Mohammad Ali Abam,
Hamid Zarrabi-Zadeh, and ISC members, especially Jonathan Irvin Gunawan for their
useful comments on this project. We should also acknowledge Farid Ahmadov (Azerbai-
jan), Ali Sharifi Zarchi (Iran), Mohammad Mahdian (Iran), Mohammad Ali Abam (Iran),
Kresimir Malnar (Croatia), Madhavan Mukund (India), Eslam Wageed (Egypt), Musa
Alrefaya (Palestine), and Haris Gavranovic (Bosnia and Herzegovina) for their kind
testimonials and endorsements for this IOI project.

References

Forsgren, N., Humble, J., Kim, G. (2018). Accelerate: The Science of Lean Software and DevOps: Building and
Scaling High Performing Technology Organizations. IT Revolution Press.

Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M. (1997). Metrics and laws of software
evolution-the nineties view. In: Proc. 4th International Software Metrics Symposium (METRICS ‘97). pp.
20–32.

Mirjalali, K., Mohtashami, A.K., Roghani, M., Zarrabi-Zadeh, H. (2019). TPS (task preparation system): A tool
for developing tasks in programming contests. Olympiads in Informatics, 13, 209–215.

K. Mirjalali, A. Behjati184

K. Mirjalali is a software engineer with a PhD in Computer Engi-
neering Department from Sharif University of Technology. He was a
member of the International Technical Committee (ITC) in IOI 2015
and also a member of the Host Technical and Scientific Committees
(HTC, HSC) in IOI 2017. He was also an invited HSC member for
IOI 2019~2022, 2024. He won a silver medal in CEOI 2003 and be-
came a world-finalist in ICPC 2007. He has been a scientific commit-
tee member of Iranian National Olympiad in Informatics (INOI) since
2003, and ICPC in the west Asia region Tehran site since 2009.

A. Behjati is a Software Engineer at Douro Labs. He was a gold med-
alist in IOI 2015 and 2016. He also has been awarded a bronze medal
in ICPC 2019. He was Iran’s team deputy leader in IOI 2017 and an
invited HSC member in IOI 2020.

Olympiads in Informatics, 2024, Vol. 18, 185–193
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.15

185

The First Step Towards Increasing
Female Participants in the Olympiads
in Informatics in Japan

Rie Shigetomi YAMAGUCHI1,2 *, Tetsushi ITO2,3 †
1Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo,
Bunkyo, 113-8656, Tokyo, Japan
2Commitee, The Japanese Committee for International Olympiad in Informatics, 1-10-7-301,
Shibuya, Shibuya, 150-0002, Tokyo, Japan
3Graduate School of Science, Kyoto University, Kyoto, 606-8502, Kyoto, Japan
e-mail: yamaguchi.rie@i.u-tokyo.ac.jp, tetsushi.ito@ioi-jp.org

Abstract. In recent years, with women’s social advancement, we have been asked in various
locations to “increase the proportion of women in society.” Of course, the voices are particu-
larly loud in the field of information technology in which we are engaged. However, direct use
of female quotas, that is, blatantly lowering the threshold only for women, may lead to reverse
discrimination. On the other hand, since including women themselves may change the criteria for
selection, it is difficult to strike a balance between the two. In Japanese Olympiads in Informatics
(JOI), we have received similar questions from various quarters. We are all trying to think hard
about it. In this article, we shall explain the first step towards increasing the number of female
participants in JOI.

Keywords: Science Olympiad, diversity, female

1. Background: Status of Women in Informatics in Japan
The number of female students in informatics departments in the universities is a.	
only slightly more than 10 % in the 2016 edition of the “White Paper on IT Human
Resources” (IPA, 2016), although the exact number is unknown because the Basic
School Survey by the Ministry of Education, Culture, Sports, Science and Tech-
nology does not include the category of “informatics” (Science council of Japan,
2020). As of 2019, the percentage of female members of the Information Process-
ing Society of Japan (IPSJ) is approximately 12 % for student members and 7%
for regular members. Since higher education related to informatics is often linked

*Corresponding author.
†These authors contributed equally to this work. Contributing author.

R. Yamaguchi, T. Ito186

to engineering, and there are few role models for women, female students are
often stuck in following stereotyped idea

Engineering ≈ { male-oriented themes, few job opportunities for women }

before entering into the field of informatics.
The White Paper on Gender Equality (Gender Equality Bureau Cabinet Office, 2000)

points out that female students tend to avoid mathematics and science because of the
environment rather than gender differences in ability. While more than 60% of both male
and female elementary school students like mathematics and science, the percentage of
female junior high school students who like mathematics and science decreased by 13.6
and 27.8 points, respectively, which is more pronounced than that of male students. This
indicates that interest in mathematics and science declined for some reason between
elementary and junior high school.

In Japan, according to the survey of Programme for International Student Assess
ment (PISA) on the academic achievements of 15-years-old students, the scientific and
mathematical literacy of both male and female students are higher than that of the in-
ternational average (NIER, 2015). However, a high percentage of female students with
high mathematical literacy do not pursue fields in which they can make use of their
scientific and mathematical abilities such as IT. Rather, they tend to make safety-orient-
ed choices, and pursue fields in which they can obtain qualifications or licenses such as
medical schools.

Reflecting this, the percentage of women in science and engineering fields at uni
versities is low. In particular, the percentage of female researchers in the fields of en-
gineering and science, which account for the majority of researchers, is low at 12.6 %
(11.1 % in engineering and 14.6 % in science) for researchers in universities and other
research institutes and 8.1 % (5.6 % in engineering and 14.8 % in science) for research-
ers in companies. The percentage of corporate researchers was 8.1 % (5.6 % in engineer-
ing, 14.8 % in science), a low level.

Based on the results of the PISA survey, it is thought that these are not necessarily
due to a lack of girls’ academic ability in science and mathematics subjects, but are in-
fluenced by the environment, such as the trend of girls around them going on to higher
education, parents’ intentions, and the absence of role models, etc. It is necessary
to foster an environment that allows students to understand the connection between
their knowledge and the real world, and to provide an environment in which students
can understand the connection between what they have learned and the real world. In
addition, it is also important to provide support not only to students but also to their
families and guardians. An environment is needed that helps students understand the
connection between the knowledge they have learned and the real world, and to pro-
vide support not only to students but also to their families and guardians.

The First Step Towards Increasing Female Participants in the Olympiads ... 187

2. The Information Olympiad is a Programming Contest

The International Olympiad in Informatics (IOI) is one of the International Science
Olympiads for high school students and below. Japan currently sends delegations to
seven International Olympiads (mathematics, physics, chemistry, informatics, biology,
geography, and geology).

As with the other International Science Olympiads, the IOI is designed for students
up to high school age to identify and help develop problem-solving skills in mathematics
and information science, and to promote international exchange among athletes and edu-
cators from different countries. The IOI is an internationally well-known programming
contest, with approximately 90 countries participating each year. Up to four competitors
from each country are allowed to participate, and Japan has participated in four of these
contests every year.

The competition is an individual competition, with five hours per day to work on
three to four problems. The competition lasts for two days (twice), and the final total
score determines the ranking. There are partial points, and points are not awarded for
fastest solutions.

The problem-solving task is to devise an effective algorithm to solve a given prob
lem, write a program based on the algorithm, and compete on the correctness of the out-
put from the execution on the computer. Since there are limitations on memory usage
and execution time, high mathematical skills are required to design efficient algorithms
(Fig. 1).

The Japan Information Olympiad is a place to select members to be sent to the world
competition, and the number of participants is rapidly increasing from 978 in 2017 to

Fig. 1. The 2019 IOI in Azerbaijan (One computer per person on a desk in a large hall. The
athletes sit at each of these desks and compete for 5 hours per day for a total of 2 days. The

competition lasts for a total of two days with five hours of competition per day).

R. Yamaguchi, T. Ito188

1,720 in 2022. As shown in Fig. 2, the number of participants has been increasing despite
the Corona disaster, and both the number of female participants and the ratio of female
participants have increased significantly since 2021, partly due to efforts to increase the
number of female participants in particular.

3. Establishment of the European Girls’ Olympiad in Informatics

The European Girls’ Olympiad in Informatics (EGOI) (EGOI, 2023; EGOI, 2024) was
launched in 2021. The EGOI aims to encourage women to enter the field of informatics
by targeting only women, whereas the IOI has been held for both men and women. At
the time of its inception, this competition was intended to provide a platform for young
women to enjoy and deepen their interest in computer science.

The basic rules themselves are almost the same as those of the IOI, with the dif-
ference that, as the name suggests, one of the eligibility criteria is gender, and only
women can participate. In addition, the number of participating countries is limited to
Europe, and countries outside Europe, such as Japan and the United States, are allowed
to participate only when there is room for more participants. On the other hand, this is
the only programming contest for women on a global scale, making it an international
”Women’s” Information Olympiad to determine the actual world’s best.

Japan has been sending its delegation to the EGOI since 2021, with online participa
tion in 2021 due to the Corona disaster (Fig. 3), but in 2022, a delegation was sent to
Turkey, where delegation participated on-site for the first time (Fig. 4). In 2021, Japan
established the Japanese Olympiad in Informatics for Girls (JOIG), which is a program-
ming contest for female high school students and younger. From 2022, Step 1 is the
same as the Japan Olympiad in Informatics First Preliminary Round, but Step 2 (JOIG
Main Round) and Step 3 (JOIG Spring Training) are open to female participants only,
and the contests are conducted.

Fig. 2. Number of participants in the Japan Information Olympiad qualifiers and percentage
of female participants (prepared by the Japan Committee for the Information Olympiad).

The First Step Towards Increasing Female Participants in the Olympiads ... 189

The existence of such competitions for women has encouraged more active partic
ipation by female contestants, and the participation rate of women has increased rapidly
since 2021. We believe that participation in competitions for women, as well as the
existence of international competitions, has become a clear goal for female students par-
ticipating in the Information Olympiad. In conjunction with this, introductory courses
for women have been held, and online programming courses (JOI introductory courses)
not limited to women have been held regularly to create a framework in which interested
students can more easily participate.

4. Women Role Models in Informatics

As described in the chapter “Status of Women in Informatics,” there are few role mod-
els for women in informatics, and we started a role model course in October 2021. This
lecture is recorded on video in advance and distributed on YouTube (Japanese Commit-
tee for the IOI, 2024).

Fig. 3. EGOI 2021 Switzerland (online participation from hotels in Japan).

Fig. 4. EGOI 2022 Turkey (Left: EGOI human script by participating athletes, Right:
mosque experience).

R. Yamaguchi, T. Ito190

The interviewees are women who use programming and related technologies and
knowledge. We interviewed these women about their work and student days, and asked
them why they decided to pursue a career in the information field. The contents of this
report are also published in book form as shown in Fig. 5, and sent to high schools
throughout Japan.

All of the stories are very interesting we have been able to hear from people in the
information field who are now making positive efforts despite having had to face set-
backs at various points in their careers. For example, a person who once found a job
that he had dreamed of since high school but returned to university to study informatics
again, or a person who came from an experimental research background but found that
the informatics field, which does not require midnight experiments, was the best choice
for conducting research and working while raising a child. Many of the stories convey
the advantages of working in the information field.

5. Manga Booklet for Female Participants

Many people are inspired by popular manga and TV dramas to pursue careers in the
information field. As a side note, the year after the broadcast of Dragon Zakura, the ratio
of entrance examinations for the University of Tokyo increased significantly, and after
the publication of Animal Doctor, Dobutsu-no-Oishasan, the number of students who
aim to become veterinarians at Hokkaido University increased. Manga and TV dramas

Fig. 5. “Ask a senior colleague! The road map to becoming a programmer Vol. 1”
(booklet of interviews from the Role Models course).

The First Step Towards Increasing Female Participants in the Olympiads ... 191

have been shown to have a direct impact on the future dreams of high school students,
especially in Japan.

The reason why more female students aspire to become doctors or pharmacists than
those in the information-related fields is not only because of their confidence in their
qualifications, but also because they can easily visualize their professions and student
life through manga and dramas. On the other hand, women in the information-related
fields who are portrayed in manga and TV dramas are sometimes treated as “geeks,”
and it is difficult to imagine them aiming for such positions in a cheerful and attractive
manner.

Although we would like to create a more grandiose manga, due to budget and re-
source constraints, we decided to start small story manga, and have already published
three issues of a manga booklet (Fig. 7). We have already published three issues (Fig. 6).
We are not only sending these to high schools nationwide, but are also sending a large
number of copies to girls’ schools to encourage their participation.

6. We Need to Advertise the Whiteness of the Information Field

The Information Olympiad has never refused the participation of women, but the par
ticipation rate has increased significantly in recent years after a long period of slow
growth. The main reasons for this increase are the existence of a clear international

Fig. 6. Cover of the third manga booklet (the story of two girls in their first year of high
school, who participated in the course and aimed to participate in Japanese Olympiad in

Informatics).

R. Yamaguchi, T. Ito192

competition, EGOI, and the establishment of a women’s division in the national com
petition. At the same time, there may be a slight improvement in the understanding of
society as pointed out by the Science Council of Japan and other organizations. One
of the most impressive stories in the Role Model Lecture was that many people talked
about the “ease of returning to work after childbirth” in the information-related field.
If this kind of understanding is promoted in society as a whole, it will help program
mers escape from the black image of simple work and show that all workplaces are
white.

7. After a Young Girl was Even Slightly Interested

Once the various promotions reach young women and non-binary people, the next chal-
lenge is how to get them to settle into our field. The Japan Information Olympiad As-
sociation has been trying to establish this by offering introductory courses, but it is still
not enough. Unfortunately, Japan has long been said to be a country where women’s
participation in society is weak (OECD, 2023). There are various reasons for this, but in
particular, it is said that there is a large generation gap in science education for women.

We believe that there are various factors that hinder the young generation from tak-
ing an interest in science. In order to solve this problem, Japan should study the methods
used in other parts of the world. Japan has a tendency to favor uniformity in education,
which makes it difficult for new types of education, such as information education, to
make inroads. We have high hopes that the Information Olympiad will help to break
through the above problems, as the name of the Olympiad gives a clear image of the
activities that will follow.

The Information Olympiad is a part of primary and secondary education that is
closely related to the family and society, and there is a need to turn the cycle of human
resource development into a virtuous circle through various publicity activities.

References

IPA (2016). Information-technology promotion agency (IPA), IT human resource development division: IT
Human Resource White Paper 2016, Preparedness to step out into diverse cultures -Hurry up to cope with
digital transformation (in Japanese) (27 April, 2016)

Science council of Japan (2020). Report of the Science Council of Japan: Current status and challenges of gen-
der balance in science and engineering (in Japanese) (5 June, 2020)

Gender Equality Bureau Cabinet Office (2000). The cabinet office, gender equality bureau cabinet office: White
Paper on Gender Equality 2000.
https://www.gender.go.jp/english_contents/about_danjo/whitepaper/plan2000/2000/3.html

NIER (2015). National institute for educational policy research (NIER): The organisation for economic co-
operation and development (OECD) PISA 2015 survey.
https://www.nier.go.jp/kokusai/pisa/index.html#PISA2015

EGOI (2023). European Girls’ Olympiad in Informatics 2023. Retrived at 31 May, 2024:
https://egoi23.se/

EGOI (2024). European Girls’ Olympiad in Informatics 2024. Retrived at 31 May, 2024:
https://egoi2024.nl/

The First Step Towards Increasing Female Participants in the Olympiads ... 193

Japanese Commitee for the IOI (2024). Japanese Commitee for The International Olympiad in Informatics:
Role model course (in Japanese). Retrived at 31 May, 2024 (2022):
https://joi.ioi-jp.org/support-message

OECD (2023). Organisation for Economic Cooperation and Development: Joining Forces for Gender Equality
What is holding us back? Retrived at 31 May, 2024 (2023):
https://www.oecd.org/japan/Gender2023-JPN-En.pdf

R. Yamaguchi, Associate Professor of Graduate School of Informa-
tion Science and Technology, The University of Tokyo. She received
Master degree in mathematics from Tsuda College, now Tsuda Univer-
sity, in 2003, and PhD degree in Information Science and Technology
from the University of Tokyo in 2006. She joined Information Security
Center, National Institute of Advanced Industrial Science and Tech-
nology, AIST, in 2006 and concurrently serve in National Information
Security Center at Cabinet Secretariat, now National center of Infor-
mation Incident readiness and Strategy for Cybersecurity from 2007 to
2011. Current position since 2013.

T. Ito is an associate professor of Graduate School of Science at Kyoto
University since 2009. He earned a Ph.D. (Mathematical Sciences)
from the University of Tokyo in 2003. His research interest is in num-
ber theory, algebraic geometry and related areas. He was a participant
of IOI in 1994 and 1995. He is now a board member of the Japanese
Committee for International Olympiad in Informatics.

Olympiads in Informatics, 2024, Vol. 18, 195–203
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.16

195

The Official IOI Website:
The Good, the Bad and the Ugly

Araz YUSUBOV
School of IT and Engineering, ADA University, Baku, Azerbaijan
e-mail: ayusubov@ada.edu.az

Abstract. This paper is an extended report from one of the discussion groups at the 35th Interna-
tional Olympiad in Informatics (IOI) in Hungary. It looks back at the evolution of the official IOI
website, provides an overview of the current web resources and reflection on their strengths and
weaknesses. The report also proposes short-term and long-term suggestions for further develop-
ment of the IOI web services.

Keywords: IOI, website, web services, customer journey, sitemap, social media.

Introduction

It is a longstanding tradition now that every International Olympiad in Informatics (IOI)
program includes group discussions. The IOI community members are called to propose
the topics and sometimes the resulting discussion reports lead to proposals for changes
and new procedures, for example, the recent introduction of the Honorable Mention
award (Jovanov and Stankov, 2020).

One of the seven group discussions at the IOI 2023 in Hungary was “Face of the
IOI” with the question posed as “What can be improved on the IOI official website
and other online infrastructure (country websites, social media, etc.)?” The motivation
for the discussion was the anecdotal evidence of difficulties in finding the required
information as some of the materials are not immediately available through the current
official IOI website. For example, in 2022 there were no submissions for the IOI call
for projects, but apparently the relevant announcement was not prominently visible and
easily accessible at the website.

The goal of this report is to expand on the discussions of this workshop with a hope
that the short-term and long-term recommendations will be taken on board for further
improvement of the IOI web services.

A. Yusubov196

1. The Look Back

The Wayback Machine1 holds the snapshot records for the official IOI website hosted
at https://ioinformatics.org/ as old as back from 5 October 2002. The second
version of the website was launched around 26 June 2005 and credits Don Piele2, an IOI
pioneer from the USA, who sadly passed away in 2014 (Donald Piele Obituary, 2014),
as the webmaster. The longest serving third version was created in January 2008, as it is
apparent from the page source of the homepage, by Scott Greenlay of the University of
Waterloo, who at the time worked with Troy Vasiga3 of Team Canada. Since 2012, the
website has been updated by Martins Opmanis4, an IOI veteran from Latvia. He con-
tinues maintaining this version, which is hosted at https://ioi.te.lv/, in parallel
with the official IOI website after the introduction of the newest version in August 2018.
This website, also accessible through https://history.ioinformatics.org, is still
popular with 600+ peak monthly visits increasing every year (650 in August 2019, 702
in September and 724 in December 2020, 806 in June 2021 and 936 in August 2022).

1	 The Wayback Machine is an initiative of the Internet Archive non-profit, building a digital library of Inter-
net sites and other cultural artifacts in digital form. https://web.archive.org/

2	 IOI Stats – United States of America – People – Donald Theodore Piele.
https://stats.ioinformatics.org/people/4185

3	 IOI Stats – Canada – People – Troy Vasiga. https://stats.ioinformatics.org/people/3254
4	 IOI Stats – Latvia – People – Mārtiņš Opmanis. https://stats.ioinformatics.org/people/2645

Fig. 1. Snapshots of the IOI website homepage (from left to right)
in 1998 and 2002 (top row), in 2005 and 2008 (bottom row).

The Official IOI Website: The Good, the Bad and the Ugly 197

There is another website hosted at https://olympiads.win.tue.nl/ioi/ and
maintained at the time by Tom Verhoeff5 of Eindhoven University of Technology (TU/e),
which predates the current IOI website with an earliest snapshot from 5 December 1998.
This site is still up and is an invaluable resource if you want to deep-dive into the history
of IOI, the times when the diskettes were used to pass the solutions.

One more website is the IOI Statistics website with the earliest Wayback Machine
snapshot from April 2014, hosted at https://stats.ioinformatics.org/. Argu-
ably the most popular IOI website that provides convenient access to comprehensive
contestant data, it is moderated by colleagues from Latvia, Eduard Kalinicenko6, Martins
Opmanis and Oleg Oshmyan7.

1.1. Mailing Lists

As per the Final Report (Heyderhoff et al., 1992) for the IOI 1992 in Bonn, Germany, one
of the decisions was “to install an electronic discussion list, in the form of a list server, as
a means of communication among the participating countries in the period between two
Olympiads.” The proposal came from the Hungary and the USA delegations, and as it is
apparent from the domain name (inf.bme.hu) the mailing list was hosted by the Budapest
University of Technology and Economics. In October 1997, it was replaced by the new
IOI-list at TU/e with more specific mailing lists added over the years.

Currently the International Technical Committee (ITC) maintains the mailing lists
for the IOI General Assembly, announcements, discussions, for all three international
committees, and for national/regional training camps8.

1.2. Social Media Channels

Back in August 2019, the IOI pages were launched at major social media channels i.e.
Facebook, X (formerly Twitter). Instagram and YouTube. Apparently all relevant social
media profiles are associated with the IOI Secretariat email. They are maintained by
Eslam Wageed9 of Team Egypt.

5	 IOI Stats – Netherlands – People – Tom Verhoeff. https://stats.ioinformatics.org/people/3553
6	 IOI Stats – Latvia – People – Eduards Kaļiņičenko. https://stats.ioinformatics.org/people/681
7	 IOI Stats – Latvia – People – Oļegs Ošmjans. https://stats.ioinformatics.org/people/1731
8	 IOI Mailing Lists. https://lists.ioinformatics.org/
9	 IOI Stats – Egypt – People – Eslam Wageed. https://stats.ioinformatics.org/people/3269

A. Yusubov198

2. The Current State

The interest in “a redesign of the look and feel” of the official IOI website had been
expressed as early as in 2011 (International Committee, 2011). In August 2018, a proj-
ect led by Bojan Kostadinov10 of Team North Macedonia concluded with the launch of
the new version of the website. There was an unfortunate miscommunication during
the unintentionally abrupt transition to the new version of the website, as it is apparent
from discussions at the IOI 2018 General Assembly (IOI, 2018) and in the International
Committee (International Committee, 2019) during the IOI 2019. The intention of the
redesign was primarily to change the look and feel while retaining all the information.

The current IOI website uses Bootstrap, a popular free, open-source front-end de-
velopment framework for building websites with responsive design, easily viewable
primarily on mobile devices. The new design has also greater potential for more visual,
media-rich content. However, this potential still is to be used fully, as initially the pri-
mary intent was only to transfer the existing content.

While having a powerful mission and an inspiring imagery IOI still to more proac-
tively engage new members to join the IOI countries, new long-term sponsors to sus-
tainably support the organization and new nations to host future IOI contests. The IOI
website has an unused potential to help with these.

10	IOI Stats – Macedonia – People – Bojan Kostadinov. https://stats.ioinformatics.org/people/4451

Macedonia concluded with the launch of the new version of the website. There was an
unfortunate miscommunication during the unintentionally abrupt transition to the new version of
the website, as it is apparent from discussions at the IOI 2018 General Assembly [14] and in the
International Committee [15] during the IOI 2019. The intention of the redesign was primarily to
change the look and feel while retaining all the information.

Figure 2. The current sitemap of the official IOI website.

The current IOI website uses Bootstrap, a popular free, open-source front-end development
framework for building websites with responsive design, easily viewable primarily on mobile
devices. The new design has also greater potential for more visual, media-rich content.
However, this potential still is to be used fully, as initially the primary intent was only to transfer
the existing content.

While having a powerful mission and an inspiring imagery IOI still to more proactively engage
new members to join the IOI countries, new long-term sponsors to sustainably support the
organization and new nations to host future IOI contests. The IOI website has an unused
potential to help with these.

In addition to the look and feel changes, over the years there were suggestions for the IOI
website to go through structural redesign. For example, a call to address the concerns about
“some information on the website [being] hard to find,” was voiced as early as back in 2009 [16].

It is apparent from the sitemap (Figure 2) that there are useful resources that are not easily
accessible or not permanently available (denoted by dashed borders), such as getting-started
guideline or recommended readings for the new contestants or even contacting details, which
are buried as links at the bottom of the homepage with no alternative paths to them.

Home

Statistics
(external)

Editions /
Contests Syllabus

Videos

Organization

Basic info
Assembly

Committees
Members
IOI Allies
Awards

Regulations
Code of Conduct

Contact

News
...

Journal

Board
Content

Paper Index
Conference

Contestants

Guide
Books

Fig. 2. The current sitemap of the official IOI website.

The Official IOI Website: The Good, the Bad and the Ugly 199

In addition to the look and feel changes, over the years there were suggestions for
the IOI website to go through structural redesign. For example, a call to address the con-
cerns about “some information on the website [being] hard to find,” was voiced as early
as back in 2009 (International Committee, 2009).

It is apparent from the sitemap (Fig. 2) that there are useful resources that are not eas-
ily accessible or not permanently available (denoted by dashed borders), such as getting-
started guideline or recommended readings for the new contestants or even contacting
details, which are buried as links at the bottom of the homepage with no alternative paths
to them.

This need for structural redesign was also the main motivation behind the “Face of
the IOI” workshop at the IOI 2023. The following section summarizes the discussion
points and outlines potential recommendations.

3. The Way Forward

In the early 2000’s many organizations went through strategic rethinking of their web
services and moving out from an informational, archival view towards using them as a
means for engagement and communication.

In 2003, the author led a country phase for the multi-million pound British Council
project to revamp its web strategy (Telecompaper, 2003). The news articles back then
were mostly focused on how this organization that operates in 110 countries will achieve
almost an immediate return on investment and 1.3 million GBP savings right the next
year after the completion of the project by centralizing and harmonizing its infrastruc-
ture. However, the success of the project was also defined by the professional central
team, which put together a clear vision for the goal of every web service, clear standards
for customer-centered website structure, web page templates to be used for predefined
page types, comprehensive artistic and technical guidelines for developing textual and
media content.

The central vision was that any content should eventually serve the goal of bring-
ing the visitor in contact with the organization for procuring its services or products.
Understanding potential visitors and building a customer journey map is crucial for its
implementation. A customer journey is broadly described (Lemon and Verhoeff, 2016)
as the flow of iterative and dynamic customer experience process from pre-purchase to
purchase and post-purchase, the interactions that occur before, during, or after the cus-
tomer experiences a product or service.

Ultimately the sitemap will reflect the customer journeys with an aim to minimize the
effort for reaching the required destination, for example the web page with the sought
information. This also informs the requirements towards the visual content that is meant
to be engaging, showing people in action, focusing on personal experiences, as well as
towards the textual content that should be clear and direct with calls to action, formal
and friendly with a readable structure.

A. Yusubov200

Short Term Reflections

The group went through an exercise of taking a step back for a fresh look at the IOI
website from the perspective of what are the main groups of visitors and what is
their primary intention. Having access to website statistics (e.g. visitor data, search
phrases) and surveying a larger number of people could help with potentially more
visitor groups identified.

Quick examination shows that answers to a number of the inquiries listed in Table 1
are not easily accessible. Ironically, to have a laconic answer to the simple question
about what the IOI is, one now needs to navigate to the IOI regulations, while many
country websites include immediately visible few standard paragraphs about the IOI.

The IOI Regulations (IOI, n.d.) list “To encourage countries to organise a future IOI
in their country” among the five “main objectives to be accomplished by the IOI”, how-
ever there is not much to accommodate related inquiries at the website.

Table 1
The list of identified visitor groups and their primary intentions

(available and  – easy to find,  – not easy to find,  – not available)

Who are they? What do they want? Call to action

1. School students,
interested

What is IOI? What are the costs? What my friend is doing
there? What are the benefits?

Learn about us 

What is the organization, committees? Learn about us 
How to join IOI? Is my country there? Join us 

What are the procedures? Learn about us 
How to prepare for the competition? What are the resources? Join us 

2. School students,
returning

Learn about statistics. Learn about us 
Learn about future IOI. Join us 

Is IOI safe? What is the safety advice for this year? Join us 

3. Parents / teachers of
the above 1 or 2

– same as above 1 or 2.

4. Companies Hire the top talent. Grow with us 

Sponsor the next IOI. Support us 

5. Universities Recruit the top talent. Grow with us 

Research competitive programming. Grow with us 

Participate at the IOI conference. Grow with us 

6. Potential hosts, e.g.
country government

How to become a host? e.g. processes, steps, contacts Support us 

7. Other Olympiads Compare processes and procedures Learn about us 

8. Activists, e.g.
disability, gender

Does IOI support their cause? Learn about us 

9. Larger IOI
community

How to submit a project? Grow with us 

How to submit a task? Grow with us 

How to submit an article (to the IOI conference)? Grow with us 

The Official IOI Website: The Good, the Bad and the Ugly 201

Another objective is “to foster friendly international relationships among computer
scientists and informatics educators.” IOI Conference and Journal are very much speak-
ing to this objective. Researching competitive programming can be further promoted, as
there are very few efforts to analyze the competition data (Hasanov et al., 2021). Pro-
moting the IOI Conference more outside the IOI community, perhaps through partner-
ships with relevant global professional societies, may also increase the number of guest
participants from potential new countries.

The group proposed a second exercise about checking if those visitor groups eas-
ily land at the IOI website by searching for related keywords e.g. IOI, programming/
coding/computing/algorithmic competition/contest/award for high-school kids/children/
students. A quick examination showed that for a direct search for “IOI” Google recom-
mends the IOI official website and Wikipedia article on top of the search results, ac-
companying it with references to the I.O.I Korean pop music girls’ band. The search for
variations of the “programming competition for high-school kids” returns the reference
to IOI among top nine results, except when “award” is used.

Long Term Reflections

The need for “a centralized content management system for building official IOI web-
sites” every year was already noted in conclusions of the IOI 2019 team’s report (Yusub-
ov et al., 2022) as a way to “save host team’s efforts for setting up this important com-
munication channel, resolve the issue of archiving the historical content, and ensure a
consistent look and feel.”

The idea is to arrange a centralized hosting for the official IOI main website, as well
as IOI editions. Many global organizations or conferences use this approach. A good
example is the ACM Celebration of Women in Computing womENcourage™ websites
(womENcourage, 2020). The system uses the centrally hosted WordPress platform with
a generic ACM template, which provides some degree of flexibility for customization.
Each year, the global administrator creates a new site with default structure and content
for the upcoming edition. The local host gets administrator access with the possibility of
adding local editors.

There are many immediate benefits of this approach:
Helping hosts: hosts will not have to think about arranging the web hosting, choos-●●
ing the content management system, etc. they will immediately focus on adding the
content and managing the communications.
Consistency: using a centralized general template, some preset color schemes and ●●
graphical design themes will help to build a strong identity.
Harmonization: some content can be reused between the websites, e.g. news about ●●
this year’s IOI can automatically appear at the main IOI website.
Auto-archiving: past IOI edition websites will not face the danger of being lost, as ●●
well as not rely on individual initiatives for ensuring proper archiving.

The group also discussed potential risks that need to be considered and mitigated:
A considerable effort will need to be put to complete the project with the technical ●●
infrastructure and processes successfully developed.

A. Yusubov202

The assigned IOI organizational structure will have to handle the additional re-●●
sponsibility of maintaining the centralized hosting.
There may be a need for a special functionality that will exceed the limitations of ●●
the common template or the platform.
A host may have wishes dictated by local arrangements or specific requirements ●●
that will conflict with the central arrangements.

Further Thoughts

Domain name reservation is another matter to keep an eye on. Many organizations make
sure to secure their names (e.g. ioiXXXX, ioinformatics) on all major general and country
top-level domain names. Perhaps, this can also be centralized.

Once the centralized approach is piloted for the websites, it can be used also for
media hosting/social media channels. For example, ACM gives limited access for con-
ference organizers to the official ACM YouTube channel (YouTube, n.d.) for uploading
their video material. Many videos are popular years after an IOI edition is over. For
example, in 2023, the Team USA interview at IOI 2019 got up to 1,177 views monthly.
Perhaps, if relevant agreements and licensing is arranged, monetization of these videos
(and other media) may open a new income stream in the IOI budget.

Conclusion

There is a big potential of the official IOI website for turning into a powerful engagement
tool that will help with achieving the organizational goals. The previous section men-
tions a number of recommendations for further improvement of the IOI web services.

A prerequisite for a successful implementation of those is having accessible web
statistics from simple visit and page view numbers to website visitor journey maps, as
the famous quote says “you can’t manage what you don’t measure.” Above all, as people
and procedures are considered among major components of any information system
(Bourgeois, 2014), it is important to establish clear procedures for what the main opera-
tions (e.g. uploading the contest tasks in a week after the IOI is closed) are and who the
responsible person is for each operation.

Acknowledgements

The author thanks the workshop participants, Sandra Schumann11, Team Estonia lead-
er, and Steven Halim12, Team Singapore leader, for their active contribution to the
initial discussions. Martins Opmanis and Troy Vasiga were very kind to share some
historical data. The author is also grateful to Martins Opmanis for reviewing the draft
of the paper.

11	 IOI Stats – Estonia – People – Sandra Schumann. https://stats.ioinformatics.org/people/6520
12	 IOI Stats – Singapore – People – Steven Halim. https://stats.ioinformatics.org/people/3313

The Official IOI Website: The Good, the Bad and the Ugly 203

References

Bourgeois, D.T. (2014). Information Systems for Business and Beyond.
Donald Piele Obituary (2014). Accessed 27 June 2024, https://obits.columbian.com/us/obituaries/

columbian/name/donald-piele-obituary?id=22685778

Hasanov, J., Gadirli, H., Bagiyev, A. (2021). On Using Real-Time and Post-Contest Data to Improve the Contest
Organization, Technical/Scientific Procedures and Build an Efficient Contestant Preparation Strategy. Olym-
piads in Informatics, 2022, 16, 23–36. https://ioinformatics.org/journal/v15_2021_23_36.pdf

Heyderhoff, P. (Editor), Hein, H.-W., Krückeberg, F., Miklitz, G., Widmayer, P. (1992). Final Report IOI 1992
Bonn / Germany https://olympiads.win.tue.nl/ioi/ioi92/report.html

International Committee (2009). Minutes of the Meetings held in Plovdiv, Bulgaria / 8–15 August, 2009.
Accessed 27 June 2024, https://ioinformatics.org/minutes/ic/ic-2009-aug-minutes.pdf

International Committee (2011). Minutes of the Meetings held in Pattaya, Thailand / 17–20 February, 2011.
https://ioinformatics.org/minutes/ic/ic-2011-feb-minutes.pdf

International Committee (2019). Minutes for the Meetings held in Baku, Azerbaijan / 4–11 August 2019.
https://ioinformatics.org/minutes/ic/ic-2019-aug-minutes.pdf

IOI (n.d.). Regulations. Accessed 27 June 2024, https://ioinformatics.org/page/regulations/
IOI (2018). IOI 2018 General Assembly Minutes. Tsukuba, Japan September 1–8, 2018 Convention Hall 300.

Accessed 27 June 2024, https://ioinformatics.org/files/ioi2018minutes.pdf
Jovanov, M., Stankov, E. (2020). Introduction of “Honorable Mention” Award at the International Olympiad in

Informatics. Olympiads in Informatics, 2020, 14, 87–104.
https://ioinformatics.org/journal/v14_2020_87_104.pdf

Lemon, K.N., Verhoeff, P.C. (2016). Understanding customer experience throughout the customer journey.
Journal of Marketing, 80(6), 69–96. http://www.jstor.org/stable/44134974

Telecompaper (2003). British Council invests in Web strategy revamp (11 December 2003). https://www.
telecompaper.com/news/british-council-invests-in-web-strategy-revamp--369458

womENcourage (2020). ACM Celebration of Women in Computing: womENcourage 2020. 24–27 September
2020, Baku, Azerbaijan. Accessed 27 June 2024, https://womencourage.acm.org/2020

YouTube (n.d.). YouTube – Association for Computing Machinery (ACM). Accessed 27 June 2024,
https://www.youtube.com/@theofficialacm

Yusubov, A., Ahmadli, F., Hasanov, J. (2022). Hosting IOI 2019 Azerbaijan: Back to the Future. Olympiads in
Informatics, 2022, 16, 173–195. https://ioinformatics.org/journal/v16_2022_173_195.pdf

A. Yusubov is an Assistant Professor of Computer and Information
Sciences in the School of IT and Engineering at ADA University. Dr.
Yusubov worked in academia, industry and international organiza-
tions, led and contributed to various educational projects, including
the national FIRST LEGO League robotics tournaments for school
children. He is an ACM Senior Member and the founding member of
the Azerbaijan ACM/ACM-W Chapter. Dr. Yusubov has been an IC
member for the period of 2017–2020, elected again for 2021–2024,
was local Host Coordination Committee Manager during IOI 2019.
http://stats.ioinformatics.org/people/6418

About Journal and Instructions to Authors

OLYMPIADS IN INFORMATICS is a peer-reviewed scholarly journal that provides
an international forum for presenting research and developments in the specific scope
of teaching and learning informatics through olympiads and other competitions. The
journal is focused on the research and practice of professionals who are working in the
field of teaching informatics to talented student. OLYMPIADS IN INFORMATICS is
published annually (in the summer).

The format for the journal follows the tracks:
the primary section of the journal focuses on research●●
the second report section is devoted to sharing experiences of countries in infor-●●
matics olympiads
the last smallest section presents books reviews or other information●●

The journal is closely connected to the scientific conference annually organized dur-
ing the International Olympiad in Informatics (IOI).

Abstracting/Indexing

OLYMPIADS IN INFORMATICS is abstracted/indexed by:
Cabell Publishing●●
Central and Eastern European Online Library (CEEOL)●●
EBSCO●●
Educational Research Abstracts (ERA)●●
ERIC●●
InfoBase Index●●
INSPEC●●
SCOPUS ●● – Elsevier Bibliographic Databases

Submission of Manuscripts

All research papers submitted for publication in this journal must contain original un-
published work and must not have been submitted for publication elsewhere. Any manu-
script which does not conform to the requirements will be returned.

The journal language is English. No formal limit is placed on the length of a paper,
but the editors may recommend the shortening of a long paper.

Each paper submitted for the journal should be prepared according to the following
structure:

concise and informative title●●
full names and affiliations of all authors, including e-mail addresses●●

informative abstract of 70–150 words●●
list of relevant keywords●●
full text of the paper●●
list of references●●
biographic information about the author(s) including photography●●

All illustrations should be numbered consecutively and supplied with captions. They
must fit on a 124 × 194 mm sheet of paper, including the title.

The references cited in the text should be indicated in brackets:
for one author – (Johnson, 1999)●●
for two authors – (Johnson and Peterson, 2002)●●
for three or more authors – (Johnson ●● et al., 2002)
the page number can be indicated as (Hubwieser, 2001, p. 25)●●

The list of references should be presented at the end of the paper in alphabetic order.
Papers by the same author(s) in the same year should be distinguished by the letters a, b,
etc. Only Latin characters should be used in references.

Please adhere closely to the following format in the list of references:
For books:

Hubwieser, P. (2001). Didaktik der Informatik. Springer-Verlag, Berlin.
Schwartz, J.E., Beichner, R.J. (1999). Essentials of Educational Technology. Allyn

and Bacon, Boston.
For contribution to collective works:

Batissta, M.T., Clements, D.H. (2000). Mathematics curriculum development as a
scientific endeavor. In: Kelly, A.E., Lesh, R.A. (Eds.), Handbook of Research De-
sign in Mathematics and Science Education. Lawrence Erlbaum Associates Pub.,
London, 737–760.

Plomp, T., Reinen, I.J. (1996). Computer literacy. In: Plomp, T., Ely, A.D. (Eds.), In-
ternational Encyclopedia for Educational Technology. Pergamon Press, London,
626–630.

For journal papers:
McCormick, R. (1992). Curriculum development and new information technolo-

gy. Journal of Information Technology for Teacher Education, 1(1), 23–49.
http://rice.edn.deakin.edu.au/archives/JITTE/j113.htm

Burton, B.A. (2010). Encouraging algorithmic thinking without a computer. Olympi-
ads in Informatics, 4, 3–14.

For documents on Internet:
IOI (2008). International Olympiads in Informatics

http://www.IOInformatics.org/

Hassinen, P., Elomaa, J., Ronkko, J., Halme, J., Hodju, P. (1999). Neural Networks
Tool – Nenet (Version 1.1).
http://koti.mbnet.fi/~phodju/nenet/Nenet/General.html

Authors must submit electronic versions of manuscripts in PDF to the editors. The
manuscripts should conform all the requirements above.

If a paper is accepted for publication, the authors will be asked for a computerpro-
cessed text of the final version of the paper, supplemented with illustrations and tables,
prepared as a Microsoft Word or LaTeX document. The illustrations are to be presented
in TIF, WMF, BMP, PCX or PNG formats (the resolution of point graphics pictures is
300 dots per inch).

Contacts for communication

Valentina Dagienė
Vilnius University
Akademijos str. 4, LT-08663 Vilnius, Lithuania
Phone: +370 5 2109 732
Fax: +370 52 729 209
E-mail: valentina.dagiene@mif.vu.lt

Internet Address

All the information about the journal can be found at:

https://ioinformatics.org/page/ioi-journal

Olympiads
in Informatics
Volume 18, 2024

Foreword i
G. AUDRITO, S. CAPECCHI, M. G. CIOBANU, L. LAURA

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students

1

M. KAYKOBAD
Popularizing Science and Science Competitions

25

E. LEE, T. REIZIN, F.E. WU, F.E. WU
Trends on Returning Contestants and Geography at the International Olympiad in Informatics

33

M. MAMMADLI, N. MAMMADLI, J. HASANOV
Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests

51

K. MANEV
Preparing of Youngest Students for Participation in Programming Contests

63

P.S. PANKOV, E.J. BAYALIEVA
Olympiads without Words

81

F. STEINERT, J. KUMMER, M. LANDMAN, L. LEHNER
From Concept to Code: A Two-Day Workshop for Secondary Students on Computational
Thinking and Programming

89
A. TANEJA, A. KOTHARI

Algorithmic Problem-Solving Advancements: A Comprehensive Exploration across
Diverse Domains

101
T. VERHOEFF

Staying DRY with OO and FP

113
E.M. WAGEED, Y.S. ELGAMAL, O.M. ISMAIL, M.H. ABDRABOU

The Impact of Non-Formal Educational Approach on the Academic Performance and
Employability of Engineering and Computer Science Students

129

REPORTS
M. ALREFAYA, S. ALHAJAJLA

Palestine at the International Olympiad in Informatics: Advancing Computational
Thinking Among K-12 Students

147

M. DOLINSKY
High School Programming Olympiads in Gomel Region

155

H.E. DUEÑAS OROZCO, T. AVALOS PIÑON
omegaUp: A Decade of Growth and Impact in Latin American Coding Education

167

K. MIRJALALI, A. BEHJATI
IOI Project Report on Improving TPS (Task Preparation System)

175

R.S. YAMAGUCHI, T. ITO
The First Step Towards Increasing Female Participants in the Olympiads in Informatics in Japan

185

A. YUSUBOV
The Official IOI Website: The Good, the Bad and the Ugly

195

Publisher office: Vilnius University
 Akademijos str. 4, LT-08663 Vilnius, Lithuania
 July, 2024

Olympiads Olympiads
in Informaticsin Informatics18

IOI
International Olympiad in Informatics

I S S N 1 8 2 2 - 7 7 3 2

Olympiads
in Informatics
Volume 18, 2024

O
lym

piads in Inform
atics V

olum
e 18, 2024

Olympiads
in Informatics
Volume 18, 2024

Foreword i
G. AUDRITO, S. CAPECCHI, M. G. CIOBANU, L. LAURA

Giochi di Fibonacci Year II: Competitive Blocks Programming for Young Students

1

M. KAYKOBAD
Popularizing Science and Science Competitions

25

E. LEE, T. REIZIN, F.E. WU, F.E. WU
Trends on Returning Contestants and Geography at the International Olympiad in Informatics

33

M. MAMMADLI, N. MAMMADLI, J. HASANOV
Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests

51

K. MANEV
Preparing of Youngest Students for Participation in Programming Contests

63

P.S. PANKOV, E.J. BAYALIEVA
Olympiads without Words

81

F. STEINERT, J. KUMMER, M. LANDMAN, L. LEHNER
From Concept to Code: A Two-Day Workshop for Secondary Students on Computational
Thinking and Programming

89
A. TANEJA, A. KOTHARI

Algorithmic Problem-Solving Advancements: A Comprehensive Exploration across
Diverse Domains

101
T. VERHOEFF

Staying DRY with OO and FP

113
E.M. WAGEED, Y.S. ELGAMAL, O.M. ISMAIL, M.H. ABDRABOU

The Impact of Non-Formal Educational Approach on the Academic Performance and
Employability of Engineering and Computer Science Students

129

REPORTS
M. ALREFAYA, S. ALHAJAJLA

Palestine at the International Olympiad in Informatics: Advancing Computational
Thinking Among K-12 Students

147

M. DOLINSKY
High School Programming Olympiads in Gomel Region

155

H.E. DUEÑAS OROZCO, T. AVALOS PIÑON
omegaUp: A Decade of Growth and Impact in Latin American Coding Education

167

K. MIRJALALI, A. BEHJATI
IOI Project Report on Improving TPS (Task Preparation System)

175

R.S. YAMAGUCHI, T. ITO
The First Step Towards Increasing Female Participants in the Olympiads in Informatics in Japan

185

A. YUSUBOV
The Official IOI Website: The Good, the Bad and the Ugly

195

ISSN 1822-7732

