
Olympiads  
in Informatics13

IOI
InternatIonal olympIad In InformatIcs

I S S N  1 8 2 2 - 7 7 3 2

Olympiads  
in Informatics
Volume 13, 2019

O
lym

p
iad

s in
 In

form
atics   V

olu
m

e 13, 2019

Olympiads
in Informatics
Volume 13, 2019

Foreword 1
S. COMBÉFIS, G. DE MOFFARTS, M. JOVANOV 

TLCS: A Digital Library with Resources to Teach and Learn Computer Science
 
3

M. DOLINSKY, M. DOLINSKAYA  
Training in Writing the Simplest Programs from Early Ages

 
21

D. GINAT  
On Implicit Means of Algorithmic Problem Solving

 
31

M. JANCHESKI, S. JANCHESKA 
Multidisciplinary, Multilingual, Multilevel and Multipurpose Usage of GeoGebra Software in 
Education

 
 

41
T. KAKESHITA, M. OHTSUKI  

Survey and Analysis of Computing Education at Japanese Universities: Non-IT Departments 
and Courses

 
 

57
T. KAKESHITA, N. TAKAHASHI, M. OHTSUKI 

Survey and Analysis of Computing Education at Japanese Universities: Informatics in General 
Education

 
 

81
M. LODI, D. MALCHIODI, M. MONGA, A. MORPURGO, B. SPIELER 

Constructionist Attempts at Supporting the Learning of Computer Programming: A Survey
 

99
K. SUMI, M. OHTSUKI, T. KAKESHITA  

Survey and Analysis of Computing Education at Japanese Universities: Subject of “Informa-
tion” for High School Teacher’s License

 
 

123
W. van der VEGT, E. SCHRIJVERS 

Analyzing Task Difficulty in a Bebras Contest Using Cuttle
 

145
T. VERHOEFF 

Programming, Software Development, and Computer Science – The Golden Triangle
 

157
M. WEIGEND, J. VANÍČEK, Z. PLUHÁR, I. PESEK 

Computational Thinking Education Through Creative Unplugged Activities
 

171

REPORTS
P. ERACLEOUS, P. PAVLIKAS, A. TTOFARI, A. CHARALAMPOUS. Cyprus Olympiad 

in Informatics
 

193
M. MEDVEDIEV. The Use of E-Olymp Internet Portal in Programming Competitions 201
K. MIRJALALI, A. Keivan MOHTASHAMI, M. ROGHANI, H. ZARRABI-ZADEH.  

TPS (Task Preparation System): A Tool for Developing Tasks in Programming Contests
 

209
Y. TABESH, S. ZARKESH, A. ZARKESH, I. FAZILOVA.  Computational Thinking in K-12: 

Azerbaijan’s Experience
 

217
M. TAKI, A. ALNAHHAS. Kids Programming Marathon: A Step toward Better Engagement 

with Computer Science Education
 

225
M.S. TSVETKOVA, V.M. KIRYUKHIN. Digital Curator 237

ISSN 1822-7732



ISSN 1822-7732

INTERNATIONAL OLYMPIAD IN INFORMATICS

VILNIUS UNIVERSITY

OLYMPIADS IN INFORMATICS

Volume 13   2019

Selected papers of
the International Conference joint with

the XXXI International Olympiad in Informatics
Baku, Azerbaijan, 4–11 August, 2019

 



OLYMPIADS IN INFORMATICS

Editor-in-Chief
Valentina Dagienė
Vilnius University, Lithuania, valentina.dagiene@mif.vu.lt

Executive Editor
Mile Jovanov, 
Sts. Cyril and Methodius University, Macedonia, mile.jovanov@finki.ukim.mk

Technical Editor
Tatjana Golubovskaja
Vilnius University, Lithuania, tatjana.golubovskaja@mif.vu.lt

International Editorial Board
Benjamin Burton, University of Queensland, Australia, bab@maths.uq.edu.au
Sébastien Combéfis, Computer Science and IT in Education NPO, Belgium, 
      sebastien.combefis@csited.be
Michal Forišek, Comenius University, Bratislava, Slovakia, misof@ksp.sk
Gerald Futschek, Vienna University of Technology, Austria, futschek@ifs.tuwien.ac.at
Marcin Kubica, Warsaw University, Poland, kubica@mimuw.edu.pl
Ville Leppänen, University of Turku, Finland, villelep@cs.utu.fi
Krassimir Manev, New Bulgarian University, Bulgaria, kmanev@nbu.bg
Seiichi Tani, Nihon University, Japan, tani.seiichi@nihon-u.ac.jp
Peter Waker, International Qualification Alliance, South Africa,
      waker@interware.co.za
Willem van der Vegt, Windesheim University for Applied Sciences, The Netherlands, 
      w.van.der.vegt@windesheim.nl

The journal Olympiads in Informatics is an international open access journal devoted to publishing 
original research of the highest quality in all aspects of learning and teaching informatics through 
olympiads and other competitions.

https://ioinformatics.org/page/ioi-journal

ISSN  1822-7732 (Print) 
           2335-8955 (Online)

© International Olympiad in Informatics, 2019
      Vilnius University, 2019                                                                               
       All rights reserved



Olympiads in Informatics, 2019 Vol. 13, 1–2
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.00

Foreword

IOI, the International Olympiad in Informatics, is an annual international informatics 
competition for individual contestants from over 80 invited countries, accompanied by 
a one-day scientific conference for delegation leaders, organisers and guests. The IOI 
community has an excellent opportunity to communicate during this international event. 
Many countries have a variety of things to present and discuss. 

The IOI journal is focused on the research and practice of computing professionals 
who work in the field of teaching informatics to talented secondary and high school stu-
dents. The journal is closely connected to the scientific conference annually organized 
during the IOI. The 13th volume has two tracks: the first section of the journal focuses 
on research, and the second section is devoted to sharing national experiences. In this 
volume we include the work of some regular contributors to the journal, and also the 
work of some new authors. 

In his paper, D. Ginat argues that algorithmic problem solving involves a collection 
of implicit notions, which may be considered as tools, since they are repeatedly utilized 
in various ways, particularly in challenging algorithmics. He says that often employ-
ment of these notions is essential, and they pave the way to a desired solution prior 
to utilization of algorithms and data structures. T. Verhoeff presents his thoughts on 
programming, software development, and computer science (CS), and their inevitable 
relationship – “the Golden Triangle”.

Some of the other papers in this volume deal with teaching programming in primary 
and secondary schools. M. Dolinsky and M. Dolinskaya introduce an approach on how 
to begin the process of teaching programming to elementary school pupils, by training 
them to write simple programs – programs that deal with numbers. According to the 
authors, this learning stage should follow the two previous stages in the process: mental 
skills development, and learning the keywords of the programming language taught.

M. Weigend, J. Vanicek, Z. Pluhar and I. Pesek explore the potential of using creative 
unplugged activities in the classroom for Computational Thinking education. They pro-
pose a model which consists of 4 types of creative unplugged activities, and they also 
present the results of an international survey conducted in 2018, regarding the proposed 
model. In their papers, S. Combefis, G. de Moffarts and M. Jovanov present a new digital 
library with resources to teach and learn computer science, and M. Lodi, D. Malchiodi, 
M. Monga, A. Morpurgo and B. Spieler present a survey on the constructionist attempts 
at supporting the learning of computer programming. 

Set of authors present some valuable results from surveys they conducted in Japan. 
T. Kakeshita, N. Takahashi, K. Sumi and M. Ohtsuki present comprehensive analyses of 



three different nationwide surveys on the status of computing education, conducted at 
the Japanese universities. The first survey (Kakeshita & Ohtsuki) focuses on informat-
ics in general education, and the second one (Kakeshita, Takahash & Ohtsuki) concerns 
computing education at non-IT departments in Japan. The third one (Sumi, Ohtsuki & 
Kakeshita) is on computing education at Japanese universities, as subject of “informa-
tion” for high school teacher’s license.

Finally, W. van der Vegt and E. Schrijvers present a method on how to analyse task 
difficulty in a Bebras contest using Cuttle, and M. Jancheski and S. Janceska discuss 
on multidisciplinary, multilingual, multilevel and multipurpose usage of the GeoGebra 
software in education.

We understand and support the need for continuing to share our national experiences 
– our problems are common problems. In the second part of the volume, authors from a 
few countries presented their experience, news and new approaches. 

A report on the organization of the Cyprus Olympiad in Informatics done by P. Era-
cleous, P. Pavlikas, A. Ttofari, and A. Charalampous review the contest format used for 
each of the different age groups, as well as the tools and methods utilized in the proc-
ess of preparation and selection of the national teams of Cyprus for the international 
competitions.

M. S. Tsvetkova and V. M. Kiryukhin inform about the need to introduce a new pro-
fession in the modern society named Digital Curator – consultant in the field of digital lit-
eracy. They explain the role of the digital curator and discuss the competencies in detail.

Representatives from this year’s IOI hosting country, Azerbaijan, Y. Tabesh, S. 
Zarkesh, A. Zarkesh and I. Fazilova, present their experience on computational thinking 
in K-12. M. Taki and A. Alnahhas present an annual computer science competition in 
Syria for children aged between 8 and 15 years, which aims at preparing new genera-
tions for the future in computer science.

K. Merjalali, A. Keivan Mohtashami, M. Roghani and H. Zarrabi-Zahed present a 
tool for developing tasks in programming contests called TPS (Task Preparation Sys-
tem), which was successfully used in IOI 2017, and since then – in several other na-
tionwide and international programming contests. Finally, M. Medvediev discusses on 
the use of the E-Olymp internet portal in programming competitions, a portal that so far 
supports four languages (Ukrainian, Russian, English and Azerbaijani).

Many thanks to all of those who have assisted with the volume – especially authors 
and reviewers as well as the Editorial Board of this journal. A lot of work is required 
by authors, far before starting to write the paper, and there is a lot of work to be done in 
the process after submitting the first version of the paper until the final version ready for 
print. In particular, we would like to thank the organisational committee of this year’s 
IOI in Baku for giving us the opportunity to host the IOI conference.

Editors



Olympiads in Informatics, 2019 Vol. 13, 3–20
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.01

3

TLCS: A Digital Library with Resources  
to Teach and Learn Computer Science

Sébastien COMBÉFIS1, Guillaume DE MOFFARTS1, Mile JOVANOV2

1Computer Science and IT in Education ASBL, Louvain-la-Neuve, Belgium
2Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University
 st. Rugjer Boshkovikj 16 Skopje, North Macedonia
e-mail: sebastien@combefis.be, guillaume.demoffarts@csited.be, mile.jovanov@gmail.com

Abstract. Nowadays, teaching and learning computer science is done at various ages, for several 
topics and for different reasons. Depending on the country, it can start from the primary school 
and it finishes at the higher education level, or even later if we take continuing education into con-
sideration. Topics to be learned can be as simple as binary representation or basic programming 
concepts that can be taught to children to introduce them to computer science. It is also possible 
to teach and learn advanced data structures or algorithms optimisation, which are interesting skills 
for Olympiad in Informatics contestants, for example. Recently, there is a prominent number of 
websites and applications that have been created to help the teaching and learning of many in-
formatics concepts. This paper presents a platform that has been designed to browse a database 
of resources that can be used to teach or to learn computer science. This digital library contains 
freely accessible resources and can be searched efficiently thanks to the proposed structure for its 
content. It has been designed to maximise the user’s experience and to fit modern models of digital 
libraries. For each resource, a detailed information sheet has been produced, containing among 
other things pedagogical information to help teachers and learners use the resources as best as 
possible. This platform can also be used to train candidates to Olympiad in Informatics and other 
related and similar competitions.

Keywords: computer science education, digital library, pedagogical resources database, teaching 
and learning.

1. Introduction

Computer science is everywhere today and a lot of people are either teaching or learn-
ing some of its concepts. In some countries, computer science education starts with very 
young pupils still in primary school (6–12 years old), and continues with secondary 
school pupils (12–18 years old). Unfortunately, computer science, or just computational 
thinking, as a separate subject in curricula is still not widespread in the world. Hope-
fully, some studies on how computer science could be introduced in curricula are being 



S. Combéfis, G. de Moffarts, M. Jovanov4

conducted (Angeli et al., 2016; Barr et al., 2011; Webb et al., 2017). For contestants to 
the International Olympiad in Informatics, or other related contests, some skills of com-
puter science are also very important, such as programming and algorithm design, for 
example. It is not always easy to learn computer science concepts since it often requires 
high level skills such as abstraction, algorithmic thinking capabilities, creative thinking, 
etc. Hopefully, and interestingly thanks to informatics, a lot of tools have been designed 
to help learning computer science concepts, and related skills.

There are a lot of tools that can be used to teach and learn computer science con-
cepts, which are often developed as websites or applications. One main issue is that 
they are not always well advertised or are not so easy to find. Also, some of them be-
ing research prototypes, they often lack documentation or advices on how they can be 
used to support learning. The work presented in this paper tries to tackle this issue by 
proposing a database gathering websites and applications to teach and learn computer 
science.

The proposed database has been developed as a digital library, a tool that can be 
defined as “a set of electronic resources and associated technical capabilities for creat-
ing, searching and using information” (Borgman, 1999). The paper presents an online 
platform that has been designed as a frontend for this database, to allow teachers and 
learners to quickly find resources relevant to them, and to get information about how 
to use these resources. Since digital libraries are typically “constructed, collected and 
organised by (and for) a community of users” (Borgman, 1999), this work also proposes 
future extensions of the online platform to make it easier to grow and involve the com-
munity of computer science educators.

The next section presents some related work on digital libraries, their design and 
how to make them efficient. Section 3 then presents how the database has been struc-
tured and how the classification of the resources of the proposed digital library has been 
done in the frame of this work. Section 4 describes the online platform that has been 
developed and shows its main features. Finally, the conclusion discusses on the advan-
tages of the proposed platform and presents the future directions that are envisioned for 
this digital library.

2. Related Work

Digital libraries research emerged in the early 1990s, mainly to identify how they can 
help and contribute to education. A digital library can be seen as a set of resources that 
are organised in some way to offer services to its users. Digital libraries definitely play 
multiple roles in teaching and learning. In particular, Marchionini et al. (1995) high-
lights three main roles: sharing resources, preserving and organising ideas and bringing 
together people and ideas. Moreover, digital libraries target users with different needs: 
formal, informal and professional learning missions. Borgman (1999) adds another di-
mension to the definition of digital libraries, pointing out that they can be seen as content 
collected on behalf of user communities for researchers and as institutions or services for 
librarians. More recently, Blandford (2006) focused the interaction role between users 



TLCS: A Digital Library with Resources to Teach and Learn Computer Science 5

and information that digital libraries convey, allowing for their users to find and to work 
with the content of the digital library.

Several digital libraries have been developed in the particular case of computer sci-
ence education. Fox (1996) developed a digital library to increase the quality of learning 
about computer science. In the frame of his project, several changes have been made at 
Virginia Tech, mainly concerning the infrastructure, the pedagogy, the evaluation and 
the tools. The conclusion of his experiment shows that students are learning new topics 
in a new way, making them happy with the digital library whose number of accesses 
got a growth for both local and remote access. More recently, Tungare et al. (2007) cre-
ated a syllabus repository of computer science courses across universities in the USA, 
with as goal to provide added value to the computer science education community. The 
features provided by this digital library include classifying syllabi, assisting instructors 
when they are creating new syllabi, and allowing the community to share their syllabi 
automatically and to compare syllabi for similar courses. Both these works are focused 
on computer science courses related content.

Today, there are a lot of online resources that can be used to learn programming 
and other computer science topics. At first, we may think about Open Educational Re-
sources (OER) or Massive Open Online Courses (MOOC) that were made possible 
thanks to the tremendous growth of ICT in recent years, opening up new opportunities 
for education, and accessible ways to enjoy quality teaching and learning at all levels 
(Jemni et al., 2017). In addition to these resources, most of the time associated to 
courses, people can also learn a lot through programming contests, such as Olympiads 
in Informatics and other related programming competitions (Combéfis et al., 2014), 
or with games (Combéfis et al., 2016). The approaches presented in the two latter pa-
pers follow the current trend of new models of open and distributed learning (Downes, 
2017). As summarised by the author, the important changes are the fact that the learner 
must go from passive to active and from formal to informal, which is possible thanks 
to open and distributed learning.

Distance-based education fostered the development of educational tools that can be 
used online to support teaching and learning. Some of these tools have been developed 
for MOOCs, such as code executors and graders (Combéfis et al., 2015; Bey et al., 
2018) and graph sketchers (French et al., 2017), for example. Other tools are stand-
alone applications that can be used independently, online or just locally after installa-
tion. All these tools have been developed thanks to computer science, and improve the 
learners’ experience.

For the particular case of computer science education, there are also a lot of tools 
and prototypes that have been thought about and developed by researchers. For example, 
Combéfis et al. (2013) presented a tool with interactive problems that can guide learn-
ers from the understanding of the problem to the coding of a solution for it. Another 
example comes from Guo (2013) who developed a tool to visualise the execution of any 
program for learners to map static textual representation (source code) to what is dy-
namically happening in the computer (execution). A last example, designed by Folland 
(2016), is a tool to visualise the execution of SQL INSERT statements to highlight how 
their results are built from source tables.



S. Combéfis, G. de Moffarts, M. Jovanov6

As mentioned above, another useful resource to learn programming, and other 
computer science topics, is games (Combéfis et al., 2016). They are playing a large 
role in teaching computing in higher education, as testified by some reviews. For ex-
ample, Batistella et al. (2016) pointed out that several computing knowledge areas are 
covered by games, software engineering and programming fundamentals being the 
most common covered fields. Nevertheless, games are not a panacea as highlighted 
by Rondon et al. (2013), whose study showed that compared to traditional learning, 
games are only interesting for short-term knowledge retention, at least for medical 
education. At least, games help to get learners involved with the learning activities, as 
reported by Schmitz et al. (2011), following their experiment.

The examples of tools just presented show that more and more resources are being 
designed to help the learning of several topics in computer science, namely program-
ming, database, algorithm thinking, etc. Nevertheless, it is not always easy to find such 
resources. Grissom et al. (1998) highlighted the need for a digital library of computer 
science teaching resources, years ago. More recently, Dichev et al. (2012) explained 
that looking for an appropriate resource is a frequent activity in the job of teaching. 
Whereas digital libraries of OERs do exist, in particular in the context of courses, no 
such digital library seems to exist for more general tool resources that cover various 
computer science topics.

To be efficient, usable and useful, a digital library must be well designed, in particu-
lar in the frame of education. Sumner et al. (2003) highlighted several key factors that 
influence the perception of educators about the quality of digital libraries, when used 
for education. The main results show that a good digital library should favour resources 
(1) that encourage active learning, (2) that do not result in any bias regarding political of 
commercial orientations, (3) that limit the access to resources with advertising, (4) that 
are usable and well-designed to ease the navigation and usability, (5) and that avoid any 
distractions affecting the attention of learners. These observations have been pointed out 
by learners as well as by teachers.

Other studies have been made about the interface of digital libraries. In particular, 
Druin et al. (2001) put a focus on this need, especially for children that do not want 
to just search for information, but also need to use it and need a reason to browse for 
an item. Compared to a traditional library, a digital library may lack social interaction. 
Ackerman (1994) insists that social exchanges and interaction are important. The de-
sign and use of a digital library should not be limited to the technical mechanisms and 
the access of information. Mechanisms to make these social interactions possible and 
to foster them should therefore be thought about. Gazan (2018) goes one step further 
to include content creators, in addition to content consumers, as an important set of us-
ers of digital libraries. The author highlighted the possibility to include user-generated 
content into digital collection items, therefore increasing the social interactions. Fi-
nally, Sumner et al. (2004) analysed three models that can be used as approaches to 
educational digital library design. Their conclusion is that digital libraries can be used 
(1) as cognitive tools to support learning and help users to catch the sense of the activi-
ties, (2) as component repositories to focus on how resources from the digital library 



TLCS: A Digital Library with Resources to Teach and Learn Computer Science 7

are produced and distributed, (3) and as knowledge networks to foster social interac-
tions and knowledge building and sharing.

The different elements highlighted by these related works have all been somewhat 
taken into account for the design of the platform presented in this paper.

3. Classification of Websites and Applications

The websites and applications that can be used to teach or to learn computer science 
are classified according to several criteria. The proposed characterisation is meant to 
help teachers and learners to choose the most suited and relevant website or application 
that fits their needs. It should also help teachers to use the resources in the most effec-
tive way. For the platform to be powerful, yet flexible, and to ease the development of 
a community of users around the platform resources, a detailed characterisation of the 
resources is proposed in this paper and explained in this section.

3.1. Category

The first classification criterion is related to the kind of service that the website or the ap-
plication is providing. According to the resources that have been considered and analy-
sed in the frame of this work, six main categories have been identified:

Directory. ●
Visualiser. ●
Animated tutorial. ●
Playground. ●
Interactive tutorial. ●
Game. ●

3.1.1. Directory
The directory category gathers resources that allow their users to navigate through a col-
lection of resources, technologies, tools, etc. Websites or applications from this category 
help learners to discover resources related to the same topic or field of study. For example, 
the “NoSQL Databases” website, shown on Fig. 1, maintains a large list of NoSQL da-
tabases engines organised according to their main paradigm. It is an interesting resource 
for anyone who discovered the NoSQL world and wants to explore the existing engines 
or to choose one for a project.

Resources from this category are similar to the “awesome list” movement whose 
main goal is to gather a curation of awesome stuff in lists (Sorhus, 2019). The main 
difference between a simple collection or aggregation and a curation is that the latter 
involves a selection of content based on quality (Dale, 2014). For example, Caeiro-
Rodríguez et al. (2013) proposed a social curation platform for OERs.



S. Combéfis, G. de Moffarts, M. Jovanov8

3.1.2. Visualisation
To teach and to learn new concepts, it can help a lot to be able to visualise, in some way, 
the new concepts. In particular, people who are more sensitive to visual modalities will 
benefit from such visualisations. The second and third categories contain resources that 
propose tools to visualise concepts.

The visualiser category contains tools that can produce visualisations, either static or 
dynamic ones. The goal of these visual elements is to help you to represent yourself the 
concepts you are supposed to learn. Such tools can also be used for teaching purpose, 
to provide visual examples to your students (Fouh et al., 2012). As highlighted by Naps 
et al. (2002), visualisation is only effective if it engages learners in an active learning 
activity. It is therefore important to provide explanations on how the use the visualisa-
tion tool to support learning.

For example, the “viSQLizer” platform (Folland, 2016), shown on Fig. 2, is a proto-
type visual learning tool for SQL. The tool builds and shows animations to illustrate how 
the result of a SELECT query is built by extracting rows from the involved tables. This 
can be used in an introductory course on databases and queries, to illustrate how data 

 

 

 

 

Fig. 1. The NoSQL Databases website maintains a collection of NoSQL database engines 
that are organised according to their main paradgim.



TLCS: A Digital Library with Resources to Teach and Learn Computer Science 9

organised in tables can be scanned through to get the result of a given request. It is also 
interesting to see the different steps behind a SELECT query, starting with row filtering 
followed by column projection.

Resources from this category, if correctly used, will engage their users in their own 
learning. This exactly matches good visualisation tools as defined by Naps et al. (2002). 
Unfortunately, most of them being the result of PhD or master thesis, they lack peda-
gogical documentation on how to use them effectively. Also, they are not accompanying 
the learner within a learning path.

The animated tutorials category is dedicated to websites and applications that pro-
vide a tutorial meant to teach new concepts, by presenting you direct examples with 
the produced results (Rodger, 2002). It goes one step further compared to the visualiser 
category, in the sense that the visualisation are embedded within a tutorial that guides 
you for your learning. For example, the “Unfolding the Box Model” website, shown on 
Fig. 3, shows you how do CSS 3D transforms work. Each page of the tutorial just shows 
you directly the result of the transforms that are presented.

Visualisation tools allow the user to ask for a visual representation of a given in-
put, such as an SQL query, an operation on a given data structure, an execution of an 
algorithm for a problem instance, etc. Once the input has been provided, the tool shows 
a visualisation that the user is just watching. In the case of animated tutorials, the user 
is presented a sequence of visual animations to gradually explain the user concepts, like 
a tutorial would have done.

 

 

 

 

Fig. 2. The viSQLizer prototype visual learning tool helps learners to understand how the 
result of a SELECT query written in the SQL language builds its result from tables.



S. Combéfis, G. de Moffarts, M. Jovanov10

3.1.3. Interaction
The next two categories add the ability for the user to interact actively with the website 
or the application. The user is offered the possibility to plays with his/her own examples 
and gets a direct feedback. In this way, the user can be challenged and put in the centre 
of his/her own learning, which will contribute to improve what he/she will learn and 
assimilate (Bork, 2001).

The playground category is for websites and applications where the user can enter 
codes, problem instances, situation descriptions, etc. and execute them to visualise and 
get the result directly. Such resources are useful for the user to be able to play without the 
need to install anything on his/her computer. For example, the “RxViz” website, shown 
on Fig. 4, allows you to play with RxJs observables in an animated playground. It makes 
it possible for you to write your own code, or even to take one of the proposed examples, 
to execute it and to get the result in a visual way.

Playgrounds are very similar to simple visualisation tool, except that they provide 
more freedom and can visualise much more complex objects, especially code. These 
tools are showing a visual execution of the code along with the execution of the latter. 
Changing the code and executing it again will directly update the visualisation. Some-
times, it is also possible to directly interact with the visualisation, and the code could be 
updated accordingly.

The interactive tutorial category is one step further the animated tutorial, in the sense 
that the user will be challenged and asked to interact with the animations. As a tutorial, it 
is accompanying the learner during the learning process. And as an interactive tutorial, it 
asks the learner to take part to the learning process through different kinds of interactions. 
For example, the “Computer Science Field Guide” is an online interactive book that can 
be used to teach various computer science concepts to high school students. It provides 
interactive exercises throughout the book that allow the learners to experiment what they 
learned. Fig. 5 shows one of the interactive exercises that are proposed on the website.

Fig. 3. The Unfolding the Box Model website shows you how CSS 3D transforms work with 
concrete examples that have been put as a single animated tutorial.



TLCS: A Digital Library with Resources to Teach and Learn Computer Science 11

Fig. 4. The RxViz website is a playground where you can write and execute programs using 
RxJS observables and get a visual interpretation of the result.

Fig. 5. The Computer Science Field Guide is a website that proposes interactive exercises, 
as part of an online book, to help its learners to understand the new concepts.



S. Combéfis, G. de Moffarts, M. Jovanov12

3.1.4. Game
Finally, websites and applications from the last category, namely game, provide the most 
interactive experience to the learners and require them the largest involvement. It also 
tries to motivate them with the addition of goals, scoreboards, competition, etc., com-
pared to the interactive tutorials (Combéfis et al., 2016).

For example, the “Blockly Games” website challenges its users by asking them to 
solve several tasks whose solutions are programs written with a block-based visual 
programming language, similar to Scratch. Each task can be seen as a small game, 
each of these being one level in a bigger game. One of the tasks being solved is shown 
on Fig. 6.

3.1.5. Overlapping Categories
The six categories presented in this section are overlapping, meaning that some websites 
or applications can belong to more than one category. For example, the “RxViz” website 
is at the same time a playground and a visualisation tool since it allows you to write and 
execute any code but presents visually the result of the execution. Another example is the 
“SQL Island” website, presented in section 4, which is at the same time a game and an 
interactive tutorial. The platform described in this paper allows you to easily navigate the 
resources database according to the categories.

 

 

 

 

 

 

Fig. 6. The Blockly Games website proposes a game with several tasks that have to be 
solved using a blocs-based visual programming language in order to win the game.



TLCS: A Digital Library with Resources to Teach and Learn Computer Science 13

3.2. Language and Field

The two others classification criteria are the programming languages and the com-
puter science fields that are covered by the website or application. The first criterion is 
optional and the second one is mandatory. A computer science resource is indeed al-
ways related to at least one field but does not always concern a programming language. 
The presented platform makes it possible to search for teaching and learning resources 
based on these two criteria.

The possible values for the programming language criterion are quite clear but it is 
less obvious for the computer science field. In this work, general fields such as database, 
programming, data structure, artificial intelligence, etc. have been used. Another pos-
sibility would be to use the ACM Computing Classification System (CCS), but it may be 
too complex for the targeted users for the proposed platform.

Classification by categories, programming language and computer science fields can 
help to better identify and attract people from existing communities of interest. For ex-
ample, people interested in resources related to the Python programming language, for 
machine learning, could easily find them with the proposed platform.

3.3. Level

Teaching and learning computer science is done at various ages and level of education. 
For each website and application available in the platform described in this paper, the 
most suited age levels are indicated. Five levels have been identified:

Children goes until 12 years old, that is the end of primary school. ●
Junior goes from 12 to 15, that is, lower secondary school. ●
Senior goes from 15 to 18, that is, higher secondary school. ●
BSc is for bachelor students. ●
MSc is for master students. ●

The identified levels are indicative and correspond to the most suited age groups 
with which the resource can be used to teach or to learn the concepts conveyed by the 
resource. This way to organise the resource is directly related with the community of 
teachers. For example, a primary school teacher will indeed first search for resources 
relevant for the age of his/her pupils.

3.4. Pedagogical Information

Finally, to help teachers and learners to use the resources available on the proposed 
platform, various pedagogical information can be added to each website or application. 
Their purpose is to propose a guide to use the resource as best as possible. Three kinds of 
information can be provided: prerequisite, learning outcomes and methodology.



S. Combéfis, G. de Moffarts, M. Jovanov14

The prerequisites summarise what knowledge should be mastered to be able to use 
the resource to learn the conveyed concepts. The content of this section should be writ-
ten according to the proposed age levels. The learning outcomes list what the student 
will be able to do after he/she used the resource in the frame of a learning activity. This 
section can also contain information about the content proposed by the resource. Finally, 
the methodology explains how the resource can be used or how it is supposed to be used 
by its original creators and designers.

The three kinds of information are of course not relevant for all the resource catego-
ries. For example, pure playgrounds will typically lack learning outcomes and method-
ologies. Also, learning outcomes could depend on how the resource is used by a teacher 
in an activity. On the platform presented in this paper, the proposed pedagogical infor-
mation is written to be consistent, meaning that the learning outcomes are to be read with 
the proposed methodology on how to use the resource.

4. Interactive Platform

This paper proposes an online platform, called TLCS for “Teaching and Learning Com-
puter Science”, available online at the following address: https://tlcs.csited.be. 
It is only available in English for now but is ready for internationalisation. Fig. 7 shows 
the page describing the “SQL Island” website, a game to learn the fundamentals of the 
SQL database querying language (Schildgen, 2014).

4.1. Structure of the Platform

The layout of the page is structured in three columns. A navigation tool is available on 
the left part to allow the user to browse the resources by categories, programming lan-
guages, computer science fields or levels of education. It is also possible to make some 
cross-searches by clicking on the magnifying glass and selecting the tags you are inter-
ested in. For example, you could search for resources that are interactive tutorials in the 
form of games, such as illustrated on Fig. 8.

An information panel is visible on the right part to show all the categories, program-
ming languages and computer science fields of the resource. You can also directly see 
the levels of education and access the website of the resource through this information 
panel. Depending on the resource, some of the information may or may not be available. 
Fig. 9 shows the information available for “SQL Island”.

Finally, the central column shows a short description with screenshots directly 
followed by the pedagogical information. Two last optional sections can be available, 
depending on the resource. The service section describes the kinds of service pro-
vided by the resource, such as cooperative game, API, possibility to save or share, etc. 
The references section provides scientific references to papers presenting the website 
or application, when available.



TLCS: A Digital Library with Resources to Teach and Learn Computer Science 15

 

 

 

 

Fig. 7. Each website or application is described with a complete information sheet that 
contains categorisation and pedagogical information.



S. Combéfis, G. de Moffarts, M. Jovanov16

The online platform has been designed to be simple to use and so that the information 
is clearly presented. It is also very light and runs in any modern browser since it relies on 
the recent versions of JavaScript. It has been developed with Angular.js for the frontend 
part and with Bootstrap 3 for the style. The database is just a simple JSON file, in fact 
one for each language (only English and French being available for now).

 

 

 

 

 

 

 

 

Fig. 8. The left part of the TLCS platform allows you to browse all the resources by catego-
ries, programming languages, computer science fields or levels of education. You can also 

search for resources by tags.

 

 

 

 

 

 

 

 

 

 

Fig. 9. The right part of the TLCS platform shows you all the available information on the 
resource you are looking at, allowing you to quickly characterise the resource.



TLCS: A Digital Library with Resources to Teach and Learn Computer Science 17

4.2. Database Population

The proposed digital library is meant to be populated by the community. It is indeed a 
way to ensure coherence between the needs of the community and the content offered 
on the platform. For a digital library to be good, and to ensure that its content is of high 
quality, some review and/or control mechanism must be put in place. Entries of the da-
tabase for each resource must be correct, with exact, complete, relevant and up-to-date 
information.

To achieve the latter requirements, the proposed platform has a public page that 
anyone can use to propose a new resource for addition. Each proposition has to be 
reviewed, and is possibly corrected, before being accepted. The Computer Science 
and IT in Education non-profit organisation is currently in charge of this control and 
acceptation process. It may be opened to new partners in the future, especially when 
content in other languages than English will be made available. This way to proceed 
ensures good quality content while keeping the platform somewhat open to the com-
munity and its users.

4.3. Social and Community Aspects

As presented in the related work section, social aspects are very important for a digital 
library to be useful, used and for it to support learning and also knowledge sharing. 
Some elements to foster social interactions and to highlight community aspects have 
been thought about for the proposed platform, even if not implemented in the current 
version yet.

Users will be able to have an account on the platform and decide of their own tags 
for the resources. This feature allows them to organise the resources with their own 
categorisation. The second feature is the ability for the users of the platform to grade 
each resource with stars, so that the best resources will get more stars than the less 
good resources.

5. Conclusion

To conclude, this paper presents a digital library with websites and applications that 
can be used to learn computer science concepts. This database is structured so that to be 
easily queried to find useful and relevant resources to teach or to learn new concepts. 
Its design and the way its information is structured has been thought about regarding 
advices about how to make an efficient digital library.

The paper proposes a multi-criteria categorisation of all the resources contained in 
the database. To help people to search through the database, an online platform has been 
developed and made available to the community. It proposes a simple yet powerful and 



S. Combéfis, G. de Moffarts, M. Jovanov18

ergonomic interface to look at the resources from the database. This interface brings 
several intuitive and useful ways to extract relevant information from the developed da-
tabase. It has still to be improved, in particular to take into account the content creators 
and to include user-generated content.

Compared to other kinds of digital library that exists, which are mostly focused on 
OERs for teachers, and in particular for higher education, this work proposes a database 
that can also be used by learners, from the youngest ones to adults who already gradu-
ated. The proposed digital library, which already contains about twenty resources, sup-
ports the creation, the search and the use of resources. The information that is provided 
with each resources supports learning, in the most efficient way as possible.

Future work includes the translation of the platform in several languages as well 
as the translation of the database content, to widen the community that could therefore 
enjoy the available data. New resources will also be added, especially applications that 
can be used on smartphones. Finally, the platform and its interface will also be im-
proved, with the possibility to add comments and notes for each resource, for example. 
Last but not least, surveys must be conducted with teachers, to evaluate whether the 
proposed platform fits their needs.

References

Ackerman, M.S. (1994). Providing Social Interaction in the Digital Library. In: Proceedings of the 1st Annual 
Conference on the Theory and Practice of Digital Libraries. 198–200.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., Zagami, J. (2016). A K-6 Computational 
thinking curriculum framework: Implications for teacher knowledge. Educational Technology & Society, 
19(3), 47–57.

Barr, V., Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and What is the role 
of the computer science education community? ACM Inroads, 2(1), 48–54.

Batistella, P., von Wangenheim, C.G. (2016). Games for Teaching Computing in Higher Education – A System-
atic Review.

Bey, A., Jermann, P., Dillenbourg, P. (2018). A comparison between two automatic assessment approaches for 
programming: An empirical study on MOOCs. Educational Technology & Society, 21(2), 259–272.

Blandford, A. (2006). Interacting with information resources: digital libraries for education. International Jour-
nal of Learning Technologies, 2(2/3), 185–202. 

Borgman, C. (1999). What are digital libraries? Competing visions. Information Processing and Management, 
35(3), 227–243.

Bork, A. (2001). Tutorial learning for the new century. Journal of Science Education and Technology, 10(1), 
55–71.

Caeiro-Rodríguez, M., Pérez-Rodríguez, R., García-Alonso, J., Manso-Vázquez, M., Llamas-Nistal, M. (2013). 
AREA: A social curation platform for open educational resources and lesson plans. In: Proceedings of the 
2013 IEEE Frontiers in Education Conference (FIE). 795–801.

Combéfis, S., Van den Schrieck, V., Nootens, A. (2013). Growing algorithmic thinking through interactive 
problems to encourage learning programming. Olympiads in Informatics, 7, 3–13.

Combéfis, S., Wautelet, J. (2014). Programming trainings and informatics teaching through online contest. 
Olympiads in Informatics, 8, 21–34.

Combéfis, S., Paques, A. (2015). Pythia reloaded: An intelligent unit testing-based code grader for education. In: 
Proceedings of the 1st International Workshop on Code Hunt Workshop on Educational Software Engineer-
ing (CHESE 2015). 5–8.

Combéfis, S., Beresnevičius, G., Dagienė, V. (2016). learning programming through games and contests: Over-
view, characterisation and discussion. Olympiads in Informatics, 10, 39–60.

Dale, S. (2014). Content curation: The future of relevance. Business Information Review, 31(4), 199–205.



TLCS: A Digital Library with Resources to Teach and Learn Computer Science 19

Dichev C., Dicheva, D. (2012). Open Educational Resources in Computer Science Teaching. In: Proceedings of 
the 43rd ACM Technical Symposium on Computer Science Education (SIGCSE 2012). 619–624.

Downes, S. (2017). New Models of Open and Distributed Learning. In: Open Education: from OERs to MOOCs. 
Berlin/Heidelberg: Springer-Verlag, 1–22.

Druin, A., Bederson, B.B., Hourcade, J.P., Sherman, L., Revelle, G., Platner, M., Weng, S. (2001). In: Proceed-
ings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL 2001). 398–405.

Folland, K.A.T. (2016). viSQLizer: Using visualization for learning SQL. In: Proceedings of the 29th Norsk 
Informatikkonferanse (NIK 2016).

Fouh, E., Akbar, M., Shaffer, C.A. (2012). The role of visualization in computer science education. Interdisci-
plinary Journal of Practice, Theory, and Applied Research, 29, 95–117.

Fox, E.A. (1996). Interactive learning with a digital library in computer science. In: Proceedings of 26th Fron-
tiers in Education Annual Conference (FIE 1996). 415–419.

French, J., Segado, M.A., Ai, P.Z. (2017). Sketching graphs in a calculus MOOC: Preliminary results. In: Fron-
tiers in Pen and Touch. Cham: Springer, 93–102.

Gazan, R. (2008). Social annotations in digital libraries collections. D-Lib, 14, 11/12.
Grissom, S., Knox, D. Copperman, E., Dann, W., Goldweber, M., Hartman, J., Kuittinen, M., Mutchler, D., 

Parlante, N. (1998). Developing a digital library of computer science teaching resources. In: Working Group 
Reports of the 3rd Annual SIGCSE/SIGCUE ITiCSE Conference on Integrating Technology into Computer 
Science Education (ITiCSE-WGR 1998). 1–13.

Guo, P.J. (2013). Online Python tutor: Embeddable Web-based program visualization for CS education. In: 
Proceedings of the 44th ACM Technical Symposium on Computer Science Education (SIGCSE 2013). 579–
584.

Jemni, M., Kinshuk, Khribi, M.K. (2017). Open Education: From OERs to MOOCs. Berlin/Heidelberg: Spring-
er-Verlag.

Marchionini, G., Maurer, H. (1995). The roles of digital libraries in teaching and learning. Communication of 
the ACM, 38(4), 67–75.

Naps, T.L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L., Mc-
Nally, M., Rodger, S., Velázquez-Iturbide, J.A. (2002). Exploring the role of visualization and engagement 
in computer science education. In: Proceedings of Working Group Reports from ITiCSE on Innovation and 
Technology in Computer Science Education (ITiCSE-WGR 2002). 131–152.

Rodger, S.H. (2002). Introducing computer science through animation and virtual worlds. In: Proceedings of the 
33rd SIGCSE Technical Symposium on Computer Science Education (SIGCSE 2002). 186–190.

Rondon S., Sassi, F.C., Furquim de Andrade C.R. (2013). Computer game-based and traditional learning meth-
od: A comparison regarding students’ knowledge retention. BMC Medical Education, 13, 30.

Schildgen J. (2014). SQL island: An adventure game to learn the database language SQL. In: Proceedings of the 
8th European Conference on Games Based Learning (ECGBL 2014). 137–138.

Schmitz B., Czauderna, A., Klemke, R., Specht, M. (2011). Game based learning for computer science educa-
tion. In: Proceedings of the Computer Science Education Research Conference (CSERC 2011). 81–86.

Sorhus, S. (2019). Awesome. https://github.com/sindresorhus/awesome
Sumner, K., Khoo, M., Recker, M., Marlino, M. (2003). Understanding educator perceptions of “Quality” in 

digital libraries. In: Proceedings of the 3rd ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL 
2003). 269–279.

Sumner, T., Marlino, M. (2004). Digital libraries and educational practice: A case for new models. In: Proceed-
ings of the 4th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL 2004). 170–178.

Tungare, M., Yu, X., Cameron, W., Teng, G., Pérez-Quiñones, M.A., Cassel, L., Fan, W., Fox, E. (2007). To-
wards a syllabus repository for computer science courses. In: Proceedings of the 38th SIGCSE Technical 
Symposium on Computer Science Education. 55–59.

Webb, M., Davis, N., Bell, T., Katz, Y.J., Reynolds, N., Chambers, D.P., Syslo, M.M. (2017). Education and 
Information Technologies, 22(2), 445–468.



S. Combéfis, G. de Moffarts, M. Jovanov20

S. Combéfis obtained his PhD in engineering in November 2013 from 
the Université catholique de Louvain (UCLouvain). He is currently 
working as a lecturer at the ECAM Brussels Engineering School, 
where his courses focus on computer science. He also obtained an 
advanced master in pedagogy in higher education in June 2014. Co-
founder of the Belgian Olympiad in Informatics (be-OI) in 2010, he 
later introduced the Bebras contest in Belgium in 2012 and at the same 
time founded CSITEd. This non-profit organisation aims at promoting 
computer science in secondary schools.

G. de Moffarts is a master student in computer science at Univer-
sité catholique de Louvain (UCLouvain). He is interested in computer 
science and electronics, and very curious about engineering and new 
technologies, such as 3D printing, artificial intelligence and the inter-
net of things. He is also involved in the CSITEd non-profit organisa-
tion, taking part on several projects it organises. He was also recently 
the deputy leader of a Belgian delegation to the IBU Olympiad in In-
formatics 2019 that was held in Skopje, North Macedonia.

M. Jovanov is an associate professor at the Faculty of Computer Sci-
ence and Engineering, Ss. Cyril and Methodius University, in Skopje. 
As the President of the Computer Society of Macedonia, he has ac-
tively participated in the organization and realization of the Macedo-
nian national competitions and Olympiads in informatics since 2001. 
He has been a team leader for the Macedonian team at International 
Olympiads in Informatics since 2006. His research interests include 
development of new algorithms, future web, and e-education.



Olympiads in Informatics, 2019, Vol. 13, 21–30
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.02

21

Training in Writing the Simplest Programs  
from Early Ages

Michael DOLINSKY, Mariya DOLINSKAYA
Faculty of Mathematics and Technologies of Programming, F. Skorina Gomel State University
Sovetskaya str., 104, Gomel. 246019. Republic of Belarus
e-mail: dolinsky@gsu.by, mkugejko@gsu.by

Abstract. This article describes the author approach for start programming teaching at the primary 
school, which is sequentially teach to create simplest programs that read some numbers, do neces-
sary calculations and write the answer.

Keywords: primary school, programming teaching, distance learning tools.

Introduction

For many years, the authors have been training schoolchildren of the city of Gomel for 
olympiads in computer science and programming (Dolinsky, 2013). All work is car-
ried out on the basis of the instrumental distance learning system (http://dl.gsu.
by, hereinafter referred to as DL), created at the mathematics department of F. Skorina 
Gomel State University under the leadership of one of the authors (Dolinsky, 2017). At 
the same time, schoolchildren of increasingly earlier ages are drawn into programming 
training, and since 2007, learning begins in the first grade. According to the authors 
(based on the results of the performance of Gomel schoolchildren at republican and 
international computer science competitions), a rather effective system of education has 
been created (Dolinsky, 2016).

The two first stages of learning were described in detail earlier: mental skills devel-
opment (Dolinsky, 2014) and learning the starting keywords for programming in Pascal 
(Dolinsky and Dolinskaya, 2018). This article describes in detail the authors’ approach 
to the subsequent transition to programming training.

Starting from year 2019 Pascal can’t be used at IOI, nevertheless the authors consider 
the article as very useful for our community for the following reasons. First of all, the 
article describes approach that can be used for any programming language. In addition, 
authors think that one can continue to teach programming to 7-9 years old children with ex-
isting effective system to provide fast and easy learning for early age children. Finally, our 
distance learning system provides transfer to C++ teaching for any one (Dolinsky, 2017).



M. Dolinsky, M. Dolinskaya22

 In Fig. 1, our learning goal is concisely presented – to teach how to write programs, 
decisive tasks for regional programming competitions for pupils of grades 1–4, besides 
it presents the tasks of the Olympiad, which took place in April 2017.

In the first task you are required to display two specified sequences of characters. In 
the second task it is required to enter three numbers and put them in the correct order, 
adding other symbols to the output. To perform these tasks, it is required to use the read 
and write operators in the standard way (readln, writeln). Fig. 2 shows the author’s solu-
tions to these problems.

But the third task is already a real Olympiad task. It is not so simple to understand 
or guess what the program should do. In order to facilitate the understanding of the task 
and ensure the unambiguity of its formulation, TWO examples of input and output are 

 

№ 1 № 2 № 3 
Example 
of data 
output 
-2-0-1-7- 
<2016> 

 

Example of data entry: 
77 
70 
69 
Example of data output 
t:8(0232)777069 

  

Example of data entry: 
12 
5 
Example of data output 
12=5+7 
7+10=5+12 

   
 Example of data entry: 

71 
23 
67 
Example of data output 
t:8(0232)712367 

 

Example of data entry: 
3 
1 
Example of data output 
3=1+2 
2+2=1+3 

 

 
 Fig. 1. The purpose of training.

 
№ 1 № 2 
Begin 

    writeln('2-0-1-7-'); 

    writeln('<2016>'); 

end. 

var  

    a,b,c : longint; 

begin 

    readln(a); 

    readln(b); 

    readln(c); 

    

writeln('t:8(0232)',a,b,c); 

end. 

 
 Fig. 2. Author’s solutions to problems 1 and 2.



Training in Writing the Simplest Programs from Early Ages 23

given, a comparative analysis of which allows you to reliably determine what needs to 
be done in the task. The conditions of the first 10 tasks of competitions for grades 1–4 
historically look like two examples of input-output. Initially, we started from the fact 
that children could not read confidently and, with this in mind, we formulated tasks. On 
the other hand, the analysis of the conditions of the tasks presented in such a form, by 
definition, develops mental skills, brings the task closer to the Olympiad task style, and 
causes additional interest that increases the motivation to practice.

So, let us reproduce the possible analysis of the condition of the third task given. The 
analysis is made by a pupil. It is required to type two numbers on the keyboard (12 and 
5). Next you need to display the line 12 = 5 + 7. 12 and 5 are the numbers that were input. 
The number 7 was not on the input, hence this is either a constant number, or a number 
that our program needs to calculate. In the second example, the number 5 is not at this 
position. It means that the program must calculate it. From the example it is clear how 
to calculate it. This should be such a number, which in total with 5 will give 12. Hence, 
to calculate it, subtract 5 from 12. Then output, in the correct sequence, the numbers 
entered, the calculated number, as well as the symbols “+” and “=”.

Now let’s turn to the second line of the sample output. 7 is the number we have just 
calculated, by the second example we check our guess: there is a number 2 on the cor-
responding position, also calculated as the difference between the entered numbers 3 and 
1. On the right side of the output, after the “equal” sign, there are 5 and 12 that were on 
input. But in the left part there is also a new number 10. Again, it is clear from the ex-
ample that this is a number that, in total with the number 7 we calculated earlier, should 
give the sum of the numbers 5 and 12. Therefore, it should be calculated as the difference 
(5 + 12) – 7. Similarly, for the second example, the right number 2 is calculated as the 
difference (1 + 3) – 2.

The author’s solution of task 3 is shown in Fig. 3.
As for the Olympics, the first such contest took place on October 27, 2008. Train-

ing of hundreds of children since that time has led us to a deeper understanding of the 
problems arising in teaching and to the updating and development of the automatic 
learning system.

 

var  

    s1,s2,s3,s4 : longint; 

begin 

    readln(s1); 

    readln(s2); 

    s3:=s1-s2; 

    s4:=s1+s2-s3; 

    writeln(s1,'=',s2,'+',s3); 

    writeln(s3,'+',s4,'=',s2,'+',s1); 

end. 
 

 Fig. 3. Author's solution to problem 3.



M. Dolinsky, M. Dolinskaya24

Teaching Technology

Thus, the complete list of tasks for learning to write the first program in Pascal (manipu-
lating numbers) seems to us like this:

Move from words to the text of the first program (input-output numbers, Fig. 4). ●
Learn how to work in the Turbo Pascal environment. ●
Launch Pascal from the desktop icon. ●
Type and edit the program. ●
The minimum set of keys for work: ●

F2 – save program.
F9 – check errors.
Ctrl + F9 – execute the program.
Alt + F5 – see results.

Send solutions for testing to the system DL.GSU.BY. ●
Use the test assignment (watch the input and output, on which the program gives  ●
the wrong answer).
Search and correct errors in the program by comparing the correct output to the  ●
output of the program.

Note that by this time, after completing the first two parts of the training (“Learning 
to think”, “Learning words”), pupils already know how to turn on / off the computer, log 
into the network, launch the desired program by clicking on the desktop shortcut, to log 
in with a personal account in the DL system and understand the numerical task. In con-
nection with the automatic differentiated learning, the system itself issues to each pupil 
a task on which he stopped.

At the same time, it is very important to preserve the motivation of children to prac-
tice, so the tasks should be diverse in form, interesting in content and provide differenti-
ated learning, so that each pupil could find a comfortable mode of assignment.

The tasks themselves are lined up in a tree-like form, where the pupil can either 
proceed to the next task if he has coped with the current one, or to the task system that 
teaches how to complete the current task.

 

The words Program 

Program 

var  

longint; 

begin 

readln 

writeln 

end. 

program p1; 

var  

    s : longint; 

begin 

    readln(s); 

    writeln(s); 

end. 
 

 
Fig. 4. Words and the program «Input-output numbers».



Training in Writing the Simplest Programs from Early Ages 25

The standard view of the tree of learning the source code for solving a specific prob-
lem is presented in Fig.5.

Fig. 7–14 present the corresponding tasks for teaching the solution of the problem 
presented in Fig. 6.

The first task that is offered to a pupil who does not get to write the required program 
is the task (Fig. 7), offering the pupil to do the work instead of the program. That is, to 
indicate what the program will display if the specified numbers are entered at its input. 
This ensures that the pupil understands what the program should do. In case the child 
cannot cope with this task, there is a task in which the numbers necessary for input are 
displayed on the keyboard. This is especially convenient for self-study. In the classroom, 
an understanding of the condition may also arise from discussion of a problem with a 
teacher or another pupil designated by the teacher.

After the pupil has completed the task “Manual solution”, presented in Fig. 7, he is in-
vited to type Pascal-program (Fig. 9). In this task, the algorithm for solving the problem is 
presented on the left, and on the right, you need to enter a program corresponding to this al-
gorithm. And from this point on, differentiated learning begins to work most intensively.

There are children who just have to look at this picture to exclaim “I understand”, 
to press this button and return to the original task (Fig. 6), write the necessary program 
correctly, check, send it for testing and passing, go to the next task.

 
A task 
       Did not work out 
            Manual solution 
                 Did not work out 
                      Manual solution (with prompt) 
        Get the right idea 
        Type Pascal program 
              Did not work out 
                    Match idea and solution 
                    Make the right decision 
                    Line input (with prompt) 
                    Line-by-line input (with a hint – translation) 
                    Fill the gaps 
                    Line input 

 
 

Fig. 5. Standard learning task tree.

 

Example of data entry: 
3 
5  
Example of data output 
3+1=4 
4+5=9  

 
 Fig. 6. Example task to learn.



M. Dolinsky, M. Dolinskaya26

There are children who, exclaiming «I understand», still cannot write the program 
correctly and therefore have to return to the task presented in Fig. 9 again and write the 
program line by line on the model. If they can do this without a single error, they will 
return to the task in Fig. 6. If they make a mistake in at least one symbol or immediately 
press the “I do not know” button, they will get on the task “Create the right idea”, shown 
in Fig. 8. Here it is required using the permutation of the lines (by clicking on the two 
lines that need to be swapped) to make the algorithm presented in the previous task. For 

Enter three numbers
Determine the difference between the first and second 
number, add the third number.
Print all operations.

Fig. 7. Manual solution.                                                Fig. 8. Get the right idea.

 
Left side: explanatory lines describing 
what needs to be done (originally in 

Russian) 

Right side: the lines from the Turbo 
Pascal solution that perform the 

necessary actions 
Program olymp   
variable  
   s1, s2, s3, s4 : number  
begin  
   read s1  
   read s2  
   read s3  
   s4=s1-s2+s3  
   write s1, ‘-‘, s2, ‘+’ , s3 , ‘=’ 
, s4 

 

end  
 

Fig. 9. Type Pascal program.



Training in Writing the Simplest Programs from Early Ages 27

those who cannot cope with this task correctly, there is a button “Show correct answers”, 
by clicking on which the lines are arranged in the correct order, however, the possibility 
of moving to the next task is blocked, and for the pupil it is required to click on the “Dis-
able hint «and perform the task yourself.

Such a process can be repeated several times, until the pupil memorizes correctly 
the sequence of actions in the algorithm. After that, he is offered the task “To Match the 
Idea and the Solution”, presented in Fig.10. On the left there is the algorithm already 
mastered by the pupil in the past assignment, and on the right – the lines of the corre-
sponding Pascal program, located in random order. The pupil must permute the lines of 
the program to turn it into the correct one. After that, the pupil can click “I understand” 
again and take the decision of the main task (Fig. 6.). Some pupils do this, they succeed, 
and they move on.

Some pupils fail, and they come back to this point. Some are not distracted and con-
tinue to perform learning tasks consistently. In order not to repeat – at any moment any 
pupil can press the “I understand” button, to try to take the completed task and, if it is 
decided wrong, to go back.

So, then the pupil is invited to the task “Make a decision”, presented in Fig. 11. In 
this task, permutation of the lines is required to make a program. In case of failure, you 
can use the buttons “Show correct answers” / “Disable hint”. In the case of this task, the 
transition to the “Line input” task, shown in Fig. 12, takes place.

An important feature of this task is the color support. That is, if the child is typing 
correctly, then everything that he is typing glows green, and when the first erroneous 
character is typed, the entire line of the set becomes red to signal the pupil about mak-
ing a mistake at the exact moment when he made it. If the pupil succeeds to dial a few 
characters, “by inertia”, without noticing the mistake, it is enough to delete them one by 
one from the end until the line turns green again.

I would like to emphasize that we work with all the pupils who come – with com-
pletely different skills. And such a task helps the teacher to cope with “problem” pupils.

Fig. 10. Match idea and solution.



M. Dolinsky, M. Dolinskaya28

After all, the standard alternative is that the teacher should look for (himself or with 
the help of other pupils) every pupil who made a mistake in the case where the pupil 
cannot cope with it himself.

Moreover, there are other assignments tasks presented in Fig. 13–14, in which you 
also need to perform keyboard input of the program, which also provides color error 
prompts. 

In task 13 there are tips in Russian, in task 14 – it is emphasized what exactly has 
changed in this program in relation to the previous ones. The last task in this series (not 
shown in the figures) is a line-by-line entry of a program with a color prompt of errors 
“from memory”, that is, in the absence of prompting texts. In the case of this task, the 
pupil is assigned to the task shown in Fig. 9, which checks whether the pupil is able to 
type the program in the absence of color error prompts. This ensures that the program is 
memorized by a pupil with any level of prior training. At the same time, more prepared 
children undergo training faster; less prepared children spend exactly as much time as 
each of them needs personally to learn how to solve this problem.

Fig. 11 Make a solution.                                                Fig. 12. Line input.



Training in Writing the Simplest Programs from Early Ages 29

Differentiated Training

Under the differentiated training, the authors understand the creation of such a system of 
studies, when each pupil receives tasks that are feasible for him in complexity, and at the 
same time leading (albeit at different speeds) to the overall final goal.

Differentiation of training is provided by a rich choice of tasks for working at the 
table and a computer, automatic issuance of tasks on a computer depending on the results 
of the previous task, as well as a large set of task packages supporting the multiplicity 
of entry points to training.

Fig. 13. Line Input 2.                                                      Fig. 14. Fill the gaps.



M. Dolinsky, M. Dolinskaya30

Conclusion

In this article the author’s approach to the beginning of learning programming in el-
ementary school is considered. Many tasks of varying complexity, both on a computer 
and for working at a table, are of particular importance. Their proper use provides a dif-
ferentiated approach to pupils with different training and motivation to practice. It is also 
important for the authors that, as practice shows, this training system is easily scaled and 
can be used even by teachers and parents, who were originally far from programming. 
At first, co-education may occur. But in the end, the children “gaining speed”, have the 
ability to successfully engage in their own study.

References

Dolinsky, M. (2013). An approach to teach introductory-level computer programming. Olympiads in Informat-
ics, 7, 14–22.

Dolinsky, M. (2014). Technology for the development of thinking of preschool children and primary school 
children. Olympiads in Informatics, 8, 63–68.

Dolinsky M. (2016). Gomel training school for Olympiads in Informatics. Olympiads in Informatics, 10, 237– 
247.

Dolinsky, M. (2017).  A New Generation Distance Learning System for Programming and Olympiads in Infor-
matics

Dolinsky, M., Dolinskaya, M. (2018).  How to Start Teaching Programming at Primary School? Olympiads in 
Informatics, 12, 13–24.

Performance Statistics of Gomel pupils at international and national olympiads in informatics since 1997 up to 
2018. (In Russian): http://dl.gsu.by/olymp/result.asp

M. Dolinsky is a lecturer in Gomel State University “Fr. Scoryna” 
from 1993. Since 1999 he is leading developer of the educational site 
of the University (dl.gsu.by). Since 1997 he is heading preparation 
of the scholars in Gomel to participate in programming contests and 
Olympiad in informatics. He was a deputy leader of the team of Be-
larus for IOI’2006, IOI’2007, IOI’2008 and IOI’2009. His PhD is de-
voted to the tools for digital system design. His current research is in 
teaching Computer Science and Mathematics from early age.

M. Dolinskaya is student in Gomel State University “Fr. Scoryna” 
from 2005 then graduate student from 2017. Since 2006 she is one of 
developer of the educational site dl.gsu.by as well as teacher of pu-
pils from first grade. Her current research is in teaching programming 
from early age.



Olympiads in Informatics, 2019, Vol. 13, 31–39
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.03

31

On Implicit Means  
of Algorithmic Problem Solving 

David GINAT
Tel-Aviv University, Science Education Department
Ramat Aviv, Tel-Aviv, Israel 69978
e-mail: ginat@post.tau.ac.il

Abstract. Students of challenging algorithmics learn and utilize a variety of problem solving 
tools. The primary tools are data structures, generic algorithms, and algorithm design techniques. 
However, for solving challenging problems, one needs more than that. Many creative solutions 
involve implicit notions, whose creative employments yield elegant, concise, and efficient solu-
tions. We elaborate on such notions and advocate their relevance as valuable means in one’s 
problem solving toolbox. We display our experience with students who lacked awareness of 
these notions, and illustrate the relevant role of three such notions – the notions of “candidate”, 
“complement”, and “invariance”.

Keywords: algorithmic problem solving.

1. Introduction

The algorithmic problem solving toolbox includes a variety of generic design patterns 
and techniques. The generic design patterns, or schemes, include algorithms such as 
sorting, searching, and graph algorithms. The design techniques include problem solv-
ing strategies such as top-down design, divide and conquer, the greedy strategy, dynamic 
programming, reduction, and more (e.g., Cormen et al., 1990). Students learn and em-
ploy these patterns and techniques, together with a variety of data structures, from the 
very basic courses to the more advanced algorithms courses. Yet, more can be offered to 
learners, in particular those of challenging algorithmics.

For example, the very basic pattern of max computation involves the notion of 
“candidate”. The computation involves running through a list of values, while keep-
ing the largest value read so far as the current candidate for the answer. While the 
design pattern is very basic, the notion of “candidate” is a notion that may be used in 
advanced, creative ways in challenging algorithmics. One challenging task in which it 
is creatively applied is the task of seeking majority (i.e., a value that appears a majority 



D. Ginat32

number of times) in a very very long list of values (Boyer and Moor, 1991). The input 
cannot all be kept in memory (by elements or range), but may be read more than once. 
Reading is expensive. The challenge is to devise a solution that involves reading the 
input list as fewer times as possible.

An efficient, elegant solution is based on the following insightful declarative obser-
vation: if the value v is in majority in a list of N values, and we delete v and a different 
value u, then v is still in majority in the remaining list of N-2 values. This observation 
yields an appealing use of the notion of candidate. The candidate will be the element 
that will remain after deleting pairs of different values, and will be checked for being 
majority. The computation will involve two passes over the input: a first pass for delet-
ing such pairs and leaving a sole candidate for majority (if there is one), and a second 
pass for checking whether this candidate is indeed a majority (Boyer and Moor, 1991; 
Ginat, 2002).

Creative utilizations of the notion of “candidate” appear in a variety of additional 
task solutions. And there are more soft notions that are repeatedly employed in creative 
ways in algorithmic solutions. Additional notions are: “complement”, “symmetry”, 
“parity”, “invariance”, “the pigeon-hole principle”, and more. Although these notions 
play a significant role in algorithmic solutions, they are not underlined or explicitly 
mentioned in textbooks and teaching materials. Perhaps this is due to tutors’ assump-
tions that the implicit utilization of these notions may be sufficient for acquiring them 
and invoking them. In our experience, this is not always the case, even with talented 
students of challenging algorithmics. Students may benefit from explicit indication and 
practice of these notions.

In what follows we describe our ‘notion-invocations’ experience with the students 
of our advanced OI stages in the last few years. We display several tasks whose so-
lutions require invocations of such notions, reveal student difficulties, and present 
elegant employments of these notions. In the last, Discussion section we discuss our 
findings, and advocate elaboration of these notions as important means of algorithmic 
problem solving.

2. Implicit Problem Solving Notions

In this section we display three notions that are useful in solving algorithmic tasks. 
The first notion – candidate – is particularly relevant in algorithmics. The other two 
notions – complement and invariance – are relevant in both algorithmics and math-
ematics.

All these notions are related to a declarative point of view, which involves a “what” 
characteristic perspective. This point of view precedes the operational point of view, 
which is related to “how”, of the computational actions. While novices often ‘get by’ 
without the declarative perspective, this perspective becomes more and more important 
as the algorithmic challenge increases.



On Implicit Means of Algorithmic Problem Solving 33

The Notion of Candidate

The example in the Introduction displayed a creative utilization of “candidate”, based 
on a mathematical observation. The innovative feature in this utilization involved the 
decomposition of the computation into two sub-tasks – one of seeking a sole candidate, 
and another of checking whether this candidate is indeed the desired element. This 
utilization of the notion of candidate appears in additional tasks. One such task is the 
Celebrity problem (Manber, 1986), in which a person who knows nobody, but is known 
to all, is sought.

Utilizations of the notion of “candidate” may have a variety of forms. Another form 
appears in the solution to the Widest Inversion problem (Ginat, 2011), in which the lon-
gest distance between two unordered numbers is sought. The efficient solution of this 
task is based on pre-processing in which lists of candidates for the left-end and the right-
end are found, and then elegantly processed, based on their characteristics.

The following task displays an additional, creative utilization of the notion of can-
didate, this time in an “as if” manner (Ginat, 2010). In our experience, a non-negligible 
amount of talented students did not turn to this perspective, but to a naive utilization of 
a candidate.

Longest Plateau. We define a plateau as a sequence of integers in which the difference 
between every two (not necessarily adjacent) is at most 1. Thus,  4 3 4 3 3  is a plateau, 
whereas  4 3 4 3 2  is not a plateau. Given a list of N integers, output the length of the 
longest plateau. 
Example: For the input  2  3  3  4  3  5  5  4  3  3  2  3  2  2  1  3  the output should be  
6, due to the sub-sequence  3  3  2  3  2  2.
Notice that a sub-sequence (part) of a plateau is also a plateau, though it is a plateau 
that may be extended to a longer one.

At first glance this task may seem boring and straightforward. Yet, this was not the 
case for quite a few of our students. It was particularly so when we asked for an exten-
sion, in which the definition of a plateau allowed a difference of K, greater than 1 be-
tween every two elements of a plateau.

The challenge in the task stems from the possibility of plateaus’ overlap. For ex-
ample, in the sequence  2  3  3  4  3  the plateaus  2  3  3, and  3  3  4  3  overlap, as they 
share the sub-sequence  3  3.

Many students offered a cumbersome on-the-fly solution using a single candidate for 
the current plateau. The underlying idea in their solution was to accumulate the current 
plateau, while handling a series of history considerations of sub-sequences’ overlaps. 
They kept the information of the latest overlap history and manipulated it when an over-
lap ended. While this idea may be suitable, it yielded cumbersome and erroneous imple-
mentations. In addition, it is not extendible for more general plateaus.

One may do better, and simpler if one abstracts the view of the task, by looking at 
each input value “as if” it belongs to two “active” plateaus concurrently – one in which 
this input value is the lower value, and one in which it is the higher value. Thus, at any 



D. Ginat34

given time, the current element belongs to two concurrent candidate plateaus. When 
one of the candidates ends, its length is compared to the longest plateau so-far.

Each input value v may be viewed as contributing a “block” to its lower candidate 
plateau, and a “block” to its upper candidate plateau. For example, upon looking at the 
sub-sequence  2  3  3  4, starting at the value 2, this value contributes a block to its lower 
candidate-plateau p1,2, and a block to its upper candidate-plateau p2,3. The next value, 
3, contributes a block to its smaller candidate-plateau p2,3 (which was just the upper 
candidate-plateau of the 2) and a block to its upper candidate-plateau p3,4.

Based on the above abstract view, we may devise the following candidate-plateau 
scheme. A new candidate-plateau begins when the next input value contributes a block 
that does not extend a current candidate-plateau. A candidate-plateau is extended by a 
block, when the next input value contributes a block to it. A candidate-plateau ends when 
the next input value does not extend it. Fig. 1 below illustrates visually the scheme with 
the input of the problem statement.

This concise scheme annuls the need of keeping history details, and requires that 
we remember at any given time only the length of the longest plateau ended so far, and 
the two current candidate-plateaus. The scheme’s underlying perspective is specified 
declaratively, by relating two “as if” candidate plateaus to every input element. 

The Notion of Complement

The notion of complement is a powerful notion in both mathematics and computer sci-
ence. Its underlying principle is that sometimes it may be more beneficial to look at “the 
whole” minus the given elements rather than at the given elements. We illustrate it with 
the following task (which we learnt from IOI colleagues). 

Fig 1. A view of the candidate-plateaus. The input is the sequence of values written under the 
X-axis. The small black boxes represent the input values, and the grey sequences represent the 
candidate-plateaus that were assembled from left to right.



On Implicit Means of Algorithmic Problem Solving 35

Safari. In a very large safari, with N animals, some animals get along with one another 
(and can stay together), and some do not. For every animal, an indication is provided 
about all the animals with which it gets along. The number of animals in the safari is a 
multiple of 3. It is known that exactly 2/3 of the animals all get along with one another. 
Each of the other animals gets along with some subset of the N animals. The safari 
management wants to select exactly 1/3 of the N animals to be put together. Given 
for each animal the animals with which it gets along, output N/3 animals that may be 
chosen to be put together.

A non-negligible amount of students struggled with this task. All of them represented 
the task with an undirected graph, and attempted various ways of processing the edges of 
the specified clique of 2N/3 animals. Unfortunately, their attempts were either erroneous 
or cumbersome and inefficient. The suitable approach is not to process the given graph 
edges, but rather the missing edges, of the complement graph.

An edge in the complement graph connects two graph nodes (animals), such that 
one of them or both of them are not in the specified clique of 2N/3 animals. Thus, if we 
remove the two nodes of a missing edge, and all their incident edges, then we remove 
at most one of the 2N/3-clique nodes. By repeating this process again and again, we 
remove at most N/3 animals from that clique. Therefore, when this process ends, the 
remaining graph will be a clique of at least N/3 animals. If it is exactly of that size, then 
all its animals will be displayed as output; and if it is larger, then any N/3 animals taken 
from this remaining graph will be a suitable output.

All in all, the key point, which paved the way for the surprisingly simple solution, 
was the utilization of the complement graph of the given input. Capitalizations on com-
plement graphs appear in a variety of graph-based solutions. And the notion of comple-
ment appears in many other representations.

The Notion of Invariance

The notion of invariance involves assertions that are repeatedly kept during an iterative 
or distributed process. It is an essential means in mathematics and computer science. In 
both domains it is used for arguing and proving characteristics of sets and processes. 
In computer science it is a fundamental means in the domain of logic of programs, for 
describing loop executions and distributed-system characteristics. Dijkstra and others 
(e.g., Gries, 1981; Dijstra, 1989) argue that computer-program design should go hand-
in-hand with arguing its correctness, and the design of loops should be based on devising 
their underlying invariants. However, the notion of invariance is not advocated in most 
programming and algorithms textbooks, and its essential role is overlooked. We present 
below two short examples that demonstrate its importance.

Diplomats’ Separation. N diplomats enter a large conference hall. Each of the 
diplomats has at most 3 rivals among the others. Rivalry is symmetric. The conference 
organizers were asked to separate the group of the N diplomats into two sub-groups – 
A and B – such that each diplomat will be with at most one rival in her group. Given 



D. Ginat36

the rivalries of each diplomat, output a separation into two suitable sub-groups, or 
notify that it is impossible to obtain such separation.

The task is not a difficult task. Yet, some students approached it in a way that was 
intuitive for them, but not that successful. They offered the following scheme. Start with 
all the diplomats in sub-group A, and check for each diplomat whether there is more 
than one rival in her sub-group. If this is the case, then leave one rival in her sub-group, 
and transfer the other(s) to the other sub-group. Repeat this process, with sub-groups 
A and B, until the desired condition is met.

Although this intuitive process seems suitable, it is questionable, as a diplomat may 
be transferred back and forth between the sub-groups and it is not clear whether success-
ful termination is guaranteed.

A small modification of the above scheme, supported by invariance argumentation, 
makes a big difference. When a diplomat is found to be in a sub-group with more than 
one rival – transfer that diplomat to the other group, rather than her rivals. This idea is 
supported by the following invariant assertion:

Each transfer of a diplomat reduces the total number of rival-diplo-
mats inside the sub-group.

The assertion involves a measure (specified in its latter part). It is an invariant asser-
tion, since it asserts a characteristic that is kept after every diplomat transfer. It implies 
that the suggested scheme improves the situation with every transfer. Even if a particular 
diplomat is transferred more than once, this iterative process is guaranteed to end, with 
a suitable separation of the diplomats into two sub-groups, since the decreasing number 
of rival-diplomats in the sub-groups cannot go below 0. The utilization of invariance and 
a measure that implies successful termination enfolds the fundamental computer science 
elements of safety and liveness (Alpern and Schnieder, 1985).

•              •              •

One sub-domain in which invariance is fundamental is that of mathematical games. 
Games are present in both mathematics and algorithmics. Many games are two-player 
games, in which a winning strategy for one of the players is required. The strategy may be 
specified with an algorithm, but the underlying characteristic that yields and justifies the 
algorithm is expressed with an invariant. For example, the first task in IOI’96 was a game 
with a line of 2N numbers, such that each player takes, in her turn, a number from one of 
its ends. The winning strategy was based on an elegant invariant: after every move of the 
first player, the numbers in the two ends of the line are in locations that were originally of 
the same parity. The following task also involves a game invariant.

DVD Game. Given a line of 2N cells, N>100, two players play the following game. 
Each player, in her turn, writes a “D” or a “V” is an empty (not yet used) cell. The 
first player who completes the sequence “DVD” wins the game. (Players may use 
one another’s written letters in forming the desired sequence.) Devise a strategy for 
winning the game.



On Implicit Means of Algorithmic Problem Solving 37

As in the previous task, although the challenge here is rather limited, quite a few of 
the students offered incomplete or erroneous solutions. Most of them noticed that the 
winner should be the second player (the one that does not start), and should create in her 
first two moves a “trap”, in the form of D_ _D. The player who will be forced to write a 
letter between the two D’s will lose the game.

At this point some of the students got confused because of the possibility of addi-
tional traps created during the game. They were unsure about the winner’s responses for 
the opponent’s moves. Their common strategy was to imitate the last opponent move, by 
writing the same letter that she just wrote, next to her letter. This strategy involved all 
kinds of cumbersome conditions for avoiding traps. Some were incorrect.

The one thing that many students missed was a simple invariant on which to 
capitalize: 

After each move of the first player, there is at least one sequence of 
empty cells of an odd length.

Thus, after creating the trap in the first two moves, the winner has a very simple 
strategy: if it is possible to win the game in the next move, then do so; otherwise, write 
a “V” in the the middle of an odd-length sequence of empty cells.

It is simple to justify termination of the game with the second player’s win. The key 
point was to recognize and capitalize on the simple invariant. The students who offered 
the cumbersome, sometimes erroneous solutions indicated that they focused on an im-
mediate reply to the opponent, next to her move, rather than on a global characteristic of 
the game line. This direction was heuristic, and lacked rigor.

3. Discussion

Chapters of algorithms textbooks are usually designed according to programming con-
structs, data structures, design patterns, and design techniques. These elements are the 
primary tools, or means for algorithmic problem solving. But they should not be pre-
sented as the only ones. Algorithmic problem solving involves a collection of implicit 
notions, which may be considered as tools, since they are repeatedly utilized in various 
ways, particularly in challenging algorithmics.

In many cases the employment of these notions is essential. They pave the way to a 
desired solution prior to utilization of the primary tools. They belong to the task analysis 
stage that should progress hand-in-hand with a solution design. While the characteristic 
of the primary tools is primarily operative, the nature of these notions is declarative. 
They direct the design and justify its outcome.

Competent problem solvers are acquainted with these notions, and possibly invoke 
and employ them without explicitly denoting them. They assimilate these notions upon 
learning and practicing implicit utilizations in a variety of task solutions. But not all 
students grasp these implicit notions. Explicit elaboration may considerably help, par-
ticularly for developing awareness of these notions.



D. Ginat38

In the previous section we presented our experience with talented students who did 
not turn to these notions and provided unsuitable solutions. One may say that at least 
some of these notions (such as the notion of complement) are common knowledge and 
should not be explicitly underlined. We believe that explicit indication and practice may 
lead students to seek utilizations of such notions. This is our experience with OI stu-
dents. Repeated elaborations of these notions enhanced flexibility and abstraction upon 
approaching task solutions – flexibility in the sense of creative utilizations of familiar 
means; and abstraction in the sense of conceptual exploration (which yielded, for ex-
ample, the “as if” perspective in the Longest Plateau example).

Such notions also upgrade one’s discipline in the process of problem solving. Aware-
ness may lead one’s attempts to employ a declarative point of view prior to an operative 
implementation. The declarative perspective may yield further insight, which will assist 
in considering different alternatives of progress. In addition, it may strengthen one’s 
conviction and rigorous argumentation about her solution.

We illustrated creative employments of the notions of candidate, complement, and 
invariance. The notion of candidate is unique to algorithmics, as it is explicitly tied to 
progression during a computation process. The notions of complement and invariance 
are relevant also in mathematics. They may be regarded as resources in the problem 
solving model of Schoenfeld (1992), in the sense of means with which one should be 
acquainted for recognizing, specifying, and justifying characteristics. In algorithmics, 
they are also relevant for devising concise and efficient computations.

More illustrations of these notions will enrich problem solvers’ toolboxes. Tutors 
aware of these notions may embed and underline their explicit utilizations during the 
teaching of design patterns and design techniques. Repeated embedment and elaboration 
will raise students’ computational thinking competence.

Acknowledgement

I thank my colleagues Hanit Galili and Sharon Zuhovitzky from our Israel OI team for 
the Safari task story, and its student solutions’ summary.

References

Alpern, B., Schneider, F.B. (1985). Defining Liveness. Information Processing Letters, 21, 181–185.
Boyer, R.S., Moor, J.S. (1991). A fast majority vote algorithm. In: Automated Reasoning: Essays in Honor of 

Woody Bledsoe. Automated Reasoning Series. Kluwer, 105–117. (The algorithm was invented in 1980.)
Cormen, T.H., Leiserson, C.E., Rivest, R.L. (1990). Introduction to Algorithms, MIT Press.
Dijkstra, E.W. et al. (1989). A debate on teaching computing science. Communications of the ACM, 32(12), 

1397–1414.
Ginat, D. (2002). On varying perspectives of problem decomposition. In: Proc of the 33rd ACM Computer Sci-

ence Education Symposium – SIGCSE. ACM Press, 331–335.
Ginat, D. (2010). The baffling CS notions of “as-if” and “don’t care”. In: Proc of the 41st ACM Computer Sci-

ence Education Symposium – SIGCSE. ACM Press, 385–389.



On Implicit Means of Algorithmic Problem Solving 39

Ginat, D. (2011). Algorithmic problem solving and novel associations. Olympiads in Informatics, 5, 3–11.
Gries, D. (1981). The Science of Programming. Springer.
Manber, U. (1986). Introduction to Algorithms: a Creative Approach. Addison Wesley.
Schoenfeld, A.H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making 

in mathematics. In: Grouws D.A. (Ed.), Handbook of Research on Mathematics Teaching and Learning. 
334–370.

D. Ginat – heads the Israel IOI project since 1997. He is the head of 
the Computer Science Group in the Science Education Department at 
Tel-Aviv University. His PhD is in the Computer Science domains of 
distributed algorithms and amortized analysis. His current research is 
in Computer Science and Mathematics Education, with particular fo-
cus on various aspects of problem solving.





Olympiads in Informatics, 2019, Vol. 13, 41–56
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.04

41

Multidisciplinary, Multilingual, Multilevel and 
Multipurpose Usage of GeoGebra Software  
in Education

Metodija JANCHESKI1, Sofija JANCHESKA2

1University Ss. Cyril and Methodius, Faculty of Computer Science and Engineering
 Rudzer Boshkovikj street, 16, 1000 Skopje, Macedonia
2New York University Abu Dhabi,  Faculty of Computer Science
 Saadiyat Island, Abu Dhabi, United Arab Emirates
e-mail: metodija.jancheski@finki.ukim.mk, sofija.jancheska@nyu.edu 

Abstract. The technical characteristics of GeoGebra have been examined, its various views and 
tools have been described, with special emphasis on interactive tools. The use of GeoGebra in 
education has been depicted, mainly in mathematics. We emphasized the importance of sharing 
GeoGebra digital learning materials within the GeoGebra community, which is present and active 
in more than 190 countries now and is growing astonishingly fast. In this context, various forms 
of organizing GeoGebra digital learning materials are reviewed: GeoGebra Materials, GeoGebra 
Wiki, GeoGebra Tube, GeoGebra Books and GeoGebra Exercises.

The author demonstrates the universal and effective application of the GeoGebra software in 
four dimensions. First, GeoGebra can be applied in a variety of disciplines, primarily in mathemat-
ics and computer science, and in subjects in the field of natural and technical sciences. Second, 
the use of GeoGebra also covers a wide range of applications, from primary education to higher 
education. Third, GeoGebra enables the creation of multilingual digital learning content. Finally, 
various variations of animations and simulations with different weights can be made in GeoGebra, 
which can enhance the individualization of teaching within multiple levels of education and en-
able conditions for programmed instruction.

A detailed overview of three conducted researches and the obtained results are provided. The 
researches include filling in questionnaires by teachers and students, as well as performing teach-
ing lessons in Mathematics and Physics in two secondary schools with students divided into ex-
perimental groups (where GeoGebra animations and simulations were applied) and control groups 
(where the classes were held in classical, traditional way, without the use of educational software).

According to our researches and observations, free and open-source software like GeoGebra is 
a great opportunity that should be used to the fullest extent in our education especially in the con-
ditions of obvious need for educational software and digital educational materials, corresponding 
to our education curricula. In the concluding observations, we give concrete conclusions, sugges-
tions and recommendations for implementing GeoGebra in the educational system.

Keywords: GeoGebra, application of GeoGebra in education, free and open educational software. 



M. Janceski, S. Jancheska42

1. Introduction

GeoGebra is a professionally developed, freely accessible, interactive and dynamic 
educational mathematical open source software for teaching and learning mathemat-
ics at all levels of education, from elementary school to university (GeoGebra, 2019), 
(Chrysanthou, 2008), (Kllogjeri and Kllogjeri, 2014). It is written in Java programming 
language, and its web application in HTML5. GeoGebra derives its name from the fact 
that it unites mathematical disciplines algebra and geometry (Mukiri, 2016). The creator 
of GeoGebra is Markus Hohenwarter, who first introduced this software in his mas-
ter’s thesis in the field of mathematics and computer science, defended at the University 
of Salzburg, Austria in 2002 (Hohenwarter and Lavicza, 2010), (Mukiri, 2016). Since 
2006, the GeoGebra project has enjoyed the support of the Ministry of Education of 
Austria, which provides access to GeoGebra for mathematics education in schools and 
universities around the globe.

Since July 2006, the development of GeoGebra continues in the United States at 
the University of Florida Atlantic, where it is actively used in regular classes. (Mukiri, 
2016)

GeoGebra program is a free program (GNU license) used worldwide. It is available 
in more than 64 world languages (Hohenwarter and Lavicza, 2010) which allows the 
use of local language software and multicultural learning environments (Chrysanthou, 
2008). In many educational systems around the world, GeoGebra is integrated into text-
books and various projects.

GeoGebra has received more prestigious international awards for the best educa-
tional software, including: Archimedes 2016, MERLOT Classics Award 2013, NTLC 
Award 2010, Tech Award 2009, BETT Award 2009, SourceForge.net Community 
Choice Awards 2008, AECT Distinguished Development Award 2008, Learnie Award 
2006, eTwinning Award 2006, Trophées du Libre 2005, Comenius 2004, Learnie Award 
2005, Digita 2004, Learnie Award 2003, EASA 2002. (GeoGebra, 2019), (Hohenwarter 
and Lavicza, 2010).

The GeoGebra community exists in almost every country in the world. It is con-
stantly evolving and has millions of users. 

2. Technical Characteristics of GeoGebra

2.1. Basic Information

GeoGebra is designed to combine the properties of dynamic geometric software (for 
example, Cabri Geometry, Geometer’s Sketchpad, Eucklides, Geonext, Descartes, 
Cinderella, EucliDraw, and others) and a computer algebra system (for example, De-
rive, Maple) in a single, integrated and easy-to-use system for teaching and learn-
ing mathematics (Hohenwarter & Preiner, 2007b) (Hohenwarter and Lavicza, 2010). 
GeoGebra has the ability to bridge the differences that exist between mathematical 



Multidisciplinary, Multilingual, Multilevel and Multipurpose Usage of ... 43

disciplines, especially between geometry, algebra, and mathematical analysis (Kl-
logjeri and Kllogjeri, 2014).

The latest stable version of GeoGebra is the version 6.0.523.0 from January 31, 2019. 
It can be used on several operating systems: Windows, MacOS, Debian, Ubuntu, Red 
Hat, Linux, openSuse, Android, iOS, but also as a web application.

Although though GeoGebra possesses powerful features, it does not have large sys-
tem requirements. It can be installed on all operating systems and is really straightfor-
ward. GeoGebra’s virtual tools can be easily used, and the GeoGebra environment can 
be very cozy and attractive because the work with it resembles playing a computer game 
(Kllogjeri and Kllogjeri, 2014).

GeoGebra’s graphics view is of high quality, and the drawings made by GeoGebra 
can be easily transferred to other presentations and programs (for example, Latex). 
GeoGebra can be used to create interactive tutorials, animations and website simula-
tions (GeoGebra, 2019). GeoGebra’s user interface is flexible and can be tailored to the 
needs of students. According to Hohenwarter and Preiner (2007), GeoGebra is a friendly 
software that can be used intuitively and does not require advanced skills. (Kllogjeri and 
Kllogjeri, 2014)

2.2. Description of GeoGebra views and Toolbar

GeoGebra’s interface includes: a menu, a toolbar, Algebra view (or window), Graphics 
view (window), Spreadsheet view (window), and Input bar (Fig. 1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Three GeoGebra views (windows).



M. Janceski, S. Jancheska44

By using the Input bar and the Enter key, the following data can be directly entered 
in the Algebra view of GeoGebra: constant values   and parameters, coordinates of points 
and vectors, complex numbers, mathematical expressions (arithmetic, algebraic, trigo-
nometric, analytical), equations and inequalities (algebraic, transcendent, differential, 
integral), systems of equations and inequalities, commands and functions with one or 
more variables (linear, square, cubic, exponential, logarithmic, and others). A more de-
tailed perspective of the Algebra view is the Construction protocol. It describes all steps 
of the interaction between the user and the computer. 

Using the virtual tools from the GeoGebra toolbar, a variety of geometric objects can 
be constructed in the Graphics view, including: points, vectors, angles, lines, line seg-
ments, series of line segments, polygons, graphs of functions, curves, conic sections, and 
other more complex objects. In this view, the coordinate axes and the coordinate grid can 
be turned on/off, and text can also be entered.

Using the spreadsheet, numerical data can be entered in the worksheet. They can later 
be used for creating lists of values, lists of points and matrices. Also, they can be applied 
for statistical data processing, hypotheses testing for particular distributions, etc.

We concluded that there are three ways of displaying the objects: Algebra view, 
Graphics view and Spreadsheet view. If we create (construct) a geometric object in 
the Graphics view through an appropriate geometric tool, then the corresponding alge-
braic representation (mathematical expression, command and function) of that object 
will automatically be created in the Algebra view. On the other hand, after each direct 
input (via a keyboard) of a mathematical expression, command, or function in the In-
put bar, an appropriate geometric object is automatically created in the Graphics view. 
Thus, the object (objects) in the Graphics view corresponds to the expression (expres-
sions) in the Algebra view and vice versa. Any change (transformation) of an object in 
the Graphics view automatically causes an appropriate change of algebraic properties 
of that object, which leads to an appropriate alteration of the Algebra view content. 
The reverse is also true. So, all displays of an object are dynamically connected and, 
regardless of the way the object was created, any change in any of its views (displays) 
causes changes in other views (displays). Multiple representations of objects are one 
of the greatest advantages of GeoGebra.

2.3. Interactive Tools in GeoGebra 

In order to include interactivity in the GeoGebra documents, we can use the following 
types of objects, included in the toolbox:

Check boxes; they represent graphical representations of ‘0’ and ‘1’.1. 
Input boxes; they have the same function as text input for scripts. The scripts are 2. 
activated in the following three cases: when the text is changed in the Input box, 
when the Enter key is pressed or when the Input box is abandoned.
Buttons; clicking a certain button activates its corresponding script. Although 3. 
scripts can also be activated by clicking on other objects, such as images, the use of 
buttons makes the applications more intuitive.



Multidisciplinary, Multilingual, Multilevel and Multipurpose Usage of ... 45

Dropdown lists; they are used to display the content of already created lists in the 4. 
form of a drop-down menu. To create a drop-down list, the user needs to check the 
“Draw as drop-down list” field on the “Basics” tab of the “Object Properties” dialog 
box. It is activated from the context menu which is generated by right-clicking on 
the appropriate list (the list which is intended to be displayed in the form of a drop-
down menu). Drop-down lists can also be created with appropriate commands.

The first three types of objects can be formed in two ways, through the appropriate 
tool from the toolbox or by entering the corresponding command in the Input bar.

3. International GeoGebra Cooperation and Open Educational Resources

3.1. International GeoGebra Cooperation

Over the past few decades, it has been shown that a group of enthusiasts can change people’s 
conventional thinking and patterns for development and innovation. The success of open 
source projects such as Linux, Firefox, Android, MOODLE and Wikipedia have shown that 
collaboration and sharing can produce valuable resources in different areas of life. Hohen-
warter and Lavicza (Hohenwarter and Lavicza, 2010) emphasize the fact that the interna-
tional GeoGebra community raised the awareness about the importance of GeoGebra. 

GeoGebra is a fast growing community with over 50 million users from around 190 
countries worldwide (Stephen Jull’s LinkedIn page, 2018). GeoGebra’s open source 
code encourages communication and collaboration among its users across the world. 
Users can contribute with their own creations or produce customized versions of existing 
worksheets. Questions and ideas about GeoGebra can be discussed in GeoGebra’s user 
forum (GeoGebra User Forum, 2019).

3.2. International GeoGebra Institute

At the end of 2007, the International GeoGebra Institute (IGI) was established to sup-
port GeoGebra community members and teachers who were starting to use GeoGebra 
by offering a community forum that will expand cooperation and interconnections. (Ho-
henwarter and Lavicza, 2010)

The International GeoGebra Institute is the main umbrella organization of local 
GeoGebra institutes founded by university teachers and researchers and teacher edu-
cation institutions (Hohenwarter & Lavicza, 2007). Four main objectives of the In-
ternational GeoGebra Institute are: trainings and support for teachers, preparation of 
teaching materials and software, research and coverage of less developed communities. 
The local GeoGebra institutes follow the goals of the international GeoGebra Institute, 
but the emphasis on their work depends on their local needs, interests and priorities. 
(Hohenwarter, Lavicza)

There are currently 132 GeoGebra Institutes in 58 countries in the world (GeoGebra 
Institutes, 2019).



M. Janceski, S. Jancheska46

3.3. GeoGebra Materials

GeoGebra’s users (teachers, students, researchers, software developers and other enthu-
siasts) can create original interactive dynamic teaching materials (interactive GeoGebra 
websites, applets, constructions, and other learning resources) that can then be used and 
shared online via a platform called GeoGebra Materials. It contains over 170.000 materi-
als and is constantly increasing on a daily basis. Users can also take an advantage of  the 
software to solve open problems. (Stephen Jull’s LinkedIn page, 2018)

The GeoGebraWiki pool (GeoGebra Wiki Pool, 2019) appeared shortly after the 
appearance of GeoGebra. In 2011, the successor to the GeoGebra Wiki Platform, also 
known as GeoGebraTube, appears, in line with the role it has, since it practically rep-
resented YouTube for free GeoGebra materials. The GeoGebraTube platform was re-
named in 2016 to GeoGebra Materials. GeoGebra Materials can also be defined as an 
official cloud service and a repository of interactive resources for learning and teach-
ing. This service has over million resources, over 40% of which are publicly shared as 
searchable materials – such as interactive worksheets, simulations, games and e-books 
created through the GeoGebraBook. In each book’s chapter, worksheets can be stored. 
Through simple metadata, you can easily search for existing materials regarding differ-
ent levels, themes, and languages.

GeoGebra materials can be exported in multiple formats, such as static images or 
animations. Issues of organizing and ensuring the quality of resources, as well as linking 
them to other open educational resources platforms, are still open.

3.4. GeoGebra Exercises

Interactive applets (“Mathlets”) can be created in the framework of the GeoGebra Exer-
cises project, which will generate random questions to suit students. They provide feed-
back to the students (visual or textual). The response checks are done with a combination 
of JavaScript and GeoGebra (including the GeoGebra symbolic algebraic system).

These interactive applets can then be imported as a SCORM package in a learn-
ing management system, for example MOODLE, and the results will be recorded. 
The level can range from primary (e.g, fractions) to advanced (for instance, math-
ematical analysis), and the goal is to fully cover the entire high school curriculum. 
(Hohenwarter&Lavicza)

First, GeoGebra can be applied in a variety of disciplines, primarily in mathematics 
and computer science, and in subjects in the field of natural and technical sciences. Sec-
ond, the use of GeoGebra covers a wide range of applications, from primary education 
to higher education. Third, GeoGebra enables the creation of multilingual digital learn-
ing content. A wide range of animations and simulations with different difficulty levels 
can be made in GeoGebra, which can enhance the individualization of teaching within 
multiple levels of education and enable conditions for programmed instruction.



Multidisciplinary, Multilingual, Multilevel and Multipurpose Usage of ... 47

4. The Application of GeoGebra in Education

4.1. GeoGebra and Education

GeoGebra is created for educational purposes. It combines contents of the fields of ge-
ometry, algebra, statistics, analysis, and spreadsheets and graphics in a simple, easy-
to-use package (GeoGebra, 2019), (Leggett, 2014). GeoGebra is a virtual experimental 
laboratory which can be used: as a place where hypotheses can be posed and tested; 
to monitor, verify and confirm scientific facts; to illustrate tasks and problems, their 
variations and sets of solutions; to analyze the properties of different geometric objects; 
to discover geometric points of points that satisfy certain conditions, to find important 
points of functions; to prove mathematical statements; to demonstrate various evidence 
of mathematical statements and the like.

We took particular care to ensure that the content and weight of digital educational 
materials included in different levels of education correspond to the age of students and 
can be adapted to the curricula of the respective subjects. It is important to note that 
where it was allowed, a part of the digital learning materials created for a particular 
subject, for example Mathematics for primary education, were used as a basis for the 
development of appropriate digital learning materials for Mathematics for secondary 
education, with carefully adjusted degree of complexity. The same was true in reverse, 
applying the appropriate simplification.

Also, almost any digital content can serve as a basis for creating other digital content. 
Namely, the created simulations include several parameters that can be manipulated by 
the student. The involvement of only one parameter means that the simulation includes 
an entire family of tasks, situations, and events corresponding to that parameter.

GeoGebra is equally popular among students and teachers. Students are attracted 
primarily to its dynamism and interactivity, but also to its ability to provide a visual 
and conceptual feedback. It has been acknowledged that GeoGebra encourages students 
to learn mathematics (Hohenwarter and Preiner, 2007), helps them to analyze various 
problems and to simulate physical phenomena through dynamic structures. It offers un-
limited experimental opportunities to students, which leads to an improved content un-
derstanding and more effective learning. GeoGebra is a free software and students can 
use it not only at school, but also at home, while doing homeworks, practicing, revising 
the courses’ material and preparing for future lessons. (Chrysanthou, 2008)

The most common application of GeoGebra is in the field of teaching and learning 
mathematics. It can simultaneously serve as a tool for demonstrating and visualizing 
formal mathematical knowledge, authoring, creating interactive learning materials and 
facilitating collaboration and communication. Except as a computer tool, many educa-
tors consider GeoGebra a conceptual, pedagogical, cognitive and transformational tool 
in teaching and learning mathematics. This highlights the universality of GeoGebra in 
teaching mathematics and educational reforms in the field of mathematics. (Chrysan-
thou, 2008), (Bu and Schoen, 2011)



M. Janceski, S. Jancheska48

The flexibility of GeoGebra is multifunctional, it can be used in teaching Mathemat-
ics at all levels of education and in a wide range, from simple to complex structures. It is 
suitable for students with varying degrees of ability and can be used to master teaching 
content in other subjects (Physics, Chemistry, Biology, Astronomy, etc.). The GeoGebra 
website consideres GeoGebra a supporter of education in natural sciences, technology, 
engineering and mathematics (STEM) and innovation in teaching and learning around 
the world. According to Chrysanthou (Chrysanthou, 2008), GeoGebra promotes math-
ematical research and can enable effective application of constructive, cognitive and 
collaborative learning models in educational institutions at different levels. The extent 
of teachers who use GeoGebra is also wide, ranging from the preparation of teaching 
materials to making tests for students’ knowledge assessment.

4.2. GeoGebra in Computer Science Education

Students often times have troubles when they are assigned to write a computer program. 
Throughout an extensive experience with students in the Computer Science field, we 
have detected that the main problems lie in their lack of understanding or misunderstand-
ing about what has been assigned to them and how certain algorithms function. Mainly, 
students are given an initial problem and appropriate input data and they are asked to 
solve it using an effective algorithm. If students do not properly understand the question 
or the algorithm, they will not be able to cope with it in the correct way. Appropriately 
created and adapted animations, simulations and computer games portraying visual rep-
resentation of algorithms can certainly contribute to students’ better understanding about 
the assigned problems. GeoGebra does exactly this; its interactive nature helps students 
easily submerge into the secrets of computer programming and algorithms. One such ex-
ample of a GeoGebra animation is illustrated in Fig. 2 where different sorting algorithms 
(Selection sort, Insertion sort, Merge sort, Bubble sort and Quick sort) are applied. By 
selecting any of the sorting algorithms, students can experiment with different sets of 
data input. This will not only show the correct solution (a sorted array), but it will show 
all its steps as well. Due to GeoGebra’s visualization features, particularly the red and 
green colors applied to the numbers in this example, students can observe the actual 
comparison and predict the shifting of the numbers. Additionally, students can choose 
the next step button (step-by-step manner) or the animation button (all steps, one after 
another) with their own assigned pace. 

Such an example solves the above-mentioned problem regarding the appropriate 
comprehension of the problem or algorithm. This problem solving approach will engage 
students from all levels, starting from young age to upper-class students, but will espe-
cially help the ones that have troubles with the school’s material. GeoGebra will intel-
lectually stimulate them to draw their own patterns about the work of certain algorithms 
and help them create a computer program with the correct solution of the problem. For 
the talented students who aim for national and international informatics Olympiads, 
GeoGebra offers programming in Java Script and GeoGebra Script. By using this frame-
work, GeoGebra can effectively be applied in all subfields of Computer Science and 



Multidisciplinary, Multilingual, Multilevel and Multipurpose Usage of ... 49

Informatics to familiarize students with programming concepts, develop their computa-
tional thinking and facilitate their participation in competitions.

4.3. Examples of GeoGebra Applications

4.3.1. Horizontally Launched Projectile Simulation
Fig. 3 shows a GeoGebra simulation for a horizontally launched projectile, in this case, 
an apple. In this simulation, we practically demonstrate the multilingualism, an important 
feature that GeoGebra offers. Namely, the upper left corner of the Graphics view contains 
the buttons “MK”,   “EN” and “RU” that symbolize the three languages, Macedonian, 
English and Russian, respectively. An active language indication is the red lettering label. 
The number of languages   we can include in the simulation is unlimited. 

Three sliders were used, for initial speed (v 0), initial height (h) and the time of flight 
(t) of the projectile. At whatever moment of the apple movement, the Graphics view dis-
plays the current coordinates of the apple. According to the values   of the sliders shown 
in the Fig. 3, it is clear that the initial position of the apple has coordinates (0, 7.5), and 
the initial speed of the apple is v0 = 10. The Fig. 3 also displays the coordinates of the 
apple (4.9, 6.3) after t = 0.5 s and its current horizontal distance D = 4.9 m. At whatever 
moment of the movement, the coordinates of the apple satisfy the formulas displayed on 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

Fig. 2. GeoGebra animation for sorting algorithms. 



M. Janceski, S. Jancheska50

the lower-right part of the Graphics view. The “Animation”, “Stop” and “Reset” buttons 
control the apple’s motion in the projected path. Their meanings are “start movement”, 
“stop movement” and “set the apple at the starting position”, respectively.

4.3.2. Synchronization of Analog and Digital Settings Application
A little more sophisticated application is the “Synchonization of analog and digital set-
tings” application (Fig. 4), which is intended for students in the lower grades in elemen-
tary schools. 

Its elements are an analog clock on the left side, two check boxes (“Random Digital 
Time” and “Set Digital Time”) on the right side and two buttons (“Generate random 
analog time” and “Set the arrows”) below the analog clock.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. GeoGebra simulation for horizontally launched projectile (English language version).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Synchronization of analog and digital settings (version 1).



Multidisciplinary, Multilingual, Multilevel and Multipurpose Usage of ... 51

If we click on the first button, random time is automatically generated. More pre-
cisely, in the background of the application, random values from the interval (0.2π) for 
both the hour hand angle of rotation and the minute hand angle of rotation are selected. 
The center of rotation of the hour and the minute hands is the center of the clock (the 
point where the beginning of the two hands is fixed). Clicking the second button releases 
both the hour and the minute hand and they can be moved manually.

We can move the hands by clicking and dragging their ends, i.e. by rotating the hands 
about the center point of the clock. After clicking (“ticking”) on each of the “Random 
Digital Time” and “Set Digital Time” fields, two digital clocks are generated right next 
to them (Fig. 5).

Unlike the case with the analog clock, after clicking the “Generate random digital 
time” button, we generate four random numbers h1, h2, m1 and m2, which represent the 
time h1h2:m1m2. The first two are the hour digits, and the second two are the minute 
digits. When the “Set Digital Time” checkbox is “checked”, it displays a digital time that 
the user can manually adjust by clicking on the the following buttons: “Hour+”,”Hour-”, 
“Min+” and “Min-”. 

Thanks to the flexibility of GeoGebra, this application can serve as a basis for creat-
ing other applications. By combining the existing parameters (buttons, checkboxes), 
excluding some of them and/or including new parameters, we can create multiple ap-
plications, animations and simulations with different weights. The teachers who are fa-
miliar with these GeoGebra capabilities will be able to adjust the degree of application 
complexity and to enhance the individualization of teaching and learning. 

There are lot of possible modifications of this application. We can set the clocks 
(analog and digital) to display the same time. Then, the speed of the animation can be 
adjusted to be equal to the speed of displaying the exact time of a real clock. In this way, 
the animation could serve as a classic clock. In another modification of this application, 
both clocks could serve as stopwatches. Possible upgrades to this modification include 
activating an alarm at a predefined time together with a sound file. To increase reality of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Synchronization of analog and digital settings (version 2).



M. Janceski, S. Jancheska52

all possible versions of this application, we can activate an appropriate sound file in the 
background that will simulate the clock ticking sound effect. 

Teachers can anticipate a full range of tasks related to the basic version of this appli-
cation. Below is a list of possible general problem tasks that a teacher can set up: 

Generate a random analog time, then match the digital setting to the analog one.i) 
Generate random digital time, then match the analog setting to the digital one.ii) 
Generate a random analogue time, then adjust the digital setting to be forward iii) 
or backward for a certain number of hours and/or minutes in relation with the 
analog setting.
Generate a random digital time, then adjust the analog setting to be forward iv) 
or backward for a certain number of hours and/or minutes in relation with the 
digital setting.

5. The GeoGebra Researches

In Fall 2018, we conducted three researches. The first research targeted primary and high 
school teachers regarding their knowledge, the frequency, the means and the purposes of 
their GeoGebra use during classes. The second research focused on first-year university 
students’ answers to questions related to their GeoGebra use during their primary and 
high school years. The third research examined the effectiveness of GeoGebra’s use 
through a comparison between two types of class groups, experimental (with use of 
GeoGebra) and control (without use of ICT) group. Through these researches we got a 
clear image of GeoGebra’s use in schools, particularly the profile of GeoGebra’s users 
and their dedication for using GeoGebra. We investigated the amount of knowledge us-
ers (students and teachers) have about GeoGebra through the method of self-evaluation 
and the extent to which GeoGebra animations, simulations and computer games can 
contribute to a better understanding of the learning material.

5.1. The First Research

In our first countrywide research, 207 teachers from 27 cities participated. The electronic 
questionnaire was created in Google Form and included 36 questions.

The allocation of teachers by subjects they teach is as follows: Mathematics (38%), 
Informatics (26.5%), Natural sciences (19%), Programming languages   (17%), Work with 
computers and basics of programming (5.5%), Information technology (13%), Technical 
education (10.5%), Physics (9.5%), Biology (8%), Chemistry (7.5%), Electrical engi-
neering (6.5%), Linear algebra and Analytic geometry %) Algebra (5%), Mathematical 
analysis (5%), and Geography (3%).

52.7% of total number of responders are secondary education teachers, 19.5% are 
lower primary school teachers, and 27.8% are upper primary education teachers.

Over 70% of the respondents have many years of experience in teaching (38.2% of 
them have more than 20 years of experience, 31.9% have 11 to 20 years of experience, 



Multidisciplinary, Multilingual, Multilevel and Multipurpose Usage of ... 53

19.1% have 6 to 10 years of experience, 8.3% 2 to 5 years, and only 2.5% of the respon-
dents have less than 2 years of experience).

The results of the teachers’ self-evaluations indicated that 55.9% of them do not 
have any knowledge of this software. 20.4% of the respondents have a basic level of 
GeoGebra knowledge, 18.8% have medium level of knowledge, and only 4.8% of the 
respondents answered that they have advanced level of GeoGebra knowledge.

The results of the research also showed that GeoGebra is most often used for drawing 
function graphics (86.2%), for solving constructive tasks (48.3%), for displaying anima-
tions (48.3%), for displaying simulations (41.4%), for displaying geometric bodies and/
or functions in three-dimensional space (25.9%) and for solving different types of equa-
tions (24.1%). From these responses and from the answers to the other questions, it can 
be concluded that teachers who use GeoGebra in schools, use only few opportunities 
offered by this software.

Approximately one quarter (24.5%) of the respondents do not use animations, simu-
lations and/or computer games in the process of teaching, 32.8% of the respondents use 
them once or twice a month, 27% once to twice a week, and only 7.4% use them daily.

5.2. The Second Research

This research was conducted over a sample of 187 first grade university students who 
attend the bachelor program “Application of Information Technologies” at the Faculty 
of Information Sciences and Computer Engineering at the University “St. Cyril and 
Methodius” in Skopje. They had obtained a degree in secondary education in a total of 
32 cities. The 19-questions questionnaire was filled in by the respondents on paper. The 
majority of the respondents, i.e. 67.9% completed high school education (Gymnasium), 
20.9% of them secondary vocational education, and 9.1% of the respondents obtained a 
diploma from a secondary economic school.

About 72% of them stated that they did not use the GeoGebra software during their 
primary education, and over 56% did not use it during the secondary education. Out of 
all students who used GeoGebra software, 10.4% self-assessed themselves with the low-
est grade “1”, 23.5% with grade “2”, 42.6% with grade “3”, 20% with grade “4”, and 
only 3.5% with grade “5”.

5.3. The Third Research

The third research consisted of three parts. The first part consists of an experiment con-
ducted in two Physics classes of first year high school students (one experimental and 
one control group). The second part consists of an experiment conducted in two Phys-
ics classes of third year students (one experimental and one control group) in the same 
high school as the first part. The third part consists of an experiment conducted in two 
Mathematics classes of fourth-year students (one experimental and one control group) 
in another high school. The experimental groups used GeoGebra simulations and the 
control groups had instruction conducted without the use of ICT tools.



M. Janceski, S. Jancheska54

Afterwards, all experimental and control groups took a test (post-test) of the material 
from the previous lesson learned. In the end, we compared the results of students’ previ-
ous test (pre-test) and the results achieved at the test (post-test) in both classes, in each 
of the three parts of the research. We took into account only the answers to the questions 
(tasks) closely related to the simulations used.

The results of the researches conducted using GeoGebra simulations, among other 
things, showed: a) identical average grades (4.05) from the pre- tests among students 
from both groups; b) a better average post-test grade in experimental groups of students 
(3.4 versus 3.26 in control groups), which was especially expressed in the results of the 
mathematics test; and c) the t-test was used during statistical processing of the data. We 
were considering Null Hypothesis H0: μ1 = μ2 versus the Alternative Hypothesis H1: μ1 > 
μ2. With a significance level of 0.0168, the average pre-test grade was better among the 
students from the experimental group, and with a level of significance 0.001 the same 
applies to the second test, whereby we conclude better success among the students who 
followed the instruction using the GeoGebra simulations. It is interesting to know that 
the statistical data processing was carried out by using the GeoGebra’s tools.

6. General Conclusions and Recommendations

Taking into consideration all previous sections in this paper, if GeoGebra begins to 
be applied at all levels of education, there will be multiple benefits. First of all, it 
will modernize teaching, stimulate the creativity of students and their critical think-
ing skills, and will lead to easier adoption of 21st century skills among the students. 
Using GeoGebra in teaching will intensify the application of active learning methods, 

Table 1
The main features of the third research

First part Second part Third part

School title
City

Orce Nikolov 
Skopje

Orce Nikolov 
Skopje

Josif Josifovski Gevgelija

Subject Physics Physics Mathematics
High school year First Third Fourth
Lesson title Horizontally 

launched projectile
Polarization of light Real functions

Total number of students 68 59 42
Number of students 
in experimental class

34 29 22

Number of students 
in control class

34 30 20

Simulation used 
(in experimental group)

Horizontally 
launched projectile

Partial and full polarization of 
the light (air-water case and 
air-glass case) and the Malus’s 
law for light in-tensity

Graphics of: Square function, 
Sine function, Cosine function, 
Exponential fun-ction and a 
Logarithmic function



Multidisciplinary, Multilingual, Multilevel and Multipurpose Usage of ... 55

such as Problem-based learning, Project-based learning, Learning with experimenta-
tion, Collaborative learning, etc. Secondly, students who start using GeoGebra at the 
beginning of their education will upgrade their knowledge more easily in the further 
levels of their education. Thirdly, if the GeoGebra software is installed in the schools, 
the problems of installation, use and upgrading that are inherent in many modern soft-
ware tools will be minimized. This conclusion relies on the fact that GeoGebra does 
not have high technical requirements for the necessary hardware and software, it is 
easily installed on older computers, and even the most complex animations, simula-
tions and computer games made in GeoGebra occupy minimum disk space, expressed 
in kilobytes. The use of GeoGebra will overcome the gap between opportunities pro-
vided by schools in rural and urban environments, as well as between well and poorly 
equipped schools. New possibilities for experimentation in teaching and learning will 
be opened, without the danger of having physical and health consequences, in com-
parison with the existence of classical laboratory experiments, which are available in a 
limited number of schools. In the our opinion, GeoGebra is mostly beneficial to gifted 
and talented students, the unjustly neglected category of students in our education, 
who can play an important role in the development of our society. Usually, teaching 
is tailored to the level of an average student and gifted students do not receive the 
necessary attention and care from their teachers, thus the children’s further education 
is left to the enthusiasm, motivation and knowledge of those teachers. With the help 
of GeoGebra, all students will be given the opportunity to explore the incredible field 
of experimentation. GeoGebra can also be used as a tool for preparing students for 
competitions in different fields. 

The researches conducted suggest that there is a room for improvement regard-
ing teachers’ and students’ knowledge of this software. The results of the experiments 
particularly show that these users do not make the maximum out of GeoGebra’s fea-
tures. A peripheral area that was investigated during the first research was exactly the 
teachers’ willingness to improve their GeoGebra skills. 69.4% of all teachers who took 
a part of the first research expressed their interest in attending events and trainings 
which can further contribute to expanding their knowledge for GeoGebra. As a result 
of that, we would get more teachers knowledgeable in this field, thus students will be 
given a better opportunity to use GeoGebra animations and simulations frequently un-
der their teachers’ supervision. The fact that students from the third research who use 
GeoGebra achieve better results compared to students who do not have this habit shows 
that GeoGebra is a highly promising software whose potential can further be used by 
qualified teachers and motivated students. 

The proposal for the selection of GeoGebra as a high-quality software solution that 
is recognized, accepted and used worldwide, at the same time satisfies two important 
criteria that are of great importance in societies (developing countries) like ours, Name-
ly, minimizing the costs and maximizing the quality. This proposal arises as a result of 
a part of the research and it relies on the commonly known benefits of the application 
of GeoGebra. GeoGebra is a free and open-source software tool and represent the ideal 
solution for our educational institutions, for students and their teachers.



M. Janceski, S. Jancheska56

References

Bu L., Schoen R., (2011). Model-Centered Learning: Pathways to Mathematical Understanding Using 
GeoGebra, Sense Publishers, Rotterdam.

Chrysanthou I. (2008). Тhe use of ICT in Primary Mathematics in Cyprus: The case of GeoGebra, University 
of Cambridge, Faculty of Education, Cambridge.

GeoGebra (2019). https://www.GeoGebra.org 
GeoGebra Institutes (2019). https://wiki.GeoGebra.org/en/Category:GeoGebra_Institute
GeoGebra s (2019). https://help.GeoGebra.org/topics
GeoGebra Wiki Pool (2019). https://archive.GeoGebra.org/en/wiki/index.php/ Main_Page
Hohenwarter, M., Lavicza, Z. (2ti010). Gaining Momentum: GeoGebra Inspires Educators and Students. 
Jancheski, M. (2019). Educational software, digital learning materials, and teaching and learning by using ICT 

under conditions of mass informatization in education, Skopje. 
Jancheski, M. (2019). Educational software for students from kindergartens and lower primary school. In: 13th 

International Techology, Education and Development Conference, Valencia, Spain. Proceedings. Published 
in INTED2019. 7603–7612

Jancheski, M. (2019). GeoGebra animations, simulations, and computer games in teaching and learning science. 
In: 13th International Techology, Education and Development Conference, Valencia, Spain. Proceedings. 
Published in INTED2019. 7613–7623

Kllogjeri, P., Kllogjeri, Q. (2014). GeoGebra: A vital bridge linking mathematics with other sciences (available 
to everyone). 

Leggett, A. (2014). Active learning pedagogies: Problem-based learning. 
Mukiri, M.I. (2016). Feasibility of Using GeoGebra in Teaching and Learning. Department of Educational 

Communication and Technology, Kenyata University.
Stephen Jull’s LinkedIn page (2018). https://ca.linkedin.com/in/stephenjull

M. Janceski, Ph.D., has more than two decades teaching and research 
experience at the Faculty of Computer Science and Engineering, un-
der the “Ss. Cyril and Methodius” University in Skopje. Leader of 
the Macedonian team on 16 BOI and IOI competitions. He has par-
ticipated in 19 scientific projects, including the crucial ICT projects in 
Macedonian education, as consultant and trainer. Author of numerous 
scientific papers, manuals, and textbooks. His major research areas are 
Distance Education, ICT in Education, Educational Software and Di-
dactics. 

S. Jancheska is a Computer Science student in New York University 
Abu Dhabi. She has sucessfully participated in “Infomatrix Interna-
tional Computer Project Competition” and “Golden Climate Interna-
tional Environmental Project Olympiad” winning one bronze and two 
silver medals. Passionate about educational softwares that facilitate 
students’ learning among which is GeoGebra.



Olympiads in Informatics, 2019, Vol. 13, 57–79
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.05

57

Survey and Analysis of Computing Education  
at Japanese Universities:  
Non-IT Departments and Courses*

Tetsuro KAKESHITA, Mika OHTSUKI
Faculty of Science and Engineering, Saga University, 840-8502, Saga, Japan
e-mail: kake@is.saga-u.ac.jp, mika@is.saga-u.ac.jp

Abstract. We conducted the first national survey of computing education at Japanese universi-
ties in 2016. In this paper, we report the survey result of the computing education at non-IT 
departments and faculties whose major subject is not computing. The survey covers various 
aspects of computing education including program organization, quality and quantity of edu-
cational achievement, students, teaching staff and computing environment. We collected 994 
answers through the survey. At least 87,000 non-ICT students are taking computing education in 
Japan. Although computing education is carried out at every major academic discipline, teaching 
effort greatly differs depending on the academic discipline. We also find shortage of teaching 
staff for computing education. The analysis result will be an essential input to develop reason-
able curriculum guidelines and accreditation criteria to improve computing education at non-IT 
departments.

Keywords: computing education, web-based survey and analysis, college level education, quality 
assurance in education.

1. Introduction

Information Technology (IT or ICT) is regarded as an essential infrastructure of the 
modern society. IT is also expected as a driver for business and/or social innovation at 
many countries. For example, EC refers to such skill as e-Skills and works on promot-
ing the development of e-Skills in EU countries (EC, 2007). College level computing 
education is essential to develop citizens and IT professionals having enough knowledge 
and skill on IT. Such computing education is required for students whose major is not 

* This paper is a revised and extended version of the following paper written by the same author. 
T. Kakeshita, “National survey of Japanese universities on computing education: Analysis of non-IT de-
partments and courses”, in Proc. 12-th International Conference on Digital Information Management 
(ICDIM 2017), 81-86, 2017.



T. Kakeshita, M. Ohtsuki58

IT (Urban-Lurain, 2000) as well as for the students majored in IT. Furthermore, many 
countries including Japan are recently starting computing education from elementary 
school (Computing at School, 2008; K-12 Computer Science Framework).

Considering the above background, computing education is essential at modern uni-
versities. There are four types of computing education in Japanese universities. The situ-
ation is expected to be the same at other countries.

Computing education at a department or a course majored in computing disci-A. 
pline.
Computing education at a non-IT department or a course, whose major is not IT B. 
or computing, as a part of their major field of study.
General computing education for all students at a university or a faculty typically C. 
at the first or second academic year.
Computing education for the students willing to obtain high school teacher li-D. 
cense on computing subjects.

We conducted a national survey of Japanese universities on computing education 
in 2016 (Kakeshita, 2017). The survey is composed of five survey types A through E. 
Among them, survey types A to D correspond to each type of computing education de-
scribed above. The survey type E is executed for educational computer system which 
is a fundamental infrastructure for various types of computing education. Our survey is 
actually the first national survey on this subject in Japan, since there was no widely ac-
cepted definition of computing education.

The Science Council of Japan announced the reference standard of informatics 
(Hagiya, 2015) for university education in March 2016. The reference standard provides 
a common body of knowledge (BOK) for college level computing education so that the 
Japanese government accepted this as a definition of computing education.

In this paper, we report and discuss the result of the survey type B for computing 
education at non-IT departments and courses. The purpose of this survey is to analyze 
and understand the current achievement of computing education at Japanese universities 
from various aspects including program organization, quality and quantity of educa-
tional achievement, students, teaching staff and computing environment.

The ultimate goal of this research is to develop reasonable curriculum guidelines 
and accreditation criteria to improve computing education at non-IT departments. Fun-
damental understanding of the achievement of computing education is necessary to 
achieve this goal. Such effort is necessary since the importance of computing education 
is increasing in the modern society.

We have already published the survey outline in (Kakeshita, 2017). The results of 
other survey types were published separately (Kakeshita, 2018; Ohtsuki, 2017; Sumi, 
2017; Takahashi, 2017). Information processing society of Japan (IPSJ) utilizes the 
survey result to develop the new J17 curriculum standard (Information Processing 
Society of Japan, 2018) for computing education in FY2017. The Japanese Ministry 
of Education (MEXT) will utilize the survey result to improve the national policy of 
computing education.



Survey and Analysis of Computing Education at Japanese Universities: ... 59

2. Related Work

International or nationwide comprehensive surveys on the status of some educational 
subject tend to be carried out regarding rather well-established subjects such as math-
ematics and science than relatively new subject as computing and informatics. 

TIMSS (Trends in International Mathematics and Science Study) (TIMSS & 
PIRLS) was firstly executed in 1995, and is one of the representative international 
surveys aiming at evaluating educational outcomes on mathematics and science do-
main at elementary and secondary levels. The TIMSS survey contains inquiry into the 
status of pupils and students’ achievement and national curriculums of mathematics 
and education as well. ACT National Curriculum Survey (National Curriculum Sur-
vey) is an example of the nationwide surveys which investigate curriculums of several 
subjects, such as English language, arts, mathematics, science, that also appear to be 
well-established as educational subjects.

On the other hand, some examples of the surveys related to computing education 
are found, however their focus were mostly specialized on some limited aspects of 
education rather than entire picture of curriculum execution as we presented in this 
paper.

For example, (Goldweber et al., 2011) reported how social issues of computing were 
included into computing curricula referring to an international survey of computing in-
structors. Simon et al. (Simon, et al., 2018) presented an examination of the choice of 
the programming language in introductory programming courses based on parallel sur-
veys conducted at Australian and UK universities. Marshall (Marshall, 2012) showed a 
comparison of the core aspects of the ACM/IEEE Computer Science Curriculum 2013 
with the specified core of CC2001 and CS2008 to identify the changes of the curricu-
lum. This kind of curriculum survey is in common with our survey in terms of their ho-
listic viewpoints. However, the survey we conducted was about the ‘actual execution’ 
of the curricula in several universities placed at different countries, which gave unique 
nature to the survey we conducted. 

Through the literature review, we came to find that our survey and comparative anal-
ysis have some specific features compared with the related works, and add original value 
to the survey.

The most apparent features is the comprehensiveness. For instance, the question-
naire of the survey, as we see in the next section, contains both the questions about 
educational achievement and those about program overview as well. 

We have found another example of international survey on educational content con-
cerning computing and informatics domain (Al-Ansari, 2002). However, its focus was 
entirely on the educational achievement aspect in our term. The survey which was 
done focusing on both the aspect of computing curriculum (which was covered by 
educational achievement) and that of educational environment and human engagement 
(which was covered by program organization etc.) in one time is very unique among 
relevant surveys.



T. Kakeshita, M. Ohtsuki60

3. Survey Outline

3.1. Survey Questions

The following is the list of questions for survey type B. The list shows that our survey 
covers various aspects of computing education by considering the Japanese standard 
for establishment of universities and our experience of accrediting computing programs 
in Japan:

Name of university, faculty, department and course. ●
Program organization: ●

Day time, night or remote program. ○
Academic discipline of the program such as engineering, social science and  ○
humanities.
Required number of credits of computing subjects for graduation. ○
Number of computing subjects provided. ○

Quality and quantity of educational achievement: ●
See Section 3.2 for detail. ○

Enrolled students: ●
Regular academic years of computing education. ○
Number of students. ○
Student’s choice of career after graduation. ○

Teaching staff: ●
Number, educational background, current specialized field, tenure of faculty  ○
members.
Number and workload of support staff and teaching assistant students. ○

Computing environment: ●
Educational computer system. ○
Student’s own personal computer (PC) and its utilization at class. ○
Educational programming language. ○

Other topics: ●
Future plan and strength of the program. ○
Utilization of IT certification and/or qualification. ○
Special remarks. ○

3.2. Survey of Quality and Quantity of Educational Achievement

The survey of quality and quantity of educational achievement is the core of our survey. 
We define six achievement levels for knowledge and skill represented in Table 1. These 
levels are used to describe quality of education.

We also define a BOK based on the reference standard of informatics (Hagiya, 2015) 
and additional topics related to general computing education (Kawamura, 2008). The 
BOK contains 90 topics classified by 21 domains as represented in Table 2. The BOK is 



Survey and Analysis of Computing Education at Japanese Universities: ... 61

used to precisely define educational achievement of each program. The numbers within 
the parenthesis are the number of topics belonging to the section or the domain.

We adopted the same definition of level and BOK throughout the survey types A to 
D in order to enable mutual comparison of the different survey types. Such comparison 
is important to understand relationship among different survey types.

Table 1 
Knowledge and Skill Level Definition

Level Knowledge Level Definition Skill Level Definition

0 Not taught (unnecessary or already taught at general computing education)
1 Not taught because of the time limitation or 

because the level of the contents is too high
Taught at class with simple exercise

2 Taught at class. Students know each term Taught at class with some exercise. Students can 
perform the topic if detailed instruction is provided.

3 Taught at class. Students can explain the mea-
ning of each term

Taught at experiment with more complex exercise. 
Students can perform the topic with simplified 
instruction

4 Taught at class. Students can explain rela-
tionship and/or difference among related terms

Students perform combined research project contai-
ning the topic so that the students can autonomously 
perform the topic

5 Taught at class or graduation research project. 
Students can teach related domain or subject of 
the terms to the others

Students perform combined research theme containing 
the topic. Students can teach how to perform the topic 
to others

Table 2
Common BOK Organization

Source Section Domain

J07-GEBOK General Education Informatics in General Education (9)

Reference 
Standard of 
Informatics

General Principles of Information (6)(A) 
Principles of Information Pro-(B) 
cessing by Computers

Information Transformation and Transmission (4), 
Information Representation, Accumulation and 
Management (4), Information Recognition and 
Analysis (4), Computation (6), Algorithms (8)

Technologies for Constructing Co-(C) 
mputers that Process Information

Computer Hardware (3), I/O Device (4), Fundamental 
Software (3)

Understanding Humans and (D) 
Societies that Process Infor-
mation

Process and Mechanism for Information Creation and 
Transmission (2), Human Characteristics and Social 
System (3), Economic System and Information (2), 
IT-based Culture (2), Transition from Modern Society 
to Post Modern Society (2)

Technologies and Organizations (E) 
for Constructing and Operating 
“Systems” that Process Informa-
tion in Societies

Technics for Information System Development (7), 
Technics to Obtain Information System Effect (6), 
Social System Related to Information (2), Principle 
and Design Methodology for HCI (4)

Competence Professional Competency for IT Students (3), Generic 
Skill for IT Students (6)



T. Kakeshita, M. Ohtsuki62

3.3. Survey Process

We prepared the survey in October 2016. We defined the survey questions and set 
up the web-based survey system (Kakeshita, 2011). We utilized the web-based sur-
vey system since we did not exactly know the actual organization for this survey in 
advance. After preparing various documents such as user manual and detailed expla-
nation of the survey questions, we sent the formal request letter to all universities 
in Japan with a reference letter from the Japanese Ministry of Education in order to 
increase the response rate.

The survey was executed for two months starting at the beginning of November 
2016. Each survey responder must first register to the web-based survey system and then 
answer the questions listed in Sections 3.1 and 3.2. We also provide FAQ and indepen-
dent answers for the questions from the responders.

Each user answers to the survey questions listed in Section 3.1 through a web-based 
answer sheet as illustrated in Fig. 1. Although the answer sheet is prepared for the survey 
type A, the answer sheet for the survey type B is similar except that the questions are 
slightly different. The questions for each survey type can be easily customized by setting 
up the master database. 

Each user answers to the survey of quality and quantity of educational achievement 
defined in Section 3.2 by uploading an Excel worksheet as illustrated in Fig. 2. Each sur-
vey responder is requested to fill the blue cells where each row respectively represents 
knowledge and skill achievement levels, and the number of enrolled students learning 
the specified topic.

After closing the survey, we reviewed the collected answers and requested the re-
sponders for possible correction of the incomplete or inconsistent answers.

 

 

Questions 

User ID 

Password 

Fig. 1. Web-based Answer Sheet for Each User.



Survey and Analysis of Computing Education at Japanese Universities: ... 63

4. Overview of the Survey Result

The target of survey type B is a department or a course whose major subject is not 
in the computing discipline. Computing education at such department or course is 
composed of the general computing education, usually provided by a faculty or a 
university, and specialized computing education provided by the target department 
or the course as their major subjects. Survey type B is focus on the specialized com-
puting education. General computing education is analyzed through survey type C 
(Takahashi, 2017).

4.1. Number of Responses

Table 3 represents the number of courses, departments and faculties (including universi-
ties) responded to the survey type B. The public universities are the universities run by 
a local government such as a prefecture or a city.

As can be found from Table 3, we allow a faculty or a university to respond to the 
survey type B. This is because that the faculty or the university can merge responses 
from the courses or the departments, since many non-IT departments or courses are ex-
pected to provide specialized computing education in the university or faculty.

Fig. 2 

Domain 

Topic Topic  
Explanation  

Knowledge Level 
Definition 

Skill Level 
Definition 

Knowledge 
 Level 

Skill  
Level 

# of Students 

Fig. 2. Answer Sheet using Excel Worksheet.



T. Kakeshita, M. Ohtsuki64

4.2. Student Enrollment Classified by Major Field of Study

The school basic survey utilizes 11 major academic disciplines to classify college 
level education (MEXT, 2017). Table 4 represents the number of students collected 
through the survey.

87,261 students (13.9% of the university students) are taking specialized comput-
ing education. We also find that 61% of the students are taking specialized computing 
education at the responded departments etc. Although there are many departments not 
responding to the survey, we can estimate that at least 100,000 students are taking spe-
cialized computing education as a part of their major field of study in Japan. Table  4 
shows that all major disciplines provide specialized computing education. This fact in-
dicates the importance of computing education.

Table 3.
Number of Responses to Survey Type B

Univ. Type Course Department Faculty or Univ. Total

National   62 173   67 302
Public   12   34   18   64
Private   67 452 109 628

Total 141 659 194 994

Table 4
Number of Students Classified by Major Field of Study

Academic Discipline
# of Students A/B

 (%)A* B**

Humanities   4,568   88,246   5.2
Social Science 31,428 204,933 15.3
Physical Science   4,969   18,523 26.8
Engineering 23,151   88,062 26.3
Agriculture   1,824   18,042 10.1
Health (Medicine and Dentisty)   3,438   11,765 29.2
Health (Others)   5,734   58,824   9.7
Home Economics      926   46,475   5.6
Education   2,599   17,787   5.2
Arts      645   18,189   3.5
Others   7,979   56,019 14.2

Total 87,261 626,865 13.9

  *  A: Number of students taking specialized computing education 
at the responded departments etc.

**  B: Number of students collected through FY2016 school basic 
survey (MEXT, 2017).



Survey and Analysis of Computing Education at Japanese Universities: ... 65

Another observation from the table is that the ratio of the number of students taking 
specialized computing education divided by the total number of students greatly differ 
depending on the major field of study. The ratio indicates the degree of importance of 
computing education at each discipline. The importance is higher at the departments ma-
jored in engineering, physical science and health (medicine and dentistry). We consider 
that general computing education plays the major role in computing education at the 
academic disciplines with a lower ratio.

4.3. Number of Credits for Computing Subjects

7,883 computing subjects are provided by the responded departments. Among them 
5,385 (68.3%) are lectures and 2,498 (31.7%) are exercises. This suggests a realistic 
ratio of the lecture and exercise to design a computing curriculum recommendation for 
non-IT departments. 390 departments (33.9% of the responded departments) provide 1 
to 4 computing lectures and exercises. While 682 departments provide computing lec-
ture, 316 departments (31.7%) do not. For the case of exercise, 426 departments (42.7%) 
do not provide any exercise.

Fig. 3 represents the distribution of required number of credits for the computing sub-
jects for each academic discipline. The distribution is illustrated using box plot. The  left 

Fig. 3. Number of Required Credits for Computing Subjects.



T. Kakeshita, M. Ohtsuki66

and right sides of a box represent lower and upper quartiles of the collected data. The 
thick line represents the median. The left and right ends of the dashed line respectively 
represent lower and upper whiskers. Note that some of these values may coincide in 
the figure. The circles represent outliers. The distribution provides a realistic restric-
tion to design computing curriculum for each academic discipline. For example, typical 
computing curriculum at non-IT departments is composed of 0 to 5 required credits. It 
is recommended to design a computing curriculum between 2 to 6 credits depending on 
the academic discipline to design a widely-accepted one.

Fig. 4 represents distribution of standard academic year for computing education. 
Computing education at non-computing departments typically starts at the first or sec-
ond academic year and continues for two to four years. This tendency is essentially the 
same among national, public and private universities.

5. Educational Achievement

We shall analyze the educational achievement, i.e. quality and quantity of education, in 
this section. We collected 141 answers of the educational achievement. After classify-

Fig. 4. Standard Academic Years for Computing Education.



Survey and Analysis of Computing Education at Japanese Universities: ... 67

ing the answers for each major field of study, we find that the number of answers is less 
than or equal to 2 in the case of domestic science, health (medicine and dentistry) and 
art. Thus we decided to analyze the educational achievements for the major fields other 
than these three fields.

We define effort of an educational program for a certain topic of the BOK by the 
multiplication of average level value and the number of students learning the topic. We 
thus define two types of effort values to teach knowledge and skill.

Fig. 5 represents knowledge effort classified by major field of study. Similar distri-
bution can be obtained for the skill effort. The distribution represents focus of comput-
ing education at each academic discipline so that it is recommended to design a cur-
riculum guideline considering the distribution of effort for each BOK section defined 
in Table 2. The figure is also useful to analyze difference of educational needs for 
computing education among the disciplines.

Fig. 6 illustrates the cluster dendrogram of the academic disciplines. The dendrogram 
is computed using hierarchical clustering using similarity of the disciplines. The differ-
ence of the heights between the disciplines represents the similarity of the disciplines. 
The similarity is calculated using the Euclidean distance of the effort distribution of the 
disciplines. Distance between two clusters is estimated using the complete linkage, i.e. 
maximum distance of all element pairs of the both clusters. For example, engineering 
and physical science are most similar so that we can develop a common computing cur-
riculum for these two academic disciplines.

We shall next analyze educational achievement at each discipline. Fig. 7 represents 
the distribution of the total number of enrolled students for each BOK section and aca-
demic discipline. The numbers of the enrolled students are calculated by the sum of the 
number of enrolled students at each topic of the corresponding BOK section and aca-
demic discipline so that the actual values contain double counting of the same student. 
However we can observe that the disciplines of engineering, social science, and others Fig. 5 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Health (Others)

Physical Science

Engineering

Agriculture

Others

Social Science

Humanities

Education

General Education A B C D E Competence

Fig. 5. Knowledge Effort Classified by BOK Section and Academic Discipline.



T. Kakeshita, M. Ohtsuki68

are the three largest disciplines of computing education and teach approximately 90% of 
the students. We shall call these disciplines as major disciplines in this paper.

Fig. 8–Fig. 15 represent average achievement levels (knowledge and skill) of each 
academic discipline for each BOK section. These figures are useful for each discipline 
to determine realistic levels for computing education at each BOK section. The readers 
can refer to Table 1 for the definition of levels.

We can observe that the achievement levels of the three major disciplines are not high 
compared with the achievement levels of the non-major disciplines. This is because that 
major disciplines contain various education programs and some of them cannot achieve 

Fig. 6. Cluster Dendrogram of the Academic Disciplines.
Fig. 7 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

GEBOK

A

B

C

D

E

Competence

Total

Engineering

Physical Science

Health (Others)

Agriculture

Education

Humanities

Social Science

Others

Fig. 7. Comparison of Academic Disciplines on the Total Number of Enrolled Students for 
Each BOK Section.



Survey and Analysis of Computing Education at Japanese Universities: ... 69

Fig. 8. Average Achievement Levels: Engineering.

Fig. 9. Average Achievement Levels: Physical Science.

Fig. 10.  Average Achievement Levels: Health (Others).



T. Kakeshita, M. Ohtsuki70

Fig. 11. Average Achievement Levels: Agriculture.

Fig. 12. Average Achievement Levels: Education.

Fig. 13. Average Achievement Levels: Humanities.



Survey and Analysis of Computing Education at Japanese Universities: ... 71

high levels due to restriction of teaching staff and/or budget. On the other hand, some 
of the computing education at non-major disciplines achieve higher levels at a specific 
BOK section because they can concentrate education resources for the BOK sections.

The readers can also observe some similarity of the achievement level distribution 
between the similar disciplines illustrated in Fig. 6.

6. Enrolled Student

6.1. Distribution of Student Enrollment

Fig. 16 represents the distribution of student enrollment for the specialized comput-
ing education. The number of enrolled students indicates the upper bound of the 

Fig. 14. Average Achievement Levels: Social Science.

Fig. 15. Average Achievement Levels: Others.



T. Kakeshita, M. Ohtsuki72

numbers. For example, “≦20” means that the number is more than 10 and not 
more than 20.

The average number of enrolled students is 70.0 for national university, 87.3 for 
public university and 123.0 for private university. It can be observed that the number of 
enrolled students is larger at private university. In fact, 36.5 % of the private university 
has more than 100 enrollments.

6.2. Number of Students per Teacher

Fig. 17 represents the distribution of the number of students per teacher for the comput-
ing subject. The distribution greatly changes depending on the academic disciplines. The 
distribution is valuable to define accreditation criteria for the number of teachers for the 
computing subject. It will be reasonable to define the criteria at the lower 25% value of 
the distribution. If an educational program achieved better than the higher 25%, then it 
will be evaluated as a strong point of the program.

6.3. Student’s Choice of Career after Graduation

Table 5 represents the student choice of career after graduation.
Since very small number of students go to graduate school majored in computing 

discipline, college level computing education ends at the undergraduate level. Although 
13.8 % of the students go to a graduate school, the percentages greatly change at national 
and private universities.

Fig. 16 

3 8
19

29

84

62
48

21 1 5
12

19
9

2 14
16 19

39

128 130
117

59

13
4

0

20

40

60

80

100

120

140

≦2 ≦5 ≦10 ≦20 ≦50 ≦100 ≦200 ≦500 ≦1000 ≦2000

# 
of

 A
ns

w
er

s

Number of Enrolled Students

National University Public University Private University

Fig. 16. Distribution of Student Enrollment.



Survey and Analysis of Computing Education at Japanese Universities: ... 73

7. Teaching Staff

7.1. Faculty Member

Fig. 18 represents the number of faculty members teaching computing subject classified 
by the type of the faculty member and the university. The numbers shown in the bars 
represent the actual number of faculty members.

8,851 members are employed for specialized computing education. Full-time mem-
ber ratio is higher at national and public universities. In fact, the ratio of part-time mem-

Fig. 17. Distribution of the Number of Students per Teacher.

Table 5
Student’s Choice of Career after Graduation

University Type
Enter Graduate School

Get Job UnknownComputing Others

National 443   9,270 15,969   2,498
Public 185   1,107   4,388      364
Private 147   4,757 66,911   9,603

Total 775 15,134 87,268 12,464



T. Kakeshita, M. Ohtsuki74

bers outside of the university is 37.7 % at private university. This is mainly because of 
the financial restriction and the restriction of full-time member post.

15,865 computing classes are held at each year. Full-time faculty members are in 
charge of more than 80% of the computing classes at national university as represented 
in Fig. 19. However, the ratio the part-time teachers outside of the university exceeds 
25% at public and private university.

It is essential for the faculty members to have enough ability in the computing dis-
cipline to effectively teach students. We collected the number of computing department 
graduates and the number of faculty members whose current major is in the computing 
discipline. Fig. 20 represents the ratio of these two types of faculty members.

The ratio of computing department graduates is generally low in the four cases. The 
following is a list of the major reasons:

The number of Ph.D. holders in computing discipline is far less than the required (1) 
number of faculty members to teach computing subjects.
Research contribution to the major field of the department is more important to (2) 
hire a new full-time member than teaching ability of computing subject.

On the other hand, the ratio of faculty members majored in computing discipline is 
generally higher than the ratio of computing department graduates. This can be consid-
ered as an effect that the faculty member changed his/her major after getting position at 
the department and being assigned some computing subject.

7.2. Support Staff and Teaching Assistant

Table 6 represents the statistics of the support staff and teaching assistant (students to 
assist computing subjects).

It can be observed that teaching assistant is essential at many universities since the 
number of support staff is quite limited. Although most of the teaching assistants are the 
students of the employing university, students of the neighboring universities are also 
employed at a metropolitan area.

Fig. 18 

2,007

172

2,658

4,837

231

41

373

645

260

34

541

835

336

36

2,162

2,534

0% 20% 40% 60% 80% 100%

National

Public

Private

Total

Ratio of Faculty Members

Full-Time (with Tenure) Full-Time (without Tenure)

Part-Time (within Univ.) Part-Time (Outside Univ.)

Fig. 18. Ratio of Faculty Members Teaching Computing Subject.



Survey and Analysis of Computing Education at Japanese Universities: ... 75

Fig. 19. Distribution of the Number of Computing Classes in Charge.

Fig. 20 

15.3%

13.5%

22.3%

17.6%

25.7%

16.9%

36.8%

27.9%

0% 5% 10% 15% 20% 25% 30% 35% 40%

Full-Time (with Tenure)

Full-Time (without Tenure)

Part-Time (within Univ.)

Part-Time (Outside Univ.)

Ratio of Computing Specialist Ratio of Computing Department Graduates

Fig. 20. Ratio of Computing Department Graduates and Faculty Members Majored in 
Computing Discipline.

Table 6
Support Staff and Teaching Assistant for Computing Subject

Univ. Type Support Staff Teaching Assistant
# of Staffs # of Subjects Workload (man hour) # of subjects

National 166   74   42,390    818
Public     3     4   13,785    111
Private 434 432   73,125 1,889

Total 603 510 129,300 2,818



T. Kakeshita, M. Ohtsuki76

8. Computing Environment 

8.1. Educational Computer System and Student PC

Educational computer system is important for effective computing education. Utilization 
of student PC for computing education is also important as the PC is getting cheaper. 
Table 7 and Table 8 respectively represent utilizations of educational computer system 
provided by the educational institution and the utilization of student PC.

We observe that 23.1% of the national universities do not have educational computer 
system in the university. This ratio is even larger in the cases of public universities 
(34.3 %) and private universities (37.6 %). 57.6 % of the universities utilize shared 
computer system.

80.6 % of the universities leave the decision to purchase PC to their students. 
Al though PC price is getting cheaper, it is still difficult for many universities to impose 
obligation to the students to purchase PC.

We also find that 28.4 % of the departments have no educational computer system and 
allow students to decide to purchase PC. We need further investigation to these depart-
ments. On the other hand, 7.0 % of the departments have educational computer system 
and require students to purchase PC. We expect that these departments provide effective 
computing education by utilizing the educational computer system and student PC.

Table 7
Utilization of Educational Computer System

Utilization # of Answers # of Enrolled Students

Shared Computer System at Unversity 356 38,148
Shared Computer System at Campus 141 12,839
Shared Computer System at Faculty   69   6,298
Private Computer System at Department   59   4,304
Computer System is provided but unused   43   4,201
No Educational Computer System 326 21,471

Total 994 87,261

Table 8
Utilization of Student PC

Utilization # of  Answers # of Enrolled Students

All Students of the University must have PC   69   4,384
All Students of the Faculty must have PC   34   3,494
All Students of the Department/Course must have PC   26   2,335
Students are recommended to phrchase PC   65   4,744
Purchasing of Student’s own PC is optional 800 72,304

Total 994 87,261



Survey and Analysis of Computing Education at Japanese Universities: ... 77

8.2. Educational Programming Language

We collected three educational programming languages from each department with the 
highest achievement levels. Table 9 illustrates popular programming languages for the 
specialized computing education calculated using the collected data. The score of each 
language is evaluated as a weighted sum of the answers. The weight of a language is 
defined using the achievement level of the students at each department. 

9. Concluding Remarks

We find that more than 100,000 students are learning computing subjects at non-IT de-
partments or courses. The actual number of students would be even larger. Specialized 
computing education is carried out at all academic disciplines, which indicates impor-
tance of the computing education. We also find that the effort for the computing educa-
tion is greatly different depending on the academic disciplines. The findings explained in 
Sections 4 and 5 will be useful to develop realistic curriculum guidelines for computing 
education at non-IT department or course. We also find shortage of teaching staffs spe-
cialized in the computing discipline.

Information Processing Society of Japan (IPSJ) published J17 curriculum standard 
for computing education in March 2018 (Information Processing Society of Japan, 2018). 
Since we find the importance of computing education at non-IT departments and courses 
through the survey, we intend to start a project to discuss about effective and feasible 
computing curriculum for non-IT departments and courses. We have a plan to collabo-
rate with enthusiastic responders of this survey to develop effective project team.

Table 9
Popular Educational Programming Languages

Programming Language National University Public University Private University Total Score

C 174 38 254 466
Visual Basic/VBA   57 11 186 254
Java   40   4 102 146
C++   41   4   63 108
JavaScript     9   2   66   77
Fortran   34   2   27   63
SQL     8  　   23   31
Python     8  　   21   29
Ruby     6  　   19   25
PHP     6  　   16   22
R   13   4     3   20
Processing     3   3     9   15
Assembly Language     7  　     6   13
Matlab     7  　     4   11



T. Kakeshita, M. Ohtsuki78

Acknowledgment

This research is supported by JSPS KAKENHI Grant Numbers 16K01022 as well as by 
the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors 
greatly appreciate the faculty members and the administration officers of the universities 
who took time to respond to our survey.

References

Al-Ansari, H., Yousef, N. (2002). Coverage of competencies in the curriculum of information studies: An inter-
national perspective 1. Education for information, 20(3–4), 199–215.

Computing at School (2008). Available at https://www.computingatschool.org.uk/
EC (2007). e-Skills for the 21st Century: Fostering Competiveness, Growth and Jobs. Commission of the Eu-

ropean Communities
Goldweber, M., et al. (2011). Enhancing the social issues components in our computing curriculum: computing 

for the social good. ACM Inroads, 2(1), 64–82. 
Hagiya, M. (2015). Defining informatics across Bun-kei and Ri-kei, Journal of Information Processing, 23(4), 

525–530.
Information Processing Society of Japan (2018). Computing Curriculum Standard J17. (in Japanese). Available at 

https://www.ipsj.or.jp/annai/committee/education/j07/curriculum_j17.html

Kakeshita, T., Ohtsuki, M. (2011). A web-based survey system to analyze outcomes and requirements: a case for 
college level education and professional development in ICT. In: Proc. 5-th Int. Conf. on Society, Cybernet-
ics and Informatics (IMSCI 2011), 82–87.

K-12 Computer Science Framework. Available at https://k12cs.org/
Kakeshita, T. (2017). National survey of Japanese universities on IT education: overview of the entire project 

and preliminary analysis. In: Proc. Int. Conf. on Computer Supported Education (CSEDU 2017), 607–618.
Kakeshita, T. (2018). National survey of Japanese universities on computing education: Analysis of departments 

majored in computing discipline, Olympiads in Informatics, 12, 69–84. DOI: 10.15388/ioi.2018.06
Kawamura, K. (2008). Computing curriculum standard J07: computing in general education, IPSJ Magazine, 

49(7), 768–774. (in Japanese)
Marshall, L. (2012). A comparison of the core aspects of the ACM/IEEE Computer Science Curriculum 2013 

Strawman report with the specified core of CC2001 and CS2008 Review. In: Proc. Second Computer Sci-
ence Education Research Conference, 29–34.

Ministry of Education, Culture, Sports, Science and Technology (MEXT, 2017). FY2016 School Basic Survey. 
(in Japanese)

National Curriculum Survey. (n.d.) (Retrieved June 9, 2018). Available at 
https://www.act.org/content/act/en/research/national-curriculum-survey.html

Ohtsuki, M., Kakeshita, T., Takasaki, M. (2017). National survey of Japanese universities on IT education: 
analysis of educational computer system. In: Proc. 12-th Int. Conf. on Digital Information Management 
(ICDIM 2017), 98–103.

Simon, R. M., et al. (2018). Language Choice in Introductory Programming Courses at Australasian and UK 
Universities. In: Proc. 49th ACM Technical Symposium on Computer Science Education (SIGCSE ‘18), 
852–857.

Sumi, K., Kakeshita, T. (2017). National survey of Japanese universities on computing education: Analysis of 
IT education for high school teacher license on IT. In: Proc. 12-th Int. Conf. on Digital Information Manage-
ment (ICDIM 2017). 87–92.

Takahashi, N., Kakeshita, T. (2017). National survey of Japanese universities on IT education: analysis of infor-
matics in general education. In: Proc. 12-th Int. Conf. on Digital Information Management (ICDIM 2017), 
104–109.

TIMSS & PIRLS International Study Center. (n.d.) (Retrieved June 9, 2018), TIMSS 2015 Assessment Frame-
works. Available at https://timssandpirls.bc.edu/timss2015/frameworks.html

Urban-Lurain, M., Weinshank, D.J. (2000). Is there a role for programming in non-major computer science 
courses?. In: Proc. 30th Annual Frontiers in Education Conference, Building on a Century of Progress in 
Engineering Education, T2B-7.



Survey and Analysis of Computing Education at Japanese Universities: ... 79

T. Kakeshita is an associate professor at Computing Division, Saga 
University, Japan. He received his Ph.D. degree in Computer Science 
from Kyushu University, Japan in 1989. His major research interests 
include quantitative analysis of ICT education and ICT certification, 
and complexity analysis of database and software systems. He recei- He recei-He recei-
ved an excellent educator award from Information Processing Society 
of Japan (IPSJ) in 2013. He joined many activities such as IPSJ educa- He joined many activities such as IPSJ educa-He joined many activities such as IPSJ educa-
tional activity, Certified IT Professional Certificate (CITP), accredita-
tion at Japan Accreditation Board for Engineering Education (JABEE) 
and ISO standard development (ISO/IEC JTC1/SC7/WG20).

M. Ohtsuki is a senior lecturer at Computing Division, Saga Univer-
sity, Japan. She received her Ph.D. from Kyushu University in 1999. 
Her major research interests include computer aided ICT education, 
and software development methodologies including software testing. 
She is a committee member of JaSST (Japan Symposium on Software 
Testing) in Tokyo and is a commissioner at ASTER (Association of 
Software Test EngineeRing). She published several books about sof-
tware development tools such as CVS, CppUnit etc. 





Olympiads in Informatics, 2019, Vol. 13, 81–98
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.06

81

Survey and Analysis of Computing Education  
at Japanese Universities:  
Informatics in General Education*

Tetsuro KAKESHITA1, Naoko TAKAHASHI2, Mika OHTSUKI1

1Faculty of Science and Engineering, Saga University, 840-8502, Saga, Japan
2Faculty of Economics, Kokugakuin University, 150-8440, Tokyo, Japan
e-mail: kake@is.saga-u.ac.jp, n.takahashi@kokugakuin.ac.jp, mika@is.saga-u.ac.jp 

Abstract. We conducted the first nationwide survey of computing education at Japanese universi-
ties in 2016. In this paper, we report the survey result of informatics in general education for all 
students at a university or a faculty. The survey covers various aspects including program orga-
nization, quality and quantity of educational achievement, students, teaching staff and computing 
environment. 739 answers are collected from 530 universities in response to the survey. The an-
swers cover 70.5% of the Japanese universities, and approximately 81.6% of the 649 universities 
that responded to the survey. The Information Processing Society of Japan (IPSJ) and the Japanese 
Ministry of Education (MEXT) will utilize the survey result to develop a new computing curricu-
lum standard J17 and national policy of computing education respectively.

Keywords: informatics in general education, web-based survey and analysis, college level educa-
tion, curriculum design, quality assurance in education.

1. Introduction

Computing education is essential at modern universities, since IT (Information Tech-
nology) is necessary to enhance ability of an individual and is expected as a powerful 
innovation driver through integration with various technologies (CS for ALL, n.d.; 
European Committee, 2018). There are four types of computing education in Japa-
nese universities:

Computing education at a department or a course majored in computing disci-A. 
pline.

* This paper is a revised and extended version of the following paper written by the same author. 
N. Takahashi, T. Kakeshita, “National Survey of Japanese Universities on Computing Education: Analysis 
of Informatics in General Education”, in Proc. 12-th International Conference on Digital Information 
Management (ICDIM 2017), 104-109, 2017.



T. Kakeshita, N. Takahashi, M. Ohtsuki82

Computing education at a non-IT department or a course as a part of their major B. 
field of study.
Informatics in general education for all university students typically at the first or C. 
second academic year.
Computing education to obtain high school teacher license on computing sub-D. 
jects.

We conducted the first nationwide survey of Japanese universities on computing edu-
cation in 2016 (Kakeshita, 2017). The survey is composed of four survey types A through 
D described above as well as the survey type E for educational computer system.

In this paper, we shall report and analyze the survey results regarding informatics in 
general education (Kawamura, et al., 2015; Kawamura, et al., 2016), i.e. survey type C. 
Informatics in general education is implemented as a common subject for all under-
graduate students belonging to a university or a faculty in Japan. Although this survey is 
focused on Japanese universities, such type of general computing education is expected 
internationally (Informatics Europe and ACM Europe, 2013; Libeskind-Hadas, 2015). 
Therefore, our survey and analysis result will be of interest to a wide range of the readers 
outside of Japan. 

Our survey on educational contents is based on J07-GEBOK** (Kawamura, 2008), 
introduced in Section 2.2, which is developed by Information Processing Society of Ja-
pan (IPSJ) as a guideline for college level informatics in general education. J07-GEBOK 
was developed without a detailed survey of college level informatics in general educa-
tion. Our analysis is necessary to develop realistic curriculum guideline and accredita-
tion criteria to improve informatics in general education at university.

IPSJ will utilize our survey result to develop various types of college level comput-
ing education guidelines including the new J17 curriculum standard (IPSJ, 2018). The 
Japanese Ministry of Education (MEXT) will utilize the survey result to improve the 
national policy of computing education in Japan.

2. Survey Plan

2.1. Survey Questions

The following is the list of questions for survey type C. As the reader can understand 
from the list, our survey covers various aspects of computing education by considering 
the Japanese standards for establishment of universities and our experience of accredit-
ing computing programs in Japan:

Name of university and/or faculty. ●
Respondent standpoint. ●
Program organization: ●

Day time, night or remote program.○○

** GEBOK – General Education Body of Knowledge



Survey and Analysis of Computing Education at Japanese Universities: ... 83

Required number of credits for graduation.○○
Number of subjects provided.○○

Quality and quantity of educational achievement: ●
See Section 2.2 for detail.○○

Enrolled students: ●
Regular academic years of the program.○○
Number of students.○○

Teaching staff: ●
Number, educational background, current specialized field, tenure of faculty ○○
members.
Number and workload of support staff.○○
Number and workload of teaching assistant students.○○

Computing environment: ●
Educational computer system.○○
Student’s own PC and utilization at class.○○
Educational programming language.○○

Other topics: ●
Strength and future plan of the program.○○
Utilization of IT certification and qualification.○○
Special remarks.○○

2.2. Survey of Quality and Quantity of Educational Achievements

The survey of quality and quantity of educational achievements is the core of our survey. 
We define six achievement levels for knowledge and skill represented in Table 1. These 
levels are used to describe quality of education.

Table 1
Knowledge and Skill Level Definition

Level Knowledge Level Definition Skill Level Definition

0 Not taught (unnecessary or already taught at general computing education)

1 Not taught because of the time limitation or 
because the level of the contents is too high

Taught at class with simple exercise

2 Taught at class. Students know each term Taught at class with some exercise. Students can 
perform the topic if detailed instruction is provided

3 Taught at class. Students can explain the mea-
ning of each term

Taught at experiment with more complex exercise. 
Students can perform the topic with simplified 
instruction

4 Taught at class. Students can explain rela-
tionship and/or difference among related 
terms

Students perform combined research project contai-
ning the topic so that the students can autonomously 
perform the topic

5 Taught at class or graduation research project. 
Students can teach related domain or subject 
of the terms to others

Students perform combined research theme contain-
ing the topic. Students can teach how to perform the 
topic to others



T. Kakeshita, N. Takahashi, M. Ohtsuki84

We utilize J07-GEBOK (Kawamura, 2008) in order to define knowledge areas of 
the informatics in general education. J07-GEBOK is proposed by the Information Pro-
cessing Society of Japan (IPSJ) as a common body of knowledge for informatics in 
general education. The following is the list of areas of J07-GEBOK. Each area contains 
several learning units:

Information and Communication. ●
Digitalization of the Information. ●
Computing Elements and Structure. ●
Algorithms and Programming. ●
Data Modeling and Operation. ●
Information Network. ●
Information Systems. ●
Information Ethics and Security. ●
Computer Literacy. ●

J07-GEBOK is a subset of the common BOK utilized for other survey types A, B 
and D. This is because the subjects assigned for informatics in general education are 
quite limited due to the restriction of teaching staff and the number of students learn-
ing the subjects.

A university or a faculty answers expected knowledge and skill levels of the students 
at each area of the BOK. At the same time, the organization answers the total number of 
students taking the subjects taught in each area. 

As a result, quality and quantity of education at the organization is summarized using 
J07-GEBOK.

2.3. Survey Process

We prepared the survey in October 2016. We defined the survey questions and set up 
the web-based survey system (Kakeshita and Ohtsuki, 2011). We utilized the web-
based survey since we did not exactly know the actual organization for this survey in 
advance. After preparing various documents such as user manual and detailed instruc-
tion of the survey questions, we sent the formal request letter to all universities in Japan 
with a reference letter from the Japanese Ministry of Education in order to increase the 
response rate.

The survey was executed for two months starting at the beginning of November 
2016. Each survey responder must first register to the web system and then answer the 
questions listed in Section 2.1. We also provide FAQ and independent answers for the 
questions from the responders.

After closing the survey, we reviewed the collected answers and requested the re-
sponders for possible correction of the incomplete answers.



Survey and Analysis of Computing Education at Japanese Universities: ... 85

3. Overview of Informatics in General Education

3.1. Response Rate Analysis

We collected 739 answers from 69 national universities, 58 public universities, and 404 
private universities in response to the survey type C. 447 registrations are from entire 
universities and 292 registrations are from faculties or campuses of a university. The 
number of responded universities are 531, corresponding to 71.8% of the universities in 
Japan. This demonstrates the reliability of our survey.

The number of universities responded to at least one survey type A–E is 649. 
This implies that 81.8% of the responded universities provide informatics in general 
education and this type of computing education is widely executed in Japanese uni-
versities.

3.2. Respondent Standpoint

We asked the survey respondents about their position within the university. We made 
the question to clarify whether they are secretariat staff or faculty members. 69.9% 
of the respondents were secretariat staff. Since informatics in general education is 
administrated by a university or a faculty, a secretariat staff may have answered the 
questions on behalf of the faculty members in charge. Other respondents are universi-
ty officials, representatives of common education, and representatives of educational 
computer center. It is commonly observed at Japanese universities that representa-
tives of common education belong to another faculty and the secretariat staffs are 
usually working on administration of common education as a delegate of the repre-
sentative.

4. Program Organization 

In the class formats of the subjects offered as required credits of informatics in general 
education, most of them are provided as lectures. The second choice is an exercise, 
followed by training, practice, and laboratory work. The number of classes is distrib-
uted from 0 to more than 100 at large-scale universities. Here, we report the cases of 
lecture and exercise.

There are 263 answers, or 35.5% of the responses, stated that they have no required 
credits for informatics in general education. Many of such universities provide comput-
ing education as elective subjects. This indicates that 64.5% of the Japanese universities 
have required credits for informatics in general education. 

Such information provides realistic restrictions to develop a curriculum guideline for 
informatics in general education.



T. Kakeshita, N. Takahashi, M. Ohtsuki86

4.1. Lecture Courses (Required)

For the number of required credits of the subjects provided as a lecture, 63.3% of the 
answers are 0, while 16.6% of the answers are 2 credits. There was a computing depart-
ment that responded with a maximum value of 18 credits. We also have medical univer-
sities that answered with the number of lecture hours instead of the number of credits. 
In this case, we converted the number of hours to the number of credits since 1 credit 
corresponds to 11.25 lecture hours.

For the total number of required lectures, 39.5% of the answers was 0, 22.7% of 
the answers was 1. The maximum value of required subjects was 50 from a large-scale 
comprehensive private university. Fig. 1. represents the number of responses to each 
answer excluding 0.

4.2. Exercise Subjects (Required)

For the number of required credits for the exercises, 64.8% of the answers was 0, 15% 
of the answers was 2 credits. This can be interpreted that teaching of an exercise require 
extensive student guidance so that it is more difficult for a university to provide com-
puting exercise to all their students. The maximum value was 14 credits at a university 
majored in social science with 800 first-year students. On the other hand, for the number 
of required seminar subjects, 15% of the answers were for 1 and 2 subjects respectively. 
The maximum value was 44 credits at a university majored in health care with 100 first-
year students.

There are 263 answers, or 35.5% of the responses, stated that they have no required 
credits for informatics in general education. Many of such universities provide 
computing education as elective subjects. This indicates that 64.5% of the Japanese 
university have required credit for informatics in general education.  
Such information provides realistic restrictions to develop a curriculum guideline for 
informatics in general education. 
4.1. Lecture Courses (Required) 
For the number of required credits of the subjects provided as a lecture, 63.3% of the 
answers are 0, while 16.6% of the answers are 2 credits. There was a computing 
department that responded with a maximum value of 18 credits. We also have medical 
universities that answered with the number of lecture hours instead of the number of 
credits. In this case, we converted the number of hours to the number of credits since 1 
credit corresponds to 11.25 lecture hours. 
 

 
Fig. 1. Total Number of Lectures. 

 
For the total number of required lectures, 39.5% of the answers was 0, 22.7% of the 
answers was 1. The maximum value of required subjects was 50 from a large-scale 
comprehensive private university. Fig. 1. represents the number of responses to each 
answer excluding 0. 
4.2. Exercise Subjects (Required) 
For the number of required credits for the exercises, 64.8% of the answers was 0, 15% 
of the answers was 2 credits. This can be interpreted that teaching of an exercise require 
extensive student guidance so that it is more difficult for a university to provide 
computing exercise to all their students. The maximum value was 14 credits at a 
university majored in social science with 800 first-year students. On the other hand, for 
the number of required seminar subjects, 15% of the answers were for 1 and 2 subjects 
respectively. The maximum value was 44 credits at a university majored in health care 
with 100 first-year students. 
4.3. Number of Credits of Elective Subjects 
For the number of credits required for graduation for elective computing subjects, 
61.3% of the answers was 0 credits, and 11.8% of the answers was 2 credits. The 
answer includes all subject format such as lecture, exercise, training, practice and 
laboratory work. Like the number of credits for the required subjects, the most popular 
answer was 2 credits. 
5. Quality and Quantity of Educational Achievement 
5.1. Overview of the Survey Areas 
In the investigation of educational content, we asked universities to respond the 
expected level and number of courses based on the items of J07-GEBOK. At the same 
time, we allow them to select items from the reference standard of informatics (Hagiya, 
2015) which defines the contents of computing education in Japan. Organization of the 
reference standard is summarized in Table 2. The reference standard is composed of 6 
sections, 19 domains and 81 areas. The numbers within the parenthesis in Table 2 are 
the number of areas belonging to the section or the domain. Since J07-GEBOK is a 
small subset of the reference standard of informatics, we expected that very few 
universities teach contents of the reference standard. However, we find that all the areas 
are taught at some universities through the survey. 

168 
88 

49 
45 

19 
15 

9 
9 

4 
7 

35 

0 50 100 150 200

1
2
3
4
5
6
7
8
9

10
over11

Frequency 

Fig. 1. Total Number of Lectures.



Survey and Analysis of Computing Education at Japanese Universities: ... 87

4.3. Number of Credits of Elective Subjects

For the number of credits required for graduation for elective computing subjects, 61.3% 
of the answers was 0 credits, and 11.8% of the answers was 2 credits. The answer includes 
all subject formats such as lecture, exercise, training, practice and laboratory work. Like 
the number of credits for the required subjects, the most popular answer was 2 credits.

5. Quality and Quantity of Educational Achievement

5.1. Overview of the Survey Areas

In the investigation of educational content, we asked universities to respond the ex-
pected level and number of courses based on the areas of J07-GEBOK. At the same time, 
we allowed them to select items from the reference standard of informatics (Hagiya, 
2015) which defines the contents of computing education in Japan. Organization of the 
reference standard is summarized in Table 2. The reference standard is composed of 6 
sections, 19 domains and 81 areas. The numbers within the parenthesis in Table 2 are the 
number of areas belonging to the section or the domain. Since J07-GEBOK is a small 
subset of the reference standard of informatics, we expected that very few universities 
teach contents of the reference standard. However, we found that all the areas are taught 
at some universities through the survey.

Table 2
Organization of the Reference Standard of Informatics

Section Domain

General Principles of Information (6)(A) 

Principles of Information (B) 
Processing by Computers

Information Transformation and Transmission (4), Information 
Representation, Accumulation and Management (4), Information 
Recognition and Analysis (4), Computation (6), Algorithms (8)

Technologies for Constructing (C) 
Computers that Process Information

Computer Hardware (3), I/O Device (4), Fundamental Software (3)

Understanding Humans and (D) 
Societies that Process Information

Process and Mechanism for Information Creation and Transmission 
(2), Human Characteristics and Social System (3), Economic System 
and Information (2), IT-based Culture (2), Transition from Modern 
Society to Post Modern Society (2)

Technologies and Organizations (E) 
for Constructing and Operating 
“Systems” that Process Information 
in Societies

Technics for Information System Development (7), Technics to 
Obtain Information System Effect (6), Social System Related to 
Information (2), Principle and Design Methodology for HCI (4)

Competence Professional Competency for IT Students (3), Generic Skill for IT 
Students (6)



T. Kakeshita, N. Takahashi, M. Ohtsuki88

We adopted the same definition of levels, as illustrated in Table 1, and BOK, illus-
trated in Table 2 along with J07-GEBOK, throughout the survey types A to D in order to 
enable mutual comparison of the different survey types. Such comparison is important 
to understand relationship among different survey types.

There were 253 responses regarding the investigation of educational content and 
levels, which corresponds to 34.2% of the responses.

The universities are mainly focused on the areas in J07-GEBOK, but the second 
most focused domain is “Generic Skill for IT Students” defined in Table 2. The ge-
neric skill contains creativity, logical and computational thinking, problem discovery 
and solving, communication and presentation, team work and leadership, and self-
learning. It is well recognized that computing education is suitable to learn such 
generic skill.

5.2. Effort Analysis at Each GEBOK Area

As for the areas of J07-GEBOK, the degree that each university is focusing on is defined 
using the effort value. The effort value of an area is defined by the multiplication of the 
number of students learning the area and the average level of the students. We thus de-
fine two types of effort values corresponding to knowledge and skill.

Fig. 2 represents the effort values at each area of J07-GEBOK. The analysis is 
useful to clarify the current effort distribution of the universities for the areas. The 
areas are sorted in descending order of the knowledge effort values. Even if the values 
are arranged in terms of knowledge and skill in the same order, computer literacy is 
ranked at the first place. The effort for the “data modeling and operation” is low. This 
is the same result as our previous investigation (Kawamura, 2015). We also observe 
that the skill effort is generally lower than the knowledge effort. The reason can be 
considered that teaching skill needs more effort than teaching knowledge since exer-
cise becomes necessary.Fig. 2 

0 50,000 100,000 150,000 200,000 250,000 300,000

Computer Literacy

Information Ethics and Security

Information Network

Digitalization of the Information

Computing Elements and Structure

Information Systems

Information and Communication

Algorithms and Programming

Data Modeling and Operation
Skill Effort

Knowledge Effort

Fig. 2. Effort Values of Each Area of Informatics in General Education.



Survey and Analysis of Computing Education at Japanese Universities: ... 89

5.3. Average Level at Each GEBOK Area

Fig. 3 represents average knowledge/skill levels at each GEBOK area. By this, the 
achievement levels can be analyzed in the current informatics in general education. Tak-
ing this into consideration, the requirement level can be defined at each area of general 
information education for the new curriculum recommendation. In addition to this, effort 
distributions of knowledge and skill in each GEBOK area can be utilized as a measure of 
the number of credits (or lecture hours) to be assigned to the areas. 

A realistic curriculum can be designed by assigning appropriate number of hours and 
requirement level for each area considering these analyses’ result.

5.4. Answer Distribution of Each GEBOK Area

Fig. 4–Fig. 12 represent the distributions of the number of responses at each GEBOK 
area. The readers can refer to Table 1 for the definition of knowledge and skill levels.

The responses of “Information and communication”, “Digitization of information”, 
“Elements and composition of computing”, “Information Network” and “Information 
Systems” have a similar trend. Skill is “not taught” in most of the answers, but knowl-
edge level is separated at level 0 (not taught) and level 2. At level 1, there is more skill 
than knowledge (Fig. 4–Fig. 6, Fig. 9, Fig. 10). The “Algorithm and programming” and 
“Data modeling and operation” resulted in many level 0 (not taught) responses, which 
are different from other areas (Fig. 7, Fig. 8).

On the other hand, for “Computer literacy” (Fig. 12), the most frequent response for 
skill was level 2, and level 4 for knowledge. The most frequent response was level 1 for 
skill, and level 3 for knowledge in case of “Information Ethics and Security” (Fig. 11).

Fig. 3 

0.00 1.00 2.00 3.00 4.00

Computer Literacy

Information Ethics and Security

Information Network

Computing Elements and Structure

Information Systems

Digitalization of the Information

Information and Communication

Algorithms and Programming

Data Modeling and Operation

Skill Level Knowledge Level

Fig. 3. Average Level of Each Area of Informatics in General Education.



T. Kakeshita, N. Takahashi, M. Ohtsuki90

Considering these results, we made the following revision to develop J17-GEBOK 
in J17 (IPSJ, 2018). For “Data modeling and operation” with the smallest effort, we 
decided to change the area name to “Database and data modeling” and treat it mainly in 
the database. We changed the name of “Information system” to “Society and information 
system” because of strong relationship with society.

 
 
 

 
Fig. 4. Answer Distribution: Information and Communication 
 

 
Fig. 5. Answer Distribution: Digitalization of the Information 

 

 
Fig. 6 Answer Distribution: Computing Elements and Structure 

 

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

 
 
 

 
Fig. 4. Answer Distribution: Information and Communication 
 

 
Fig. 5. Answer Distribution: Digitalization of the Information 

 

 
Fig. 6 Answer Distribution: Computing Elements and Structure 

 

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

Fig. 4. Answer Distribution:  
Information and Communication.

Fig. 5. Answer Distribution:  
Digitalization of the Information.

 
 
 

 
Fig. 4. Answer Distribution: Information and Communication 
 

 
Fig. 5. Answer Distribution: Digitalization of the Information 

 

 
Fig. 6 Answer Distribution: Computing Elements and Structure 

 

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

 
Fig. 7. Answer Distribution: Algorithm and Programming 
 

 
Fig. 8. Answer Distribution: Data Modeling and Operation 

 

 
Fig. 9. Answer Distribution: Information Network 

 

 
Fig. 10. Answer Distribution: Information Systems 

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

Fig. 6 Answer Distribution:  
Computing Elements and Structure.

Fig. 7. Answer Distribution:  
Algorithm and Programming.

 
Fig. 7. Answer Distribution: Algorithm and Programming 
 

 
Fig. 8. Answer Distribution: Data Modeling and Operation 

 

 
Fig. 9. Answer Distribution: Information Network 

 

 
Fig. 10. Answer Distribution: Information Systems 

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

 
Fig. 7. Answer Distribution: Algorithm and Programming 
 

 
Fig. 8. Answer Distribution: Data Modeling and Operation 

 

 
Fig. 9. Answer Distribution: Information Network 

 

 
Fig. 10. Answer Distribution: Information Systems 

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

Fig. 8. Answer Distribution:  
Data Modeling and Operation.

Fig. 9. Answer Distribution:  
Information Network.



Survey and Analysis of Computing Education at Japanese Universities: ... 91

 “Computer literacy”, which contains basic computer operation and application op-
eration, is deemed to be handled in K-12 education at primary and/or secondary school 
so that it was dealt with as supplementary (pre-requisite) in J07. However, because the 
devoted effort to computer literacy is the largest, we decided to define an area called 
“Academic ICT Literacy” in J17 as the ICT skills to be handled at the higher education 
stage in combination with liberal arts education in a wide range of fields.

6. Status of Students and Faculty Members 

6.1. Standard Target Students and Number of Courses

For the program’s standard target students, 284 (38.5% of the responses) programs are 
provided for the first-year students, while 334 (45.3%) programs are provided for the 
first and second-year students. However, we have 15% of the responses that included 
target students over third-year students. There is a need to assess whether informatics in 
general education is required for specialized courses and whether they should be mas-
tered by fourth-year students.

 
Fig. 7. Answer Distribution: Algorithm and Programming 
 

 
Fig. 8. Answer Distribution: Data Modeling and Operation 

 

 
Fig. 9. Answer Distribution: Information Network 

 

 
Fig. 10. Answer Distribution: Information Systems 

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge

Skill

 

 
Fig. 11. Answer Distribution: Information Ethics and Security 

 
Fig. 12. Answer Distribution: Computer Literacy 

 

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge
Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge
Skill

Fig. 10. Answer Distribution:  
Information Systems.

Fig. 11. Answer Distribution:  
Information Ethics and Security.

 

 
Fig. 11. Answer Distribution: Information Ethics and Security 

 
Fig. 12. Answer Distribution: Computer Literacy 

 

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge
Skill

0

20

40

60

80

100

0 1 2 3 4 5

Fr
eq

ue
nc

y 

Level 

Knowledge
Skill

Fig. 12. Answer Distribution:  
Computer Literacy.



T. Kakeshita, N. Takahashi, M. Ohtsuki92

The capacity of the first-year students at the universities responded to the survey 
is 416,062 as a total. The student capacity is between 100 and 500 at 49.5% of the re-
sponded universities, which is the most frequent answers.

The total number of male students was 137,633, while the total number of female 
students was 109,479. The total number of students was 247,112, which is equivalent 
to 59.4% of the capacity of the first-year students. We estimate that 247,000 students, 
approximately half of the first-year students estimated from the school basic survey 
(MEXT, 2016), learn informatics in general education, which indicates the importance 
of informatics in general education.

6.2. Status of Faculty Members in Charge

The general situation of the faculty members teaching informatics in general educa-
tion courses is depicted in Table 3. Their current majors are determined by the faculty 
members based on whether their major field is included in the area “Computing” of the 
Grants-in-aid for Scientific Research.

Compared with the faculty members belonging to computing departments (Kake-
shita, 2018), the ratio of full-time faculty members who graduated from a computing 
department and whose current major is computing is low. On the other hand, the ratio 
of employees who graduated from computing departments and whose current major is 
computing is higher for the case of part-time faculty members outside of the university. 
We also observe that the ratio of part-time faculty members outside of the university is 
32% among all classifications of faculty members. This implies the shortage of full-time 
faculty members majored in computing discipline within the university.

Like the specialized computing education, faculty members with specialized knowl-
edge of computing education should also be deployed for the faculty members in charge 
of informatics in general education.

We believe that although there are difficulties from the university’s side, but im-
provement is desirable in the future.

Table 3
Faculty Members Teaching Informatics in General Education

Category of Faculty Members Total Faculty Members who Graduated 
a Computing Department

Faculty Members whose 
Current Major is Computing

Full-time Faculty Members 
with Tennure

2,467    550 （24.1%）    318 （13.4%）

Full-time Faculty Members 
without Tennure

   361      77 （21.3%）    130 （41.1%）

Part-time Faculty Members 
belonging to other Department

1,247    282 （22.6%）    443 （35.5%）

Part-time Faculty Members 
outside of the University

1,874    567 （30.6%）    891 （48.2%）

Total 5,849 1,476 1,782



Survey and Analysis of Computing Education at Japanese Universities: ... 93

6.3. Committee in Charge 

The situation of the committee in charge of the administration of the general educa-
tion is shown in Table 4. As a common education at the university or faculty level, we 
asked for the existence of a committee to oversee general computing education. 40.6% 
established a formal committee based on the campus regulations. However, 54.1% re-
sponded that organizations such as committees do not exist particularly. In our previous 
survey, about 60% responded that they have an administrative committee so that we 
have a similar result.

7. Educational Environment

7.1. Educational Computer System and Student PC Utilization

We asked for answers regarding educational computer systems which can be used for 
informatics in general education. 554 (74.9%) responded that there were PCs that could 
be used for university courses, while 173 (23.4%) responded that there was no PCs pre-
pared that could be used for university courses mainly due to the shortage of financial 
support.

Table 5 represents PC utilization status possessed by the students. 83.2% of the 
universities answered that purchasing/owning a PC was voluntary for a student, while 
6.8% answered that a student is required to purchase PC at the university level. Al-

Table 4
Committee in Charge

# of Answers

Decisions made at informal meetings etc.   39
Established formal committee based on school regulations 301
None 400

Table 5
Utilization of Student PC

Utilization # of Answers

All Students of the University must have PC   50
All Students of the Faculty must have PC   24
All Students of the Department/Course must have PC   13
Students are recommended to purchase PC   37
Purchasing of Student’s own PC is optional 616

Total 740



T. Kakeshita, N. Takahashi, M. Ohtsuki94

though the most frequent case is purchasing of student’s own PC is optional, many of 
the students are willing to purchase their own PC when they enter the university. This 
is because many educational contents are provided online, and students often prepare 
and submit various materials such as homework and job hunting application using 
their own PC.

7.2. LMS

Learning management system (LMS) is utilized at many universities in order to auto-earning management system (LMS) is utilized at many universities in order to auto-
mate various educational activities such as report submission, online testing, student 
survey etc.

For the LMS utilization status, 47.6% responded that they did not utilize LMS, while 
26.9% answered that they utilize an LMS based on commercial products. Regardless of 
whether the teachers actively utilize online submissions, there were approximately 100 
responses which said that LMS was not used. Although further investigation is expected 
for the specific reason of this, we guess that individual faculty members accept student 
report via e-mail.

We obtained 290 responses, 75% of the cases which utilize LMS, that stated the 
product names. Table 6 summarizes the result of the LMS product names having more 
than 10 votes. Moodle occupies majority of the responses. We also received approxi-
mately 10 responses that two types of LMS are combined and used together.

7.3. Educational Programming Languages 

We collected five educational programming languages from each university or faculty 
for which the students’ achievement level is high. Table 7 illustrates popular program-
ming languages for the informatics in general education calculated using the collected 
data. The score of each language is evaluated as a weighted sum of the answers. The 

Table 6
Popular LMS Product

LMS Product Name # of Answers

Moodle 92
WebClass 27
manaba 25
Blackboard 19
Course Power 13
Universal Passport 10



Survey and Analysis of Computing Education at Japanese Universities: ... 95

weight of a language is estimated using the rank, between 1 (5-th place) and 5 (1-st 
place), supplied by the university or the faculty. Although C language is the most popu-
lar as in the case of computing department, the second most popular language, Visual 
Basic, is different from the case of computing department. 

7.4. Utilization of IT-related Certification

We obtained 59 responses, which was equivalent to 8% of the total responses. We found 
13 IT certifications among the responses having two or more responses. They are depict-
ed in Table 8. IT Passport Examination (IPA, n.d.), which covers a common and basic 
knowledge for utilizing IT, is the most popular examination and its share is 34.2% of the 
responses while Microsoft Office Specialist occupies 19.1%. This result was as expected 
since IT Passport Examination is authorized by the Ministry of Economy, Trade and 
Industry of Japan. 

There were 14 responses that encouraged the acquisition of the IT certification since 
they are useful for job hunting for the students.

Table 7
Popular Programming Languages for Informatics in General Education

Language Score Language Score

1 C 243   6 Ruby 48
2 Visual Basic/VBA 209   7 Fortran 35
3 Java 178   8 SQL 33
4 JavaScript 126   9 Python 25
5 C++   55 10 PHP 24

Table 8
Utilization of IT Certification

Qualification Name # of Answers

IT Passport Examination (ITEE)
by a Japanese government agency IPA

25

Microsoft Office Specialist (MOS) 14

Nissyo PC qualifying examinations 
by Japan Chamber of Commerce and Industry

  5

.com Master   2

ICT Proficiency   2

Information Security Management   2



T. Kakeshita, N. Takahashi, M. Ohtsuki96

8. Concluding Remark

We can observe the entire picture of the computing education at Japanese universities 
through the survey. Although several problems are discovered, IPSJ is willing to im-
prove the current situation through development of new computing curriculum standard 
J17 and cooperation with Ministry of Education, Japan.

Among the universities that responded to our survey, 530 universities (81.6% of 
the responded universities) provide informatics in general education, and 247,000 stu-
dents (approximately half of the first-year students) are learning the course. This showed 
the importance of informatics in general education in Japan. However, while 64.5% 
responded that more than 1 credit is assigned, 87.6% responded that courses were of-
fered with more than 1 subject, showing a discrepancy in the responses. There is a need 
to verify the cause of the difference in responses in the number of credits and subjects. 
Also, the knowledge and skill required for the exercise was designated at level 5, and 
there were universities with 50 subjects for the informatics in general education, and we 
obtained responses that we did not expect. We would like to clarify the meaning of these 
responses with additional investigations.

In the effort analysis including the reference standard for informatics, the second 
most common educational contents are “Generic Skill for IT Students”. We are planning 
to investigate relationship between computing education and generic skill training as a 
future research.

This survey was conducted using different methods than the ones used in our previ-
ous surveys during 2013 and 2014 (Kawamura, 2015). Thus, we cannot compare in a 
simple manner. Although equivalent results are obtained for some topics, such as the 
implementation rates of informatics in general education, there are significant differ-
ences in the position of the respondents and usage rate of LMS. As for the result of the 
educational content, the definitions of the knowledge and skill levels are different. Thus, 
there is a need to compare two survey result for reasonable interpretation of the differ-
ence.

IPSJ typically revises computing curriculum standard every 10 years. Conduction 
of a similar survey is expected every 5 years in order to observe the current status of 
computing education and to prepare the next curriculum standard to improve computing 
education.

Acknowledgment

This research is supported by JSPS KAKENHI Grant Numbers 16K01022 and 17K01036 
as well as by the Ministry of Education, Culture, Sports, Science and Technology 
(MEXT), Japan. The authors greatly appreciate the faculty members and the administra-
tion officers of the universities who took time to respond to the survey.



Survey and Analysis of Computing Education at Japanese Universities: ... 97

References

CS for ALL (n.d.). Available at https://www.csforall.org/
European Commission (2018). Communication on the digital education action plan. Available at  

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0022&from=EN

Hagiya, M. (2015). Defining informatics across Bun-kei and Ri-kei. Journal of Information Processing, 23(4), 
525–530.

Informatics Europe and ACM Europe (2013). Informatics education: Europe cannot afford to miss the boat. 
Available at 
http://www.informatics-europe.org/images/documents/informatics-education-acm-ie.pdf

IPSJ (2018). Computing Curriculum Standard J17. Information Processing Society of Japan. (In Japanese). 
Available at https://www.ipsj.or.jp/annai/committee/education/j07/curriculum_j17.html

IPA. (n.d.) Japan’s Information Technology Engineers Examination. Information-technology Promotion Agen-
cy (IPA). Available at https://www.ipa.go.jp/english/humandev/reference.html

Kakeshita, T., Ohtsuki, M. (2011). A web-based survey system to analyze outcomes and requirements: a case for 
college level education and professional development in ICT. In: Proc. 5-th Int. Conf. on Society, Cybernet-
ics and Informatics (IMSCI 2011), 82–87.

Kakeshita, T. (2017). National survey of Japanese universities on IT education: overview of the entire project 
and preliminary analysis. In: Proc. Int. Conf. on Computer Supported Education (CSEDU 2017), 607–618.

Kakeshita, T. (2018). National survey of Japanese universities on computing education: Analysis of departments 
majored in computing discipline. Olympiads in Informatics, 12, 69–84.

Kawamura, K. (2008), “Computing Curriculum Standard J07: Computing in General Education (J07-GE)”, 
IPSJ Magazine, Vol. 49, No. 7, 768–774. (in Japanese)

Kawamura, K. et al. (2015). Research regarding the construction of Computing in General Education models in 
universities. JSPS KAKENHI Grant number 25350210. (In Japanese)

Kawamura, K. et al. (2016). Computing Education for Future University. Nikkei BP Marketing. (In Japanese). 
Available at https://sites.google.com/site/ipsj2010sigge/

Libeskind-Hadas, R. (2015). Every college student should take a computer science course. Available at 
https://www.huffingtonpost.com/ran-libeskindhadas/every-college-student-

sho_b_7192700.html

MEXT (2017). FY2016 School Basic Survey. Ministry of Education, Culture, Sports, Science and Technology 
of Japan. (in Japanese)

T. Kakeshita is an associate professor at Computing Division, Saga 
University, Japan. He received his Ph.D. degree in Computer Science 
from Kyushu University, Japan in 1989. His major research interests 
include quantitative analysis of ICT education and ICT certification, 
and complexity analysis of database and software systems. He 
received an excellent educator award from Information Processing 
Society of Japan (IPSJ) in 2013. He joined many activities such 
as IPSJ educational activity, Certified IT Professional Certificate 
(CITP), accreditation at Japan Accreditation Board for Engineering 
Education (JABEE) and ISO standard development (ISO/IEC JTC1/
SC7/WG20).



T. Kakeshita, N. Takahashi, M. Ohtsuki98

N. Takahashi is a professor at Faculty of Economics, Kokugakuin 
University, Japan. She majored in mathematics at the university. Af-
ter graduation, she worked at Fujitsu Ltd. as the first female SE. 
Next, she opened a PC school at an IT company. After indepen-, she opened a PC school at an IT company. After indepen-
dence, she worked on technical writing and taught PC skills and 
information systems at university. Since she worked at university, 
she specializes in computing education. She joined many activities 
such as IPSJ educational activity, Commitee of Informatics in Gene- Commitee of Informatics in Gene-Commitee of Informatics in Gene- of Informatics in Gene-of Informatics in Gene-Informatics in Gene-
ral Education, Commitee of the entrance exam with an Informatics 
subject.

M. Ohtsuki is a senior lecturer at Computing Division, Saga 
University, Japan. She received her Ph.D. from Kyushu University in 
1999. Her major research interests include computer aided ICT edu-
cation, and software development methodologies including software 
testing. She is a committee member of JaSST (Japan Symposium on 
Software Testing) in Tokyo and is a commissioner at ASTER (Asso-) in Tokyo and is a commissioner at ASTER (Asso-in Tokyo and is a commissioner at ASTER (Asso-is a commissioner at ASTER (Asso-a commissioner at ASTER (Asso-at ASTER (Asso- ASTER (Asso-
ciation of Software Test EngineeRing). She published several books 
about software development tools such as CVS, CppUnit etc. 



Olympiads in Informatics, 2019, Vol. 13, 99–121
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.07

99

Constructionist Attempts at Supporting  
the Learning of Computer Programming:  
A Survey

Michael LODI1, Dario MALCHIODI2, Mattia MONGA2,  
Anna MORPURGO2, Bernadette SPIELER3 
1Alma Mater Studiorum – Università di Bologna & INRIA Focus, Italy
2Università degli Studi di Milano, Italy
3Graz University of Technology, Austria
e-mail: michael.lodi@unibo.it, {malchiodi, monga, morpurgo}@di.unimi.it,  
bernadette.spieler@ist.tugraz.at

Abstract. Although programming is often seen as a key element of constructionist approaches, the 
research on learning to program through a constructionist strategy is somewhat limited, mostly fo-
cusing on how to bring the abstract and formal nature of programming languages into “concrete”, 
possibly tangible objects, graspable even by children with limited abstraction power. We survey 
the literature in programming education and analyse some programming languages designed to 
help novices from a constructionist perspective.

Keywords: programming, programming languages for learning, notional machine, construction-
ism.

Introduction. 

While programming is often seen as a key element of constructionist1 approaches 
(starting from LOGO (Feuerzeig et al., 1970), a programming language designed to 
enable learning abstract concepts of disciplines like math, geometry, physics, and po-
tentially all others, by manipulating computational objects (Papert, 1980)), the re-
search on learning to program through a constructionist strategy is somewhat limited, 
mostly focusing on how to bring the abstract and formal nature of programming lan-
guages into “concrete” or even tangible objects, accessible also to children with lim-

1 Constructionism originated from Seymour Papert, drawing on Jean Piaget’s constructivist view that 
knowledge needs to be (re)constructed rather than transmitted (Piaget, 1973), and adding that this is par-
ticularly effective when involves the construction of a (concrete or abstract) artifact, meaningful for the 
learner (Papert, 1980).



M. Lodi et al.100

ited abstraction power (Resnick et al., 2009; Kay et al., 1997; Horn and Jacob 2007; 
Dann et al., 2008; Hauswirth, Adamoli, and Azadmanesh, 2017). Notwithstanding 
this, programming is in some sense intrinsically constructionist, as it always involves 
the production of an artifact that can be shown and shared. Of course, this does not 
mean that programming automatically leads to constructivist/constructionist pedago-
gies: in facts, we see very different approaches, from open project-based learning to 
much more traditional education through lectures and closed exercises. Specific lan-
guages and environments play an important role too: for example, visual programming 
languages make it easier (by removing the request to face unnatural textual syntactic 
rules) to realize small but meaningful projects, keeping students motivated, and sup-
port a constructionist approach where students are encouraged to develop and share 
their projects – video games, animated stories, or simulations of simple real-world 
phenomena. Constructionist ideas are also floating around mainstream programming 
practice and they are even codified in some software engineering approaches: agile 
methods like eXtreme Programming (Beck and Andres, 2004), for example, suggest 
several techniques that can be easily connected to the constructionist word of advice 
about discussing, sharing, and productively collaborating to successfully build knowl-
edge together (Resnick, 1996); moreover the incremental and iterative process of cre-
ative thinking and learning (Resnick, 2007) fits well with the agile preference to “re-
sponding to change over following a plan” (Beck et al., 2001). It actually originated 
by observing how the traditional kindergarten approach to learning is ideally suited 
to learn to think creatively, and it is now called “creative learning spiral” (Fig. 1). 
According to this model, when one learns by creating something (e.g., a computer 
program) she imagines what she wants to do, creates a project based on this idea, plays 
with her creation, shares her idea and her creation with others, reflects on the experi-
ence and feedback received from others, and all this leads her to imagine new ideas, 
new functionalities, new improvements for her project, or new projects. The process 
is iterated many times. This spiral describes an iterative process, highly overlapping 
with the iterative software development cycle.

Fig. 1. Creative learning spiral (source: (Resnick, 2017)).



Constructionist attempts at supporting the learning of computer programming: ... 101

What does it mean to learn programming?

The basic premise behind programming – i.e., producing a precise description of how to 
carry out a task or to solve a problem – is that an interpreter, different from the producer 
of the description, can understand it and effectively carry out the task as described. There 
are thus two distinct but tightly tied aspects in programming:

the program itself (the text or other streams of symbols or actions that build up the i. 
digital coding of an algorithm);
the actions that take place when the program is run by the interpreter.ii. 

This distinction is explicit in most of the professional programming environments, 
but it is conceptually present even in those environments designed for very small chil-
dren, where the program is somewhat implicit. The Bee-Bot2, for example, is a bee-
shaped robot that can be programmed by pushing the buttons on its back: the program, 
while recorded and then executed by the machine, is not explicit nor visible in its static 
form by the children, but it exists, and the programmer needs to master the relationship 
between the actions she records into the bee and the actions the bee will perform when 
the program will be executed. In this paper, however, we focus on programs in which the 
source code is explicit, as it is common in programming activities proposed to secondary 
school pupils. 

Thus, one needs to know the interpreter in order to program, in particular:
the set of basic actions it is able to perform; ●
the language it is able to understand, with rules on how to compose basic actions; ●
the relation between  ● syntax and semantics, that is what actions it will perform giv-
en a description, and, conversely, how to describe a given sequence of actions so 
that it will perform them.

The first aspect, that is the program source code, is explicit, visible. The second one 
instead, that is the actions that take place when the program is run, is somewhat implicit, 
hidden in the execution time world, and not so immediate to grasp for novices. More-
over, this aspect is sometimes underestimated by both teachers and learners: teachers, as 
experts, give it for granted; learners tend to construct personal intuitive, not necessarily 
coherent, ideas of what will happen.

This dichotomy of programming – its static visible code and its implicit dynam-
ics – emerges as a critical issue when learning to program, as shown by studies from 
different perspectives. In the following we cite a few (Sorva, 2013).

Phenomenography studies show how novice programmers tend to perceive pro- ●
gramming as no more than the production of code, missing to relating instructions 
in the program to what happens when the program is executed.
Studies on programming misconceptions point out how most of programming mis- ●
conceptions have to do with aspects that are not readily visible in the code but are 
related to the execution time, both in term of what will happen and of what will not 
unless explicitly specified in the code.

2 https://www.bee-bot.us/



M. Lodi et al.102

Threshold concept theory identifies program dynamics as a candidate threshold  ●
concept in programming as it has many of the features that characterize threshold 
concepts; among others: it is a troublesome barrier to student understanding, it 
transforms how the student perceives the subject, it marks a boundary between 
programmers and end users.

To help novice programmers take into account also the dynamic side of program-
ming, the concept of notional machine (Du Boulay, 1986; Sorva, 2013) has been pro-
posed. A notional machine is a characterisation of the computer in its role as executor of 
programs in a particular language (or set of languages, or even a subset of a language) 
for didactic purposes. It thus gives a convenient description of the association syntax-
semantics. 

The following learning outcomes should therefore be considered when teaching to 
program:

the development by students of a perception of programming that does not reduce  ●
to the production of code, but includes relating instructions to what will happen 
when the program is executed, and eventually comes to include producing applica-
tions for use and seeing it as a way to solve problems;
the development of a mental model of a notional machine that allows them to make  ●
the association (static) syntax – (dynamic) semantics and to trace program execu-
tion correctly and coherently.

In particular, this latter outcome goal will include the development of some impor-
tant skills.

Given a program (typically one’s own) and an observed behaviour: ●
identify when debugging is needed because the behaviour is somewhat not the  ○
one intended;
identify where a bug has occurred; ○
be able to correct the code. ○

Given a program and its specification, be able to test it. ●
Understand that there can be multiple correct ways to program a solution. ●

If these are crucial points in learning to write executable descriptions, however, pro-
gramming is indeed a multifaceted competence, and the knowledge to construct and the 
skills to develop span over several dimensions, besides predicting concrete semantics of 
abstract descriptions. A skilled programmer needs to:

understand general properties of automatic interpreters able to manipulate digital 1. 
information;
think about problems in a way suitable to automatic elaboration;2. 
devise, analyze, compare solutions;3. 
adapt solutions to emerging hurdles and needs;4. 
integrate into teamwork and be able to elicit, organize, and share the abstract 5. 
knowledge related to a software project.

Here we mainly focus on skill 1 and the support provided by programming languages 
and environments. Moreover we highlight the opportunity provided by agile methodolo-
gies to develop skill 5.



Constructionist attempts at supporting the learning of computer programming: ... 103

Unplugged Activities

Offline or unplugged programming activities have often been used to explain important 
concepts or vocabulary to students without actually using a PC, laptop, or smartphone, 
e.g., x/y coordinates, the need for precise instructions for computers/robots, or variables 
and lists. Examples are to program a classmate like a robot, give paint instructions, pack 
a rucksack, or send “broadcast messages” to colleagues.

Unplugged activities in small groups have become popular over the years to intro-
duce basic computer science concepts in non-vocational contexts, as they offer a number 
of interesting features.

A constructivist environment.  ●
Indeed by manipulating real objects or dramatising processes, pupils can  ○
observe what happens, formulate hypotheses, validate them through experi-
ments, i.e. develop a scientific approach to the construction of their knowl-
edge.
By working in a group, pupils are encouraged to participate, share ideas, ver- ○
balize and uphold their deductions.

Inexpensive set up:  ● they usually require very basic and inexpensive materials, 
so they can be easily proposed in different contexts.
No technological hurdles:  ● they allow students (and teachers) to have meaning-
ful experiences related to important CS concepts (like algorithms) without hav-
ing to wait until they get some technology and programming fluency (Bell and 
Lodi, to appear). 

It is important to note that evidence shows unplugged activities should not replace 
programming activities, but can be helpful to make them more effective (Bell and Vah-
renhold, 2018).

The following two examples, taken from CS Unplugged3 and ALaDDIn4, illustrate 
typical unplugged approaches to introduce children to programming.

In CS Unplugged “Rescue Mission”, pupils are given by the teacher a very simple 
language with only three commands: 1 step forward, 90 degrees left, 90 degrees right. 
The task is to compose a sequence of instructions to move a robot from one given cell 
on a grid to a given other cell. Pupils are divided into groups of three where each one 
has a role: either programmer, bot, or tester. This division of roles is done to emphasize 
the fact that programs cannot be adjusted on the fly; they must be first planned, then 
implemented, then tested and debugged until they work correctly. 

ALaDDIn “Algomotricity and Mazes” is an activity designed according to a strategy 
called algomotricity (Lonati et al., 2011; Bellettini et al., 2012, 2013, 2014), where pu-
pils are exposed to an informatic concept/process by playful activities which involve a 
mix of tangible and abstract object manipulations; they can investigate it firsthand, make 
hypotheses that can then be tested in a guided context during the activity, and eventually 

3 https://csunplugged.org/ 
4 http://aladdin.di.unimi.it/



M. Lodi et al.104

construct viable mental models. Algomotricity starts “unplugged” (Bell, Rosamond, and 
Casey, 2012) but ends with a computer-based phase to close the loop with pupils’ previ-
ous acquaintance with applications (Taub, Armoni, and Ben-Ari, 2012).

“Algomotricity and Mazes” focuses on primitives and control structures. The task is 
that of verbally guiding a “robot” (a blindfolded person) through a simple path. Working 
in groups, pupils are requested to propose a very limited set of primitives to be written 
each on a sticky note, and to compose them into a program to be executed by the “robot”. 
Also, they have the possibility of exploiting basic control structures (if, repeat-until, 
repeat-n-times). The conductor may decide to swap some programs and “robots”, in or-
der to emphasize the ambiguity of some instructions or the dependency of programs on 
special features of the “robot” (e.g., step/foot size). In the last phase, students are given 
computers and a slightly modified version of Scratch. They are requested to write pro-
grams that guide a sprite through mazes of increasing complexity where shape patterns 
foster the use of loops.

Notional Machines

An important intuition for approaching programming from a constructionist perspective 
is that programs are a join point between our mind and the computer, the interpreter of 
the formal description of what we have in mind. Thus, programs appeal to our curiosity 
and ingenuity and are wonderful artifacts to share and discuss with other active minds. 
Such a sharing, however, assumes that the interpreter is a shared knowledge among 
peers. When a group of people programs the same ‘machine’, a shared semantics is in 

Fig. 2. The first and last phase of the “Algomotricity and Mazes” activity, respectively.



Constructionist attempts at supporting the learning of computer programming: ... 105

fact given, but unfortunately people, especially novices, do not necessarily write their 
programs for the formal interpreter they use, rather for the notional machine (Sorva, 
2013; Berry and Kölling, 2014) they actually have in their minds.

A notional machine is an abstract computer responsible for executing programs of a 
particular kind (Sorva, 2013) and its grasping refers to all the general properties of the 
machine that one is learning to control (Du Boulay, 1986). The purpose of a notional 
machine is to explain, to give intuitive meaning to the code a programmer writes. It 
normally encompasses an idealized version of the interpreter and other aspects of the 
development and run-time environment; moreover, it should bring also a complemen-
tary intuition of what the notional machine cannot do, at least without specific directions 
of the programmer.

To introduce a notional machine to the students is often the initial role of the in-
structors. Ideally this should be somewhat incremental in complexity, but not all pro-
gramming languages are suitable for incremental models: in fact, most of the success 
for introductory courses of visual languages or Lisp dialects is that they allow shallow 
presentations of syntax, thus letting the learners focus on the more relevant parts of their 
notional machines.

An explicit reference to the notional machine can foster meta-cognition and, during 
teamwork, it can help in identifying misconceptions. But how can the notional machine 
be made explicit? Tracing of the computational process and visualization of the execu-
tion are effective candidate tools. They allow instructors to make as clear as possible: 
(i) what novice programmers should expect the notional machine will do and (ii) what 
it actually does.

Abstract Programming Patterns

A small number of abstract programming patterns can be applied to a potentially infinite 
spectrum of specific conditions. This is often a challenge for novices, given that most 
of the times the discipline is taught (i) introducing one or more primitive tools (e.g., 
variables), and (ii) showing some examples highlighting how these tools can be used to 
solve specific problems. This might lead to the rise of misconceptions of pupils w.r.t. the 
above-mentioned tools.

The concept of role of variables (Sajaniemi, 2002; Proulx, 2000) has been proposed 
in order to guide novice programmers from the operational knowledge of a variable as 
the holder of a mutable value to the ability to identify abstract use cases following a 
small number of roles (such as those in Fig. 3). Such ability is of great help when tack-
ling the solution of a specific problem, for instance, that of computing the maximal value 
within a sequence. Indeed, this is a great opportunity for letting pupils realize that this 
problem is a special case of the more general quest for optimal value. The latter can be 
found using a most-wanted holder to be compared with each element of the sequence 
and containing the highest value seen so far. This method easily fits the search of the 
maximal as well as the minimal value, and it also efficiently handles less obvious cases 
such as that of finding the distinct vowels occurring in a sentence.



M. Lodi et al.106

These roles can also be gradually introduced following the hierarchy of Fig. 3, start-
ing from the concept of literal (e.g., an integer value or a string) and building knowledge 
about one role on the top of already understood roles.

For selection and iteration as well there are several standard use patterns that occur 
over and over again. Selection patterns (Bergin, 1999) and loop patterns (Astrachan and 
Wallingford, 1998) have been introduced with the same goal. For instance, to illustrate 
the idea, the loop and a half pattern is an efficient processing strategy for a sequence of 
elements whose end can be detected only after at least one element has been read. It uses 
an infinite loop whose body accesses the next sequence element. If there are no more 
elements, the loop is escaped through a controlled jump, otherwise some special actions 
are possibly executed before continuing the iteration. The code snippet shown in Fig. 4 
shows one of the canonical incarnations of this pattern: the possibly repeated check of a 
value given as input, detecting and ignoring invalid entries. 

Selection and loop patterns fit well within a constructionist-based learning path: they 
might be naturally discovered when critically analyzing software implementations. For 
instance, the previous loop could be the end point of a reasoning scheme started from the 
detection of a duplicated line of code in a quick-and-dirty initial implementation.

Fig. 3. Roles of variables, organized in a constructionist-like hierarchy where the pre-
decessor of an arrow is a prerequisite for learning the corresponding successor (source: 
(Sajaniemi, 2002)).

while True:

    value = input(‘insert a positive, odd value’)
    if value > 0 and value % 2 == 1:

        break

    print(‘the value is not valid’)

Fig. 4. A typical loop and a half pattern applied to the  
repeated validation of external inputs to a procedure.



Constructionist attempts at supporting the learning of computer programming: ... 107

In general, abstract programming patterns are provided in a short number, in order 
to cover them within a standard introductory computer programming course; moreover, 
the related concepts are easily grasped by experienced computer science teachers (Ben-
Ari and Sajaniemi, 2004), thus they can be embedded in already existing curricula with 
low effort.

Misconceptions

Sorva defines misconceptions as “understandings that are deficient or inadequate for 
many practical programming contexts” (Sorva, 2013).

Some authors (Ben-Ari, 2001) believe that computer science has an exceptional posi-
tion in constructivist’s view of knowledge constructed by individuals or groups rather 
than a copy of an ontological reality: in fact, the computer forms an “accessible ontologi-
cal reality” and programming features many concepts that are precisely defined and im-
plemented within technical systems [...] sometimes a novice programmer “doesn’t get” a 
concept or “gets it wrong” in a way that is not a harmless (or desirable) alternative in-
terpretation. Incorrect and incomplete understandings of programming concepts result 
in unproductive programming behavior and dysfunctional programs (Sorva, 2013).

According to Clancy, there are two macro-causes of misconceptions: over- or under-
generalizing and a confused computational model. High-level languages provide an ab-
straction on control and data, making programming simpler and more powerful, but, by 
contrast, hiding details of the executor to the user, who can consequently find mysterious 
some constructs and behaviors (Clancy, 2004).

Much literature about misconceptions in CSEd can be found: we list some of the most 
important causes of misconceptions, experienced especially by novices, divided into dif-
ferent areas, found mainly in (Clancy, 2004; Sirkiä, 2012; Sorva, 2013) and in the works 
they reference. For a complete review see for example (Qian and Lehman, 2017).

English 
Keywords of a language do not have the same meaning in English and programming. 
For example, the word while in English indicates a constantly active test, while the 
construct while can test the condition again only at the beginning of the next itera-
tion. Some students believe that the loop ends at the precise moment the condition is 
falsified. Similarly, some of them think of the if construct as a test continuously ac-
tive and awaiting the occurrence of a condition, others believed that the then branch 
is executed as soon as the condition becomes true.

Syntax 
Although one may think the syntax is one of the biggest sources of misconceptions, 
studies show that it is a problem only in the very early stages. In particular, some 
students were able to write syntactically valid programs, which, however, were not 
useful for solving the given problem, or were semantically incorrect.



M. Lodi et al.108

Mathematical notation 
Reported by many authors, classical is the confusion that generates the assignment 
with the = symbol (for example, seen as an equation or as a swap of values between 
variables) or the increment (a = a + 1) thought of as an impossible equation.

Examples of over-generalization 
Some authors found a series of non-existent constraints (e.g., methods in different 
classes that must have different names, arguments that can only be numbers, “dot” 
operator usable just in methods) dictated by the fact that the students had not seen any 
counterexample for such situations.

Similarities 
The analogy “a variable is like a box” can foster the idea that – like a box – it can con-
tain more elements at the same time. The analogy “programming with the computer 
is like conversing with it” can bring to attribute intentionality to the computer and 
therefore to think that it:

has a hidden intelligence that understands the intentions of the programmer  ○
and helps her achieve her goal (the so-called “superbug”);
has a general vision, knowing also what will happen in lines of code that it is  ○
not currently running.

Some aspects of programming are particular carriers of misconceptions.

Sequence 
Many misconceptions are due to lack of understanding of the program flow: all lines 
active at the same time, “magic” parallelism, the unimportance of the order of instruc-
tions, difficulty in understanding the branches.

Passing parameters 
Students present difficulties in this area, for example by confusing the types of pass-
ing (by value, by reference, ...), making mistakes with the return value or with the 
parameters’ scope.

Input 
Input statements are particularly problematic. Students do not understand where the 
input data come from, how they are stored and made available to the program. Some 
of them believe that a program remembers all the values associated with a variable 
(its “history”).

Memory allocation 
There are considerable difficulties in understanding the memory model of languages 
where allocation happens implicitly.



Constructionist attempts at supporting the learning of computer programming: ... 109

Programming Languages for Learning to Program 

From a constructionist viewpoint of learning, programming languages have a major 
role: they are a key means for sharing artifacts and expressing one’s theories of the 
world. The crucial part is that artifacts can be executed independently from the creator: 
someone’s (coded) mental process can become part of the experience of others, and 
thus criticized, improved, or adapted to a new project. In fact, the origin of the notion 
itself of constructionism goes back to Papert’s experiments with a programming envi-
ronment (LOGO) designed exactly to let pupils tinker with math and geometry (Papert, 
1980). Does this strategy work even when the learning objective is the programming 
activity itself? Can a generic programming language be used to give a concrete reifica-
tion of the computational thinking of a novice programmer? Or do we need something 
specifically designed for this activity? Alan Kay says that programming languages 
can be categorized in two classes: “agglutination of features” or “crystallization of 
style” (Kay, 1993). What is more important for learning effectively in a constructivist 
way? Features or style?

In the last decade, a number of block-based programming tools have been intro-
duced to help students have an easier time when first practicing programming. These 
tools, often based on web-based technologies, as well as an increase in the number of 
smartphones and tablets, opened up new ways for innovative coding concepts (Kahn, 
2017). In general, they focus on younger learners, support novices in their first pro-
gramming steps, can be used in informal learning situations, and provide a visual lan-
guage which allows students to recognize blocks instead of recalling syntax (Tumlin, 
2017). Many popular efforts for spreading computer science in schools, like (Goode, 
Chapman, and Margolis, 2012) or the teaching material from Code.org,5 rely on the use 
of such environments. In addition, such tools have been adopted into many computing 
classes all over the world (Meerbaum-Salant, Armoni, and Ben-Ari, 2010).

LOGO

LOGO was designed (since 1967) for (constructionist) educational purposes by Wal-
ly Feurzeig, Seymour Papert, Cynthia Solomon, Daniel Bobrow, and Richard Grant 
(Papert, 1980). Its syntax was heavily influenced by Lisp (at the time the standard 
language for Artificial Intelligence research) and it was initially designed to aid stu-
dents in learning secondary school mathematics. The most successful LOGO version 
featured a graphical (at least in principle) environment: instructions are directed to 
a “turtle” who moves around the screen, possibly leaving a colored trace. The turtle 
should help learners (especially the younger ones) with a sort of self-identification: 
its movements have a clear correspondence with their movements in the real world. 
The patterns drawn by the turtle can be the way the learners build their understanding 

5 https://hourofcode.com



M. Lodi et al.110

of 2D geometry, discovering in the process even deep mathematical truths as the fact 
that a circle can be approximated by a high number of straight segments (Abelson and 
DiSessa, 1986) (see Fig. 5).

Interestingly enough, LOGO was originally conceived to empower learners of math-
ematics/geometry, not programming. Programming is just a means of expression, but one 
with great epistemic potential. According to Papert: “in teaching the computer how to 
think, children embark on an exploration about how they themselves think. The experi-
ence can be heady: Thinking about thinking turns every child into an epistemologist, an 
experience not even shared by most adults” (Papert, 1980). Also, by expressing something 
in a way the LOGO turtle can “understand” can be fruitful for real-world activities, too. 
Juggling, for example, can be analyzed with LOGO: the identification of proper sub-activ-
ities (i.e., sub-routines like TOP-RIGHT to recognize when one juggling ball is at the top 
of its trajectory going to the right, or TOSS-LEFT to throw the ball with the left hand) may 
shorten significantly the time for acquiring juggling skills (from days to hours, according 
to (Papert, 1980)). And here ‘proper’ should be understood as appropriate to the task, but 
also as “fitting properly with the programming language idiomatic way of describing com-
putational processes”. LOGO had many independent implementations and its approach is 
still very popular, even Python has a turtle package in its standard library.

Smalltalk

Smalltalk (Goldberg and Kay, 1976) also has its roots in constructionist learning. Back 
in the early seventies, at the Learning Research Group within the Xerox Parc Research 
Center, people were envisioning a world of personal computing devices which should 
have “programmability”. Smalltalk, whose lineage traces clearly to LOGO and Lisp, 
was designed with a general audience in mind, since everyone should be comfortable 
with programming and computing devices should become ubiquitous in learning envi-
ronments “along the lines of Montessori and Bruner” (Kay, 1993). Thus, Smalltalk was 
not directed specifically to children and it has conquered a wide professional audience. 
In Smalltalk everything is an ‘object’ able to react to ‘messages’. It follows a highly 
consistent object-oriented approach and code can be factored out by inheritance and 
dynamic binding. Smalltalk introduces also the idea that everything in the system is pro-
grammable: such a dynamic environment encourages a trial-and-error approach. A spe-

TO CIRCLE 

   REPEAT FOREVER

      [

         FORWARD 1

         RIGHT 1

      ]

Fig. 5. A procedure to draw a circle in LOGO.



Constructionist attempts at supporting the learning of computer programming: ... 111

cific Smalltalk system for children was designed later as an evolution of Squeak Small-
talk: E-toys (Kay et al., 1997) provided a world of “sprites”, funny characters that can be 
moved (concurrently) around the screen by programming them in Smalltalk. E-toys then 
evolved in Scratch, where the programming part was replaced by visual blocks.

BASIC, Pascal

It seems legitimate to mention BASIC (Beginner’s All-purpose Symbolic Instruction 
Code (Kurtz, 1978)) in a paper on constructionism and programming: for years BA-
SIC has been the elective language for personal projects and even before widespread 
Internet connectivity, several communities shared BASIC programs in Bulletin Board 
Systems and magazines. Its popularity among self-taught programmers, however, was 
due mainly to its availability on personal and home computing devices. Moreover, the 
language was typically implemented using an interpreter, thus naturally fostering the 
trial-and-error and incremental learning styles typical of a constructionist setting. A gen-
eration grown with BASIC still thinks it is a wonderful approach to get children hooked 
on programming (see for example (Brin, 2016)). However, many believe BASIC is not 
able to foster good abstractions and fear that BASIC programmers will bring bad habits 
to all their future computational activities.

In 1970 Niklaus Wirth published Pascal (Wirth, 1993), a small, efficient language 
intended to encourage sound programming practices using structured programming and 
data structuring. For about 25 years, Pascal (and its successors like TurboPascal or Mod-
ula-2) was the most popular choice for undergraduate courses and a whole generation of 
computer scientist learned to program through its discipline popularized by Wirth in his 
book “Algorithms + Data Structures = Programs”. Only Java had similar success in un-
dergraduate courses. However, while Java popularity was (and is) influenced by trends 
in the software industry, Pascal was appealing mainly for its intrinsic discipline, which 
matched the academic sentiment of the time.

Scheme, Racket

Scheme (Abelson et al., 1998) is a language originally aimed at bringing structured 
programming in the lands of Lisp (mainly by adding lexical scoping). The language has 
nowadays a wide and energetic community of users. Its importance in education, how-
ever, is chiefly related to a book, “Structure and Interpretation of Computer Programs” 
(SICP) (Abelson, Sussman, and Sussman, 1996), which had a tremendous impact on the 
practice of programming education. The book derived from a semester course taught 
at MIT. It has the peculiarity to present programming as a way of organizing thinking 
and problem solving. Every detail of the Scheme notional machine is worked out in the 
book: at the end, the reader should be able to understand the mechanics of a Scheme 
interpreter and to program one by herself (in Scheme). The book, which enjoyed wide-
spread adoption, was originally directed to MIT undergraduates and it is certainly not 



M. Lodi et al.112

suitable either for children or even adults without a scientific background: examples are 
often taken from college-level mathematics and physics. 

A spin-off of SICP explicitly directed to learning is Racket. Born as ‘PLT Scheme’, 
one of its strength is the programming environment DrScheme (Findler et al., 2002) 
(now DrRacket): it supports educational scaffolding, it suggests proper documentation, 
and it can use different flavours of the language, starting from a very basic one (Be-
ginning Student Language, it includes only notation for function definitions, function 
applications, and conditional expressions) to multi-paradigm dialects. The DrRacket ap-
proach is supported by an online book “How to design programs” (HTDP) 6 and it has 
been adapted to other mainstream languages, like Java (Allen, Cartwright, and Stoler, 
2002) and Python. The availability of different languages directed to the progression of 
learning should help in overcoming what the DrRacket proponents identify as “the cru-
cial problem” in the interaction between the learner and the programming environment: 
beginners make mistakes before they know much of the language, but development tools 
yet diagnose these errors as if the programmer already knew the whole notional machine. 
Moreover, DrRacket has a minimal interface aimed at not confusing novices, with just 
two simple interactive panes: a definitions area, and an interactions area, which allows 
a programmer to ask for the evaluation of expressions that may refer to the definitions. 
Similarly to what happens in visual languages, Racket allows for direct manipulation of 
sprites, see an example in Fig. 6.

The authors of HTDP claim that “program design – but not programming – deserves 
the same role in a liberal arts education as mathematics and language skills.” They aim 
at systematically designed programs thanks to systematic thought, planning, and under-
standing from the very beginning, at every stage, and for every step. To this end, the 
HTDP approach is to present “design recipes”, supported by predefined scaffolding that 
should be iteratively refined to match the problem at hand. This is indeed very close to 
the idea of micropatterns discussed above.

6 Current version: http://www.htdp.org/2018-01-06/Book/index.html

Fig. 6. Racket code for “landing a rocket”.



Constructionist attempts at supporting the learning of computer programming: ... 113

Scratch, Snap!, Alice, and others

EToys worlds with pre-defined – although programmable – objects, evolved in a ge-
neric environment in which everything can be defined in terms of ‘statement’ blocks. 
Scratch (Resnick et al., 2009), originally written in Smalltalk, is the most popular and 
successful visual block-based programming environment. Launched in 2007 by the MIT 
Media Lab, the Scratch site has grown to more than 25 million registered members with 
over 29 million Scratch projects shared programs.

Unlike traditional programming languages, here graphical programming blocks 
are used that automatically snap together like Lego bricks when they make syntactical 
sense (Ford, 2009). In visual programming languages, a block represents a command or 
action and they are arranged in scripts. The composition of individual scripts equals the 
construction of an algorithm. The building blocks offer the possibility, e.g., to animate 
different objects on a stage, thus defining their behavior. 

The Scratch environment has some distinctive characteristics, according to its au-
thors (Maloney et al., 2010). Among the ones the authors highlight, some are particu-
larly relevant in the constructionist approach:

Liveness 
The code is constantly running and can be changed on the fly, immediately seeing the 
runtime effects of the change; this encourages users to tinker with the code.

No error messages 
When you play with Lego bricks, they stack together or they don’t – the same happens 
in Scratch; program always run: syntax errors are prevented from the block shapes 
and connections, and also runtime errors are avoided by doing something “reason-
able” (e.g., in the case of an out-of-range value); this is particularly important not to 
frustrate kids and to keep them iterating and developing: “A program that runs, even if 
it is not correct, feels closer to working than a program that does not run (or compile) 
at all” (Maloney et al., 2010).

Other characteristics are useful to help novices avoiding misconceptions that often 
arise when starting to learn to program.

Execution made visible 
A glowing yellow border surrounds running scripts (in some versions each block is 
highlighted when it is executed); this is very helpful in program reading and debug-
ging, and helps students form a correct mental model of the notional machine underly-
ing the program execution.

Making data concrete 
You can see in a variable box, automatically shown, its current value: again, this is 
helpful for making the underlying machine model visible.



M. Lodi et al.114

Finally, other characteristics introduce important software engineering and develop-
ment concepts.

Open source 
Each shared project has a “see inside” button that brings you to the project source; you 
can read and edit the blocks to see what happens.

Remixing 
If you edit someone else’s project, you create a remix: you are the author, but the 
system automatically gives credits to the original author (at any depth, keeping track 
of multiple remixes in a tree) and suggests you to explicitly declare what changes you 
made.

The main limitation of Scratch programs is that they do not scale well from the 
abstraction point of view: only since version 2 you can “make a new block” that is, a 
procedure with optional parameters. These blocks have no possibility to return a value 
(like a number or a boolean) and so can’t be nested inside other blocks, forcing you to 
modify global variables if needed.

Snap!7 (originally BYOB, Build Your Own Blocks) is an extended reimplementation 
of Scratch with functions and continuations. These added capabilities make it suitable 
for a serious introduction to computer science for high school or college students: in fact, 
Snap! is used as the basis for an Advanced Placement CS course at Berkeley8.

The Scratch approach was also ported to mainstream programming languages: in 
Alice (Dann, Cooper, and Pausch, 2008) visual blocks are in fact Java instructions. Alice 
worlds are 3D: this choice makes it very attractive and appealing to pupils (Rodger et al., 
2009), who can program amazing 3D animations. It also adds many complexities, since 
moving objects in a 3D space is not trivial.

Recently, these environments evolved towards web or phone/tablet versions, in order 
to be available in the contexts more popular within young people. For example, Pocket 

7 https://snap.berkeley.edu/  
8 https://bjc.berkeley.edu/

Fig. 7. Students design a program to be run with Pocket Code.



Constructionist attempts at supporting the learning of computer programming: ... 115

Code9 allows the creation of games, stories, animations, and many types of other apps 
directly on phones or tablets, thereby teaching fundamental programming skills (Slany, 
2014). In some cases block and textual programming languages are interchangeable. 
In many cases these environments can connect to physical devices and sensors, with the 
goal of increasing the constructionist appeal of block programming, and opening to the 
world of “tinkering” with electronics. 

All in all, visual programming languages seem to provide an easier start and a more 
engaging experience for learners. The ease of use, simplicity, and desirability of new 
visual programming environments enables young people to imagine complex goals. A 
study which compared three classes that used either block-based (Scratch), text-based 
(Java), or hybrid blocks/text (Snap!/JavaScript) programming languages showed that 
students generally found block-based programming to be easier than the text-based en-
vironments (Weintrop and Wilensky, 2015). Some researchers, however, argue that stu-
dents are not fully convinced that a visual language can help them learn other program-
ming languages (Lewis et al., 2014).

Common Features

The above short survey of programming languages for education shows they have some 
recurrent traits that link them to the themes discussed in the section “What does it mean 
to learn programming.”

Personification 
The interpreter becomes a “persona”, computation is then carried out through anthro-
pomorphic (or, better, zoomorphic, since animals are very common) actions. This 
seems to contradict a famous piece of advice coming from no less than E. W. Dijk-
stra (Dijkstra, 1985). Speaking of anthropomorphism in computer science, he noted: 
“The trouble with the metaphor is, firstly, that it invites you to identify yourself with 
the computational processes going on in system components and, secondly, that we 
see ourselves as existing in time. Consequently, the use of the metaphor forces one to 
what we call ‘operational reasoning’, that is reasoning in terms of the computational 
processes that could take place. From a methodological point of view, this is a well-
identified and well-documented mistake: it induces a combinatorial explosion of the 
number of cases to consider and designs thus conceived are as a result full of bugs.” 
The reasoning in terms of the computational processes, however, is what is probably 
needed for a novice in order to familiarize with the notional machine. 

Visualization and tracking 
Computational processes that evolve in time are described by static texts: the mapping 
between the two is not trivial and it requires an understanding of the notional machine. 
Educational programming environments often try to make the mapping more explicit 

9 https://catrobat.org 



M. Lodi et al.116

with some visualization of the ongoing process: the trace left by the LOGO turtle, or 
some other exposition of the changing state of the interpreter.

Appeal 
Engagement of learners is crucial: to this end, it is important to give learners powerful 
libraries and building blocks. It is not clear, however, how to properly balance amaz-
ing effects in order to avoid they become a major distraction: sometimes children may 
spend their (limited) time in changing the colors of the sprites, instead of trying to 
solve problems. 

Learning to Program in Teams

Constructivist approaches often emphasize the importance of social context in which the 
learning happens (see e.g. (Vygotsky, 1978)).

Working in developers teams requires new skills, especially because software prod-
ucts (even the ones in the reach of novices) are often tangled with many dependencies 
and division of labour is hard: it inevitably requires appropriate communication and 
coordination. Therefore, it is important that novice programmers learn to program in an 
“organized” way, discovering that as a group they are able to solve more challenging and 
open-ended problems, maybe with interdisciplinary contributions.

To this end, agile methodologies fit well with constructivist pedagogies involving learn-
ing in teams, and they are increasingly exploited in educational settings (see for example 
(Kastl, Kiesmüller, and Romeike, 2016; Missiroli, Russo, and Ciancarini, 2016)).

Agile teams are typically small groups of 4–8 co-workers. ●
Agile values (Beck ●  et al., 2001) (individuals and interactions over processes and 
tools; customer collaboration over contract negotiation; responding to change over 
following a plan; working software over comprehensive documentation) relate 
well with constructivist philosophies.
Agile teams are self-organizing, emphasize the need for reflecting regularly on how  ●
to become more effective, and tune and adjust their behavior accordingly.
Agile techniques like pair programming, test driven development, iterative software  ●
development, continuous integration are very attractive for a learning context.

The iterative nature of agile methods is well exemplified by test-driven development, 
or TDD (Beck, 2003). This technique reverses the order between code implementation 
and correctness test. Namely, the specification of the programming task at hand is actu-
ally provided with a test the defines correct behavior. The development cycle is then 
based on the iteration of the following procedure:

write a test known to fail according to the current stage of the implementation;i. 
perform the smallest code update which satisfies all tests, including the one intro-ii. 
duced in the previous point;
optionally refactor the produced code.iii. 



Constructionist attempts at supporting the learning of computer programming: ... 117

TDD makes testing the engine driving the overall development process: one of the 
hardest-to-find contributions for facilitators in an active programming learning context 
is suggesting a good next test. This has the role of letting pupils aware that their belief 
at a broad level (“the program works”) is false, thus an analogous belief at a smaller 
scale (for instance, “this function always returns the correct result”) should be false, too. 
This amounts to the destruction of knowledge necessary to build new knowledge (aka 
a working program) in a constructivist setting. Moreover, refactoring corresponds to 
the constructivist re-organization of knowledge following the discovery of more viable 
solutions: most of the developing activities consist in realizing that a system which was 
thought to correctly work is actually not able to cope with a new test case. This applies 
of course also to the simplest tasks faced by students engaged in learning the basics of 
computer programming.

Once pupils are convinced that their implementation is flawed, the localization of 
the code lines to be reconsidered is the other pillar of an active learning setting. Again, 
a paramount contribution for a successful learning process should be provided by a fa-
cilitator suggesting suitable debugging techniques (e.g., proposing critical input values, 
suggesting points in the execution flow to be verified, or giving advice about variables 
to be tracked during the next run).

Conclusions

The literature on learning to program through a constructionist strategy has often fo-
cused on how to bring the abstract and formal nature of programming languages into 
the manipulation of more concrete (or even tangible) “objects” (Kay et al., 1997; Horn 
and Jacob, 2007; Dann, Cooper, and Pausch, 2008; Resnick et al., 2009; Hauswirth, 
Adamoli, and Azadmanesh, 2017). Many proposals aim at overcoming the (initial) 
hurdles which textual rules of syntax may pose to children. Also, several environments 
have been designed in order to increase the appeal of programming by connecting this 
activity to real-world devices or providing fancy libraries. Instead, more work is prob-
ably needed to make educators and learners more aware of the so-called notional ma-
chine behind the programming language. Programming environments could be more 
explicit about the complex relationship between the code one writes and the actions 
that take place when the program is executed. Moreover, micro-patterns should be 
exploited in order to enhance problem solving skills of novice programmers, such that 
they become able to think about the solution of problems in the typical way that make 
the former suitable to automatic elaboration. Agile methodologies, now also common 
in professional settings, seem to fit well with constructionist learning. Besides the 
stress on teamworking, particularly useful seems the agile emphasis on having run-
ning artifacts through all the development cycle and the common practice of driving 
development with explicit or even executable “definitions of done”.



M. Lodi et al.118

References

Abelson, H., DiSessa, A.A. (1986). Turtle Geometry: The Computer as a Medium for Exploring Mathematics. 
Artificial Intelligence Series. AAAI Press.

Abelson H., Dybvig R.K., Haynes C.T., Rozas G.J., Adams N.I., Friedman D.P., Kohlbecker, E. et al., (1998). 
Revised report on the algorithmic language scheme. Higher-Order and Symbolic Computation, 11(1), 
7–105. https://doi.org/10.1023/A:1010051815785

Abelson, H., Sussman, G.J., Sussman, J. (1996). Structure and Interpretation of Computer Programs. Second. 
MIT press.

Allen, E., Cartwright, R., Stoler, R. (2002). DrJava: A lightweight pedagogic environment for Java. SIGCSE 
Bull., 34(1), 137–41. https://doi.org/10.1145/563517.563395

Astrachan, O., Wallingford, E. (1998). Loop patterns. In: Proceedings of the Fifth Pattern Languages of Pro-
grams Conference.

Beck, K. (2003). Test-Driven Development: By Example. Addison-Wesley Professional.
Beck, K., Andres, C. (2004). Extreme Programming Explained: Embrace Change. Second. Addison-Wesley 

Professional.
Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowle,r M., Grenning, J. et al. (2001). 

Manifesto for Agile Software Development. http://agilemanifesto.org/iso/en/manifesto.html
Bell, T., Rosamond, F., Casey, N. (2012). Computer science unplugged and related projects in math and com-

puter science popularization. In: Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx 
(ads.), The Multivariate Algorithmic Revolution and Beyond. Berlin, Heidelberg: Springer-Verlag, 398–456. 
http://dl.acm.org/citation.cfm?id=2344236.2344256

Bell, T., Vahrenhold, J. (2018). CS unplugged – how is it used, and does it work?. In: Böckenhauer, H.J., Komm, 
D., Unger, W. (Eds), Adventures Between Lower Bounds and Higher Altitudes. Lecture Notes in Computer 
Science, vol 11011. Springer, Cham.

Bell, T., Lodi, M. (to appear). Constructing computational thinking without using computers. Constructivist 
Foundations.

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M. (2012). Exploring the processing 
of formatted texts by a kynesthetic approach. In: Proc. of the 7th Wipsce. WiPSCE ’12. New York, NY, USA: 
ACM, 143–44. https://doi.org/http://dx.doi.org/10.1145/2481449.2481484

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M. (2013). What you see is what 
you have in mind: constructing mental models for formatted text processing. In: Proceedings of ISSEP2013. 
Commentarii Informaticae Didacticae 6. Universitätsverlag Potsdam, 139–47. 
http://opus.kobv.de/ubp/volltexte/2013/6368/pdf/cid06.pdf

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M., Zecca, L. (2014). Extracur-
ricular activities for improving the perception of informatics in secondary schools. In: Yasemin Gülbahar 
and Erin c Karata s (eds.), Proceedings of ISSEP2014. Lecture Notes in Computer Science, 8730. Springer, 
161–72. https://doi.org/http://dx.doi.org/10.1007/978-3-319-09958-3_15

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of Computers in Mathematics and 
Science Teaching, 20(1), 45–73.

Ben-Ari, M., Sajaniemi, J. (2004). Roles of variables as seen by Cs educators. ACM Sigcse Bulletin, 36(3), 
52–56.

Berg, J., (1999). Patterns for selection. In: Proceedings of the 4th European Conference on Pattern Languages 
of Programs (EuroPLoP ‘1999). 305–326.

Berry, M., Kölling, M. (2014). The state of play: A notional machine for learning programming. In: Proceed-
ings of the 2014 Conference on Innovation & Technology in Computer Science Education. ITiCSE ’14. New 
York, NY, USA: ACM, 21–26. https://doi.org/10.1145/2591708.2591721

Brin, D. (2016). Why Johnny Can’t Code. https://www.salon.com/2006/09/14/basic_2/
Clancy, M. (2004). Misconceptions and attitudes that interfere with learning to program. In: Sally Fincher and 

Marian Petre (eds.), Computer Science Education Research. Routledge, 85–100.
Dann, W.P., Cooper, S., Pausch, R. (2008). Learning to Program with Alice. Prentice Hall Press.
Dijkstra, E.W. (1985). On Anthropomorphism in Science. EWD936. 

https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD936.PDF

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing Research, 
2(1), 57–73. https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9 



Constructionist attempts at supporting the learning of computer programming: ... 119

Feurzeig, W., Papert, S., Bloom, M., Grant, R., Solomon, C. (1970). Programming-languages as a conceptual 
framework for teaching mathematics. SIGCUE Outlook, 4(2), 13–17. 
http://dx.doi.org/10.1145/965754.965757

Findler, R.B., Bruce, R., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler, P., Felleisen, M. 
(2002). DrScheme: A programming environment for scheme. Journal of Functional Programming, 12(2), 
159–82.

Ford, J.L. (2009). Scratch programming for Teens. In: Computer Science Books.
Goldberg, A., Kay, A. (1976). Smalltalk-72 Instruction Manual. Xerox.
Goode, J., Chapman, G., Margolis, J. (2012). Beyond curriculum: the exploring computer science program. 

Magazine ACM Inroads.
Hauswirth, M., Adamoli, A., Azadmanesh, M.R. (2017). The program is the system: introduction to program-

ming without abstraction. In: Proceedings of the 17th Koli Calling International Conference on Computing 
Education Research. Koli Calling’17. 

Horn, M.S., Jacob, R.J.K. (2007). Designing tangible programming languages for classroom use. In: Proceed-
ings of the 1st International Conference on Tangible and Embedded Interaction. TEI ’07. New York, NY, 
USA: ACM, 159–62. https://doi.org/10.1145/1226969.1227003

Kahn, K. (2017). A half-century perspective on Computational Thinking. In: Technologias, Sociedade E Con-
hecimento.

Kastl, P., Kiesmüller, U., Romeike, R. (2016.) Starting out with projects: experiences with agile software devel-
opment in high schools. In: Proceedings of the 11th Workshop in Primary and Secondary Computing Educa-
tion. WiPSCE ’16. New York, NY, USA: ACM, 60–65. https://doi.org/10.1145/2978249.2978257

Kay, A.C. (1993). The early history of smalltalk. SIGPLAN Not, 28(3), 69–95. 
https://doi.org/10.1145/155360.155364

Kay, A., Rose, K., Ingalls, D., Kaehle, T., Maloney, J., Wallace, S. (1997). Etoys & SimStories. Walt Disney 
Imagineering.

Kurtz, T.E. (1978). BASIC. SIGPLAN Not, 13(8), 103–18. https://doi.org/10.1145/960118.808376
Colleen, L., Esper, E., Bhattacharyya, V., Fa-Kaji, N., Dominguez, N., Schlesinger, A. (2014). Children’s per-

ceptions of what counts as a programming language. In: Journal of Computing Sciences in Colleges.
Lonati, V., Monga, M., Morpurgo, A., Torelli, M. (2011). What’s the fun in Informatics? Working to Capture 

children and teachers into the pleasure of computing. In: I. Kala  and R.T. Mittermeir (eds.). In: Proceedings 
of Issep2011, Lecture Notes in Computer Science, 7013. Springer-Verlag, 213–24. https://doi.org/
http://dx.doi.org/10.1007/978-3-642-24722-4_19

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E. (2010). The Scratch programming language and en-
vironment. Trans. Comput. Educ., 10(4), 16:1–16:15. https://doi.org/10.1145/1868358.1868363

Meerbaum-Salant, O., Armoni, M., Ben-Ari, M. (2010). Learning computer science concepts with scratch. In: 
Proceedings of the Sixth International Workshop on Computing Education Research. 69–76.

Missiroli, M., Russo, D., Ciancarini, P. (2016). Learning agile software development in high school: An inves-
tigation. In: Proceedings of the 38th International Conference on Software Engineering Companion, ICSE 
’16. New York, NY, USA: ACM, 293–302. https://doi.org/10.1145/2889160.2889180

Piaget, J. (1973). To Understand is to Invent: The Future of Education. Penguin Books.
Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York, NY, USA: Basic Books, 

Inc.
Proulx, V.K. (2000). Programming patterns and design patterns in the introductory computer science course. 

ACM Sigcse Bulletin, 32(1), 80–84.
Qian, Y., Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory programming: a 

literature review. ACM Trans. Comput. Educ., 18(1), 1:1–1:24. https://doi.org/10.1145/3077618
Resnick, M. (1996). Distributed constructionism. In: Proceedings of the 1996 International Conference on 

Learning Sciences, ICLS ’96. Evanston, Illinois: International Society of the Learning Sciences, 280–84. 
http://dl.acm.org/citation.cfm?id=1161135.1161173

Resnick. M. (2007). All I Really Need to Know (About Creative Thinking) I Learned (by Studying How Chil-
dren Learn) in Kindergarten. In: Proceedings of the 6th Acm Sigchi Conference on Creativity &Amp; Cogni-
tion, C&C ’07. New York, NY, USA: ACM, 1–6. https://doi.org/10.1145/1254960.1254961

Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity Through Projects, Passion, Peers, and Play. 
MIT Press.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A. et al. 
(2009). Scratch: programming for all. Commun. ACM, 52(11), 60–67. 
https://doi.org/10.1145/1592761.1592779



M. Lodi et al.120

Rodger, S., Hayes, J., Lezin, G, Qin, H., Nelson, D., Tucker, R., Lopez, M., Cooper, S., Dann, W., Slater, D. 
(2009). Engaging middle school teachers and students with alice in a diverse set of subjects. SIGCSE Bull., 
41(1), 271–275. https://doi.org/10.1145/1539024.1508967 

Sajaniemi, J. (2002). An empirical analysis of roles of variables in novice-level procedural programs. In: Hu-
man Centric Computing Languages and Environments, 2002. Proceedings. IEEE 2002 Symposia on. IEEE, 
37–39.

Sirkiä, T. (2012). Recognizing Programming Misconceptions: An Analysis of the Data Collected from the 
Uuhistle Program Simulation Tool. Master’s thesis, Department of Computer Science; Engineering, Aalto 
University.

Slany, W. (2014). Tinkering with Pocket Code, a Scratch-like programming app for your smartphone. In: Pro-
ceedings of Constructionism 2014.

Sorva, J. (2013). Notional machines and introductory programming education. Trans. Comput. Educ., 13(2), 
8:1–8:31. https://doi.org/10.1145/2483710.2483713

Taub, R., Armoni, M., Ben-Ari, M. (2012). CS unplugged and middle-school students’ views, attitudes, and 
intentions regarding CS. TOCE, 12(2), 8. https://doi.org/10.1145/2160547.2160551

Tumlin, N. (2017). Teacher configurable coding challenges for block languages. In: Proceedings of the 2017 
ACM SIGCSE Technical Symposium on Computer Science Education.

Vygotsky, L. (1978). Mind in Society. London: Harvard University Press.
Weintrop, D., Uri, W. (2015). To block or not to block, that is the question: students’ perceptions of blocks-

based programming. In: IDC ’15 Proceedings of the 14th International Conference on Interaction Design 
and Children.

Wirth, N. (1993). Recollections about the development of Pascal. SIGPLAN Not., 28(3), 333–42. 
https://doi.org/10.1145/155360.155378

M. Lodi is a PhD student in Computer Science, Department of Com-
puter Science and Engineering, University of Bologna, Italy. He 
also received Bs, Ms and High school teaching licence in CS from 
the same University. He works on computer science education, with 
a particular focus on teacher training about computational thinking 
and epistemological aspects of Computer Science as a discipline. In 
particular, he studies “Computer Science Growth Mindset”. He pub-
lished some papers in international conferences on computer sci-
ence education, and a book in Italian for primary school teachers.  
He is actively involved in nation-wide initiatives to introduce CS in 
Italian K-12 curriculum. https://lodi.ml 



Constructionist attempts at supporting the learning of computer programming: ... 121

D. Malchiodi (http://malchiodi.di.unimi.it) is an Associate 
Professor at Università degli Studi di Milano (Department of Comput-
er Science), where he teaches “Statistics and data analysis” and “Big 
scale analytics”. His research activities are focused on the one hand 
on the treatment of uncertainty in machine learning problems, and 
on the other one on the development of teaching methodologies for 
primary and secondary education. He published around one hundred 
papers and he participated in the activities of ten research projects and 
research groups, at national and international level. He is co-founder 
of the ALaDDIn working group (http://aladdin.unimi.it), in-
volved in several activities focused on the popularization of computer 
science, including the training of secondary school teachers and a ra-
dio broadcast on informatics culture.

M. Monga is an Associate Professor at Università degli Studi di Milano 
(Department of Computer Science). His research interests are mainly in 
the field of software engineering, system security, and computer science 
education. Since he believes it is urgent to change the common mis-
conception of informatics as the mere use of information technologies, 
he founded together with Carlo Bellettini, Violetta Lonati, Dario Mal-
chiodi, and Anna Morpurgo a group working to spread informatics as 
a science among the general public (https://aladdin.unimi.it/). 
Moreover, he is the National Bebras Organizer for Italy. 

A. Morpurgo  is Assistant Professor at the CS Department, Università 
degli Studi di Milano, Italy. Her current research interests are mainly 
in CS education. She is actively involved in nation-wide initiatives to 
introduce CS in the Italian K-12 curriculum and is co-founder of the 
ALaDDIn group (http://aladdin.unimi.it), working on the pop-
ularization of informatics as a science in school and among the public. 
She is involved in the training of secondary school teachers and is part 
of the team organizing the Bebras challenge in Italy.

B. Spieler has a PhD in Engineering Sciences. She is a University 
Assistant at Graz University of Technology, Department for Software 
Technology. Her work is focused on how to encourage female teen-
agers with playful coding activities with the Pocket Code app or in 
“Girls Coding Weeks”. Moreover, her recent work is related to gen-
der, game based/mobile learning and constructionist gaming. Through 
the nonprofit university project Catrobat (https://catrobat.org), 
Mrs. Spieler promotes computational thinking skills in a fun and en-
gaging way among children, teenagers and teachers on a worldwide 
scale. https://bernadette-spieler.com 

 



  

 



Olympiads in Informatics, 2019, Vol. 13, 123–144
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.08

123

Survey and Analysis of Computing Education  
at Japanese Universities: Subject of “Information” 
for High School Teacher’s License*

Kazuhiro SUMI1, Mika OHTSUKI2, Tetsuro KAKESHITA2

1Faculty of Education, Saga University, 840-8502, Japan
2Faculty of Science and Engineering, Saga University, 840-8502, Saga, Japan
e-mail: sumik@cc.saga-u.ac.jp, mika@is.saga-u.ac.jp, kake@is.saga-u.ac.jp

Abstract. We conducted the first national survey of computing education at Japanese univer-
sities in 2016. In this paper, we report the survey result of the computing education to obtain 
high school teacher’s license on IT. The survey covers various aspects of computing educa-
tion including program organization, quality and quantity of educational achievement, students, 
teaching staff and computing environment. We collected 338 answers through the survey which 
cover 65% of the departments having teacher’s license course on IT. Many of the responded de-
partments also provide computing education majored in computing discipline. Although 5,006 
students are enrolled in the computing education for the license, only 369 students obtain the 
license since very few are employed at a high school. Most of the teacher’s license holders on 
computing subject also obtain high school teacher’s license of other subject in order to get a job 
as a high school teacher.

Keywords: computing education, subject of information, high school, teacher’s license.

1. Introduction

Computing education is essential at modern universities. There are four types of comput-
ing education in Japanese universities:

Computing education at a department or a course majored in computing disci-A. 
pline.
Computing education at a non-IT department or a course as a part of their major B. 
field of study.

* This paper is a revised and extended version of the following paper written by the same author
K. Sumi and T. Kakeshita, “National survey of Japanese universities on computing education: Analysis of 
IT education for high school teacher’s license on IT”, in Proc. 12-th International Conference on Digital 
Information Management (ICDIM 2017), pp. 87–92, 2017.



K. Sumi, M. Ohtsuki, T. Kakeshita124

General computing education for all students at a university or a faculty typically C. 
at the first or second academic year.
Computing education to obtain high school teacher’s license on computing sub-D. 
jects.

The Science Council of Japan announced the reference standard of informatics 
(Hagiya, 2015 ) for university education in March 2016. The reference standard pro-
vides a common body of knowledge (BOK) for college level computing education and 
the Japanese government accepted this as the definition of computing education.

This survey is designed to analyze and understand current status of computing edu-
cation at Japanese universities from various aspects including program organization, 
quality and quantity of educational achievement, students, teaching staff and computing 
environment.

In this paper, we report and discuss the result of the survey type D for computing 
education to obtain high school teacher’s license on computing subject. The Enforce-
ment Regulations of the Japanese Education Official License Law defines requirements 
for an education program to issue a regular high school teacher’s license for the subject 
“Information” in chapter one, named Method of Learning Units, article 5. It is necessary 
for a program to include the following six subjects:

Information society and information ethics.1. 
Computer and information processing including practical training.2. 
Information system including practical training.3. 
Information communication network including practical training.4. 
Multimedia expression and technology including practical training.5. 
Information and occupation.6. 

A program needs to be accredited by the Japanese government to fulfill the require-
ments. The Japanese ministry of education (MEXT) maintains the list of the accredited 
programs.

We have already published the survey outline in (Kakeshita, 2017b) . The results of 
other survey types are also published as separate papers (Kakeshita, 2018; Kakeshita 
and Kakeshita, 2017; Kakeshita, 2017a; Ohtsuki et al., 2017). Information processing 
society of Japan (IPSJ) will utilize the survey result to develop the new J17 curricu-
lum standard (IPSJ, 2018). MEXT will utilize the survey result to improve the national 
policy of computing education.

2. Survey Outline

2.1. Survey Questions

The following is the list of questions for survey type D. As the reader can understand 
from the list, our survey covers various aspects of computing education by considering 
the Japanese standard for establishment of universities and our experience of accrediting 
computing programs in Japan.



Survey and Analysis of Computing Education at Japanese Universities: ... 125

Name of university, faculty, department and course. ●
Program organization: ●

Day time, night or remote program. ○
Academic discipline of the program such as engineering, social science and  ○
humanities.
Required number of credits of computing subjects for graduation. ○
Number of computing subjects provided. ○
Classification of the computing subjects. ○

Quality and quantity of educational achievement: ●
 See Section 2.2 for detail. ○

Student: ●
Regular academic years of computing education. ○
Quota, Number of enrolled students. ○
Number of students who obtain the license. ○
Student’s choice of career after graduation. ○

Teaching staff: ●
Number, educational background, current specialized field, tenure of faculty  ○
members.
Number and workload of support staff and teaching assistant students. ○

Computing environment: ●
Educational computer system. ○
Student’s own PC and utilization at class. ○
Educational programming language. ○

Other topics: ●
Future plan and strength of the program. ○
Utilization of IT certification and/or qualification. ○
Special remarks. ○

2.2. Survey of Quality and Quantity of Educational Achievements

The survey of quality and quantity of educational achievements is the core of our survey. 
We define six achievement levels for knowledge and skill represented in Table 1. These 
levels are used to describe educational achievement.

We also define a BOK based on the reference standard of informatics (Hagiya, 
2015) and additional topics related to general computing education (Kawamura, 2008). 
The BOK contains 90 topics classified by 21 domains as represented in Table 2. The 
BOK is used to precisely define educational achievement of each program. The num-
bers within the parenthesis are the number of topics belonging to the section or the 
domain.

We adopted the same definition of level and BOK throughout the survey types A to 
D in order to enable mutual comparison of the different survey types. Such comparison 
is important to understand relationship among different survey types.

In case of survey type D, a department or a course responds to the survey. 



K. Sumi, M. Ohtsuki, T. Kakeshita126

Table 1
Knowledge and Skill Level Definition

Level Knowledge Level Definition Skill Level Definition

0 Not taught (unnecessary or already taught at general computing education)

1 Not taught because of the time limitation or 
because the level of the contents is too high

Taught at class with simple exercise

2 Taught at class. Students know each term Taught at class with some exercise. Students can 
perform the topic if detailed instruction is provided

3 Taught at class. Students can explain the 
meaning of each term

Taught at experiment with more complex exercise. 
Students can perform the topic with simplified 
instruction

4 Taught at class. Students can explain rela-
tionship and/or difference among related 
terms

Students perform combined research project 
containing the topic so that the students can 
autonomously perform the topic

5 Taught at class or graduation research 
project. Students can teach related domain 
or subject of the terms to the others

Students perform combined research theme 
containing the topic. Students can teach how to 
perform the topic to others

Table 2
Common BOK Organization

Source Section Domain

J07-GEBOK General Education Informatics in General Education (9)

Reference 
Standard of 
Informatics

General Principles of Information (6)(A) 

Principles of Information Pro-(B) 
cessing by Computers

Information Transformation and Transmission (4), 
Information Representation, Accumulation and 
Management (4), Information Recognition and 
Analysis (4), Computation (6), Algorithms (8)

Technologies for Constructing (C) 
Computers that Process Infor-
mation

Computer Hardware (3), I/O Device (4), 
Fundamental Software (3)

Understanding Humans and (D) 
Societies that Process Infor-
mation

Process and Mechanism for Information Creation 
and Transmission (2), Human Characteristics 
and Social System (3), Economic System and 
Information (2), IT-based Culture (2), Transition 
from Modern Society to Post Modern Society (2)

Technologies and Organizations (E) 
for Constructing and Operating 
“Systems” that Process Infor-
mation in Societies

Technics for Information System Development (7), 
Technics to Obtain Information System Effect (6), 
Social System Related to Information (2), Principle 
and Design Methodology for HCI (4)

Competence Professional Competency for IT Students (3), 
Generic Skill for IT Students (6)



Survey and Analysis of Computing Education at Japanese Universities: ... 127

2.3. Survey Process

We prepared the survey in October 2016. We defined the survey questions and set up 
the web-based survey system (Kakeshita and Ohtsuki, 2011). We utilized the web-based 
survey system since we did not exactly know the actual organization for this survey in 
advance. After preparing various document such as user manual and detailed explana-
tion of the survey questions, we sent the formal request letter to all universities in Japan 
with a reference letter from the Japanese Ministry of Education in order to increase the 
response rate.

The survey was executed for two months starting at the beginning of November 
2016. Each survey responder must first register to the web-based system and then answer 
the questions listed in Section 2.1. We also provide FAQ and independent answers for 
the questions from the responders.

After closing the survey, we reviewed the collected answers and requested the re-
sponders for possible correction of the incomplete answers.

3. Response Rate Analysis of the Survey

The target of survey type D is a department or a course which provides an educational 
program to obtain high school teacher’s license on IT. Such educational program must 
be accredited by the Japanese ministry of education. We collected data related to com-
puting subjects and the subjects to teach handling of computer. If there are more than one 
courses of the teacher training of high school subject “information” on the same campus, 
each of the course is requested to respond to the survey after the independent registration 
to the survey web site.

We designated the names of universities, undergraduates, departments (or courses) 
corresponding to the teaching professionals for the answer of target organizations. The 
resulting number of responses is shown in Table 3. Here a public university is founded 
and supported by a local government such as prefecture or big city. We also counted the 
number of courses from the responses since some universities merged multiple courses 
within a response. The number of accredited courses is counted from the list of the ac-
credited courses published by the Japanese ministry of education. The surveyed year is 
the 2016 fiscal year.

Table 3
Number of Responses to Survey Type D

University Type Number of Responses Number of Courses Number of Accredited Courses

National   85   75 107
Public   18   14   17
Private 235 251 397

Total 338 340 521



K. Sumi, M. Ohtsuki, T. Kakeshita128

4. Program Organization

There are three types of education programs for high school teacher’s license on subject 
“Information”. The first one is developed within a computing department. The second 
one is developed within a non-computing department having a computing department 
within the same university. The third type is developed at a university without comput-
ing department. Table 4 represents the number of program for the three cases. We shall 
analyze the survey result based on this classification.

We collected answers on corresponding subjects for the teaching curriculum of high 
school subject “information” or the operations for information equipment. The results 
are shown in Table 5. Most of the subjects are taught as a lecture.

Table 5 shows subjects corresponding to 20 credits of “Subjects related to computing 
domain” defined in the license law enforcement regulations for the accreditation criteria 
of the Japanese Ministry of Education.

The remarks on subjects related to computing domain are as follows:
Credits earned for more than 20 credits in “Subjects related to computing domain” 1. 
are included in “Subjects related to computing domain or teaching activity”.
If you acquire credits in “Information Processing” and “Computer Network Theo-2. 
ry” in “Subjects related to computing domain”, the required credits for “Subjects 
related to computing domain or teaching activity” will be 10 or 8 credits depend-
ing on the earned credits.
“Subjects based on Article 66-6 of the License Law Enforcement Regulations” 3. 
and “Subjects related to computing domain” can be used for graduation.
Credits for “Subjects related to computing domain” can also be earned according 4. 
to the rule for daytime course.

Fig. 1 represents distribution of the number of experiments in the accredited pro-
grams. As shown in the Fig. 1, 32 programs (20.2%) in the computing departments 
have more than two experimental subjects. However, the number of programs providing 
experiments decreases at the programs in non-computing department. Particularly there 
is only one program (1.3%) providing experiments at a university having no computing 
department. There is a significant difference between computing department and non-
computing department will be discussed in the succeeding sections.

Table 4
Classification of Programs based on Supporting Department

Classification # of Responses

Developed in a Computing Department 158
Developed in a non-Computing Department having Computing 
Department within the same Unversity

106

No Computing Department with the University   74



Survey and Analysis of Computing Education at Japanese Universities: ... 129

5. Quality and Quantity of Educational Achievement

In this section, we outline the educational achievement of the program and the survey 
results of the education level.

For each of the sections defined in Table 2, we define effort by the sum of the multi-
plication of the number of enrolled students and the level value of each domain included 

 0 5 10 15 20 25 30 35

No  Computing Department within University

Non-Computing Department having Computing
Department within University

Computing Department

2 3 4 5 6 7 8 10

Fig. 1. Number of Experiments included in the Accredited Programs.

Table 5
Subjects related to Computing Domain in the License Law

Subject Category Defined in 
the License Law

Number of 
Credits

Subject Name Required 
Credit

Elective 
Credit

Information Society and 
Information Ethics

20 Social information theory   2
Organizational Information Theory 2

Computer and Information 
Processing (including pra-
ctice)

Information Processing Basics   2
Information Processing   2
Information Mathematics 2
Software Science
Planning Science   4
Decision-Making Theory 4

Information System (includ-
ing practice)

Information System Theory   2
Information System Construction Theory 2
Information System Management Theory 2
Management System Basics 2

Information Communication 
Network (including practical 
training)

Computer Network Theory   2

Multimedia Expression and 
Technology (including pra-
ctice)

Digital Design Theory   2
Operations Research   2

Information and Occupation Information and Occupation   2
Business System Theory 2

Required Credits 20 　 20



K. Sumi, M. Ohtsuki, T. Kakeshita130

in the answers. These allow estimating the effort that each institution is spending for a 
combination of each domain and knowledge/skill. 

We first remove outliers of the collected data using the IQR method. IQR (inter-
quartile range) is defined by the difference between the first and the third quartile of the 
collected data.

IQR = Data Value at the 3-rd Quartile – Data Value at the 1-st Quartile

Next, we calculate the value obtained by adding 1.5 times of the IQR to the third 
quartile. Data above this value are considered outliers. Also, we calculate the value ob-
tained by subtracting 1.5 times of the IQR from the first quartile. Data below this value 
are also considered outliers. If the data is completely normal distributed, then IQR is 
standard deviation (SD) multiplied by 1.35. The third quartile is the average SD multi-
plied by 0.67, so an average SD multiplied by 2.70 plus 1.5 times IQR is the top outlier 
division. The summary result is shown in Fig. 2. This shows an overview of the areas 
which educational institutions are focused on.

The knowledge effort and skill effort have some differences, but we find a very high 
correlation coefficient value of 0.97. The results of sorting the areas in descending order 
of knowledge effort are shown in Table 7. This is considered to represent the importance 
of each domain recognized by the educational institution. In addition to this, the effort 
value of “general IT education” and “generic skills for IT students” are high, but this is 
due to the lack of teachers who can handle full-fledged information specialized educa-
tion. The relative decrease in average academic achievement of university students is 
estimated as the rate of increase in the background.

While the effort ratio to teach general education is high, but the average achievement 
level is not high which compared with other regions. This reason is that the general IT 
education is often taught in the first or second academic year for all college students.

The effort ratio is greater for “generic skill for IT students” is large, and the average 
of the achievement levels for this skill is higher compared to other regions. This reason 

 

0 50 100 150 200 250 300

GEBOK
Section A
Section B
Section C
Section D
Section E

Competence

Effort (Thousand) 

Effort to Teach Skill Effort to Teach Knowledge

Fig. 2. Effort distribution to Teach Knowledge and Skill.



Survey and Analysis of Computing Education at Japanese Universities: ... 131

is that the generic skills are often educated in college subjects including graduation 
research.

Next, we shall analyze the quality of education. Figures Fig. 3-1 through Fig. 9-2 
show the distribution of the number of students at each knowledge and skill levels for 
each section defined in Table 2. Since the total number of students is different, we shall 
show the ratio of the number of students. The distributions are shown in three cases de-
fined in Table 4. The purpose of the comparison is to clarify the impact of the computing 
department, since computing departments are expected to have more teaching resource, 
such as teaching staff and computing facility, than other departments.

Fig. 3-1 and Fig. 3-2 represent the distributions for General IT Education. The knowl-
edge levels in Fig. 3-1 are concentrated between two and four, especially in the comput-
ing department, where the level four is the highest. In the skill level shown in Fig. 3-2, 
nearly 40% of the Case 2 show level 0, while Level 2 is the highest for Case 3. This also 
demonstrates advantage of computing department even for general IT education.

Fig. 4-1 and Fig. 4-2 represent the distribution of student numbers against knowledge 
and skill levels achieved in the three cases of the section A of the reference standard. 
Readers can find that the mean values are similar in the three cases, but Case 1 has a 
larger standard deviation than Case 2 or Case 3. Case 1 is also the highest at level 4 in 
Fig. 4-1 and Fig. 4-2.

Table 7
Effort to Teach Knowledge and Skill of Each Domain

Domain Name Effort to Teach 
Knowledge

Effort to 
Teach Skill

General IT Education 150,361 92,050
General Principles of Information   44,729 24,311
Information Transformation and Transmission   43,112 26,518
Information Representation, Accumulation and Management   56,562 38,215
Information Recognition and Analysis   33,918 23,651
Computation   49,004 31,440
Algorithms   68,280 46,503
Computer Hardware   30,166 20,079
I/O Devices   44,562 28,090
Fundamental Software   39,087 25,731
Process and Mechanism for Information Creation and Transmission   21,695 10,849
Human Characteristics and Social System   24,231 11,234
Economic System and Information   14,164   6,184
IT-based Culture   21,658 11,776
Transition from Modern Society to Post Modern Society   17,103   7,801
Technics for Information System Development   54,459 39,503
Technics to Obtain Information System Effect   36,878 18,900
Social System Related to Information   29,805 13,752
Principle and Design Methodology for HCI   27,009 17,152
Professional Competency for IT Students   33,488 23,749
Generic Skill for IT Students   60,963 54,332
Information processing, calculation, data analysis 389 64



K. Sumi, M. Ohtsuki, T. Kakeshita132

Fig. 5-1 and Fig. 5-2 show a comparison of knowledge and skill level distributions 
on the principles of information procession by computers (Section B of the Reference 
Standard) for the three cases. The distribution of knowledge levels in Fig. 5-1 shows a 

   3-1 

   3-2 

   4-1 

   4-2 

   5-1 

 

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

20%

40%

60%

80%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

Fig. 3-1. Knowledge Level Distribution (General IT Education).
   3-1 

   3-2 

   4-1 

   4-2 

   5-1 

 

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

20%

40%

60%

80%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

Fig. 3-2. Skill Level Distribution (General IT Education).

   3-1 

   3-2 

   4-1 

   4-2 

   5-1 

 

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

20%

40%

60%

80%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

Fig. 4-1. Knowledge Level Distribution (Section A of the Reference Standard).

 

   8-1 

   8-2 

   9-1 

   9-2 

     1      

     2    

     3      

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%
70%

0 1 2 3 4 5
Skill  Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

 Case 1: Computing Department 

 

   8-1 

   8-2 

   9-1 

   9-2 

     1      

     2    

     3      

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%
70%

0 1 2 3 4 5
Skill  Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

 Case 2: Non-Computing Department having Computing Department within 
University 

 

   8-1 

   8-2 

   9-1 

   9-2 

     1      

     2    

     3      

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%
70%

0 1 2 3 4 5
Skill  Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

 Case 3: No Computing Department within University



Survey and Analysis of Computing Education at Japanese Universities: ... 133

similar trend, but 40% of Case 1 supports Level 4. There is a big difference in the dis-
tribution of skills in Fig. 5-2. In Case 1, 50% of the students have achieved a skill level 
greater than 3, but in Case 2 and Case 3, 50% or more of the students have skill level 0. 
This is considered an impact of the computing department.

Fig. 6-1 and Fig. 6-2 show a comparison of knowledge and skill level distributions 
on the technologies for constructing computers that process information (Section C of 
the Reference Standard). At the knowledge level shown in Fig. 6-1, more than 50% of 
Case 2 and 3 are level 2, while the peak of Case 1 is level 4. The distribution of skill lev-

   3-1 

   3-2 

   4-1 

   4-2 

   5-1 

 

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

20%

40%

60%

80%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within UniversityFig. 4-2. Skill Level Distribution (Section A of the Reference Standard).

   3-1 

   3-2 

   4-1 

   4-2 

   5-1 

 

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

20%

40%

60%

80%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

Fig. 5-1. Knowledge Level Distribution (Section B of the Reference Standard).

5-2 

   6-1 

   6-2 

   7-1 

   7-2 

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%
70%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

Fig. 5-2. Skill Level Distribution (Section B of the Reference Standard).                      



K. Sumi, M. Ohtsuki, T. Kakeshita134

els in Fig. 6-2 shows a similar trend. Achievement of both Knowledge and Skill Levels 
are higher in Case 1 than the other two cases.

Fig. 7-1 and Fig. 7-2 show a comparison of the distribution of knowledge and skill 
levels about understanding humans and societies that process information in the three 
cases (Section D of the reference standard). In the knowledge level shown in Fig. 7-1, 
35% of Case 1 shows Level 4, and the skill level shown in Fig. 7-2 shows 30% of Case 
1 is at level 4. In both skill and knowledge, the readers can observe that Case 1 has a 
higher level.

5-2 

   6-1 

   6-2 

   7-1 

   7-2 

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%
70%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

Fig. 6-1. Knowledge Level Distribution (Section C of the Reference Standard).

5-2 

   6-1 

   6-2 

   7-1 

   7-2 

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%
70%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

Fig. 6-2. Skill Level Distribution (Section C of the Reference Standard).

5-2 

   6-1 

   6-2 

   7-1 

   7-2 

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%
70%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within UniversityFig. 7-1. Knowledge Level Distribution (Section D of the Reference Standard).



Survey and Analysis of Computing Education at Japanese Universities: ... 135

Fig. 8-1 and Fig. 8-2 show a comparison of the distribution of knowledge and skill 
levels for technologies and organizations for constructing and operating “systems” that 
process information in societies (Section E of the reference standard). At the knowledge 
level in Fig. 8-1, 40% of Case 1 indicates Level 4, and the skill level in Fig. 8-2 also 
indicates 35% of Case 1 at Level 4. Also, in Cases 2 and 3, we found that more than 50% 
of the students are not taught anything about skills.

5-2 

   6-1 

   6-2 

   7-1 

   7-2 

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%
70%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

Fig. 7-2. Skill Level Distribution (Section D of the Reference Standard).

 

   8-1 

   8-2 

   9-1 

   9-2 

     1      

     2    

     3      

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%
70%

0 1 2 3 4 5
Skill  Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

Fig. 8-1. Knowledge Level Distribution (Section E of the Reference Standard).

 

   8-1 

   8-2 

   9-1 

   9-2 

     1      

     2    

     3      

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%
70%

0 1 2 3 4 5
Skill  Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

Fig. 8-2. Skill Level Distribution (Section E of the Reference Standard).



K. Sumi, M. Ohtsuki, T. Kakeshita136

Fig. 9-1 and Fig. 9-2 show a comparison of the knowledge and skill level distribu-
tions of competence section of the reference standard of informatics. In Fig. 9-1, 28% of 
Case 1 has reached to level 4, whereas Case 3 has a lower peak of 39% at level 2. In Fig. 
9-2, while 35% of Case 1 is at level 4, the peaks in Case 2 and Case 3 are level 1 and 3 
respectively, which are significantly lower than Case 1.

As the reader can understand from Fig. 3-1 to Fig. 9-2, the educational achievement 
of Case 1 is generally higher than Case 2 and Case 3. This is considered an effect of 
the computing department, as the computing department usually hires more computing 
professionals as faculty members. This shows the importance of teachers in charge of 
computing education.

6. Students

Fig. 10 shows the distribution of the standard academic year of the subject “information” 
for teacher training. In most cases, the teacher training course is provided for 1–3 or 1–4 
academic years.

In the distribution of student quota at each educational program, the sum of the stu-the sum of the stu-he sum of the stu-
dent quota is 20,854. It indicates the maximum number of students who can obtain the 

 

   8-1 

   8-2 

   9-1 

   9-2 

     1      

     2    

     3      

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%
70%

0 1 2 3 4 5
Skill  Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within UniversityFig. 9-1. Knowledge Level Distribution (Competence of the Reference Standard).

 

   8-1 

   8-2 

   9-1 

   9-2 

     1      

     2    

     3      

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%
10%
20%
30%
40%
50%
60%
70%

0 1 2 3 4 5
Skill  Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Knowledge Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5
Skill Level

Case 1: Computing Department

Case 2: Non-Computing Departmend having Computing Department within
University

Case 3: Does not Have Computing Department within University

Fig. 9-2. Skill Level Distribution (Competence of the Reference Standard).



Survey and Analysis of Computing Education at Japanese Universities: ... 137

teacher’s license at each program. We also collected the number of enrolled students at 
each program. The number of enrolled students represents the average of the last three 
years. The total number of students who obtained the license is 369 (275 males and 94 
females). This means that most of the program issue very small number of teacher’s 
license compared to their quota.

Fig. 11 shows the number of enrolled students at each program. The number of 
enrolled students at each program never exceeds 10 so that all education programs 
are very small. There are many programs with no enrolled students. Some of the pro-
grams quitted to issue teacher’s license. Total student enrollment is 5,011 (863 males 
and 4,143 females). The readers can observe that the number of students obtained 
teacher’s license is quite few compared with the number of student enrollment. This 

Fig. 10 

Fig. 10. Standard Academic Years  N = 338.

Fig. 11 

Fig. 11. Student Enrollment.



K. Sumi, M. Ohtsuki, T. Kakeshita138

is mainly because that the number of open positions of IT teachers at high school is 
quite limited. 

Table 8 represents students’ career selection after graduation. Students who took a 
job as a teacher of the subject “information” including a temporary adoption remained 
a total of 198 persons (1.1%). On the other hand, 1,290 students (7.4%) took a job as 
a teacher other than the subject “information”. In addition, 3,173 students (18.3%) 
enter graduate schools, while 11,371 students (65.5%) are hired at a company or a 
government.

Although the number of teachers with high IT skill and experience is limited at high 
school, the new open position for the high school teacher of subject “Information” is 
very small as explained above. The reason is that the number of teachers to teach “Infor-
mation” is typically only one at each high school and there are many cases that a high 
school teacher with license of other subjects such as mathematics is already teaching 
subject “Information” at high school. Thus, a student often obtains double license such 
as subject “Information” and “Mathematics” in order to increase possibility to get job at 
high school. It is expected to improve such situation since computing subject is one of 
the core knowledge and skill at the 21-st century.

Table 9
The total number of persons and representative class

Type of
Faculty Member

Total 
Number 
of Persons

Number of 
Faculty Graduated 
IT Department 

Number of Faculty 
Members Majored 
in Informatics 

Total Number 
of Classes in 
Charge

Full-Time Teacher  
without a Term of Office

319 214 241 250

Full-Time Teacher  
with Term of Office

104   52   74   95

Admiral · Cumber some Staff  
(in-House Teacher)

130   74   86 120

Part Time Lecturer  
(Outside School)

231 140 166 218

Table 8
Student’s Career Selection after Graduation

Career Selection Number of Students Ratio (%)

High School Teacher of Subject “Information”      198     1.1
High School Teacher of Another Subject   1,290     7.4
Graduate School of Computing Discipline   1,803   10.4
Graduate School of other Discipline   1,370     7.9
Hired at Company or Government 11,371   65.5
Others (including unknown)   1,332     7.7

Total 17,364 100



Survey and Analysis of Computing Education at Japanese Universities: ... 139

7. Teaching Staff 

Table 9 represents the total number of persons and the number of representative class 
of person in charge, assistant of the subject “information” teacher training. We find 
teachers who did not graduate a department majored in computing discipline or whose 
current major is not informatics. Faculty development for these teachers is quite im-
portant.

8. Computing Environment 

Table 10 represents the answers of the educational computer system utilized by the 
educational program. It should be noted that 106 programs (31.4%) do not have educa-
tional computer system. Since we have found that the non-existence of the educational 
computer system greatly affects students’ skill level (Kakeshita, 2018), improvement is 
strongly recommended.

Table 11 represents the utilization of student PC at the programs. Most of the courses 
do not require or recommend their students to purchase or possess PC for use in the 
classroom.

Table 10
Utilization of Educational Computer System

Selection Number of responses

Shared Use of Educational Computer System at University 113
Shared Use of Campus Educational Computer System   39
Shared Use of Educational Computer System at Faculty   22
Using the Department’s Educational Computer System   47
There is an Educational Computer System in the University, but 
They are not Used for the Education

  11

There is no Educational Computer System in the University 106

Table 11
Utilization of Student PC

Utilization Number of Responses

All students of the university must have PC   25
All students of the faculty must have PC   24
All students of the department/course must have PC   20
Students are recommended to purchase PC   25
Purchasing of Student’s own PC is optional 244



K. Sumi, M. Ohtsuki, T. Kakeshita140

11 programs do not use existing educational computer system. Most of these pro-
grams require students to purchase their own PC. There is no educational computer 
system at 106 universities. Further investigation of the computing education is required 
for the latter case.

We asked to answer educational programming languages which the courses are us-
ing. The programming languages are selected such that the student reached a level be-
yond the level to understand a simple program written in that language. Fig. 12 shows 
the top-5 languages with the highest and the second highest student achievement level 
at each program.

9. Other Effort Related to Computing Education at Individual Programs

9.1. Future Plans

We collected the answers from different departments about their future plan during the 
survey. We shall introduce some of them.

Some departments are preparing to set up subjects such as “digital marketing” and 
“digital business modeling” related to “business” and “information”. Some reorganize 
the Information Engineering Department and the Electrical and Electronic Engineering 
Department into the “Electronic Information Systems Engineering Department”, revise 
the curriculum considering recent advancement of AI, IoT, Big Data, etc. Some establish 
Big Data Course. Many departments have a plan of curriculum revision to accommodate 
recent technology change.

As a concrete example, there is a case that reorganized in Science and Engineering 
Faculty to create intelligent information system course in 2017, so that the students can 
learn the state-of-the-art technology such as artificial intelligence that can learn various 
calculations such as numerical analysis and optimization from basic principles. There 
was also a department that nurtured human resources that would be the driving force 

Fig. 12 

Fig. 12. Popular Educational Programming Language.



Survey and Analysis of Computing Education at Japanese Universities: ... 141

that drives the center of society through education aimed at incorporating it. In addition, 
there is a department to consider whether to use C or Java as the main language, and to 
consider not only PHP but also Ruby and Python as CGI.

9.2. Distinctive Practices

Common features of each educational program include accreditation from JABEE (Ja-
pan Accreditation Board for Engineering Education) in many departments, designing 
curriculum based on ACM/IEEE Computing Curriculum Guidelines and J07 Comput-
ing Curriculum Standard developed by IPSJ (Information Processing Society of Japan). 
There are also departments that discuss high school-high school collaboration and some 
departments provide educational materials and IT materials for elementary and junior 
high schools.

In addition, some introduce a program of informatics into general education, ar-
range programming languages   to be able to learn in cooperation from 1 to 3 academic 
years. There are some departments providing simultaneous teaching license of "infor-
mation" and "mathematics". There was something we could do to improve the educa-
tional program.

Furthermore, some departments are promoting computing education by introducing 
e-learning by Moodle etc. There were cases where qualified instructors were enrolled 
and promoting the acquisition of "IT passport" or "P inspection grade 2".

As a concrete example, some departments set importance on related subjects such 
as big data, data mining, security, and established the next-generation robot laboratory, 
which enriched the subjects of mathematics, especially statistics, as the foundation, and 
collaborated with companies. A department actively promotes research and acquisition 
of external funds. The Ministry of Education, Culture, Sports, Science and Technology 
(MEXT) has been adopted as a collaborating university in the field of security in the 
"Formulation of Information Technology Human Resources Development Center Sup-
porting Growth Areas (enPiT)". Based on this project, some departments have newly 
established one PBL-type subject for third-year undergraduate students from 2017 and 
reinforced practical education on big data processing, AI, and cloud technology.

In order to learn software development examples, some departments offer classes 
with part-time lecturers who were active in IT related companies, and some depart-
ments that encouraged collaboration with companies and active participation in pro-
gramming contests.

9.3. Collaboration with Computing Qualification

There are many cases that the curriculum is designed so that many students can take 
the Information Technology Engineer Examination, which is the largest national ex-
amination for IT engineers. Some departments also support commercial qualification 
such as Microsoft Office Specialist, Microsoft Technology Associate, IT Passport, Ba-



K. Sumi, M. Ohtsuki, T. Kakeshita142

sic Information Technician, Network Specialist, CCNA, Web Creator, LPIC, MOS 
etc. They introduce part to class contents, hold special course, establish course corre-
sponding to morning examination exemption system of basic information technology 
examination, and offer “IT passport exercises” in sub measure. Some conduct online 
exams for MOS in the on-campus PC training room, or partner with Cisco Systems 
Inc. to offer elective courses for acquiring CCNA (CiSCO Certified Network Associ-
ates) certification.

10. Concluding Remarks

The findings found through Study D are listed below. We think that the efforts to solve 
the problems 2 and 5–7 are important in the future:

We obtained 338 responses to survey type D for the IT education to obtain high 1. 
school teacher’s license on IT “Subject” Information”. The ratio of the courses 
that responded to the survey D among the accredited courses that can acquire a 
high school subject “information” type of license is 65.3%. The ratio at national 
university is 70.1%, at public university is 82.4%, and at private university is 
63.2% respectively.
30% of the respondents in Survey D overlap with Survey type A majored in 2. 
the computing discipline, but there are also the cases at which teacher training 
courses of subject “Information” are provided at non-IT departments. Student 
achievement is generally higher at programs provided at computing depart-
ments.
The effort for general computing education is large, but the average achievement 3. 
level is not so high compared with other domains.
The effort for “generic skills that students studying informatics should acquire” 4. 
is large, and the average achievement level for skills is also high compared to 
other domains.
The total number of student quotas in the teaching curriculum of the subject “In-5. 
formation” is 20,854, but the number of enrolled students in the teacher training 
course in the first academic year is 5,006, and the number of license holders is 
only 369. Many students leave on the way because the number of teachers em-
ployed in the subject “information” is extremely small.
Teachers of the subject “information” remain as 198 students as a course of 6. 
teaching professional graduates (including teacher training courses other than 
“information”) in FY2007. There are 1,290 high school teachers other than “in-
formation”. There are 3,173 students going on to graduate school, 11,371 are 
employees, 1,332 are unknown. The students acquiring a license for the subject 
“information” secured the competitiveness at the time of hiring teachers by ac-
quiring multiple licenses.
31.4% (106 cases) of the departments and courses do not provide educational 7. 
computer systems at the university.



Survey and Analysis of Computing Education at Japanese Universities: ... 143

The data collected in this survey is useful for understanding the detailed status at 
the timing immediately before the re-accreditation of the teacher’s courses scheduled 
to start from 2020. In the future, it is desirable to conduct another survey after the re-
accreditation in order to analyze the difference. By analyzing other survey data such 
as survey C, it can be expected to clarify the characteristics of educational contents of 
“operation of information equipment”.

For the teacher training program of the subject “Information”, there are provisions of 
Article 5 of the Education Employee License Law Enforcement Regulations and Article 
66-6 by the ministry of education in Japan (Operation of Information Equipment). How-
ever, the specific curriculum design is left to independent departments. Based on the for-
mulation of “reference standards for informatics”, it is expected that future curriculum 
standards for the subject “information” will be presented in a manner that is associated 
with the same reference standard.

Acknowledgment

This research is supported by JSPS KAKENHI Grant Numbers 16K01022 and 17K01036 
as well as by the Ministry of Education, Culture, Sports, Science and Technology, Japan. 
The authors greatly appreciate the faculty members and the administration officers of the 
universities who take time to respond to our survey. 

References

Hagiya, M. (2015 ). Defining informatics across Bun-kei and Ri-kei, Journal of Information Processing, 23(4), 
525–530.

IPSJ (2018). Computing Curriculum Standard J17, Information Processing Society of Japan. (In Japanese). 
Available at https://www.ipsj.or.jp/annai/committee/education/j07/curriculum_j17.html

Kakeshita, N., Kakeshita, T.(2017). National survey of Japanese universities on IT education: analysis of gen-
eral computing education. In: Proc. 12-th Int. Conf. on Digital Information Management (ICDIM 2017). 
104–109.

Kakeshita, T. (2017a). National survey of Japanese universities on IT education: analysis of non-IT depart-
ments and courses. In: Proc. 12-th Int. Conf. on Digital Information Management (ICDIM 2017), 81–86, 
2017.

Kakeshita, T. (2017b). National survey of Japanese universities on IT education: overview of the entire 
project and preliminary analysis. In: Proc. Int. Conf. on Computer Supported Education (CSEDU 2017). 
607–618.

Kakeshita, T. (2018). National survey of Japanese universities on computing education: Analysis of depart-
ments majored in computing discipline. Olympiads in Informatics, 12, 69–84. DOI: 10.15388/ioi.2018.06

Kakeshita, T., Ohtsuki, M. (2011). A web-based survey system to analyze outcomes and requirements: a case 
for college level education and professional development in ICT. In: Proc. 5-th Int. Conf. on Society, Cy-
bernetics and Informatics (IMSCI 2011). 82–87.

Kawamura, K. (2008). Computing curriculum standard J07: computing in general education. IPSJ Magazine, 
49(7), 768–774. (In Japanese)

MECSST (2017). FY2016 School Basic Survey. Ministry of Education, Culture, Sports, Science and Technol-
ogy (MECSST). (In Japanese)

Ohtsuki, M., Kakeshita, T., Takasaki, M. (2017) National survey of Japanese universities on IT education: 
analysis of educational computer system. In: Proc. 12-th Int. Conf. on Digital Information Management 
(ICDIM 2017). 98–103.



K. Sumi, M. Ohtsuki, T. Kakeshita144

K. Sumi is a professor at Faculty of Education, Saga University, 
Japan. He received his Ph.D. degree in school education from Hyogo 
University of Teacher Educationa, Japan in 2014. His major is teac- of Teacher Educationa, Japan in 2014. His major is teac-Educationa, Japan in 2014. His major is teac-2014. His major is teac-. His major is teac-is teac-
hing method of information technology or technology education. He 
is a meber of Information Processing Society of Japan (IPSJ) and The 
Japan Society of Technology Education (JSTE).

M. Ohtsuki is a senior lecturer at Computing Division, Saga University, 
Japan. She received her Ph.D. from Kyushu University in 1999. Her 
major research interests include computer aided ICT education, and 
software development methodologies including software testing. She 
is a committee member of JaSST (Japan Symposium on Software 
Testing) in Tokyo and is a commissioner at ASTER (Association of 
Software Test EngineeRing). She published several books about sof-published several books about sof- several books about sof-
tware development tools such as CVS, CppUnit etc. 

T. Kakeshita is an associate professor at Computing Division, Saga 
University, Japan. He received his Ph.D. degree in Computer Science 
from Kyushu University, Japan in 1989. His major research interests 
include quantitative analysis of ICT education and ICT certification, 
and complexity analysis of database and software systems. He received 
an excellent educator award from Information Processing Society of 
Japan (IPSJ) in 2013. He joined many activities such as IPSJ educational 
activity, Certified IT Professional Certificate (CITP), accreditation at 
Japan Accreditation Board for Engineering Education (JABEE) and 
ISO standard development (ISO/IEC JTC1/SC7/WG20).



Olympiads in Informatics, 2019, Vol. 13, 145–156
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.09

145

Analyzing Task Difficulty in  
a Bebras Contest Using Cuttle

Willem van der VEGT1, Eljakim SCHRIJVERS2

1Dutch Olympiad in Informatics, Windesheim University for Applied Sciences 
 PO Box 10090, 8000 GB Zwolle, The Netherlands
2Dutch Olympiad in Informatics, Eljakim IT
 PO Box 85183, 3508 AD Utrecht, The Netherlands
e-mail: w.van.der.vegt@windesheim.nl , eljakim@cuttle.org 

Abstract. Predicting the difficulty level of a task on the concepts of computer science or com-
putational thinking, like in the Bebras Challenge, proves to be really hard. But the announced 
difficulty level is needed in the contest format used in many local challenges. The Dutch contest 
system Cuttle has a new module for analysis. This is applied to one specific contest in order to 
find parameters explaining task difficulty. Using quantitative methods we were able to confirm a 
relation between answer types and difficulty and a tendency that tasks on data, data structures and 
representation are better answered than tasks on algorithms and programming. 

Keywords: Bebras contest, answer types, question difficulty, P-value, Rit-value, contest system.

1. Introduction

Founded in 2005 in Lithuania, Bebras has developed into an annual International Chal-
lenge on Informatics and Computational Thinking amongst the young (Bebras, 2019). 
In 2018 students from over fifty countries compete in their national contest. The ques-
tions used in these challenges are mostly chosen from a common task pool, which is 
composed during the annual Bebras Workshop where most of the contributing countries 
participate. The questions are formulated in a way that no prior knowledge is required. 

The contest is about computer science and computational thinking; most of the tasks 
are categorized as ALP: Algorithms and Programming or DSR: Data, Data Structures, 
and Representations. A few tasks fit in the other three categories; CPH: Computer Pro-
cesses and Hardware, COM: Communications and Networking or ISS: Interactions, 
Systems, and Society, based on (Dagienė and Sentance, 2016). Criteria for good Bebras 
tasks, using a former system for classification, have been formulated by Dagienė and 
Futchek (2008). Dagienė and Sturupienė (2016) give an overview of current research 
on Bebras.



W. van der Vegt, E. Schrijvers146

Contestants compete in their own age division. In the Netherlands we offer the chal-
lenge in the form of a contest. In the first round contestants have 40 minutes to complete 
15 tasks. Tasks can have one of three answer types: multiple choice, open ended or inter-
active. The contest runs during one week for five different ages groups. Some countries 
will also have an event for the youngest age group, 6–8 years; the Dutch contest starts 
with grade 3; contestants are usually aged between 8 and 18 years. The best perform-
ing contestants for the four highest age divisions are invited to a university for a second 
round (Beverwedstrijd, 2019).

Within the contest we present tasks to the contestants as easy, medium or hard. But 
in practice our own classification breaks down. Earlier (Van der Vegt, 2018) we dis-
cussed ways to predict the difficulty level of specific Bebras tasks. We applied these 
models to the 2017 contest for the highest age group in the Netherlands. But since us-
ing the questionnaires for predicting task difficulty is very time consuming, we want to 
identify a few properties of a task that can be of use in predicting task difficulty. This 
could be helpful for the entire Bebras community, for in a lot of national challenges the 
announced difficulty level of a task is part of the design.

The Cuttle contest system is developed for organizing the Bebras contest in the Neth-
erlands. This system is used in over thirty Bebras and other scientific contests. Recently 
it has been extended with an analysis tool. We will use this tool to investigate aspects of 
the tasks in a specific contest and we try to discover a relation between properties of a 
task and the actual difficulty of it. In this paper we will analyze the 2017 contest for the 
highest age group in the Netherlands, making use of the Cuttle-tool for analysis, and de-
velop some recommendations for possible future research. We will focus on categories 
of tasks and answer types.

Summarizing, we will try to answer two questions: Is it possible to use the Cuttle 
system to collect data that can be useful for analyzing task difficulty in Bebras? And can 
we formulate questions for future research, based on the findings using Cuttle?

In section 2 we will give a short summary of earlier research on predicting task dif-
ficulty. Section 3 will describe the selection process to compose the contest, characteris-
tics of the task set and the way the task proposals were developed before, at and after the 
Bebras Workshop. In section 4 we give an analysis of the overall results for the contest 
and we will look into detail to several properties of the tasks in the contest. Finally, we 
give some conclusions and a few ideas for a possible research agenda in section 5. 

2. Task Difficulty

Since the core of a Bebras task is answering a question, we give an brief overview of 
research on question difficulty, focused on Bebras and similar tasks.. 

Lonati, Malchiodi, Monga and Morpurgo (2017) distinguish two main kinds of dif-
ficulties: on the one side intrinsic with the task, related to its content, and on the other 
side surface difficulties, depending on the task format and linguistic, structural and vi-
sual aspects.

Ahmed and Pollitt (1999) distinguish three kinds of difficulties in questions. Cognitive 
difficulty has to do with the concepts that are used in a question. The level of abstraction 



Analyzing Task Difficulty in a Bebras Contest Using Cuttle 147

of these concepts will determine this difficulty. Question difficulty is connected with the 
linguistic and structural properties of a question. Process difficulty is about the difficulty 
of the cognitive operations and the degree in which they use cognitive resources.

Leong (2006) makes a similar distinction; he considers content difficulty, depending 
of the subject matter being assessed, stimulus difficulty, related to comprehending words 
and phrases in a test item and accompanying information, and task difficulty, referring to 
the work needed to formulate or discover the answer to the question. 

Several questionnaires or rubrics have been proposed to predict the difficulty of a 
task (Van der Vegt, 2018); these instruments each try to assign proper weights to the 
expected difficulty on content, stimulus and task performance, in different ratios. Some 
items are easy to measure. Dhillon (2003) for instance states that the number of com-
ponents of a question and the number of times these components have to be repeated 
have a high impact on the difficulty level. Estimating the number of steps to perform a 
task is possible for an experienced task designer. Other ways of assessing topics in these 
questionnaires are not yet well described.

3. Tasks

3.1. Task Selection

In the Netherlands we work together with some other countries in the selection process 
to compose the contests. We receive the results of the task selection from the German 
speaking countries, the UK and US task pool, as well as the Belgian team. We tend to 
reuse tasks in more than one age group in order to reduce the total number of tasks. This 
way we used 34 different tasks to organize a first round in 2017 for five different age 
groups with 12, 15, 15, 15 and 15 tasks. Of the 15 tasks that were selected for the highest 
age group, 9 have also been used in the same contest but for other age groups. 

For each contest the difficulty level of a task is announced as easy, medium or hard. 
The score a contestant can achieve depends on the expected difficulty level. For an 
easy task, a contestant gets 6 points for a good answer and -2 for a wrong answer. For 
a medium task these numbers are 9 and -3 and for a hard task 12 and -4. The original 
rationale behind this was that the expected score for a task when guessing should be 0. 
This holds only for multiple choice question with four alternatives but we have kept this 
scheme also for the other types of answers, open ended and interactive. If a question 
stays unanswered, no points are added or subtracted. To prevent negative score in case 
someone has only wrong answers, we start for each contestant with an initial score of 
45 points.

3.2. Task Properties

All tasks were taken from the international Bebras task pool 2017, developed at the 
Bebras Workshop in Brescia. All tasks are proposed by one of the member countries, 



W. van der Vegt, E. Schrijvers148

after which they are reviewed in the preparation weeks before the workshop. Dur-
ing the workshop all tasks are discussed and improved. After the workshop tasks are 
translated and sometimes changed in order to fit into a national contest format. It is 
also possible that the answer type is altered in order to make the task easier or more 
difficult.

In this section we investigate three aspects of a task: category, answer type and dif-
ficulty level.

3.3. Categories

In 2017 the Bebras community has introduced five categories for tasks, based on Dagienė 
and Sentence (2016):

ALP: 
DSR: 
CPH: 
COM: 
ISS: 

Algorithms and Programming
Data, Data Structures, and Representations
Computer Processes and Hardware
Communications and Networking
Interactions, Systems, and Society

In the Bebras task pool these categories are not mandatory. Table 1 shows the sug-
gested category for each task, a short description of the task, without the background 
story. Even though there are several tasks about graphs or on the assignment problem, 
the differences between these proposals are large enough to justify the use of all these 
tasks within one contest. 

Only for 7 of the 15 tasks a domain was proposed by the original author. For the other 
tasks we did our own attribution and noted it in Table 1 between brackets. Most of the 

Table 1
Categories, CS topics and answer types

Task-ID Category Computer Science Topic Answer type

2017-CA-12 DSR Dynamic programming Multiple Choice Text
2017-IS-01 ALP Sequence, binary system Multiple Choice Text
2017-BE-05 (ALP/DSR) A path in a graph Multiple Choice Images
2017-RU-03 DSR Gray code Interactive
2017-IR-07 COM/ISS/ALP Search in social network graph Multiple Choice Text
2017-CA-07 ALP Assignment problem Interactive
2017-PL-02 (ALP/DSR) Levenshtein distance Open Ended Integer
2017-CH-01b (ALP) Programming in a maze Interactive
2017-CZ-04c ALP A path in a graph Interactive
2017-CH-07b (ALP/DSR) Maximum flow problem Open Ended Integer
2017-KR-07 (DSR) Image compression Multiple Choice Text
2017-SK-12a (ALP) Turing machine Multiple Choice Images
2017-UK-04 ALP Assignment problem Multiple Choice Text
2017-KR-03 (ALP) Optimization, scheduling Open Ended Text
2017-SI-04 (ALP/DSR) Binary counting Open Ended Integer



Analyzing Task Difficulty in a Bebras Contest Using Cuttle 149

used categories are ALP (80%) and DSR (47%). Only one task was announced as a task 
both on ISS and on COM (both 7% of the tasks). The category CPH was never used. 

3.4. Answer Types

Within the contest we used five different answer type:
Multiple Choice Text means the classical form with four alternatives (33 %). ●
Multiple Choice Images is somewhat similar; the alternatives are now presented  ●
as images (13%).
Open Ended Integer asks the user to input a number (20 %). ●
Open Ended Text ask the user to input a string (7 %). ●
Interactive means the user has to perform some kind of action to solve the problem;  ●
a grader program checks the solution (27 %).

3.5. Task Difficulty

Due to the contest format we need to identify the difficulty level of each task, or to com-
pare the tasks with each other. There are several problems in predicting difficulty level 
(Van der Vegt, 2013) and last year we experimented with several tools to help in this 
process (Van der Vegt, 2018). For the tasks in the 2017 contest we looked at the original 
task proposals, the tasks in the task pool and we made of course our own assessment. 
This is summarized in Table 2. 

Table 2
Task difficulty estimations

Task-ID Original difficulty 
level

Workshop difficulty 
level

Contest difficulty 
level

2017-CA-12 III-easy V-medium VI-easy
2017-IS-01 V-medium V-hard VI-easy
2017-BE-05 IV-medium IV-medium VI-easy
2017-RU-03 II-medium IV-easy VI-easy
2017-IR-07 IV-easy V-medium VI-easy
2017-CA-07 V-hard V-medium VI-medium
2017-PL-02 V-hard V-hard VI-medium
2017-CH-01b IV-easy V-medium VI-medium
2017-CZ-04c V-medium V-hard VI-medium
2017-CH-07b VI-hard V-hard VI-medium
2017-KR-07 IV-medium VI-hard VI-hard
2017-SK-12a VI-medium VI-hard VI-hard
2017-UK-04 VI-hard VI-hard VI-hard
2017-KR-03 VI-medium VI-hard VI-hard
2017-SI-04 V-medium V-medium VI-hard



W. van der Vegt, E. Schrijvers150

3.6. The Cuttle Contest System

The Cuttle system is evolved from the system build for the first Bebras contests in the 
Netherlands. Since the early start in 2006 we have organized 43 contests, usually two 
round per year and some demonstration games. Within the system 723 Dutch tasks 
are available. Each task can get a difficulty level per age group, a category can be 
assigned and it is also possible to indicate a CS Skill: Abstraction, Algorithmic Think-
ing, Decomposition, Evaluation and Generalization. The system is also available in 
other languages. 

In 2018 20 countries organized their national Bebras challenge with the Cuttle sys-
tem: Australia, Austria, Canada, Germany, Greece, Hong Kong, Iceland, India, Ireland, 
Japan, Malaysia, New Zealand, Netherlands, Norway, Romania, South Africa, Switzer-
land, Thailand, United States and the UK, with in total almost one million contestants. 
The system is also used for several other Bebras-like contests. 

4. Results

In this section we will apply the new Analytics part of the Cuttle-system on the first 
round of the 2017 contest in the Netherlands for the highest age group (16–18 years). 
This contest had 1621 participants. The data we study are the results of this contest for 
these participants. We look at the correct answers, at the fraction of the participants not 
answering a specific task. And we try to relate some of the numbers to the theory on 
question difficulty.

In Fig. 1 the number of well-answered tasks is shown (max. 15) as well as the dis-
tribution of the scores (max. 180). The distribution patterns of both correct answers and 
scores appear to resemble the normal distribution.

The contest system also provides general data, like the ones shown in Fig. 2. With a 
maximum score of 180 the whole range from 0 to 180 turned out to be possible, with an 
average of 92.9 and a standard deviation of 32.4. 

The system gives also the detailed scores for all tasks. Table 3 shows a part of the 
output, focusing on a few major measures. Pall is the percentage of correct answers across 
all participants; this P-value is often used as an indication of the difficulty level (Van 
der Vegt, 2013). Goldebeld (1992) states that in an ideal exam all P-values should be 
between 30 and 70%; but since Bebras is not an exam but a challenge, we value this not 
as an important restriction for our tasks. The Rit gives the correlation between the score 
of a task and the overall score as a percentage. An Rit-score of 40% or above is seen as 
an indication that the task was very good fitting in a contest (Goldeberg, 1992). An Rit-
score below 20% indicates an atypical result for a task; if such a score occurs it means 
you will have to investigate if there is a problem with the task. In this perspective our 
outcomes were very satisfying.



Analyzing Task Difficulty in a Bebras Contest Using Cuttle 151

Table 3
Details per task

Task Pall Rit %NA Task Pall Rit %NA

2017-CA-12
2017-IS-01
2017-BE-05
2017-RU-03
2017-IR-07
2017-CA-07
2017-PL-02
2017-CH-01b

87.4
86.4
81.7
65.7
41.4
75.9
68.1
63.8

33.5
44.9
37.5
42.8
39.1
38.6
46.0
41.3

  2.04
  3.21
  2.10
  6.85
  2.53
15.93
  6.05
23.95

2017-CZ-04c
2017-CH-07b
2017-KR-07
2017-SK-12a
2017-UK-04
2017-KR-03
2017-SI-04

45.2
16.5
48.4
43.1
35.2
15.7
10.1

55.8
34.2
57.3
52.5
40.1
45.5
38.8

12.16
11.79
20.37
18.64
23.09
32.10
23.77

   

Fig. 1. Number of correct answers and score distribution, compared  
with a normal distribution.

Fig. 2. General analytics.



W. van der Vegt, E. Schrijvers152

4.1. Specific Task Details

The Cuttle contest system allows us to analyze the results of a task in more details. Fig. 3 
shows the plots of the two tasks with the lowest and the highest Rit-score. The five values 
in the graph are the P-values for five different percentiles. So the lines will need to be 
ascending or at least not-decreasing. The low Rit-value in the left graph can be recog-
nized as a bend line, where the highest line in the left graph approximates a straight line 
indicating a high Rit-value. The lower line in this graph is for a younger age group. The 
graph shows that for the best performing contestants in both age groups the P-values are 
almost similar; but the differences between age groups for less well performing contes-
tants are much more age dependent. 

Fig. 3. The results of task 2017-CA-12 and task 2017-KR-07.



Analyzing Task Difficulty in a Bebras Contest Using Cuttle 153

4.2. Categories

Using the output of the content system, we investigated the results for different catego-
ries. We looked at DSR and ALP; we will qualify the result for the one task that combined 
ALP, ISS and COM as a task on ALP. Though the numbers are small, there seems to be 
a tendency that DSR-tasks have shown to be a bit less difficult. And the combination of 
ALP and DSR is harder than the sole categories. This suggests that tasks on ALP require 
a higher cognitive load and combining both categories increases it even more. Perform-
ing an algorithm requires to make more steps in your memory or to use external memory 
like paper and pencil. That makes the solution process more error-prone. Another way to 
look at it is that DSR-tasks are more of a static nature while ALP-tasks are more dynamic. 
According to Leong (2006) increasing or decreasing the number of steps needed to find 
a solution influences task difficulty. It is interesting to investigate whether the nature of 
ALP-tasks makes it harder to reduce the number of steps in the solution process.

The P-value, the Rit and the percentages of non-answered tasks for categories are 
shown. 

4.3. Answer Type

The same approach is used for analyzing the results for the different answer types. 
Table 5 shows the five different answer types as described in Section 3.2. As was ex-
pected, the Open Ended tasks turned out to be the hardest. The Open Ended Text task 
had almost one third of the participants not answering. This result can be attributed to 
the much larger search space in these open tasks, increasing task difficulty. 

Table 4
Results per category

Categories n Pall Rit %NA

ALP/DSR 4 45.5 40.8 13.01
Only ALP 8 50.1 43.9 15.41
Only DSR 3 67.2 44.5   9.75

Table 5
Results per answer type

Answer type n Pall Rit %NA

MC Text 5 59.8 43.0 10.25
MC Images 2 62.4 45.0 10.37
Open Ended Integer 3 31.6 39.7 13.87
Open Ended Text 1 15.7 45.5 32.10
Interactive 4 62.7 44.6 14.72



W. van der Vegt, E. Schrijvers154

4.4. Task Difficulty

An open question for us is whether Is it possible to make one scale for difficulty level 
and age group. In practice we use the assumption that the difficulty level of a task is 
reduced one step if you offer the task to the next higher age group. This way we can for 
instance offer the same task as hard for age group IV, as medium for age group V and as 
easy for age group VI. The results for a task for adjacent age groups can turn out to be 
really different, due to the computer science concepts in it or the cognitive development 
of the contestants of a specific age. Table 6 presents the P-values of tasks that were used 
in several age groups. The average difference of the P-values of age group VI and age 
group V is 12.8 percent, the difference between age groups VI and IV is 25.2 percent 
and for the two tasks that were also in the contest for age group III the difference was 
42.3 percent.

An interesting research question would be to look for an explanation of the small dif-
ferences in difficulty level for the one task, for instance 2017-CH-01b, and the large dif-
ference for some other tasks like 2017-CZ-04c. Understanding these differences would 
really help us to predict the difficulty level of a Bebras task for a certain age group.

5. Conclusions

We have tried to answer two questions. It is possible to use the Cuttle system to collect 
data that can be useful for analyzing task difficulty in Bebras? The new features of Cuttle 
offered us the chance to investigate the results of a contest in a much more detailed way. 
We were able to check and confirm that the contest we analyzed had a proper correlation 
between the individual tasks and the contest as a whole, we could reflect on the actual 
difficulty level and compare it to the announced difficulty. 

And can we formulate questions for future research, based on the findings using 
Cuttle? We were able to show the relation between answer type and the P-values of the 

Table 6
P-values for other age groups

III IV V VI

2017-IS-01 69.0 86.4
2017-RU-03 22.8 35.7 53.8 65.7
2017-CA-07 61.8 75.9
2017-PL-02 34.9 49.3 68.1
2017-CH-01b 51.7 62.0 63.8
2017-CZ-04c   3.5   6.9 20.5 45.2
2017-CH-07b   4.1   9.2 16.5
2017-KR-07 39.9 48.4
2017-SK-12a 32.6 43.1



Analyzing Task Difficulty in a Bebras Contest Using Cuttle 155

tasks. This is in line with earlier results on question difficulty, so answer type is useful 
as a parameter on task difficulty. We also showed that at least in this contest tasks of 
category DSR seems to be more easy than ALP tasks while combining these category 
increases the difficult even further. Repeating this analysis for other contests is needed 
to check if this reveals a general pattern and if category can be a parameter in predicting 
task difficulty. We found an average increase of around 13% in P-values for the same 
task used in the next higher age group. But there are larger differences between tasks 
and it will be interesting to look into these differences in order to be able to predict the 
difficulty level for each specific age group. The new tool for analysis can help us in this 
future research.

References

Ahmed, A., Pollitt, A. (1999). Curriculum Demands and Question Difficulty. Paper presented at IAEA Confer-
ence, Slovenia, May.

Bebras website (2019). http://bebras.org/ 
Beverwedstrijd (2019). http://www.beverwedstrijd.nl/ (in Dutch)
Dagienė, V., Futschek, G. (2008). Bebras international contest on informatics and computer literacy: Criteria for 

good tasks. In: R.T. Mittermeier and M.M. Syslo (Eds.), ISSEP 2008, LNCS 5090. Springer-Verlag Berlin 
Heidelberg, pp. 19–30.

Dagienė, V., Sentance, S. (2016, October). It’s computational thinking! Bebras tasks in the curriculum. In: 
International Conference on Informatics in Schools: Situation, Evolution, and Perspectives. Springer Inter-
national Publishing, pp. 28–39.

Dagienė, V., Sturupienė, G. (2016). Bebras – a sustainable community building model for the concept based 
learning of informatics and computational thinking. Informatics in Education, 15(1), 25–44.

Dhillon, D. (2003). Predictive Models of Question Difficulty – A Critical Review of the Literature. Manchester, 
AQA Centre for Education Research and Policy

Goldebeld. P. (1992). Toets en – Itemanalyse Met TIA. Cito, Arnhem. (in Dutch)
Leong, S.C. (2006). On varying the difficulty of test items. Paper presented at the 32nd Annual Conference of 

the International Association for Educational Assessment, Singapore.
Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A. (2017). How presentation affects the difficulty of computa-

tional thinking tasks: an IRT analysis. In: Proceedings: 17th Koli Calling Conference on Computing Educa-
tion Research: Koli Calling 2017: November 16–19, 2017: Koli, Finland. ACM, 60–69.

Van der Vegt, W. (2013). Predicting the difficulty level of a Bebras task. Olympiads in Informatics, 7, 132–
139.

Van der Vegt, W. (2018). How hard will this task be? Developments in analyzing and predicting question dif-How hard will this task be? Developments in analyzing and predicting question dif-
ficulty in the Bebras Challenge. Olympiads in Informatics, 12, 119–132.



W. van der Vegt, E. Schrijvers156

W. van der Vegt is teacher’s trainer in mathematics and computer sci-
ence at Windesheim University for Applied Sciences in Zwolle, the 
Netherlands. He is one of the organizers of the Dutch Olympiad in 
Informatics and he joined the International Olympiad in Informatics 
since 1992. He has been a part of the international Bebras community 
from the start in 2005 and has been a member of the Bebras board, with 
a specific interest in task development.

E. Schrijvers is chair of the Dutch Foundation of the Informatics 
Olympiad. Since 1994 he is teamleader of the Netherlands at the Inter-
national Olympiad in Informatics. He runs Eljakim IT, which develops 
and maintains Cuttle, the contest system that is used for Bebras in the 
Netherlands. This system is used in over thirty Bebras and other sci-
entific contests.



Olympiads in Informatics, 2019, Vol. 13, 157–170
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.10

157

Programming, Software Development, and  
Computer Science – The Golden Triangle

Tom VERHOEFF
Department of Mathematics and Computer Science
Eindhoven University of Technology
e-mail: t.verhoeff@tue.nl

Abstract. I present my thoughts on programming, software development, and computer science 
(CS), and their inevitable relationship. Originally this was intended to help prepare some CS courses 
aimed (also) at non-CS university students. But it is also relevant for students in secondary education, 
especially if they have an interest in participating in the International Olympiad in Informatics.

Keywords: Computer science, programming, software engineering, education, competition.

1. Introduction

The reason for writing this note is my involvement in defining some computer science 
(CS) courses at Eindhoven University of Technology in the Netherlands, especially for 
non-CS students. Here are some initial questions to set the scene.

What should everyone know about computer science? ●
What should every university student know about computer science? ●
What should every engineering student know about computer science? ●

With “know about” I do not just mean superficial meta-knowledge, where someone 
knows of the existence of some CS topics and the related jargon without knowing any 
actual content. That is, the questions could be rephrased as 

What CS knowledge and skills should every . . . acquire?

Compare this to similar questions for mathematics, physics, chemistry, biology, etc. The 
founders of the International Olympiad in Informatics (IOI) must have asked such a ques-
tion as well. Note that the three questions are related but do not have the same answers.

Related to this question, one should also ask why such knowledge and skills are rel-
evant. Subsequent questions are:

When to teach CS? Earlier or later? ●
How to teach CS? Integrated in the student’s primary domain of interest, or more  ●
purely? According to what didactic principles?



T. Verhoeff 158

An important reference document is ACM/IEEE CS Curriculum (2013), which cov-
ers most, if not all, of the topics that I touch here. But it weighs in at over 500 pages, 
and in many cases it only presents alternatives and tradeoffs, without making specific 
choices or recommendations. We will not answer all questions; neither will we make 
definite choices or recommendation. But we will delve a bit deeper into these issues. 
(Short answer: my opinions come close to Kernighan (2017); see below for details.)

2. What and Why

Let’s start with the why. Why would someone need to have CS knowledge and skills? 
Here are some answers.

Because our world has become so much more computational in recent de-1. 
cades.
It is important to know about CS simply in order to “survive”; without that knowl-
edge, life will be more difficult. All kinds of decisions that people need to make 
involve computers, automation, and cyberspace. We can communicate data to any 
place on earth, store all data that we collect, and process data anywhere we like 
(also see Verhoeff (2013)). There are many digital dangers nowadays, not in the 
least due to the rise of artificial intelligence (AI) driven by big data (I recommend 
du Sautoy (2019) for an interesting exploration).

Because in both professional and personal life, people (scientists and engi-2. 
neers, but also entrepreneurs, and anyone involved with information and its 
processing) will be required to apply some CS knowledge and skills.
Creating a spreadsheet with formulae, developing software tools to help create (non-
CS) products, leading a multidisciplinary team to design and develop products that 
include domain-specific software, running virtual experiments and analyzing the 
results, formulating computational models, communicating domain knowledge to 
software developers. Here are some diverse ways in which program code plays an 
important role:

To create products (such as models for 3D printing and pictures using com- ●
puter graphics).
To operate devices (such as cars, drones, and robots). ●
To provide services on the web (such as interactive maps and secure  ●
email).
To solve computational problems (such as optimal routing of packages and  ●
aircraft, weather forecasting).
To create software tools that help develop software (such as compilers, in- ●
terpreters).
To analyze massive amounts of data (so as to rank web pages by relevance,  ●
and discover new medicines).



Programming, Software Development, and Computer Science – The Golden Triangle 159

Because it is interesting3. ,
Just as any other science can be interesting, CS is a very interesting discipline, 
with important relationships to mathematics, physics, chemistry, biology, psy-
chology, economics, etc.

When addressing the what, it is useful to make the following distinctions. We follow 
Computing at School Working Group (2012).

Digital Literacy (DL) “the ability to use computer systems confidently and effectively, 
including:

Basic keyboard and mouse skills. ●
Simple use of ‘office applications’ such as word processing, presentations and  ●
spreadsheets.
Use of the Internet, including browsing, searching and creating content for the  ●
Web, communication and collaboration via e-mail, social networks, collaborative 
workspace and discussion forums.”

Information Technology (IT) “the creative and productive use and application of com-
puter systems, especially in organisations, including considerations of e-safety, privacy, 
ethics, and intellectual property.”

Computer Science (CS) “the study of the foundational principles and practices of com-
putation and computational thinking, and their application in the design and develop-
ment of computer systems.”

We will presume that our students are digitally literate, and that DL is not a goal of 
our courses (nor of the IOI). Although IT is important, we should not include it as goal 
of our courses, because IT is focused more on short-term technological issues. The prin-
ciples that underly IT systems are long lasting, and belong to CS.

Peter Denning provides a broad classification of CS principles in Denning (2003):
Computation “meaning and limits of computation”
Communication “reliable data transmission”
Coordination “cooperation among networked entities”
Recollection “storage and retrieval of information”
Automation “meaning and limits of automation”1

Evaluation “performance prediction and capacity planning”
Design “building reliable software systems”

Recently, several books have appeared that put computer science in a broader per-
spective: Rosenbloom (2013); St. Amant (2012); Tedre (2014). Also the Advanced Place-
ment (AP) Computer Science course is turning to an approach through principles.2

Brian Kernighan (2017) (original article Kernighan (2008); first edition Kernighan 
(2011)) has the subtitle ‘What you need to know about computers, the Internet, privacy, 
and security’, and is summarized on Amazon.com as follows.

1  In Denning and Martell (2015), automation is dropped as a separate category.
2  http://apcsprinciples.org



T. Verhoeff 160

“[This book] explains how computer hardware, software, networks, 
and systems work. Topics include how computers are built and how 
they compute; what programming is and why it is difficult; how the 
Internet and the web operate; and how all of these affect our security, 
privacy, property, and other important social, political, and economic 
issues. This book also touches on fundamental ideas from computer 
science and some of the inherent limitations of computers.”

2.1. Programming

According to the DL-IT-CS definitions above, programming can belong both to IT (“ap-
plication of computer[ized] systems”) and CS (“development of computer[ized] sys-
tems”). The former concerns the more concrete side of programming, whereas the latter 
focuses more on abstract aspects, such as design. 

As argued by Denning in Denning (2004), “The persistent public image of comput-
ing as a field of programmers has become a costly myth. Reversing it is possible but not 
easy.” It is also instructive to consult the online FAQ of Denning (2003), and read the 
questions and answers about programming.

In Denning’s classification, programming does not appear as a principle; instead, he 
treats it as a practice. Denning and Martell Denning and Martell (2015) have this to say 
about programming.

“What is the paradigm of computing? . . . There were three waves of attempts to  ●
unify views. . . . The first . . . argued that computing was unique among all the sci-
ences in its study of information processes. A catchphrase of this wave was that 
“computing is the study of phenomena surrounding computers.” . . . The second 
wave focused on programming, the art of designing algorithms that produced use-
ful information processes. . . . A catchphrase of this wave was “computer science 
equals programming.” In recent times, this view has foundered because the field 
has expanded well beyond programming and because public understanding of a 
programmer became so narrow (a coder). . . . The third wave . . . defined computa-
tion as the automation of information processes in engineering, science, and busi-
ness. Its catchphrase was “computing is the automation of information processes.”” 
Denning and Martell (2015, Ch. 1 (Computing))
“A  ● program is a set of instructions arranged in a pattern that causes the desired 
function to be calculated. Programming is the art of designing a program and pro-
viding convincing evidence that the program computes its function correctly. A 
computing system is a combination of program and machine.” Denning and Martell 
(2015, Ch. 4 (Machines))
“A  ● program is an expression of an algorithm, encoded for execution on a machine. 
. . . Programming is the practice of encoding algorithms for execution on a ma-
chine.” Denning and Martell (2015, Ch. 5 (Programming))



Programming, Software Development, and Computer Science – The Golden Triangle 161

“[I]t appears to many that algorithm analysis and programming are the heart of  ●
computer science. This conclusion does not seem right to us. . . . [I]t appears to 
us that the architecture of computers is as important as the algorithms they run. 
This is abundantly evident in the principles of computing. Many principles are 
about the systems on which computations run. We cannot give a complete picture 
of computing if we limit our principles to algorithms and ignore the principles of 
architecture.” Denning and Martell (2015, Ch. 12 (Afterword))

By the way, their book does not seem to contain an explicit definition of algorithm.
Robert St. Amant has this to say in St. Amant (2012, Ch. 5 (Programming: Putting 

Plans into Action)):

“Algorithms and collections of information, organized by abstract data 
types, need to be translated into a form that a computer can process. 
This is what programs are for: they translate between the abstract and 
the concrete.

“Programming means expressing abstractions in a language that a 
computer can deal with. Given what we know about computer archi-
tecture . . . I suspect programming may sound a bit daunting. And it 
can be, . . . ”

Kernighan (2017) devotes
Chapter 4 to algorithms (a dozen pages): ●

“. . . algorithms, which are abstract or idealized descriptions of pro-
cesses that ignore practicalities. An algorithm is a precise and unam-
biguous recipe. It’s expressed in terms of a fixed set of basic opera-
tions whose meanings are completely known and specified; it spells 
out a sequence of steps using those operations, with all possible situa-
tions covered; and it’s guaranteed to stop eventually.” (First paragraph 
of Ch.5)

Chapter 5 to programming and programming languages (twenty pages): ●

“. . . , a program is anything but abstract – it’s a concrete statement of 
every step that a real computer must perform to accomplish a task.” 
(second paragraph of Ch.5)

Chapter 7 to learning to program (in JavaScript, a dozen pages), including loops,  ●
conditionals, libraries and interfaces:

“I think it’s important for a well-informed person to know something 
about programming, perhaps only that it can be surprisingly difficult 
to get very simple programs working properly.” (First paragraph of 
Ch.7)



T. Verhoeff 162

In Barr et al. (2010), the issue of ‘What everyone needs to know about computation’ 
is discussed by four panelists. One conclusion appears to be that some form of program-
ming (in a language with a well-defined semantics; hence,  executable) is necessary, if 
only to keep people from becoming sloppy in expressing their computational ideas. By 
the way, this has also been the motivation to include actual programming in the Interna-
tional Olympiad in Informatics (IOI, 2019). The IOI is an algorithmic problem solving 
contest for high school students, aimed at identifying, encouraging, and challenging 
students with a talent for CS. The contestants are required to solve algorithmic prob-
lems, and code their solutions in one of the supported programming languages. These 
programs are then checked by execution.

Chris Granger argues in Granger (2015) that ‘coding is not the new literacy’, but that 
modeling is. Others have countered that modeling must be done in some language, and 
that in the end this comes pretty close to programming.

2.2. Software Development

When programming is done professionally,
with the goal of developing complex software products, ●
often as part of even more complex systems, ●
that are maintainable over many years, ●
intended for external non-CS customers and users, ●
involving multidisciplinary development teams, ●
under economic resource constraints, ●

a whole set of new problems arises. The field of Software Engineering (SE) attempts to 
address these problems. It goes well beyond the basics of programming, including

domain engineering and requirements engineering; ●
modeling; ●
architecture; ●
evolution, maintenance; ●
dealing with errors, quality control, validation & verification, reviewing & test- ●
ing;
configuration management, revision control; ●
project management; ●
specialized software tools for these. ●

However, anyone doing serious programming, even if only for personal use, can ben-
efit from the key insights of software engineering. In fact, as a teacher you do someone 
a disservice by not explaining these insights, because without them, programming can 
a frustrating experience. In particular, the topics of (1) dealing with errors (in a broad 
sense, including unit testing), (2) configuration management (e.g., using Git), and (3) 
coding idioms, design patterns, and architecture are essential. It surprises me that the 
IOI environment still does not offer standard tools for (unit) testing and configuration 
management, given that the contestants must develop code that works.



Programming, Software Development, and Computer Science – The Golden Triangle 163

3. Challenges

The Asian board game go has very simple rules, yet it is a notoriously deep game. Only 
recently3 have we succeeded in letting computers play above the mere beginner’s level 
(ComputerGo – Wikipedia, 2019). In chess, the world champion has been beaten by a 
computer already back in 1996 (DeepBlue – Wikipedia, 2019).

Programming is like go: the basics are very simple, but it is notoriously hard to write 
good programs. Michael Jackson, the British computer scientist, captures this well in his 
essay “Brilliance” (Jackson, 1995), which I quote here in full.

Some years ago I spent a week giving an in-house program design 
course at a manufacturing company in the mid-west of the United 
States. On the Friday afternoon it was all over. The DP Manager, who 
had arranged the course and was paying for it out of his budget, asked 
me into his office.

‘What do you think?’ he asked. He was asking me to tell him my 
impressions of his operation and his staff. ‘Pretty good,’ I said. ‘You’ve 
got some good people there.’ Program design courses are hard work; 
I was very tired; and staff evaluation consultancy is charged extra. 
Anyway, I knew he really wanted to tell me his own thoughts.

‘What did you think of Fred?’ he asked. ‘We all think Fred is bril-
liant.’ ‘He’s very clever,’ I said. ‘He’s not very enthusiastic about 
methods, but he knows a lot about programming.’ ‘Yes,’ said the DP 
Manager. He swiveled round in his chair to face a huge flowchart 
stuck to the wall: about five large sheets of line printer paper, maybe 
two hundred symbols, hundreds of connecting lines. ‘Fred did that. 
It’s the build-up of gross pay for our weekly payroll. No one else ex-
cept Fred understands it.’ His voice dropped to a reverent hush. ‘Fred 
tells me that he’s not sure he understands it himself.’

‘Terrific,’ I mumbled respectfully. I got the picture clearly. Fred as 
Frankenstein, Fred the brilliant creator of the uncontrollable monster 
flowchart. ‘But what about Jane?’ I said. ‘I thought Jane was very 
good. She picked up the program design ideas very fast.’

‘Yes,’ said the DP Manager. ‘Jane came to us with a great repu-
tation. We thought she was going to be as brilliant as Fred. But she 
hasn’t really proved herself yet. We’ve given her a few problems that 
we thought were going to be really tough, but when she finished it 
turned out they weren’t really difficult at all. Most of them turned out 
pretty simple. She hasn’t really proved herself yet – if you see what I 
mean?’

I saw what he meant.

3 I wrote this sentence in 2015. In the meantime, AlphaGo convincingly beat the world champion go. And 
not much later AlphaZero thrashed AlphaGo.



T. Verhoeff 164

Managers and directors (educational and industrial), administrators, politicians, they 
all often still hold similar misunderstandings and misconceptions.

Fig. 1 shows the three forces that need to be balanced in a computer science course 
on/using programming, both in setting the goals and choosing the means. The same 
holds for a competition like the IOI. These forces pull towards the three ‘pure’ topics:

Computer science teach general concepts and insights from computing.
Personal programming teach a programming language for personal use.
Software engineering teach how to develop software beyond personal use.

I call it ‘personal programming’ here to avoid confusion with ‘professional program-
ming’ as applied in software engineering.

Note that these three goals are overlapping but quite distinct. A course and contest 
must be positioned in this force field, especially when no prior knowledge is presumed. 
Paying more attention to one aspect will detract attention from other aspects. It is true 
that through (personal) programming, most of Denning’s great principles of computing 
can be visited, provided the trip is carefully planned. It is also the case that many lessons 
from software engineering are valuable (some would even say indispensable) when do-
ing personal programming.

Should these topics be addressed in some particular order? It seems to make little 
sense to start on software engineering without a background in computer science and 
programming. On the other hand, one can start to address software engineering prin-
ciples and practices early on. For instance, to write program code that is readable and 
understandable, through proper indentation, spacing, comments, naming, and structur-
ing. One can write comments that document the interfaces of functions and classes. One 
can think about testing, and write unit tests.

4. Choice of Programming Language and Tools

Programming languages come in many different flavors. A programming language typi-
cally supports one or more programming styles or paradigms: structured, imperative 
(procedural, object-oriented), declarative (functional, logical), concurrent, parallel.
Properties of programming languages that I consider relevant:

personal programming software engineering

computer science
































��







Figure 1: The force field in which to place a CS/‘programming’ course

Figure 1 shows the three forces that need to be balanced in a computer
science course on/using programming, both in setting the goals and choosing
the means. The same holds for a competition like the IOI. These forces pull
towards the three ‘pure’ topics:

computer science teach general concepts and insights from computing

personal programming teach a programming language for personal use

software engineering teach how to develop software beyond personal use

I call it ‘personal programming’ here to avoid confusion with ‘professional pro-
gramming’ as applied in software engineering.

Note that these three goals are overlapping but quite distinct. A course and
contest must be positioned in this force field, especially when no prior knowl-
edge is presumed. Paying more attention to one aspect will detract attention
from other aspects. It is true that through (personal) programming, most of
Denning’s great principles of computing can be visited, provided the trip is
carefully planned. It is also the case that many lessons from software engi-
neering are valuable (some would even say indispensable) when doing personal
programming.

Should these topics be addressed in some particular order? It seems to make
little sense to start on software engineering without a background in computer
science and programming. On the other hand, one can start to address software
engineering principles and practices early on. For instance, to write program
code that is readable and understandable, through proper indentation, spacing,
comments, naming, and structuring. One can write comments that document
the interfaces of functions and classes. One can think about testing, and write
unit tests.

4 Choice of Programming Language and Tools

Programming languages come in many different flavors. A programming lan-
guage typically supports one or more programming styles or paradigms: struc-
tured, imperative (procedural, object-oriented), declarative (functional, logical),
concurrent, parallel.

Properties of programming languages that I consider relevant:

8

Fig. 1. The force field in which to place a CS/’programming’ course.



Programming, Software Development, and Computer Science – The Golden Triangle 165

Degree of formality (of syntax and semantics) ●
Informally described algorithms, such as in Cormen (2013);• 
More formal pseudo code, such as in Cormen • et al. (2009);
Real’ (machine executable) languages.• 

standardized by international organization (ISO, IEEE, ECMA, ANSI), ●
vendor-specific and commercial, versus open-source, ●
having up-to-date and supported implementations, ●
widely used in industry, versus academic, ●
usable by beginners, ●
with a large user community, ●
for a broad range of applications (including support for GUI, graphics, database  ●
connection, internet protocols),
with good execution performance (speed, memory), ●
availability of user-friendly tools (IDE, profiling, testing, documentation genera- ●
tion, integrated version control),
availability of courses and textbooks. ●

Here is the list of programming languages that I considered (all are higher level, 
general purpose, structured). They are split into two groups, and each group is roughly in 
chronological order. The first group (above the line), I consider serious candidates, and 
the second group is there mostly because others wanted me to consider them.

(Object) Pascal, Delphi From 1970s, imperative object-oriented (not pure), compiled 
or interpreted, ISO standard (but that is dated), simple readable syntax, strong static typ-
ing, reasonably good compilers and IDE (also open source); used to be the foundation of 
MacOS; kept alive by Embarcadero (Delphi is vendor specific) 
C From 1970s, imperative, ISO standard (current: C18), imperative (not object-ori-
ented), weak static typing, efficient, enforces thinking about low-level optimizations 
(adorned assembly language), quirky syntax, good (open-source and commercial) 
compilers and IDEs, favorite for embedded systems (control) not so good for begin-
ners (memory management, robustness); is the basis of the Unix (and nowadays, Linux) 
operating system

Scheme From 1970s, functional (not pure), IEEE standard (current: 2008?); Lisp dia-
lect; based on lambda calculus

Effel From 1980s, imperative object-oriented, with support for Design-by-Contract, 
ECMA-ISO standard (current: ECMA-367 from 2006)

Erlang From 1980s, functional and concurrent, aimed at critical high-reliability high-
availability systems (hot swapping; think of telephone exchange systems that need to 
run without downtime)

Java From 1990s, imperative object-oriented (not pure), strong static typing, open stan-
dard, commercial owner (Oracle), via interpreter (JVM), C-like syntax, garbage col-
lected, exception mechanism, good compilers and IDEs, favorite for Android mobile 
platforms, lots of textbooks



T. Verhoeff 166

Python From 1990s, imperative object-oriented with functional features (not pure), dy-
namic typing (supports explicit type annotations since v3.5), open source (Python Soft-
ware Foundation), interpreted, clean syntax4, extensive libraries, favorite for scripting 
and coordination

ECMAScript (better known as JavaScript) From 1990s, imperative object-oriented 
with functional features (not pure), interpreted, ECMA standard (current: ES2018); C-
like syntax, dynamic typing, good interpreters (e.g., in web browsers), favorite for web 
programming (client side, nowadays also server side, and for mobile apps); also see 
Kernighan (2017); Verhoeff (2010)

C++ From 1990s, modernization of C, imperative object-oriented with functional fea-
tures (not pure), ISO standard (current: C++17), efficient, good (open-source and com-
mercial) compilers, favorite for embedded systems and high-performance computing, 
not so easy for beginners

Haskell From 1990s, pure functional, lazy, based on category theory

Scala From 2000s, object-oriented and functional (not pure), runs on JVM
______________________________________________________________________

Fortran From late 1950s, imperative with object-oriented extensions, ANSI-ISO-IEC 
standard (current: Fortran 2018), favorite for high-performance computing

Mathematica, Wolfram Language From late 1980s, commercial (Wolfram), focused 
on applying mathematics

MATLAB From 1980s, commercial (MathWorks), favorite for scientific/engineering 
modeling and simulation

R From late 1990s, a language and environment for statistical computing and graphics. 
Open source; based on S from the late 1970s.

Scratch From 2000s, block-structured visual, aimed at children

Go From late 2000s, imperative, C-like, commercial (Google), aimed at server-side net-
worked applications

Swift From 2010s, commercial (Apple), aimed at mobile platform

Dart From 2010s, commercial (Google), ECMA standard, aimed at web, mobile, inter-
net-of-things (IoT)

SageMath open source, alternative for Mathematica

Octave open source, alternative for MATLAB 

The choice is not easy, and it is surprising that the CS community has not (yet?) been 
able to come up with a lingua franca (compare this to mathematics, where the situation 
is considerably better). This is also known in the IOI community. There are many trade-
offs. If one wants to take popularity into account, then also consult TIOBE Index (2019). 

4  My main gripe is that the symmetric = is used for assignment, a bad heritage from C.



Programming, Software Development, and Computer Science – The Golden Triangle 167

Keep in mind that students (in engineering) should learn (about) multiple programming 
languages and paradigms.

Nowadays, I lean more towards a functional language. This is well explained by 
Simon Peyton Jones in Heath (2017): “If you want to see which features will be in main-
stream programming languages tomorrow, then take a look at functional programming 
languages today.” The tendency is towards side-effectfree functions and immutable data, 
because these are so much easier to reason about and parallelize.

Since Python introduced type annotations that are supported by some of the tools 
(notably PyCharm5), it has moved up considerably in my list. When I don’t need the 
highest performance and don’t need 3D graphical output, Python is my preferred lan-
guage. Together with the Jupyter notebook technology6, it provides a very productive in-
teractive experience. For high performance programs, I prefer to generate C or C++ code 
from higher-level models through some higher-level domain-specific language (DSL).

5. Role of Didactics and Problem Domain

It is very important to motivate students, so that they take a deeper interest in computer 
science and programming, and will not consider it a triviality. Therefore, the application 
domain must be attractive. This is not easy in a course or competition with a diverse 
audience.

When teaching a course on programming, it is important to be aware of didactic is-
sues. For instance, the looping construct in most programming languages is syntactically 
not so difficult, and even semantically it may be simple. But loops serve many purposes, 
and each requires further insights. Hence, it is important to teach the design of loops in a 
systematic way. Similarly, recursion is almost trivial from the language perspective, but 
didactically it needs a careful approach (Verhoeff, 2018).

Another essential topic in programming is that of abstraction (Verhoeff, 2011). Once 
the primitive building blocks of a programming language have been treated, it turns out 
that in real programs it is important to capture all kinds of abstractions (both on the level 
of data and actions). Defining and designing such abstractions is at the heart of computer 
science and programming. 

Good study material should include:
A textbook (preferably in interactive digital form, that can be searched). ●
Exercises, with feedback; possibly on-line and automated, such as Codingbat  ●
(2019); Datacamp (2019).
Web lectures (cf. Khan Academy, EdX, Lynda, etc.). ●

Certain choices (language, tools, problem domain, and didactic approach) will re-
quire an investment that makes it harder to change these choices later on. For instance, 
development of exercises and assignments is costly, but their details will critically de-
pend on these choices.

5  https://www.jetbrains.com/pycharm/
6  https://jupyter.org/ supporting over 40 programming languages



T. Verhoeff 168

6. Conclusion

It is legitimate to expect that non-CS students will need some programming skills. It is 
also legitimate to expect that they need at least some software engineering skills. But 
they also need more fundamental insights in computing concepts that transcend pro-
gramming and software development.

Whether this can be combined in a single course (a single competition) is debatable, 
and would certainly pose an extreme challenge. When covering this material in multiple 
courses, these courses must be carefully coordinated.

We should avoid pretending that a ‘personal programming’ course will make you a 
computer scientist, or a software engineer. Learning a programming language is rela-
tively easy, writing good software is hard.

We identified three forces (see Fig. 1), and observed the following dependencies.
Even if a course is intended solely as an introduction to CS, it is a good idea to  ●
include some programming involving an executable programming language.
Motivation: Using informal notation or pseudo code to express algorithms leaves 
the door open for sloppiness and misunderstanding.
Note: In this case, only a minimum of software engineering issues need to be ad-
dressed.
If programming needs to be applied in practice, no matter on what scale, then com- ●
puter science and software engineering knowledge is needed.
Motivation: Without CS and SE knowledge, it is too easy to create low-quality 
software. This is frustrating, time consuming, and costly.
Note: The scale of application will determine the amount of CS and SE to include.
To understand the lessons of software engineering, it is necessary to have some  ●
programming experience.

The appendices list, what I consider, the top-10 most relevant topics from each of the 
three corners. Compare this to IOI Syllabus (2019).

References

ACM/IEEE-CS Joint Task Force on Computing Curricula (2013). Computer Science Curricula 2013. ACM 
Press and IEEE Computer Society Press. DOI: dx.doi.org/10.1145/2534860

Barr, J. et al. (2010). What everyone needs to know about computation. SIGCSE’10, pp.127–128, 10–13.
Codingbat, codingbat.com
Cormen, Th.H. (2013). Algorithms Unlocked. MIT Press.
Cormen, Th.H. et al. (2009). Introduction to Algorithms (3rd Ed.). MIT Press.
Computing at School Working Group (2012). A Curriculum Framework for Computer Science and Information 

Technology. https://www.computingatschool.org.uk
Datacamp, https://datacamp.com
Denning, P.J. (2003). Great principles of computing. CACM, 46(11),15–20. Also see: http://greatprin-

ciples.org with online FAQ
Denning, P.J. (2004). The field of programmers myth, CACM, 47(7),15–20.
Denning, P.J., C.H. Martell (2015). Great Principles of Computing. MIT Press.
Granger, C. (2015). Coding Is not the new literacy. Blog post, 26 Jan. 2015.  

https://www.chris-granger.com/2015/01/26/coding-is-not-the-new-literacy/



Programming, Software Development, and Computer Science – The Golden Triangle 169

Heath, N. (2017). What’s the future of programming? The answer lies in functional languages (an interview 
with Simon Peyton Jones). TechRepublic, 23 Oct 2017.  
https://www.techrepublic.com/article/whats-the-future-of-programming-the-answer-

lies-in-functional-languages/

International Olympiad in Informatics. ioinformatics.org
IOI Syllabus https://ioinformatics.org/page/syllabus/12
Jackson, M. (1995). Software Specifications and Requirements: A Lexicon of Practice, Principles and Preju-

dices. Addison-Wesley.
Kernighan, B.W. (2008). What should an educated person know about computers? IEEE Solid-State Circuits 

Society Newsletter, 13(2), 5–11. https://doi.org/10.1109/N-SSC.2008.4785733
Kernighan, B.W. (2011). D is for Digital: What a Well-informed Person Should Know about Computers and 

Communications. CreateSpace Independent Publishing Platform.
Kernighan, B.W. (2017). Understanding the Digital World: What you Need to Know about Computers, the 

Internet, Privacy, and Security. Princeton Univ. Press.
Rosenbloom, P. (2013). On Computing: The Fourth Great Scientific Domain. The MIT Press.
du Sautoy, M. (2019). The Creativity Code: How AI is Learning to Write, Paint, and Think. Fourth Estate.
St. Amant, R. (2012). Computing for Ordinary Mortals. Oxford University Press.
Tedre, M. (2014). The Science of Computing: Shaping a Discipline. Chapman and Hall/CRC.
TIOBE (2019). Programming Community Index. https://www.tiobe.com/tiobe-index/
Verhoeff, T. (2010). An Enticing Environment for Programming. Olympiads in Informatics 4:134–141.
Verhoeff, T. (2011). On Abstraction and Informatics, presented at ISSEP 2011, Bratislava, Slovakia.
Verhoeff, T. (2013). Informatics everywhere: Information and computation in society, science, and technology, 

Olympiads in Informatics.  
https://www.win.tue.nl/~wstomv/publications/issep-2011-on-abstraction.pdf  
errata and addenda https://www.win.tue.nl/~wstomv/publications/abstraction-extra.pdf

Verhoeff, T. (2018). A master class on recursion. In: Adventures Between Lower Bounds and Higher Altitudes 
(Lecture Notes in Computer Science Vol.11011). Springer. 610–633.  
DOI: https://doi.org/10.1007/978-3-319-98355-4_35

Wikipedia Contributors (2019). Computer Go. Wikipedia, The Free Encyclopedia.  
en.wikipedia.org/wiki/Computer_Go  

Also see: www.youtube.com/watch?v=OnBpkpOFAug
Wikipedia Contributors (2019). Deep Blue, Wikipedia, The Free Encyclopedia.  

en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

A Computer Science Topics
Computational problems, decision problems, reduction1. 
Automata (finite state, Turing machine)2. 
Decidability, computability3. 
Machine architecture, memory hierarchy, communication networks4. 
Order analysis of algorithms, complexity (runtime, memory usage)5. 
Tractability, P vs NP6. 
Data encoding, compression, error detection and correction, information security7. 
Reasoning about computations, formal methods8. 
Data organization, databases9. 
Numerical computations, floating-point arithmetic10. 

B Programming Topics
Programming language, machine, operating system, interpreter, compiler1. 
Imperative, object-oriented, functional, and (constraint) logic programming2. 
Values, literals, types, expressions, named constants, variables, assignment3. 



T. Verhoeff 170

Input and output, formatting4. 
Control ow, sequencing, conditional execution, iteration, loop invariants5. 
Goal-directed algorithmic problem solving, coding idiom6. 
Procedural abstraction, functions, parameters, local versus global variables, side 7. 
effects
Modularization, data abstraction, abstract data types, recursion8. 
Reuse, standard libraries, standard algorithms, idiom, design patterns9. 
Event handling, (graphical) user interface, concurrency10. 

C Software Engineering Topics
Coding standards, writing understandable code1. 
Documentation, two-party contracts with assumptions and obligations2. 
Requirements engineering, quality criteria, modeling3. 
Dealing with errors, robustness, exceptions, fault tolerance4. 
Decomposition (functional, data), refactoring5. 
Architecture, (de)coupling, cohesion6. 
Reviewing, including code review7. 
Testing, unit testing, integration testing8. 
Revision control, configuration management, issue tracking9. 
Continuous integration, metrics, code generators, evolution, maintenance10. 

Tom Verhoeff is Assistant Professor in Computer Science at Eind-
hoven University of Technology, where he works in the group Soft-
ware Engineering & Technology. His research interests are support 
tools for verified software development and model driven engineering. 
He received the IOI Distinguished Service Award at IOI 2007 in Za-
greb, Croatia, in particular for his role in setting up and maintaining a 
web archive of IOI-related material and facilities for communication 
in the IOI community, and in establishing, developing, chairing, and 
contributing to the IOI Scientific Committee from 1999 until 2007.



Olympiads in Informatics, 2019, Vol. 13, 171–192
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.11

171

Computational Thinking Education  
through Creative Unplugged Activities

Michael WEIGEND1, Jiří VANÍČEK2, Zsuzsa PLUHÁR3, Igor PESEK4

1Holzkamp Gesamtschule Witten, University of Münster, Germany
2University of South Bohemia in České Budějovice, Faculty of Education, Czechia
3Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary
4University of Maribor, Faculty of Natural Sciences and Mathematics, Slovenia 
e-mail:  mw@creative-informatics.de, vanicek@pf.jcu.cz, pluharzs@caesar.elte.hu,  
igor.pesek@um.si

Abstract. Unplugged activities are well known in the computer science education. Creativity 
and computational thinking have been extensively researched and classified in last decade. In 
this paper we are focusing on creative unplugged activities and their potential in the classroom. 

We propose a model consisting of four types of creative unplugged activities that are used 
in CS education and present the results of an international online survey in which 360 educa-
tors participated in 2018. The survey found out how far the model is supported by educators, 
the extent to which creative activities are used in the classroom, what intentions are being 
pursued and what educational potential is seen in the four types of activities. Based on results 
of the survey we present ideas and methods on how to include and integrate creative unplugged 
activities into CS education and some possibilities on how to change such tasks to be more 
creative.

Keywords: creativity, computer science, education, unplugged activities, computational think-
ing.

1. Introduction 

A person is creative when she or he produces an idea or artefact that is new. Thus, 
creative persons change our culture by adding new elements. According to Czikszent-
mihalyi’s model, creativity is not an individual ability but a system consisting of three 
parts: 

A  ● domain, which is a system of symbols and rules (like computer science).
A  ● field that includes all persons that act as gatekeepers to the domain. They de-
cide whether an idea or product is accepted as a new part of the domain. 
An individual person who is creative and creates new elements within the do- ●
main.



M. Weigend et al.172

Margarete A. Boden (2007) distinguishes historical creativity (H-creativity) and psy-
chological creativity (P-creativity). H-creativity takes place when people come up with 
ideas that are new and have never been shared in the history of mankind. This corre-
sponds to Czikszentmihalyi’s concept. On the other hand, P-creativity happens when a 
person comes up with an idea that is subjectively new to this person, but has been shared 
by someone else before. 

Boden describes three types of P-creativity: combinational, exploratory, and trans-
formational creativity. Combinational creativity involves the generation of unfamiliar 
(statistically unusual) combinations of familiar ideas. A typical example is a visual 
collage made of found photos. Visualisations of computer science (CS) concepts (us-
ing body language, Lego bricks, images) include combinational creativity. However, 
the CS concepts might be less familiar than the elements that are used for visualisa-
tion. Creative unplugged activities in the classroom clearly focus on combinational 
creativity. It is not forbidden that very bright high school students develop exploratory 
or even transformational creativity, but such events are beyond the scope of general 
education.

Czikszentmihalyi’s theory is based on interviews with exceptionally creative indi-
viduals from science, art and business. For research on creativity in the classroom, we 
suggest considering local versions of global domains and fields. 

1.1. Creativity in the CS classroom

The classroom situation can be considered as a microworld representing the society in a 
small scale. The parts of domains the students are familiar with are defined by the school 
curriculum, textbooks and learning materials on the internet. This environment can be 
called a “local domain”. The local domain of computer science at an individual school 
reflects the global domain of computer science with one fundamental difference where 
the local domain might change rather quickly, whereas the global domain is rather stable 
and expands relatively slowly.

For example, with bright students and a supporting teacher in a CS class, in one year 
the local domain might expand quickly. Students can do unusual projects and share them 
with the local community. The students in the next generation might be less interested in 
CS, and the local CS domain shrinks again.

There is also a local field of CS at each high school teaching this subject, which 
mainly consists of CS teachers. They decide whether a student’s work is “creative” in 
the meaning of “something surprising” or “unexpected”. Students may also be members 
of the field, as they can be experts and have specific knowledge about the (local) domain 
of CS, and they can act as gatekeepers. The local field may be influenced by parents and 
students who are not in CS classes, and who are not part of the field because they are not 
familiar with the domain. 

When creating a program, the programmer is not creative in the local domain of 
computer science unless she or he develops a new programming technique, which is 
not mentioned in the textbook or curriculum. However, she or he might have found 



Computational Thinking Education Through Creative Unplugged Activities 173

this »new« technique on the internet. This would also be a creative act related to the 
local domain if this novelty is shared and accepted by the local field. Although the 
idea is not new within the global domain, it is a local novelty, and the local domain is 
extended by this idea.

Unplugged creative tasks might be creative if the local domain is extended by fresh 
ideas. For example, when students visualize a recursive algorithm in a role play, they 
do not create a new algorithm. The novelty is the new metaphorical representations for 
calling a function, passing parameters, processing data and so on.

Designed activities are important elements of CS classroom education. They consist 
of a task and some materials which are used to solve the task. “Unplugged” activities 
use tangible materials like blocks or any materials that are ad hoc available, pencil and 
paper or just own body, but not computers. The charm of “unplugged” activities is often 
the contrast between the materials and the CS concepts that are elaborated.

In research literature and educational programs, one can find a lot of advice on how 
to encourage and foster creativity. In this section, we will try to relate these pieces of 
advice to creative unplugged activities, considering:

Activity design, including the task and the used materials. Combinational cre- ●
ativity can be encouraged by enlarging the variety of concepts in a person’s mind. 
The more concepts I know, the more “unusual combinations” I can find. Ad-
ditionally, a person can practice finding new associations between concepts and 
learn to judge the value and novelty of ideas.
Scaffolding during the performance of the activity. An atmosphere of strength  ●
and joy should be maintained during the performance of a creative activity. The 
learning environment should make it easy to focus and prevent distractions. An 
empty school yard might be a good environment for some creative activities. 
Classrooms should be designed to support the creative process. Scaffolding dur-
ing the process should support and encourage the following operations (Czik-
szentmihalyi, 1996):

Clarify, analyse and re-define the problem or question to uncover new ways  ○
of looking at it.
Try to find connections between seemingly unrelated subject matters. ○
Challenge established wisdom by asking: how would I improve this? ○
Recognise alternative possibilities. ○
Look at things from different perspectives. ○

Presentation of the results including rules for feedback. Students should not be  ●
discouraged by dismissing new and surprising ideas as mistakes. Creative peo-
ple need self-confidence (Boden, 2007). The logical consequence is that encour-
aging a creative task should always lead to success. During the presentation, the 
field gets active. This is important for the creators since they must internalize the 
field, and they must learn to distinguish between good and bad ideas, new and 
old ideas. The presentation is a good opportunity to discuss novelty and values. 
Some ideas developed in creative unplugged tasks might get documented in 
some way, and they might extend the local domain of high school CS. 



M. Weigend et al.174

1.2. Computational Thinking and Creativity 

In this section, we briefly describe the concept of computational thinking (CT) and its 
connection to creativity.

In 2017, Wing refined the definition of CT as “ Computational thinking is the 
thought processes involved in formulating a problem and ex-pressing its solution(s) in 
such a way that a computer—human or machine—can effectively carry out.”. Based 
on this, it can be concluded that CT involves three key components: algorithms, ab-
straction, and automation. Some researchers argue that it is still in an early stage of 
maturity with no solid definition (Lockwood and Mooney, 2017; Voogt et al., 2015). 
In order to define and explain CT some researchers focus on CT skills (Curzon et al., 
2014; Atmatzidou and Demetriadis, 2016), others on its elements (Grover and Pea, 
2013) where one of the elements is abstraction and pattern generalization (including 
modeling and simulation). Some researchers argue that CT is an activity, often associ-
ated with, but not limited to, problem solving (CSTA and ISTE, 2011, Beecher, 2017, 
p. 8, Haseski et al., 2018).

CT can be seen as a fundamental skill for everyone, not just for computer scientists. 
It is applicable in either a computerised or unplugged problem-solving process. CT has 
the potential for application in a wide range of disciplines as the creative learning ar-
rangements. Two main strategies are used for CT skills development: unplugged activi-
ties (activities that involve logic games, cards, puzzles, strings or physical movements 
to get in touch with computer science concepts such as algorithms, data transmission or 
data representation) and computerized activities (such as programming in arrow-based 
visual environments, programming in block-based visual environments, using textu-
al programming languages, programming that is connected with the physical world) 
(Moreno-León et al., 2018). 

In this paper, we look only on creative aspect of CT. According to Korkmaz et al. 
(2017), CT is the extension of the problem solving skills of a person and the develop-
ment of the creativity and critical thinking skills of the people by re-focusing. Thus 
creativity plays an important role in CT approach (Korkmaz, 2017). 

CT fosters creativity in the classroom as it allows students to move from being tech-
nology consumers to technology developer. Creativity can also be augmented by CT 
(Mishra et al., 2013).

In the field of CS, creativity usually aims at producing new techniques, both hard-
ware and software, that can provide solutions to practical problems. However, creativity 
involves the same kinds of cognitive processes that generate answers in computing as 
well as in the natural sciences (Saunders and Thagard, 2005). Moreover, in CT, creativ-
ity could be seen as an ability of applying imagination to create a physical object or 
some mental or emotional construct (Korkmaz et al., 2017) that is judged to be novel 
and also to be appropriate, useful, or valuable by a suitably knowledgeable social group 
(DeSchryver and Yadav, 2015). 



Computational Thinking Education Through Creative Unplugged Activities 175

1.3. Unplugged Computer Science Activities in the Classroom

Many important topics in informatics or in other areas of science, society and technol-
ogy connected with computer science can be taught without using computers. 

The CS unplugged activities provide a scaffolding for a constructivist approach to 
introducing topics in computer science, without the need to learn programming first 
(Bell, 2018). The connections and some ideas and working processes are often easier 
to explain with hand-made activities (Bell et al., 2012). These activities can be simpler 
and can be performed without computer. They can be used to present the important parts 
(e.g. sub-knowledge) of a big system or a working process in a concept. 

Unplugged CS activities support computational thinking, although for this to be ef-
fective they should be used in a context where they will be linked to implementation on a 
digital device (Bell, 2018). There is another important aspect: by using these tasks, they 
could help to “de-mythize” the computer in the eyes of children as a “magic box who 
knows and does a lot and we do not understand how”.

In this section, we briefly summarize the advantages and disadvantages of using un-
plugged activities in the classroom. 

1.4. Advantages of Using Unplugged Activities in the Classroom 

Using unplugged activities helps to think not only about computers and computer sci-
ence, but about interdisciplinary activities without school-subject boundaries. Students 
can see the relationship(s) between different subjects and disciplines better.

The activities are mostly combined with physical movements. The aims of theories 
about learning by doing and learning by moving promote breaking out of the daily routines 
and school-life. (Bell et al., 2015; Rodriguez et al., 2017; Thies and Wahrenhold, 2013) 

The activities give the basis for cooperation and teamwork. They can support the 
development of communication as skill. Students need to speak about a problem: they 
need to formulate the problem, the solving strategy, and the solution.(Bell et al., 2015; 
Feaster et al., 2011) In some activities, they need to present artifacts to an audience and 
handle the comments.

1.5. Disadvantages (Problems, Challenges) of Using Unplugged Activities

The computer unplugged activities are not only about “playing”. They need a strong 
basis: a stable preparation. Mostly they give a lot of work for teachers. Not only in 
preparation (initiative) processes, but they can be barrier for the teacher. They need to 
change their mind from “exact” computer science to non-exact open ended situations; 
which necessitates changing their teaching style. It is hard work to keep the focus (why 
we started) and to manage time, as well.



M. Weigend et al.176

Students can refuse to do the activity – “playing” is not always a means of motiva-
tion. (Rodriguez et al., 2017; Thies and Wahrenhold, 2013). We present some additional 
comments about the problems of using unplugged activities in chapter Research.

2. Definitions of Creative Unplugged Tasks 

In this section, we present a model for categorizing different types of creative unplugged 
classroom activities on computational thinking. The model consists of four categories 
which are described and presented with an example each. 

Category 1: Invent an algorithm
Invent an algorithm that solves a given task and present it without a computer.
Here, the creative challenge lies in devising and formulating an algorithm with appropriate 
commands and data representations.

Example: Invent with your team how to move a sequence of 0s and 1s in the 
playground from A to B across multiple stations. Only body language may be used.

Possible solution: Represent a zero by stretching out both hands and represent a one 
by a jump.

Category 2: Find an application
For a computer science algorithm or concept, find a new situation in which this algorithm 
or concept could be applied.
Here, the creative challenge lies in the design of a story. The algorithm is given. It needs 
to be understood so that you can check if the story fits as the application context.

Example: Describe a situation in which you can use the binary search. Show the 
situation in a small role play. Use things from this room.

Possible solution: Search for a word in a dictionary.

Category 3: Find an example
Find an algorithm that has certain given structural features (e.g., loops, recursion, 
function calls) and represent it in some way.
Here the creative challenge lies in finding both a task and a suitable algorithm. These 
kinds of creative tasks solve teachers e.g. when looking for illustrative examples of a 
specific programming technique.

Example: Here is the definition of a function with a parameter in Python notation.

def crumble (thing):

  Open the hand.

  Put the matter in the hand.

  while not thing has the form of a ball:

      Move the fingers of the hand.

  Give it back.

# Main program

crumble(sheet of paper)



Computational Thinking Education Through Creative Unplugged Activities 177

Imagine a program in the style of the example and write it down. The program text should 
contain a function definition with at least two parameters. As parameters you use everyday 
objects from this room.

Possible solution: Wrap a thing in a foil.

Category 4: Find a visualization
Invent a visualization for an algorithm or concept of computer science.
Here the creative challenge lies in finding a representation that is understandable to the 
public. Various materials may be used, e.g. crayons and paper, role-playing with props, 
pantomime, Lego building blocks. These kinds of creative tasks solve e.g. book authors 
when looking for illustrations for a textbook.

Example: There are cards with terms from computer science, which should be 
visualized. Pupils draw a card and present the term through mime. The audience has to 
find out what it is.

Possible solution: Visualization of a WLAN access point through mime.

3. Research

Survey
In 2018, an international online survey was conducted. The questionnaire was translated 
to the national languages, and it was sent through different channels to computer science 
educators. In Table 1, the distribution of the educators based on their country of origin is 
presented, with the total number of answers, 360.

The respondents’ pedagogical expertise is presented in Table 2. Most of them have a 
background in secondary education.

In the questionnaire, we first presented four different types of creative unplugged ac-
tivities, and then asked the respondents how clear they thought the definitions were. The 
responses were given on a scale from unclear (1) to clear (5). Fig. 1 presents the results.

107 out of the 360 respondents (more than ¼) claimed that they know other creative 
CS activities without computer besides our four categories. 38 respondents gave one or 
more examples, some respondents wrote general comments.

Table 1
Respondents origin

Country of origin Number of respondents

Czech republic 133
Lithuania     8
Slovenia   25
Germany 153
Japan   14
Other countries   27

Total 360



M. Weigend et al.178

We can identify only about one third of these 38 responses as examples of creative 
unplugged activities, moreover, most of the presented examples were unplugged tasks 
but were not creative, as they were typical problem-solving activities (e.g. ordering data, 
comparison of algorithms). Some examples were not even from field of CS (e.g. paint-
ing). In some tasks, it was difficult to decide whether this task is creative or not, for 
example, the response „puzzles – sudoku“ we could not decide whether the respondent 
meant solving sudoku or creating a new puzzle.

Some of the responses described concrete creative activities which were written very 
sketchy, yet we can say that they can be categorized to one of our four types e.g. „Repre-
senting the TCP/IP protocol stack through role play using envelopes as packets“ which 
is Type 4, create a visualization.

We can say that only a few answers out of the 38 responses were creative unplugged 
activities that cannot be directly mapped to our model of activity types. These answers 
were not oriented to algorithms but to data transfer, data coding or finding a pattern. If 

Table 2
Respondents’ professional experience

Pedagogical expertise Percentage

Teaching computer science-related content at a primary school 28 %
Teaching computer science related content at a secondary school 88 %
Teaching computer science related content at a university 14 %
Authoring or co-authoring a textbook in the field of computer science 12 %
Research in the field of computer science 13 %
Teacher training in the field of computer science 27 %

Fig. 1. Graph representing clarity of the categorization.



Computational Thinking Education Through Creative Unplugged Activities 179

we wanted to create one new type of activities based on the questionnaire responses, we 
could find it probably in „more complex tasks“, „systematisation“, „discussions about 
possible solving strategies“ or „demand of informatics in the society, economy“.

Next we asked the respondents about their experiences with creative tasks. On the 
question “How often have you spent the last 12 months doing creative tasks without a 
computer in computer science education or a computer science course?”, 50% of the 
respondents said they used them once or twice, 27% used it more than twice and 23% 
said they never done them in the classroom.

On the question “If you have engaged in creative tasks what was the reaction of the 
students?” we got the results presented in Table 3. 

59,4% of all participants observed students’ positive reactions and 10.7% of all par-
ticipants negative or no reactions.

Next we asked educators if they could tell us why and how they used creative unplugged 
activities. Respondents could check multiple options. The results are presented in Table 4. 

We asked the educators about their opinion on the educational potential of creative 
tasks. More precisely, we asked them about specific potential and which type of creative 
tasks can be used instead. More answers could be selected at each question. Results for 
different purposes are in Table 5. 

Research on the results of the educators with the positive students’ feedback
As the next step, we compared the attitudes of educators who reported positive and 

rather positive students’ reactions with those who got a non-positive reaction (neutral, 

Table 4
Usage of creative unplugged activities by teachers

Intention Percentage

As an activating entry into a new topic 51 %
As a suggestion to think about certain abstract concepts 47 %
To promote creativity 26 %
As training, e.g. to practice the correct use of technical terms 25 %
As a diagnostic tool to identify a prior understanding of a topic or misconceptions 16 %
As an entertainment element to relax a course 38 %

Table 3
Students reaction

Student’s reaction Percentage

Positive 13.6 %
Rather positive 45.8 %
Neutral 12.7 %
Rather negative   6.6 %
Negative   0.5 %
No reaction   3.6 %
No answer 16.9 %



M. Weigend et al.180

rather negative, negative). In the first group we have 214 respondents and in the second 
group, 85 respondents. We excluded the respondents (N = 64) who did not provide an 
answer.

We used Pearson’s Chi-square test to check if there exists a statistically significant 
association between positive reactions of the group, and the intentions of usage in the 
classroom. Results are in Table 6.

We also checked whether there exist any differences in their opinions regarding the 
educational potential of the four types of unplugged creative activities. The results show 
that both groups share similar views (p > 0.5), except when activity is viewed as a en-
couragement for students to think about computer science concepts where p = 0.05 for 
type 3 and p = 0.03 for type 4.

Discussion
From Fig. 1 it can be observed that types 1 and 3 are clearer and better understandable for 
the educators than type 2 and 4. It’s interesting because type 2 and type 3 are very similar. 
It seems that educators feel more confident with activities that ask for specific structural 

Table 5
Educational potential of 4 types of CS tasks.

Educational Potential Type 1
Create an 
algorithm

Type 2
Find an 
application

Type 3
Find an 
example

Type 4
Visualisa-
tion

A replacement for programming tasks providing a 
comparable learning experience in less time

72 % 50 % 44 % 46 %

An enrichment to a lesson or lecture to make the content 
more relevant and attractive to the participants

68 % 58 % 39 % 62 %

As a encouragement for students to think about computer 
science concepts

61 % 67 % 54 % 60 %

As a help to develop transferable skills 62 % 71 % 49 % 56 %

Table 6
Attitudes of educators with different reaction

Intention Positive reaction group 
(N = 214)

Non-positive reaction group
(N = 85)

Chi-Square

As activating entry 62.1 % 57.6 % .472
As a suggestion to think about certain 
abstract concepts

61.2 % 42.4 % .003

To promote creativity 20.0 % 35.5 % .009
As training, e.g. to practice the correct 
use of technical terms

30.6 % 29.4 % .845

As a diagnostic tool to identify a prior 
understanding of a topic or miscon-
ceptions

15.3 % 20.6 % .296

As an entertainment element to relax a 
course

36.5 % 48.1 % .067



Computational Thinking Education Through Creative Unplugged Activities 181

features than with more general concepts. One of the reasons is that activities and tasks 
that fit in type 3 category are more frequently used in CS teaching.

We can conclude from the answers presented in Table 4 that educators use creative 
unplugged activities as activating entries or as suggestions to think about some concepts, 
which are also the same reasons why they are used to promote unplugged activities. It’s 
interesting to notice that more than one third of educators use unplugged activities also 
as an entertainment element in the classrooms.

As a replacement for programming tasks presented in Table 5 most educators think 
that activities that fit into Type 1 (Create an algorithm) are most useful and appropriate. 
The reason for such results might lie in the fact that Type 1 activities are conceptually 
very similar to the programming tasks, only the allowed tools are different.

For the other three types, it’s not that easy to see how such activities can replace 
programming tasks. It’s interesting to notice that educators don’t feel that Type 3 ac-
tivities can replace programming tasks, although such activities develop understand-
ing of some concepts similar to programming tasks. Most of educators think that all 
types of creative tasks, except Type 3 tasks, are suitable for use in the classrooms as 
enrichment. 

Analysing the answers in depth, we can see that almost 90% of respondents that 
checked Type 3 also checked tasks of Type 1 and Type 2. Educators think that tasks of 
Type 2 are most appropriate to be used as encouragement, although other types of activi-
ties are also used in classrooms. We can conclude that educators think that finding a new 
situation encourages students to think about CS and also helps students to use their CS 
knowledge in different areas of their life. Most educators think that tasks of Type 1 and 
2 help students develop skills that can be used in other scientific fields. The reason might 
lie in the fact that educators think that the first two types help in developing computa-
tional thinking which can be later applied in various fields.

Educators who reported positive students’ reactions on creative unplugged activi-
ties (“successful educators”) tended to use these activities more frequently to encourage 
thinking about CS concepts and less to encourage creativity in general. This could be a 
hint that these educators were successful because they tried to encourage thinking about 
CS concepts. However the perception of students’ reactions may be subjective. 

The fact that almost 60% educators noticed positive reaction must be used to further 
encourage the use of unplugged activities in classrooms.

The questionnaire explained four types of creative unplugged tasks and gave ex-
amples. For many CS teachers, this might have been the first contact with unplugged 
activities and creativity in the classroom, and they might have had problems with under-
standing short introduction of the survey. 

A possible reason that teachers do not use creative unplugged tasks in CS education 
so much might be that focusing on computational thinking is not established so well 
in CS education, and the fact that there aren’t that many available prepared creative 
unplugged activities which educators could use. Another reason could be the perceived 
lack of time for these activities which seem to be time-consuming.

From curricula point of view, teachers saw application of these tasks as an introduc-
tion to understanding how computers work, in media education and painting art activi-



M. Weigend et al.182

ties and in creating criteria by ordering data. This might indicate that some teachers con-
nect creativity more to using ICT than to computer science.

The results of our survey show that the creative unplugged activities are not used 
often in education. Therefore, in next chapter we propose suggestions how to prepare 
and use creative unplugged activities to develop and encourage creativity in computer 
science education.

4. Suggestions for Creative Unplugged Activities in  
Computers Science Education

In this section, we present some ideas how to develop creative CS unplugged classroom 
activities fulfilling three conditions: 

They challenge creativity. ●
They touch a computer science topic. ●
They can be performed without a computer.  ●

The first three subsections discuss how to create a new creative CS task, subsection 
4.4. shows how to use the created activities in the learning process. 

4.1. How to Express Ideas 

In this section we focus on the potential and challenges of different “unplugged” ex-
pressive means: writing, drawing, concept cartoon, building with physical constructions 
bricks or found material and role plays. Generally, each type of creative activity can be 
performed using different expressive means. 

Writing
The most obvious way to express an idea is just to write it down. The product could be 
just a list of words or a story with an action plot.
Example tasks:

Write down the idea of an exciting programming project that is based on case  ●
distinctions, which could be coded by if-elif-else statements.
Write a christmas story, in which an iteration takes place. ●

Drawing
Students may create drawings alone or collaboratively in a team. The advantage of collab-
orative drawing is that there is more communication. Two or more students sit at a table 
around a big sheet of paper. They can partly work independently. Each person might be 
responsible for a certain part of the image. Example tasks:

Think of five or six substances you can find in this room (iron, wood, …). Cre- ●
ate an image that illustrates how to distinguish these substances (decision tree). 
(Type 1)



Computational Thinking Education Through Creative Unplugged Activities 183

Draw a robot ship with sensors that can find and remove plastic garbage from  ●
the ground of the ocean. (Type 1)
Many computer programs contain while-statements. In a while-statement a se- ●
quence of activities is executed again and again as long as a certain condition is 
true. Example: “While you are thirsty, put some water in a glass and drink it.” In 
this case, the condition is “you are thirsty”, and the sequence of activities is “put 
some water in a glass and drink it”. Create a comic-book story that illustrates a 
while-statement taking place in everyday life or in a fantasy world. (Type 3)

There are free web-based systems that support collaborative drawing, so called “web 
whiteboards” (e.g. Ziteboard, LiveBoard, Explain Everything Whiteboard). Students 
may use their smartphones or tablets to create a collaborative visualization or algorith-
mic idea with this technology.

Concept cartoons
Concept cartoons (Naylor and Keogh, 1993) are comic-like illustrations depicting dia-
logs or thoughts of individual persons. The challenge is to explain a scientific issue using 
everyday language. Although they mainly consist of written text, concept cartoons are 
visualisations (type 4). They serve to express ideas on a topic from different points of 
view thus encouraging diversity of thinking. Concept cartoons in textbooks sometimes 
explicate typical misconceptions, that provoke discussion and falsification. 

A concept cartoon-related task may be completely open. Example:

“Tina visualizes a variable name by a sticky note that is put at an 
object. For example, the Python statement a = “car” she represents by 
the string literal “car” carrying a sticky note with the name “a” written 
on it. Draw a cartoon depicting Tina explaining this program.”

A very common and less open version of concept cartoon-tasks provides drawings, 
empty speech bubbles and a start. The challenge is to continue the story. Figure X shows 
an example.

Finalized concept cartoons can later be used as as basis for discussions for instance 
on the limitations of metaphors that were used in the dialogs.

Fig. 2. Concept cartoon.



M. Weigend et al.184

Construction bricks 
“Think with your hands” is the motto of representing abstract ideas with Lego. A partici-
pant picks a concept or question (like “How does a digital camera take a picture?”) and 
creates (within a few minutes) a sculpture visualizing the idea (type 4) using all kinds 
of LEGO blocks. Then other participants have to find out what it is. Finally the creator 
explains his or her artifact. This activity should be done in small groups of four people 
sitting around a table. It includes a lot of communication and usually new and surprising 
ideas are exchanged.

There are two important rules for LEGO sculpturing that should be clarified first: 1) 
If you do not know what to build, just start building. The ideas will come later. 2) Every-
thing, what you build is just fine. 

Building with construction bricks requires a “warming up” to get in the mood of 
“thinking with your hands”. A well-known procedure is the LEGO duck. Each partici-
pant gets six bricks and creates a duck in 60 seconds. There are many ways to solve the 
task. Even if you do nothing you have solved the task. In this case, the bricks are just the 
parts of a roasted and carved duck.

Instead of LEGO one can also use found material, things like pencil, ruler, paper 
sheet that are always present in a classroom. However, LEGO offers a greater diversity 
of material and the created artifact always looks nice and interesting.

Theatre play
People are used to role playing since childhood. Playing different roles is important for 
the development of social skills like empathy and tolerance of ambiguity. In CS education 
improvised role plays can be used to visualise algorithms or to give.

The many ways to organize role plays can be grouped in two types: Role plays that 
are prepared and performed independently by small groups and role plays in the style of 
“interactive theatre” that involve the whole audience and are controlled by the teacher 
or lecturer.

Role play in small groups could be a classic role play with dialogs and props, a mime 
or a “living statue”. Here are examples for tasks of different types.

Type 1: ●  Create an algorithm for building a tower with LEGO bricks with four 
persons as quickly as possible.
Type 2: ●  Play a situation in which redundancy is important. Start with deciding 
where the story should take place (on the school yard, at a river, on the moon, …).
Type 3: ●  Play the execution of a function with two parameters. The parameters 
should represent things from this room. The function should return something.
Type 4: ●  Visualize the “Bubble Sort” algorithm in a silent theatre play.

An algorithm can be visualised or developed in the style of interactive theatre. Audi-
ence participation is quite established in theatre for children (Way, 1981). Some ideas of 
this tradition can be used in CS education. The lecturer encourages the audience to talk 
and play but still controls the development of the plot.

Type 1: ●  The lecturer develops an algorithm together with the audience. The au-
dience tries out each idea immediately, discusses the solution and improves it, 
getting into an iterative process of constantly rethinking, adjusting and redoing. 



Computational Thinking Education Through Creative Unplugged Activities 185

Gerald Futschek (University of Vienna) is well known for this approach (see for 
example Futschek and Moschitz, 2010). 
Type 4: ●  The lecturer directs a role play visualizing an algorithm that is dif-
ficult to understand, like a recursive version of the Quicksort sorting algorithm 
(Hoare). The props of the play are the algorithm, for example represented by a 
Python function definition, and a stack of big DUPLO bricks of different sizes 
and colors. Members of the audience play processors that can execute a func-
tion call according to the given code. The lecturer starts the play by passing the 
stack of bricks to one member of the audience. She or he scaffolds the play – and 
keeps the plot on track – by asking questions and initializing dialogues instead 
of explaining. Talking is essential for connecting the written code to the action 
of the play.

4.2. How to Add Creativity to CS Tasks

In this section we focus on potential of tasks from the Bebras challenge contest 
(Dagienė, 2017) as a good example of CS tasks which are not open ended. In these 
tasks, students plunge into a described situation which they must grasp, get to under-
stand the concepts and terms that are used, find an informatics principle the task is 
based on and solve the problem using cognitive and thinking skills. These tasks are 
problem tasks, not creative. We can find several ways of involving creativity when 
solving Bebras task:

Change the type of answer from multiple-choice to interactive. ●
Move the Bebras tasks away from the computer. ●
Take the Bebras tasks as inspiration for new tasks. ●

Change the Type of Answer of Bebras Task from Multiple-Choice to Interactive
Interactive Bebras tasks mean tasks where contestants give the answer by dragging ob-
jects on the screen or click on them. This allows to use tasks with more than one correct 
answer (and require to find at least one or all correct solutions).

Compare two versions of the same Bebras task about discovering Euler condition 
(title Even connections, 2017-PL-04):

A company has to connect 10 access points with data cables (lines) in one net accord-
ing to a plan. Unfortunately this company has no technology to cut the cable to pieces so 
that it still worked. They can create one cable loop going through all access points and 
visit one point more than once. 

Now it is impossible to solve this problem and it is necessary to remove some lines 
in the plan.

(multiple-choice version – Fig. 3 left): Which one of lines A, B, C, D is a part of the 
best solution of the problem if we want to remove as few lines as possible so that access 
points were connected without cutting the cable? Choose one of A, B, C, D. (Correct 
solution is C because it allows to remove only 3 lines in the graph; removing A, B or D 
lines requires to remove more than 3 lines in the graph).



M. Weigend et al.186

(interactive version – Fig. 3 right): Remove some of the lines by clicking on them so 
that the problem is solved by removing as few lines as possible. There is more than one 
correct solution.

Move Bebras Tasks Away From the Computer
Most of the Bebras tasks are ready to use without a computer. They have a story with 
objects as basics. We can bring these stories to life, and we can use these objects in our 
real world.

Instead of clicking, or dragging and dropping on the screen, we can move the ob-
jects, construct and “build” new buildings, sequences or objects. The success of problem 
solving strategies can be tested, and the teacher has the opportunity to follow along the 
strategies used, to help building and learning new strategies.

A typical example can be the task entitled Loading Lisa’s (2014-DE-08), where we 
need to put barrels onto the boats so that each boat gets loaded with as many kilograms 
of water as possible. On the screen, we can make an interactive drag and drop game. As 
an activity without computer, we might have more preparation ideas: using a magnet 
wand with magnet object; or we can prepare weight-objects (sacks with sands or cans 
with water with different weights), and two boats made of carton boxes. Students can 
move the weight objects, and experience with the solution – find the best strategy to 
solve the problem.

But not only drag-and-drop exercises can be converted.
Students could become more creative when they can use theirs hands: building a  ●
construction from small parts – or the reverse version: find the small repeatable 
part in the big one.
The real world can help solving 3D or other visualisation, such as origami, repeated  ●
buildings or activities with a paper or 3 dimensional objects. 

In a challenge game or in an escape room, we can connect these activities: the 
first activity can give the instruction to the others, or more activity-results can add 
together the whole solution (or the path to the solution). Throughout these activities, 
participants can learn (or use) scheduling and sharing skills: they have the opportunity 
to work on tasks together. However, there are some problems that are best to be solved 
simultaneously, so participants need to define roles, and divide the activities into sub-
activities.

 

Fig. 3. Multiple-choice and interactive version of a Bebras task.



Computational Thinking Education Through Creative Unplugged Activities 187

Taking Bebras Tasks as Inspiration for New Tasks 
Bebras tasks could be a source of inspiration for changing something to create a new task. 
The new task is of course not creative but students are creative during its creation, they 
become “tasks creators” for other students, for competition participants.

We can let students change a story or picture so that the problem would give a  ●
new look.
Students can change part of the settings (e.g. initial word, number or string) of  ●
the task so that the kind of thinking will stay but the situation will change a bit.
If an interactive task is prepared, the user can change the settings easily, the stu- ●
dents can change the initial situation so that a new problem different from the 
original task occurs.

One example of such task is visible in Fig. 4: the interactive Bebras task Painting 
robot (2013-FR-05). The user has to write a program for the robot (green point in the 
corner) so that it goes through all dark fields in the playing field. The robot understands 
commands of cardinal directions movement and simple loops. Students can change ini-
tial data of this task (see Fig. 4 on the right) changing required shape to mark with pos-
sibility to create more complex or clever task than the initial one.

Do not expect that students as task creators will always be creative. Often they create 
something like variation of original task by making non-important changes in the set-
tings, sometimes only by changing a story. But sometimes they could work with a com-
pletely new idea: more complex shape, nested commands, hidden connections between 
objects to be discovered... 

4.3. Adding CS to Creative Tasks

It is well known that many user approach activities with ICT could be good starting 
points to inquiry, to discover computer science rules, to move form application to the 
core topic of computer science. E.g. painting in computer could move to thinking about 

Fig. 4. Interactive Bebras task – situation visible for contestants and initial data.



M. Weigend et al.188

pixels, colour depth, graphic formats. Writing texts could move to coding, data transfer, 
data compression. Work in vector graphics could result in logic operations and algo-
rithms how to paint something. Creative work with digital technology can result in cre-
ative work in computer science, sometimes with unplugged activities.

We can develop creativity using problems with multiple solutions. Our experience 
show that it is hard for teachers to promote creativity in a quite new topic for students 
which unplugged computer science really is. One method is to show several ways of 
solving some open problems. Students, then, can imagine that such tasks allow different 
approaches of solving it, and might be more willing to create another.

Let us illustrate this approach on activity about how to code the data transferred. 
When electricity is supplied from external battery, Micro:bit can work unplugged with-
out computer and can be used the user way when some program is downloaded to it. This 
activity uses Micro:bit as a tool for creating icons (picture).

Students use prepared program in which a cursor goes through all pixels in a matrix.
They create their own icon by buttons A (light up), B (turn off) on the board (Fig. 5). 
Then students describe their icon by letters A, B, in the order they have touched these 
buttons, and give the code to the other student to create the icon in her/his device. In this 
part of activity, students are creative at user level. The role of Micro:bit is to check the 
rules (and of course to make the activity more attractive), this activity could be realized 
without this device.

In the second step, students create an icon using different given methods, as a path of 
movement of Karel the robot (a blinking point on the grid) controlled by two commands: 
forward (button A) and right turn (button B). Students could get that there are different 
methods of describing the icon using the codes of A’s and B’s, and might realize that 
without telling the method of coding it is hard to reproduce original work.

Finally students have to invent a “their own”, new secret code which can describe the 
icon so that only the receiver could reproduce it. Students can give different meanings to 
letters A and B (e.g. A sets painting pen up or down, and B moves the pen on the grid), 
or go through the grid in a different way (from the right, by columns ...). This creative 
activity could result in classroom discussion whether new methods of coding are correct, 
unambiguous and suitable for all icons. Students are creative as computer scientists in 
this part of the activity.

Fig. 5. Coding icons in Micro:bit.



Computational Thinking Education Through Creative Unplugged Activities 189

4.4. How to Embed Creative Unplugged Activities in the Learning Processes

Creative artifacts are a contribution to the knowledge and culture of the learning com-
munity. Students should be aware of this value. In this section, we discuss a few ways of 
presenting the outcomes of creative activities, and how to embed them in the learning pro-
cess of a class or lecture. On the web, artefacts can easily be published worldwide. How-
ever, according to the idea of the “local domain” of a learning community (see above) we 
focus on the presentation within the protected space of an educational institution. 

Puzzle and Quiz 
Examples of CS concepts, which students have created (type 2), may be used for a puzzle 
or quiz-like classroom activity. For example, after finding examples for list structures 
(Table 7) participants write Python list literals at the blackboard and for each literal the 
audience has to find out which real object in the room is modelled by it.

Similar puzzles could involve Lego artefacts or photos visualizing a concept (type 4), 
or stories that are related to an algorithm or concept (type 2).

A puzzle is an explicit cognitive challenge to the audience. Besides solving the puz-
zle, the audience is also encouraged to validate solutions, and to evaluate the quality of 
the visualization.

Exhibition
Artefacts that have some aesthetic value (drawings, sculptures, photos) can be collected 
and exhibited at a classroom wall or in a glass case. Example: One spot at the wall ex-
hibits photos of all kinds of sorted sequences (jackets on hangers in a shop, floors of a 
building, books in the library, deck of cards). An exhibition – created by students – is not 
just a nice decoration but it reflects the students’ everyday life, what is relevant to them 
and the way they think and feel. 

The exhibits can later be used for programming exercises. For example, the “collec-
tion of sorted things” hanging at the wall might be a reason to think about how to model 
these entities using formal code. A deck of cards could be represented by a list of 52 
tuples of the form (suit, card).

Performance
Roll play and mime performances are not easy to record. There are two major problems: 
It takes much time, competence and effort to record a performance and to create a good 

Table 7
Finding examples for list structures

Python list literal (model) Object in the classroom (reality)

[[3, 4, 4], [3, 4, 2]] Two rows of tables with different numbers of students sitting at them
[7, 7] Illumination at the ceiling consisting of two rows with seven lamps each
[[0111, 1111, 1111], 

[1011, 1111, 0011]]
Two rows of tables with four chairs each. The digits 1 and 0 indicate whether 
or not somebody is sitting on this chair



M. Weigend et al.190

video. One has to think of camera perspectives, frames, sound and editing. You can find 
many videos documenting role plays on Youtube which are not only boring to watch but 
which are also difficult to understand.

The second problem is the personal rights of the actors. A video may be embarrass-
ing for the actors, and it can only be published legally if the actors (and eventually their 
parents) have signed an agreement. So, in most cases, performances are live and remain 
undocumented. However, it is possible to take photos of scenes in way that the faces of 
the actors cannot be recognized.

If a live performance is dynamic (like an improvised role play), it may represent the 
idea of a new algorithm or a use case in an easily comprehensible way (type 1, 2 or 3). 
Such performance is done quickly, and it could be the starting point of a programming 
project. Example: Play sorting a deck of cards using straight selection and then write a 
sort function.

5. Conclusion 

The spectrum of creative unplugged activities on CS can be grouped into four types: 1) 
Create an algorithm 2) Find an application 3) Find an example 4) Find a visualisation. 
This classification seems to be sufficient for most CS educators that have been asked in 
a questionnaire.

CS educators use creative unplugged activities for several reasons, especially as ac-
tivating introduction into a new topic and to encourage students to think about CS con-
cepts. Generally they see educational potential in all types. However, most educators 
rarely use these activities (a few times a year).

This may indicate that the repertoire of useful creative unplugged activities for CS 
education is still small and needs to be extended by the community of professional edu-
cators. Teachers developing new ideas for creative classroom activities might consider 
these points: 

There are different types of activities, which imply different ways of how to get  ●
creative. Being creative is joyful. Offering a diversity of tasks makes it easier for 
the individual student to find an activity to which she or he is able to contribute.
There are many ways to express ideas (writing, drawing, building, playing, …).  ●
A student may pick a method she or he is good at to create.
The result of a creative process is a new product (a new story, a new picture, a  ●
new sculpture, a new play etc.) that extends the “local domain” of relevant CS 
knowledge within a certain class at a certain school. This product can be pre-
sented and exhibited and is valuable for learning.
There is a repertoire of successful creative activities in school education. Well  ●
known creative activities can be adopted to CS topics.
There are many well thought – but not creative – unplugged activities in CS edu- ●
cation including paper versions of Bebras tasks and exercises from the book “CS 
unplugged”. Developers of educational material could take this wealth of ideas as 
inspiration and make closed and analytical tasks more creative.



Computational Thinking Education Through Creative Unplugged Activities 191

References

Atmatzidou, S., Demetriadis, S. (2016). Advancing students’ computational thinking skills through educa-
tional robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 
661–670.

Beecher, K. (2017). Computational Thinking: A Beginner’s Guide to Problem-Solving and Programming. 
Swindon BCS.

Bell, T. (2018). CS Unplugged and Computational thinking, In: Proceedings of Constructionism 2018, Vilnius, 
Lithuania, p. 22 – 28.

Bell, T., Rosamond, F., Casey, N. (2012). Computer Science Unplugged and related projects in math and 
computer science popularization. In: Bodlaender H.L., Downey R., Fomin F.V., Marx D. (Eds.), The Mul-
tivariate Algorithmic Revolution and Beyond. Lecture Notes in Computer Science, vol 7370. Springer, 
Berlin, Heidelberg

Bell, T., Witten, I.H., Fellows, M. (2015). CS Unplugged. www.csunplugged.org
Boden, M. (2007). How creativity works, Creativity East Midlands for the Creativity: Innovation and Industry 

conference, 2007.
Rodriguez, B., Kennicutt, S., Rader, C., Camp, T. (2017). Assessing computational thinking in CS unplugged 

activities. In: Proceeding SIGCSE ‘17 Proceedings of the 2017 ACM SIGCSE Technical Symposium on 
Computer Science Education, p. 501–506.

Csikszentmihalyi, M. (1996). Creativity: Flow and the Psychology of Discovery and Invention, Harper Collins 
Publishers, New York

Curzon, P., McOwan, P.W., Plant, N., Meagher, L.R. (2014). Introducing teachers to computational thinking 
using unplugged storytelling. In: ACM Proceedings of the 9th workshop in primary and secondary comput-
ing education. 89–92.

Dagienė, V., Sentance, S., Stupurienė, G. (2017). Developing a two-dimensional categorization system for 
educational tasks in informatics. Informatica, 28(1), 23–44.

DeSchryver, M.D., Yadav, A. (2015). Creative and computational thinking in the context of new literacies: 
Working with teachers to scaffold complex technology-mediated approaches to teaching and learning. 
Journal of Technology and Teacher Education, 23(3), 411–431.

Feaster, Y., Segars, L., Wahba, S., O. Hallstrom, J. (2011). Teaching CS unplugged in the high school (with 
limited success). IN: ITiCSE’11 – Proceedings of the 16th Annual Conference on Innovation and Technol-
ogy in Computer Science. 248–252.

Futschek, G, Moschitz, J. (2010). Developing algorithmic thinking by inventing and playing algorithms. In: 
Clayson, J.E., Kala , I. (Eds.) Constructionist Approaches to Creative Learning, Thinking and Education: 
Lessons for the 21st Century, Proceedings Constructionism 2010, Paris 16.-20. 8. 2010.

Grover, S., Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational 
Researcher, 42(1), 38–43.

Haseski, H.I., Ilic, U., Tugtekin, U. (2018). Defining a new 21st century skill-computational thinking: Con-
cepts and trends. International Education Studies, 11(4), 29.

ISTE, CSTA. (2011). Computational Thinking in K–12 Education leadership toolkit.
Korkmaz, Ö., Çakir, R., Özden, M.Y. (2017). A validity and reliability study of the Computational Thinking 

Scales (CTS). Computers in Human Behavior, 72, 558–569.
Lockwood, J., Mooney, A. (2017). Computational Thinking in Education: Where does it fit? A systematic liter-

ary review. arXiv preprint. arXiv:1703.07659.
Mishra, P., Yadav, A., Deep-Play Research Group. (2013). Rethinking technology & creativity in the 21st 

century. TechTrends, 57(3), 10–14.
Moreno-León, J., Román-González, M., Robles, G. (2018). On computational thinking as a universal skill: 

A review of the latest research on this ability. In: Global Engineering Education Conference (EDUCON) 
2018, IEEE. 1684–1689.

Saunders, D., Thagard, P. (2005). Creativity in computer science. Creativity Across Domains: Faces of the 
Muse, 153–167.

Thies, R., Vahrenhold, J. (2013). On plugging “unplugged” into CS classes. In: Special Interest Group on 
Computer Science Education, Denver, 2013.

Voogt, J., Fisser, P., Good, J., Mishra, P., Yadav, A. (2015). Computational thinking in compulsory education: 
Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715–728.



M. Weigend et al.192

Weigend, M., Pluhar, Z., Juškevičienė, A., Vaníček, J., Ito, K., Pesek, I. (2018). Constructionism in the 
Classroom: Creative Learning Activities on Computational Thinking. Constructionism 2018 Confer-
ence Proceedings. URL: http://www.constructionism2018.fsf.vu.lt/file/repository/

Proceeding_2018_Constructionism.pdf

Wing, J.M. (2017). Computational thinking’s influence on research and education for all. Italian Journal of 
Educational Technology, 25(2), 7–14. DOI: 10.17471/2499-4324/922

M. Weigend studied Chemistry, Pedagogy and Computer Science at 
the University of Bochum and the University of Hagen and received 
a PhD in Computer Science from the University of Potsdam. He is a 
teacher at a secondary school in Witten, Germany, lectures at the Uni-
versity of Münster and he has taught Didactics of Computer Science at 
the University of Hagen for almost 20 years. He has published several 
books on computer programming and visual modeling.

J. Vaníček is associated professor and head of the Department of In-
formatics at the Faculty of Education, University of South Bohemia 
in České Budějovice, Czech Republic. He prepares primary and CS 
teachers and takes care of informatics teaching in primary and lower 
secondary schools and early age programming education. He works 
in expert group for innovation of national informatics curricula at the 
National Institute for Education.

Z. Pluhár is assistant lecturer of Faculty of Informatics at Eötvös 
Loránd University, Budapest, Hungary. She is member of the T@T 
(Technology Enhanced Learning) Lab and works mostly in teacher 
education. She is the head of Professional Community of Public Edu-
cation at John von Neumann Computer Society. Her research fields are 
computational thinking, education of robotics and STEM. Since 2011 
she has been organizing the Bebras informatics contest in Hungary.

I. Pesek is assistant professor of Computers in Education at the Facul-
ty of Natural Sciences and Mathematics, University of Maribor. He is 
involved in teacher training of CS teachers. His main research interest 
are in computers science education and use of ICT in education.



Olympiads in Informatics, 2019, Vol. 13, 193–200
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.12

193

REPORTS

Cyprus Olympiad in Informatics

Panayiotis ERACLEOUS1, Pavlos PAVLIKAS1,  
Adamos TTOFARI2, Andronikos CHARALAMPOUS2

1Ministry of Education and Culture
2University of Cyprus
e-mail: paneracl@gmail.com, ppavlikas@gmail.com,  
adamos2468@gmail.com, andronikos4796@gmail.com

Abstract. This report presents the organization of the Cyprus Olympiad in Informatics in terms 
of the format used for each age group and the methods and tools utilized for the preparation and 
selection of the delegations of Cyprus for international competitions.  

Keywords: Cyprus, International Olympiad in Informatics, Balkan Olympiad in Informatics, 
computer science, computer programming, curriculum, gymnasium, lyceum.

1. Introduction – Educational System in Cyprus

Education in Cyprus starts at the age of six and is divided into elementary and secondary 
education. Secondary education is divided into two levels – Gymnasium (ages 12–15) 
and Lyceum (ages 15–18). The Ministry of Education and Culture (MOEC), introduced 
Computers Science in Lyceums in the early 1990s. Computer Science was mandatory 
only in the first grade of the Lyceum, for two class periods per week. Students could 
choose to take the course in the second and third grade. LOGO and QBASIC were the 
programming languages used in the initial course.

A significant change was made in the early 2000s. Computer Science was made 
mandatory for all three grades of the Gymnasium. It was also introduced as an elective 



P. Eracleous et al.194

course for the second and third grade of the Lyceum. Flow charts, Visual Basic and Pas-
cal were the tools used to improve the algorithmic way of thinking of students. 

Since then a lot has changed. In recent years, the CS curriculum in the public schools 
of Cyprus has undergone significant modifications in order to incorporate programming 
in each grade. Still, no CS curriculum exists for our elementary schools.

Currently, the tools and programming languages that are used for teaching program-
ming in public schools are:

Scratch (1 ● st grade of Gymnasium).
Alice, Robomind (2 ● nd grade of Gymnasium).
Pascal (3 ● rd grade of Gymnasium).
Pascal (1 ● st grade of Lyceum).
GameMaker (2 ● nd grade of Lyceum).
C++ (2 ● nd–3rd grade of Lyceum).

The infrastructure in our Gymnasiums and Lyceums is relatively efficient. Every 
school has three to four computer labs, each one equipped with up to twenty comput-
ers. Every student works on his/her own computer during classes. A Computer Science 
teacher is responsible for the labs’ maintenance and annual inspections are made to 
secure the longevity of the computers.

2. Cyprus Olympiad in Informatics (COI)

Cyprus participated for the first time in both IOI (International Olympiad in Informatics) 
and BOI (Balkan Olympiad of Informatics), in 1993. Cyprus Olympiad in Informatics 
(COI) was established in 2006 and it is organized annually by the Cyprus Computer 
Society (CCS) and the Ministry of Education and Culture (MOEC), in the following 
format. There are five academies, one in each district, that are responsible for prepar-
ing students for international competitions. The academies cover geographically most 
of Cyprus. In each academy, students are taught evening programming lessons, for two 
hours per week. Responsible for each academy is a Computer Science teacher assigned 
by the Ministry of Education. The top students are chosen to represent our country as 
members of the Cypriot delegations.

Up to 2011, the selection of the teams was made after two rounds of competition. 
The first round was on paper and the second one, although it was conducted with the use 
of computers, it was without the use of an online judge system and the solutions were 
judged manually. The main programming language the students used was Pascal.

In 2011 there was a major effort to improve things.  C++ was introduced in the 
academies, as the main programming language and the curriculum harmonized with the 
one that is used in the IOI. Contest Management System (CMS) was used for handling 
the contests rounds. Another major change during that year was the introduction of the 
Bebras competition for younger students (12 to 15 years old). The Bebras contest runs 
in two rounds. The first is open for all Gymnasium students and the second is for the 
top students of each grade, which are also invited for the COI camps and lectures. In 



Cyprus Olympiad in Informatics 195

the past, most students participated in the COI competition after the age of 15. With 
the Bebras competition, younger students were attracted. The youngest contestant who 
competed in 2018 was 12 years old.

The results of the Cypriot delegations have improved drastically in recent years. 
Cyprus participated, for the first time, in the Junior Balkan Olympiad in Informatics in 
2015 and won two bronze medals. Also, in 2015, Cyprus won its second medal in IOI 
after a long span of 22 years. As you can see from the statistics (Table 1), the changes 
have been effective:

2.1. COI Format

Preliminary Round: Just before Christmas, four preliminary problems are an- ●
nounced publicly on CMS and students are given two weeks to submit their solu-
tions. Their scores do not count for the first round.
First Round (4 problems – 3 hours): Students that score at least 50% of the points  ●
of the first round qualify to the second round.
Second Round (4 problems – 4 hours): The top 16~20 students qualify to the Inter- ●
national Selection Rounds.
BOI Selection Round (4 problems – 5 hours): Selection of the BOI team. Only  ●
students who have qualified from the second round can participate.
IOI Selection Round (4 problems – 5 hours): Selection of the IOI team. Only stu- ●
dents who have qualified from the second round can participate.
JBOI/EJOI Round (4 problems – 4 hours): Selection of the JBOI/EJOI team. Only  ●
the students who participated in the second round and are eligible from JBOI age 
standards can participate.

Responsible for organizing COI is the Cyprus Computer Society (CCS) in co-oper-
ation with the Ministry of Education and Culture (MOEC). CCS is a professional and 
independent non-profit organization, seeking to improve and promote high standards 
amongst informatics professionals, in recognition of the impact that informatics has on 
employment, business, society as well as on the quality of life of the citizen. The MOEC 
is responsible for promoting Computer Science for all students in a unified educational 
system. The Ministry acts as the supervisor for COI in terms of personnel selection, sup-
port and setting a common policy for all districts involved.

Table 1
Cyprus medals in international competitions

IOI BOI JBOI EJOI

Silver (2017)• 
Bronze (1993, • 
2015, 2016)

Silver (1993, 2016)• 
Bronze (1995, 1997, 2001, 2006, • 
2013, 2014, 2015, 2016, 2017)

Silver (2017)• 
Bronze (2015 – 2 medals, • 
2016, 2017, 2018) 

Silver (2017)• 
Bronze (2017, 2018)• 



P. Eracleous et al.196

3. Preparation for COI and International Contests  
(IOI, BOI, JBOI/EJOI)

3.1. COI Syllabus

The COI curriculum is divided into 3 parts, depending on which round the students are 
competing: 

First Round:1) 
Basic Programming. ●
Strings. ●
Arrays (1d, 2d). ●
Searching/Sorting. ●
Stacks/Vectors. ●

Second Round and JBOI Selection:2) 
Functions/Recursion. ●
STL (maps, sets, queues, pairs). ●
Graph Theory: ●

Graph Traversal (DFS/BFS). ○
Shortest Paths (Dijkstra, Floyd-Warshall). ○
Minimum Spanning Trees (Prim, Kruskal). ○

Complete Search. ●
Greedy Algorithms. ●
Introduction to Dynamic Programming. ●

Curriculum for IOI and BOI Selection Rounds:3) 
Advanced Dynamic Programming. ●
Bitmasks. ●
Advanced Graph Theory: ●

Trees. ○
Directed Acyclic Graphs. ○
Successor Graphs ○

Range Queries: ●
Segment Trees. ○
Binary Indexed Trees. ○
Sparse Tables. ○

Computational Geometry. ●
String Searching Algorithms: ●

Knuth-Morris-Pratt Algorithm. ○
Rabin-Karp Algorithm. ○
Tries. ○
Hashing. ○
Suffix Arrays. ○

Number Theory. ●



Cyprus Olympiad in Informatics 197

For developing the COI curriculum, an extensive literature review on competitive 
programming books was used as well as an in-depth investigation of other countries’ 
preparatory systems. 

3.2. Training Camps

In 2012, training camps were introduced. The focus was to teach the contestants ad-
vanced topics and give them an opportunity to meet each other and to build a learning 
community. The first years, the camps were two days long during Easter Holidays, just 
before the international selection rounds. The lessons were taught by guest lecturers 
from Greece. During the span of two days, the camps covered a lot of material, but 
because of the limited time, the content was not understood completely, by all students. 
Additionally, it was the only on-site advanced training our experienced contestants had 
during the year.

In 2018, winter camps were introduced and the format of the camps changed. There 
are two advanced topics lectures per day and a 2-hour contest at the end of each day, 
giving the opportunity to get hands-on the new knowledge acquired. Currently, there are 
two difficulty levels: junior and senior. The junior level was introduced to recruit new 
contestants to the competition and the senior level is for international contest prepara-
tion. The topics are different each time giving the opportunity for all contestants to learn 
something new in each camp they are attending.

In the future, there are plans to organize summer camps in order to train the national 
delegations, just before the international competitions. Moreover, lectures are planned 
during the summer for Gymnasium students in order to prepare them for JBOI 2020, 
which will be hosted in Cyprus and to better prepare our future IOI contestants.

3.3. Tools and Resources Used

These are the tools that are used within the lectures in order to prepare students for com-
peting. These tools are used during the training camps as well:

3.3.1. Contest Management System (CMS)
We currently use CMS 1.4 as our contest environment for all the rounds of the competi-
tion. The setup is one machine that runs all the services and handles the submissions 
(log service, contest web server, admin web server, etc.). For BOI 2016, which was held 
in Cyprus, we used the CMS 1.3 and the setup was across three machines. The first ma-
chine was running only the services and the other two were handling the submissions, 
with four workers on each machine. No technical problems or delays in submissions 
were detected.



P. Eracleous et al.198

3.3.2 Michanicos Online Judge
Michanicos is a localized online judge build upon CMS and CMSocial, which current-
ly holds approximately 200 problems in the Greek language and it is publicly available 
to our students. The platform allows for the district instructors to upload programming 
tasks and lecture notes through the administrator panel, set up different task tags and 
categorize their material. It allows for multiple contests to be run simultaneously, 
completely separated from the CMS platform used for our official competition rounds. 
The platform allows submissions in C, C++, Pascal, Java and Python, offers complete 
control over the students’ submissions and generates reports and statistics for all con-
testants. Michanicos serves also as a repository for all the tasks used in our previous 
contests. It has been a very significant upgrade to our training process.

3.3.3. Additional Resources
Since the language barrier is not an issue as most of our students speak English fluently, 
the use of the following resources is highly encouraged.

Tools used for problem-solving training:
Online Judges: ●

SPOJ. ○
Codeforces. ○
USACO. ○
CodeChef. ○

3.4. Statistics

The Table 2 shows the student participation in COI contests for the past five years.

4. Conclusion

Cyprus is a small island, with a population of 800,000 people. It is understandable that 
our selection pool is very small each year. Many of our students participate in other 
Olympiads as well (e.g. IMO, IChO). Some additional problems that COI is facing, is 

Table 2
Student participation in COI and Bebras

Contest 2015 2016 2017 2018 2019

Bebras Contest 457 638 825 721 689
First Round 102 112 123 142 158
Second Round   43   52   67   62   44
Third/Fourth Round   12   15   16   20   21
JBOI Selection   17   16   24   14   13



Cyprus Olympiad in Informatics 199

the lack of academic support and the lack of training for our instructors. The COI alumni 
are very important too, but, unfortunately, most of them are studying abroad. In 2016, 
Cyprus organized the Balkan Olympiad in Informatics with great success, which we 
hope to repeat for JBOI 2020. Despite the problems, Cyprus puts a lot of effort and 
resources to help its students and put them in a position to be successful. We have gone 
from zero total points to a silver medal within the past eight years and we hope to win 
Cyprus’ first gold medal in the near future.

References

Bebras Cyprus. https://bebras.org.cy/en
Contest Management System. https://cms-dev.github.io/
CMSocial. https://github.com/algorithm-ninja/cmsocial/
Cyprus Computer Society. https://www.ccs.org.cy/
Cyprus Olympiad of Informatics. http://www.coinformatics.org/
Dagienė, V., Skupienė, J. (2010). Olympiads in informatics: competitive learning of programming for secondary 

school students. A New Learning Paradigm: Competition Supported by Technology.
Halim, S. and Halim, F. (2013). Competitive Programming 3: The New Lower Bound of Programming Contests. 

Singapore.
International Olympiad in Informatics – Statistics. http://stats.ioinformatics.org/
International Olympiad in Informatics – Syllabus. 

https://ioinformatics.org/files/ioi-syllabus-2018.pdf

Kiryukhin, V., Tsvetkova, M. (2011). Preparing for the IOI through developmental teaching. Olympiads in 
Informatics, 5, 44−57.

Kiryukhin, V. (2011). Method of carrying out and preparation for participation in the Olympiad in Informatics. 
All-Russian Olympiad.

Kolstad, R., Piele, D. (2007). USA Computing Olympiad (USACO). Olympiads in Informatics, 1, 105–111.
Michanicos Online Judge. http://81.4.170.42:8980/training
Wang, H., Yin, B., Liu, R., Tang, W., Hu, W. (2010). Selection mechanism and task creation of Chinese National 

Olympiad in Informatics. Olympiads in Informatics, 4, 

P. Eracleous works for the Ministry of Education and Culture in 
secondary education, since 2003. He holds an MSc in Computer Science 
from Middlesex University and a BSc (Hons) in Computer Science from 
Purdue University. He has been involved in curriculum development 
for secondary education and has co-authored the books used in Lyceum 
Computer Science courses. Since 2011, he is the Cyprus Olympiad in 
Informatics instructor for the district of Nicosia and he is responsible 
for the selection and preparation of the delegations of Cyprus for 
international competitions. He has been the team leader of Cyprus in 
IOI from 2015 to 2019. He was a member of the Scientific Committee 
for the Balkan Olympiad of Informatics hosted in Cyprus in 2016.



P. Eracleous et al.200

P. Pavlikas graduated from the Department of Electrical and Computer 
Engineering of the Aristotle University of Thessaloniki. He also holds 
an MSc in Information Systems from the Open University of Cyprus. He 
works for the Ministry of Education and Culture in secondary education 
since 2003. He worked as a Computer Science Advisor for the Ministry 
of Education for 5 years and he co-authored the curriculum and books 
used for secondary education. From 2009 until 2018 he was the COI 
instructor for the district of Larnaca. He has been the team leader for 
Cyprus in several international competitions.

A. Ttofari is a student in the Department of Computer Science at the 
University of Cyprus. He participated in IOI 2014 and IOI 2015 and he 
was a deputy leader of many Cypriot Delegations since 2016. He started 
as a teaching assistant in the district of Larnaca in 2015 and currently he 
is teaching in the Nicosia district, since 2016. Additionally, he serves as 
a problem setter and organizer for the training camps for COI.

A. Charalambous is a student in the Department of Computer Science 
at the University of Cyprus. He started as a teaching assistant for the 
district of Nicosia in 2016. He is in the technical committee of COI and 
he is responsible for the maintenance of the server machines and the 
administration of the Contest Management System.



Olympiads in Informatics, 2019, Vol. 13, 201–208
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.13

201

The use of E-olymp Internet Portal  
in Programming Competitions

Mykhailo MEDVEDIEV
School of Information Technologies and Engineering,
ADA University, Baku, Azerbaijan
e-mail: mmedvediev@ada.edu.az

Abstract. E-olymp Internet portal was created to engage the students of higher education institu-
tions and secondary schools to participate in programming contests, as well as to improve the 
quality of training future specialists in the information technology and programming areas.

Keywords: distance learning, programming competitions, online judge system.

1. Introduction

In times of transformations to information society, one of the nation’s challenges is the 
training of specialists with relevant competencies, in particular preparing professionals 
in the area of computer science. Programming as a subject of study includes learning of 
various programming languages, algorithmic problems, program testing techniques, as 
well as work with data structures.

While training a specialist, distance learning systems play an essential role in the 
learning process, that includes sets of organizational, telecommunication, academic and 
scientific resources. Recently the distance learning has become a prominent part of the 
higher education system. It enables to select a convenient time, place and learning style 
for every student; improve their skills, acquire a profession in off-work hours; pursue 
higher distance education for people deprived of the possibility to receive traditional 
one. One of such systems dedicated to the distance learning programming is E-olymp 
Internet portal (www.e-olymp.com). 

The Internet portal allows to facilitate the work of teachers and tutors in preparing 
for programming competitions, provide an opportunity for gifted students to work inde-
pendently, to develop and exchange experience with like-minded students from different 
regions. The use of the portal provides an occasion to form and select qualified personnel 
who are able to arrange professional trainings for students – future teachers in the sphere 
of information technology, mathematicians and programmers.



M. Medvediev202

E-olymp is considered to be a practice and a contest platform, like Topcoder, USA-
CO, Codeforces, Codechef.

2. Functionality of E-Olymp Portal

E-olymp Internet portal was developed by Ivan Franko Zhytomyr State University, the 
Department of Applied Mathematics and Computer Science with the financial support of 
the Ministry of Education and Science of Ukraine in 2007. Over time, the functionality 
of the portal has been constantly improved. The portal administrators are:

Mykhailo Medvediev – Assistant Professor at ADA University. ●
Sergey Zhukovskiy – Senior Lecturer at Ivan Franko Zhytomyr State University. ●

The E-olymp portal helps the teachers of informatics and instructors of program-
ming to deliver the elective courses and organize trainings and competitions. It allows 
pupils and students to prepare for olympiads independently, for instance, to solve the-
matic problems, to check their solutions without teacher participation, to compare the 
level of their knowledge and skills with the level of other pupils and students, which, 
in turn, creates ambition for victory and stimulates upgrading the skills and knowledge 
in this area.

So far, the portal supports four languages (Ukrainian, Russian, English and Azerbai-
jani), that allows to attract participants from different countries to programming com-
petitions.

While developing the E-olymp system, the project team strived to make it user-
friendly, fast and accessible to wide range of users. That is why the online judge system 
was made in the form of a website available on the Internet.

Nowadays E-olymp system supports the compilation of solutions in one of the 
following programming languages: Pascal, C/C++, Java, Python. It is possible to run 
personal or team competitions by ACM ICPC (International Collegiate Programming 
Contest) rules, as well as by IOI (International Olympiad in Informatics) rules. The 
overall rating of Internet portal users and participants of competitions is maintained. A 
forum with the opportunity to discuss competitions and individual tasks is supported. 
It is possible to form groups, where you can hold your own set of competitions. Pre-
cisely in the groups the distance summer and winter schools are held. In the groups 
the courses on programming languages, algorithms and data structures for university 
students are delivered.

The database information is processed using the Internet portal services. Any in-
terested person can take part in competitions once registered in the system, or simply 
can check his solutions to the problems, which statements are available in the website 
database.

After testing the problem’s solution, the participant’s rating is recalculated. It is 
calculated using two parameters: the number of completely solved problems and the 
number of points scored. This is due to a different level of users and rules of official 
competitions. It should be reminded that by the rules of school programming contests, 



The use of E-olymp Internet Portal in Programming Competitions 203

the rating is calculated by the number of points obtained depending on the number of 
passed test cases. And by the rules of the student ACM ICPC competitions, the winner is 
the one who solved the largest number of problems completely. A problem is considered 
to be solved completely, if it has passed all the test cases proposed by the jury members. 
With the same number of solved problems, the time is taken into account. Penalty time 
is charged for every unsuccessful attempt.

During the portal activity since September 2009:
More than 70,000 users registered. ●
More than 9,000 problems uploaded to the portal. ●
More than 5,000,000 submissions checked. ●
More than 1000 user groups created. ●
A large number of trainings and official competitions have been organized. For  ●
example, official competitions at schools and universities, regional and national 
competitions in Ukraine and Azerbaijan, mirrors of ACM ICPC and IOI program-
ming contests, international student programming competitions, summer and win-
ter programming schools (Sevastopol 2011–2013, Kharkiv 2009–2013, Qafqaz 
university 2011–2015). 

In many universities of Azerbaijan (including ADA University) the following cours-
es are offered to students using the groups of E-olymp system: Programming Principles 
(C/++, Java, Python), Data Structures, Design & Analysis of Algorithms, Object Ori-
ented Programming. Groups enable the teacher to automate the verification process of 
writing programs by students. For example, every semester the author of this article 
teaches classes in 3 groups, each of them has more than 30 students. Each week, each 
student must solve about 10 problems. Thus, during a semester (14 weeks), the teacher 
should check for correctness about 3 * 30 * 10 * 14 = 12,600 programs. This is not pos-
sible without automation!

3. Types of Problems Presented on the E-Olymp Portal

E-olymp portal contains large number of elementary problems in various topics, en-
abling to use them for a wide range of school teachers and university instructors in 
their basic programming courses. Exactly these problems teach the students to work 
independently: how to write properly the first program, how to enter the input data, 
what data type to use in the program, how to get the correct result. E-olymp system 
motivates the student in such work, because user immediately sees the answer of the 
online judge system after submitting the code (Accepted, Wrong Answer, Time Limit). 
Step by step, the student learns topics such as data input/output, linear programs, pro-
cessing the digits of the number, conditional statement, loops, one-dimensional and 
two-dimensional arrays, strings, functions, bit operations, mathematical functions. 
Each of these topics in turn is divided into subtopics. For example, the set of problems 
related to the topic “linear integer array” with division into subtopics (problem num-
bers are given from E-olymp online judge) is given below:



M. Medvediev204

Elementary problems # 904, 7843, 7844, 8679, 8680. ●
Sum of array elements # 919, 7829. ●
Minimum / maximum in array # 914, 917, 928, 1952, 7831, 7832, 7845, 7849. ●
Second minimum / maximum in array # 5059, 7834. ●
Read array till the end of file # 8358, 8684, 8685. ●
Average of array elements # 2238, 7368, 7833. ●
Shift the array elements # 922, 4760. ●
Reverse the array elements # 1460, 2098, 3935. ●

The next class of problems can be found at regional olympiads. In order to solve them 
successfully, students must have sufficient knowledge of basic algorithms from such top-
ics as number theory, dynamic programming, combinatorics, computational geometry, 
graph theory, recursion, sequence processing, greedy algorithms, sort and search, string 
processing, data structures (Clifford, 2008; Cormen et al., 2009; Weiss, 2012).

At national championships and international competitions (such as ACM ICPC or 
IOI), the knowledge of advanced algorithms is required. For example, one of the favorite 
topics at these contests is complex data structures and techniques for their processing, 
such as Range Minimum Query, Lowest Common Ancestor, Segment tree, Fenwick tree, 
Decart tree, SQRT decomposition. Below, for example, given the set of problems from 
the topic “segment tree” with division into subtopics:

Single update:1. 
Sum of elements in given range # 2941, 4255, 4484, 4496. ●
Minimum/maximum in given range # 695, 2911, 3838, 4482. ●
Prefix/suffix sum # 2906, 2907, 4504, 4510. ●

Multiple update:2. 
Sum of elements in given range # 1994, 2304, 2307, 2939. ●
XOR operation # 2905. ●
Additional data structures in the vertices # 3866, 5084. ●
Multiple operations # 752, 3984, 7761. ●

Persistent segment tree # 2955.3. 
Two dimension segment tree # 861.4. 
Dynamic segment tree # 3252, 7488.5. 

Below we’ll review some problems  of advanced level, for which solutions require 
to implement smart algorithmic ideas. The numbers of the problems are given from E-
olymp system.

Problem #4516. Trees in the garden (www.e-olymp.com/en/problems/4516, 
XX All-Ukrainian informatics olympiad). The undirected weighted graph is given. The 
vertices of the graph are trees in the garden, the edges are paths between them. The 
garden was so large that one gardener was unable to take care of it. It was decided to 
divide the garden into two parts. Certain trees will be assigned to the first part, and the 
rest to the second. One part of the garden may remain empty. Each of two gardeners 
will take care of his part of the garden by walking along the paths connecting the trees 
of his part only.



The use of E-olymp Internet Portal in Programming Competitions 205

You must divide the garden in such way that the length of the longest path between a 
pair of trees belonging to the same part is minimum.

Solution. In this problem we need to assign to each tree one of the two gardeners who 
will take care of it.

Let us consider the following subtask: is it possible to divide the trees between two 
gardeners in a such way that there are no paths (along which each gardener will walk 
separately) with the length greater than x. If we know the answer to this question, then 
we can search the minimum value of x (the answer to the problem), for which such parti-
tion exists using binary search.

Let us draw a graph where the edges of the length greater than x are only available. If 
such graph is bipartite, then each set of trees will be maintained by one of the gardeners. 
And none of the gardeners will have at their disposal the paths longer than x.

Example. Let us consider the following graph: 

1

4

2

3

100

95

110

30

70
80

 

 Let us try to divide the garden trees between two gardeners in a such way that there 
are no paths of length strictly greater than x = 70. For this purpose, take in the graph only 
the edges of size greater than 70 and check if it is bipartite: 

1

4

2

3

100

95

110

80

 

 This graph is not bipartite. Let us consider the graph with x = 80. This graph is bi-
partite:

 

1

4

2

3

100

95

110

 

 



M. Medvediev206

It can be observed that when x < 80, the graph with edges of weights greater than x 
always contains a cycle of odd length (1 – 2 – 4). Therefore, the answer is 80.

Problem #3535. Vasya and matrix (www.e-olymp.com/en/problems/3535). Vasya 
has a rectangular matrix with n rows and m columns with non-negative integers in the 
cells. For a given integer k find a submatrix of maximum area in which the sum of all 
numbers does not exceed k. The submatrix is a rectangular area of the matrix.

Solution. Let a be an input rectangular matrix. Let us create a two-dimensional array dp 
of the same size, where dp[i][j] equals to the sum of numbers in submatrix with opposite 
vertices (1, 1) and (i, j). Its cells can be recalculated by the formula:

dp[i][j] = dp[i – 1][j] + dp[i][j – 1] – dp[i – 1][j – 1] + a[i][j]

Let us consider the submatrix of the array a of size w × h. Let its opposite vertices 
have coordinates (i, j) and (i + w – 1, j + h – 1).

 

j

i
h

w

j+h-1

i+w-1

 

 Then the sum of all numbers in the submatrix equals to

dp[i + w – 1][j + h – 1] – dp[i + w – 1][j – 1] – dp[i – 1][j + h – 1] + dp[i – 1][j – 1]

The problem is solved by exhaustive search. Let us run through all possible sizes of 
the submatrix w * h and all possible left upper corners (i, j) of this submatrix. Within the 
constant time we can find the sum of numbers in this submatrix using the array dp. If the 
sum does not exceed k, then among all such submatrices we calculate the maximum of 
their areas. However, such search runs in O(n4) and can be improved to O(n3logn) using 
binary search by the width h of submatrix.

Let us fix the upper left corner (i, j). Let g(w, h) be the sum of numbers in the subma-
trix (i, j) – (i + w – 1, j + h – 1). If w is fixed and h is treated as a variable, then g(w, h) is a 
non-decreasing function relative to h (the array a contains non-negative integers). Using 
binary search we find the maximum value for h, for which g(w, h) ≤ k.



The use of E-olymp Internet Portal in Programming Competitions 207

4. The Use of E-Olymp Portal

With the help of Google Analytics, we can see the statistics of problems submitted in the 
last three years: 

 

 

 

 

 

 

 

 

 

 

 

The greatest number of students who use the E-olymp system are from Ukraine, Rus-
sia and Azerbaijan.

Over the last three years, the E-olymp system checks about 5,000 solutions every 
day. The peaks on the graph below correspond to online schools (competitions) when 
the large number of solutions are submitted. Minimums correspond to summer months, 
when students and pupils have holidays. 

 

 

 

 

 

 

 

 

 

 

 

The following activities were run in groups of E-olymp system:
Algorithms and data structures classes in Kiev branch of the Yandex School of  ●
Data Analysis, 2011–2015.
Online summer and winter schools in Qafqaz University, Baku, Azerbaijan, 2011– ●
2015.
Summer school in Ukraine (Sevastopol) 2011–2013. ●
Distance school in Ukraine “9 spiral turns” 2011–2015. ●
Classes in programming languages, algorithms and data structures in Taras  ●
Shevchenko Kiev National University, 2009–2015.
Lectures in programming principles 1 (C++), programming principles 2 (Java),  ●
data structures and algorithms in ADA University, Baku, Azerbaijan, since 2015.



M. Medvediev208

The author of the article maintains the Facebook group “Competitive Programming 
Problems & Solutions”, where the theoretical material about algorithms is provided 
and training courses are run using the E-olymp system. Today the group has more than 
2400 members.

5. Conclusion

The E-olymp portal is a convenient educational tool for preparing pupils and students for 
programming competitions. It can also be used in the further professional activities of a 
computer science teacher, encouraging to self-education and self-perfection.

References

Clifford A. Shaffer (2008). A Practical Introduction to Data Structures and Algorithm Analysis.
Codeforces internet portal: http://codeforces.com/
Codechef internet portal: https://www.codechef.com/
Cormen, Т.H., Leiserson, C.E., Rivest R.L., Stein C. (2009). Introduction to Algorithms.
E-Olymp internet portal: https://www.e-olymp.com
IOI – International Olympiad in Informatics: https://ioinformatics.org/
ACM ICPC – The International Collegiate Programming Contest: https://icpc.baylor.edu/
Topcoder internet portal: https://www.topcoder.com/
USA Computing Olympiad: http://www.usaco.org/
Weiss M.A. (2012). Data Structures and Algorithm Analysys in Java.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M. Medvediev is an Assistant Professor at School of Information 
Technologies and Engineering, ADA University, Baku, Azerbaijan. He 
received his Ph.D. degree in Computer Science from Kiev National 
University, Ukraine in 1999. His research interests include Algorithms 
and Data Structures, Competitive Programming and Education. He is 
a co-administrator of E-olymp online – judge system. He is a coach of 
ADA University teams at ACM ICPC since 2015.



Olympiads in Informatics, 2019, Vol. 13, 209–215
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.14

209

TPS (Task Preparation System):  
A Tool for Developing Tasks in  
Programming Contests

Kian MIRJALALI, Amir Keivan MOHTASHAMI,  
Mohammad ROGHANI, Hamid ZARRABI-ZADEH 
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
e-mail: {mirjalali, mohtashami, roghani}@ce.sharif.edu, zarrabi@sharif.edu

Abstract. The task preparation system (TPS) is a tool developed mainly for preparing IOI tasks. It 
was originally developed for, and successfully used in IOI 2017, and since then, it has been used 
in several other nationwide and international programming contests, including IOI 2019. The tool 
consists of a command-line interface for local (offline) work, and a web interface which integrates 
with git and provides more features. This article presents the main features of the task preparation 
system, and briefly describes how it works.

Keywords: competitive programming, task preparation, Olympiad in Informatics, programming 
contest. 

1. Introduction

The host technical and scientific committees of IOI 2017 had comprehensive discussions 
on how the development of IOI tasks could be eased. The first thing to fix was the direc-
tory structure of a task. Based on this convention, a set of scripts began to be developed 
to simplify the work. This finally resulted in a more mature software which is called 
TPS (task preparation system). Here are the feedback of two senior members of the IOI 
International Scientific Committee when presented with TPS, its documentation, and the 
tasks developed:

“That’s a great job you made. The system looks really nice and com-
fortable. My congratulations.”

“I must admit I’m also impressed that you’ve been able to develop a 
tool like this so quickly. This will surely be very helpful in organizing 
IOIs.”



K. Mirjalali et al.210

Usage of TPS was not limited to IOI 2017. It has been used in many programming 
contests in Iran, including the national IOI team selection contests. The widespread us-
age of this tool motivated the authors of this article to share it with other members of the 
IOI community who are interested in designing and developing problems for program-
ming contests.

TPS has a command-line interface (shortly, tps-cli) that is used locally by the de-
velopers to prepare tasks on their own machines. Each task is developed in a directory 
maintained through a git repository. A secured GitLab server was used in IOI 2017. The 
secondary part of TPS is the web component (shortly, tps-web) which is deployed be-
sides the git repository in the server and provides additional features such as solutions 
invocation for more exact timings.

This article is organized as follows. We first describe the directory structure of the 
tasks in Section 2. We then explain the structure and features of tps-cli in Section 3. 
Finally, we briefly cover the main features of tps-web in Section 4.

2. Task Directory Structure

The TPS command-line interface acts based on a standardized directory structure which 
is usually maintained in a git repository for sharing with other task developers. The fol-
lowing files and directories are present in a task directory:

problem.json: ●  This is the main json file containing the general information 
about the task, such as short name, title, task type, memory limit, time limit, and 
possibly the tps-web URL if tps-web is set up.
solution/: ●  This directory contains the solution source codes, whether the solu-
tions are correct or not.
solutions.json: ●  A json file containing an entry for each solution in the 
“solution/” directory, specifying the expected verdict of the solution on the 
subtasks, or whether it is a model solution (the one used for generating test out-
puts).
subtasks.json: ●  A json file specifying all subtasks by their names, scores, and 
validators assigned for verifying the conformance of their corresponding test inputs 
with their constraints.
validator/: ●  A directory containing codes for validating the format of test input 
files and checking their conformance with the constraints of the problem.
gen/: ●  This directory contains everything related to generating test data. The 
text file “data” in this directory specifies which tests are going to be generated 
by which generator and with what parameters. Manually created tests are also 
placed in the “manual” subdirectory. An example of “gen/data” file is shown 
in Fig.  1.
grader/: ●  For each programming language allowed in the contest, such as C++ 
and Java, there is a subdirectory here containing the graders for that language. A 
grader is a program that links with the contestant’s solution and provides it with 
grading interface say for reading the input and writing to the output.



TPS (Task Preparation System): A Tool for Developing Tasks in Programming Contests 211

checker/: ●  A directory containing the checker, a program that evaluates the out-
put of the contestant’s solution per test case and specifies its score.
public/: ●  This directory contains the files provided to the contestants, such as 
sample tests, compiling scripts, and basic graders for local testing.
statement/: ●  This directory contains the files related to the task statement.
scripts/: ●  The primary implementation of tps-cli commands is placed in this 
directory.

The following directories are also part of the TPS directory structure, but are not 
stored in the git repository:

tests/: ●  A directory containing the generated tests.
sandbox/: ●  Solutions will be compiled and executed in this directory.
logs/: ●  This directory contains the logs of the last execution of test generation or 
solution invocation.

3. TPS Command-Line Interface

The TPS command-line interface provides an easy way to execute predefined scripts 
commonly used during the process of task development. The scripts reside in the 
“scripts/” directory, and can be customized per need of a task. The “tps” command 
itself is placed in the PATH, and can be called anywhere in the terminal. For example, 
when the command “tps compile <arguments>” is issued, tps-cli runs the script 
“scripts/compile.sh <arguments>”. The following commands are currently sup-
ported in tps-cli:

compile: ●  Compiles a given solution with the appropriate grader, and leaves the 
result it in the sandbox directory. It wraps the complexities of compiling solu-
tions with different languages. The public version of the grader (the one given to 
the contestants) is used if -p or --public is passed to the command.
run: ●  Runs the compiled solution in the sandbox with no restrictions (like time 
limits). Input/output files can be specified through redirection.

 
 

@subtask samples 
manual 01.in 
 
@subtask n_3 
general_graph     100    280    17    6   
tree               98      5 
 
@subtask n_2 
@include n_3 
general_graph   91555  40000   134    6  
tree        10000     90 
 
@subtask full 
general_graph  100000 800000   543   44 
tree      100000    800 
 

 Fig. 1. A sample “gen/data” file.



K. Mirjalali et al.212

gen: ●  Generates the test cases based on file “gen/data” and runs the correspond-
ing validators on the inputs. The generated test cases are stored in the “tests/” 
directory. Multiple options are available such as specifying a subset of tests to 
generate (using wildcards), stopping on the first failure, and using an alternative 
model solution for generating outputs. An example of executing the command 
“tps gen” is shown in Fig. 2.
invoke: ●  Compiles and executes a given solution on the generated test cases con-
sidering the task restrictions (e.g. time limits). The score of the solution on each 
test case is also determined using the checker. Multiple options are available such 
as specifying a subset of tests to invoke, stopping on the first failure, and setting a 
different time limit. A sample execution of “tps invoke” is shown in Fig. 3.
make-public: ●  Updates the contents of the public directory (especially if the 
public graders are going to be generated through erasing the secret parts of the 
judge graders) and creates the archive provided to the contestants, based on file 
“public/files”.
verify: ●  Verifies the validity and integrity of the task directory structure includ-
ing the json files.
analyze: ●  Opens the analysis page of the task in tps-web.

 

 

 
 

 

> tps invoke solution/roads-test.java 
solution          compile[OK] 
checker           compile[OK] 
0-01              sol[OK]    0.063     check[OK]       1  [Correct] 
1-01              sol[OK]    0.069     check[OK]       1  [Correct] 
1-02              sol[FAIL]  0.065     check[SKIP]     0  [Runtime Error] 
2-01              sol[OK]    0.172     check[OK]       1  [Correct] 
2-02              sol[OK]    0.076     check[OK]       0  [Wrong Answer] 
3-01              sol[OK]    0.079     check[OK]   0.666  [Partially Correct] 
3-02              sol[FAIL]  3.012     check[SKIP]     0  [Time Limit Exceeded] 
 
Finished. 
> 

 

> tps gen 
generator          compile[OK] 
solution           compile[OK] 
validator          compile[OK] 
0-01               gen[OK]     val[OK]     sol[OK] 
1-01               gen[OK]     val[FAIL]   sol[OK] 
1-02               gen[OK]     val[OK]     sol[OK] 
2-01               gen[OK]     val[OK]     sol[OK] 
2-02               gen[OK]     val[OK]     sol[OK] 
3-01               gen[OK]     val[OK]     sol[OK] 
3-02               gen[OK]     val[OK]     sol[OK] 
 
Finished. 
> 

Fig. 2. An example of executing “tps gen”.

 

 

 
 

 

> tps invoke solution/roads-test.java 
solution          compile[OK] 
checker           compile[OK] 
0-01              sol[OK]    0.063     check[OK]       1  [Correct] 
1-01              sol[OK]    0.069     check[OK]       1  [Correct] 
1-02              sol[FAIL]  0.065     check[SKIP]     0  [Runtime Error] 
2-01              sol[OK]    0.172     check[OK]       1  [Correct] 
2-02              sol[OK]    0.076     check[OK]       0  [Wrong Answer] 
3-01              sol[OK]    0.079     check[OK]   0.666  [Partially Correct] 
3-02              sol[FAIL]  3.012     check[SKIP]     0  [Time Limit Exceeded] 
 
Finished. 
> 

 

> tps gen 
generator          compile[OK] 
solution           compile[OK] 
validator          compile[OK] 
0-01               gen[OK]     val[OK]     sol[OK] 
1-01               gen[OK]     val[FAIL]   sol[OK] 
1-02               gen[OK]     val[OK]     sol[OK] 
2-01               gen[OK]     val[OK]     sol[OK] 
2-02               gen[OK]     val[OK]     sol[OK] 
3-01               gen[OK]     val[OK]     sol[OK] 
3-02               gen[OK]     val[OK]     sol[OK] 
 
Finished. 
> 

Fig. 3. A sample execution of  “tps invoke”.



TPS (Task Preparation System): A Tool for Developing Tasks in Programming Contests 213

More information on the available options for the tps commands can be obtained 
by passing argument -h or --help. The source code and full documentation of tps-cli 
is available at: https://github.com/ioi-2017/tps.

4. TPS Web Interface

The TPS command-line interface is equipped with a web interface called tps-web. The 
web interface retrieves data directly from a task directory, parses the json files, and vi-
sualizes the task state to the users. As a result, users have a vision on all parts of the task 
and can efficiently apply different actions on it. Some of the main features of tps-web is 
briefly described below.

Task visualization. The web interface visualizes various components of a task. For 
example, one can see all the solutions for a task, and the verdict each of which should 
receive on the subtasks. (See Fig. 4.) As another example, there is a markdown view-
er through which one can easily see the current version of the problem statement. 
(See Fig. 5.)

Solution invocations. The tps-web allows users to select a set of solutions, and invoke 
them on a subset of test cases. The invocation results are then presented in a table to-

Fig. 4. A sample solutions page in tps-web.

Fig. 5. A sample task statement page in tps-web.



K. Mirjalali et al.214

gether with their running time and memory used. An important feature here is the high-
lighting of the results which do not meet the expected verdict. An example of tps-web 
invocation is illustrated in Fig. 6.

Integrating with judging systems. Besides having an internal judging system for invo-
cations, tps-web is also capable of integrating with other judging systems, such as CMS, 
in order to obtain an exact timing. It is in particular useful in programming contests such 
as IOI where the execution time of solutions are important up to milliseconds, and any 
small difference in hardware and software environment (such as sandboxing) can con-
siderably affect the timing. 

Discussion forum. In the time of task development, there are various topics that need 
to be discussed such as designing subtasks, reporting a bug, or an issue in the problem 
statement. In tps-web, every user can open a discussion about an issue and other users 
can reply to the thread.

Secure file sharing. During task development, there are numerous situations where 
developers need an easy way to share a file that is used temporarily during development. 
To address this need, tps-web provides a facility to store temporary files during 
development.

Export final packages. Since each judging system has its own directory format for pre-
senting a task, tps-web provides the facility to automatically generate a package from the 
TPS directory structure. In particular, it has a built-in exporter for the CMS. 

Fig. 6. An example of invocation in tps-web.



TPS (Task Preparation System): A Tool for Developing Tasks in Programming Contests 215

The source code and full documentation of tps-web is available at:  
https://github.com/ioi-2017/tps-web.

Acknowledgments 

We would like to acknowledge the complete list of people who were involved in de-
veloping TPS (in alphabetical order): Amirmohsen Ahanchi, Soroush Ebadian, Kiarash 
Golezardi, Ali Haghani, Keyvan Khademi, Hamed Saleh, Hamed Valizadeh, Moham-
mad Reza Maleki, Kian Mirjalali, Amir Keivan Mohtashami, Mohammad Roghani, and 
Hamid Zarrabi-Zadeh.

K. Mirjalali is a PhD candidate in the Computer Engineering Depart-
ment at Sharif University of Technology. He was a member of the In-
ternational Technical Committee (ITC) in IOI 2015 and also a member 
of the Host Technical and Scientific Committees (HTC, HSC) in IOI 
2017. He won a silver medal in CEOI 2003 and was a world-finalist 
in ICPC 2007. He has been a scientific committee member of Iranian 
National Olympiad in Informatics (INOI) since 2003.

A.K. Mohtashami is a B.Sc student in the Computer Engineering De-
partment at Sharif University of Technology. He was a silver medalist 
in IOI 2015. He was also a member of the IOI 2017 Host Techni-
cal Committee. He also has been awarded Asia West Championship 
in ICPC 2018 and was co-coach of Sharif’s bronze medalist team in 
ICPC 2019.

M. Roghani is a B.Sc student in the Computer Engineering Depart-
ment at Sharif University of Technology. He was a member of the 
Host Scientific Committee (HSC) in IOI 2017. He has received a Gold 
Medal in Iranian National Olympiad in Informatics (INOI) 2014 and a 
Silver Medal in Asia-Pacific Informatics Olympiad (APIO) 2015.

H. Zarrabi-Zadeh is a faculty member of the Computer Engineering 
Department at Sharif University of Technology. He was a member of 
the International Scientific Committee (ISC) from 2014 to 2015, and 
a member of the International Technical Committee (ITC) from 2015 
to 2018. He was also the chair of IOI 2017 Host Technical Committee, 
the director of ICPC in the west Asia region Tehran site since 2012, 
and a bronze medalist as coach in ICPC 2019 world finals.





Olympiads in Informatics, 2019, Vol. 13, 217–224
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.15

217

Computational Thinking in K-12: 
Azerbaijan’s Experience

Yahya TABESH1, Shaya ZARKESH1, Amir ZARKESH1,  
Ilaha FAZILOVA2

1Polyup, USA
2Innovation Technologies in Education, Azerbaijan 
email: yahya@polyup.com, shaya@polyup.com, amir@polyup.com, ilaha.f@ite.az

Abstract. Computational thinking is the process of finding numerical patterns and formulating 
algorithmic solutions. Polyup, a digital math playground, allows students to gain computational 
thinking skills through an experimental and gamified environment. Azerbaijani schools tested 
Polyup in their classrooms to see if it improved student attitudes towards math and motivated 
students to practice their math abilities. In this paper, Polyup is presented, the methods of deploy-
ment and usage of Polyup are reviewed, and we summarize the impact that Polyup has had on 
Azerbaijani students and schools.

Keywords: computational thinking, educational games, math education, Edtech, Azerbaijan.

1. Introduction

Computational thinking, an important theme of computer science for K-12 education, 
is defined as “the thought process involved in expressing solutions as computational 
steps or algorithms that can be carried by a computer” (NCSM, 2018). The impor-
tance of computational thinking extends beyond computer science and is a fruitful 
pathway to build the conceptual understanding of problem-solving and algorithmic 
thinking.

How can we develop an effective learning environment for computational thinking 
education in K-12? Mathematics educators have long seen the value in utilizing as-
pects of computer science to support the learning of mathematics, and computer science 
learning will in turn benefit through such a process. Therefore, computational thinking 
can be seen as a catalyst in learning mathematical concepts by utilizing the tools of 
computer science.

Which concepts of computer science can be used as such tools? Mainly algorith-
mic thinking through computing and approximation, using variables as identifiers and 



Y. Tabesh  et al.218

containers, loops and iteration, boolean operators, conditional loops, and recursion. All 
these tools of computer science can be taught in the language of mathematics rather 
than a specific coding syntax. We present such a computational thinking “playground” 
where students can experiment with these building blocks and create expressions and 
algorithms.

2. Computational Thinking Playground

Computational thinking is a four-stage problem-solving framework consisting of de-
composition, pattern recognition, abstraction, and algorithm design, as shown in Fig. 1. 
We have enriched and connected the stages with a “playground” as an environment for 
the experimental problem-solving.

We intend to present a digital computational thinking playground that has been used 
by more than a hundred thousand K-12 teachers and students as a platform for problem-
solving. This playground is an easily accessible place where learners can tackle prob-
lems through experimentation.

To build this playground, we used a functional programming environment as the 
medium for problem-solving. A solution to the problems in this environment involves 
executing executing a sequence of functions. Functional programming treats computa-
tion as the evaluation of mathematical functions and avoids changing-state and mutable 
data, so it is a powerful tool that can be used in a modular form for problem-solving. 
Such modularity is key, as it specifically empowers learners to utilize what they have 
built in the past for future solutions.

The proposed computational thinking playground empowers learners in reasoning, 
problem-solving, and algorithmic thinking in a gamified fashion. Anonymous user data 
is gathered from every learners’ moves, providing a very rich platform for learning de-
sign research. Results of the analyzed data can be used to improve the platform and also 
bring recommendations and feedback to the learners (Tabesh, 2018). 

 

   

 

 

 

 

 

 

 

 

 

 

 

1. Decomposition 2. Pattern 
Recognition 

3. Abstraction 4. Algorithm 
Design 

Playground 

Fig. 1. Four Steps of Computational Thinking.



Computational Thinking in K-12: Azerbaijan’s Experience 219

3. Polyup Platform

We considered the following objectives for the platform:
Enable creative engagement. ●
Develop mathematical skills. ●
Support a growth mathematical mindset. ●
Be collaborative and social.  ●
Equity and Accessibility. ●

The developed computational thinking platform is called Polyup (Polyup, 2019) and 
is a web application enabling problem solving in a functional programming paradigm. 
By using the elements of mathematics as the building blocks of the paradigm, students 
can be on-boarded quickly and spend  more time learning how to solve computational 
problems rather than use the particular platform.

In the platform, the user is equipped with numbers, operations, and basic functions. 
The user can create a stack of computation in a functional modular form; computation 
simply goes top to bottom in a postfix style. Users can drag and drop numbers and opera-
tions on stacks to build an algorithm that achieves each puzzle’s desired output.

The Polyup platform includes numbers, operators, booleans, variables and functions, 
as shown in Fig. 2.

Fig. 2. Polyup Platform blocks.



Y. Tabesh  et al.220

The following features can be found on the Polyup platform:
Reverse Polish Notation (RPN). ●
Variables as identifiers. ●
Iterative processes and loops. ●
Boolean functions and conditional loops. ●
Recursion. ●
Block programming. ●

To learn more about the Polyup platform, we look at the following toy examples to 
calculate 3 + 4 in iterative (Fig. 3.a and Fig. 3.b) and recursive (Fig. 4.a and Fig. 4.b) 
fashions. Of course, we could just write a 3, 4, and a plus sign, but we use these round-
about approaches as a window into more advanced algorithms that can be created.

        Fig. 3.a: Script of 3+4 by iteration.                            Fig. 3.b: User interface of 3+4 by iteration. 

Fig. 4.a. Script of 3+4 by recursion. Fig. 4.b. User interface of 3+4 by iteration.



Computational Thinking in K-12: Azerbaijan’s Experience 221

In the iterative approach, we first set our variables, x and y, in the first stack. 3.a 
shows the puzzle in creation mode -- here, the puzzle’s creator gets to define what the 
player sees at the start of the puzzle, the goal of the puzzle, and the blocks the player gets 
to use to achieve the goal. The author chose to give most of the structure of the program 
to start with, but notice that +1 and -1 stacks are modularized and hidden from the player 
in Fig. 3.b (the stacks have a dashed line around them in 3.a, meaning they are hidden 
stacks). Fig. 3.b shows the player’s solution. When the player runs this program, Poly 
goes from top to bottom, and the variable “set” blocks take in the block directly above 
them. As a result, x will be initially set to 3 and y set to 4. Then, we go to the “Check” 
stack to check if x is equal to 0. If it is, then we return y, which represents the sum so 
far. Otherwise, we increment y by 1 and decrement x by 1. So, when computing, y will 
be incremented and x will be decremented x times, leading the final result to be the final 
value of y, or 4 + 1 + 1 + 1 = 7.

Alternatively, in the recursive approach, we call the “check” stack over and over 
while decrementing x until it hits 0. As a result, the stack denoted by the two dots will be 
called x times, and thus after all the calls, we will have a stack of x “+1” blocks, which 
will in effect increment y by x, and return x plus y.

4. Polyup in Azerbaijani Schools

Polyup was introduced in Azerbaijani schools in October 2018. In order to encourage 
the use of Polyup’s platform in Azerbaijani schools, with the aim of developing students’ 
computational thinking and involving them in the game-based learning environment, the 
following steps have already been implemented:

Recruitment of Master trainers, localization, and development of training pro-1. 
grams.
Content development aligned with the local math curriculum.2. 
Presentation of Polyup at education fair, conferences and teacher workshops.3. 
Pilot implementation in selected schools.4. 
Involvement of schools, students and teachers to the Azerbaijan Challenges within 5. 
Polyup.

Brief discussions about each of the above items are as follows:
Nine selected local master trainers were trained over video by the Polyup team. 1. 
These master trainers in turn translated the teacher’s guide and adapted training 
program materials to their local curricula. They provided online support as well as 
face-to-face training. However, on most occasions face-to-face meetings were held 
with teachers, as per their request.
Master trainers2.  identified topics that were not mentioned in the portal and new 
machines were created and placed in the portal for 15 projects in 5 topics for 
grades 1 to 2, 11 projects in 11 topics for grades 3 to 5, 6 to 8, 9 to 12 and 9 proj-
ects on agricultural technology and green (alternative) energy. These machines, 
consisting of 3-7 chips, were highly demanded by teachers and students and were 



Y. Tabesh  et al.222

actively used during the lessons. Additionally, the local Polyup team localized 
and adapted the “Teacher’s Manual” on how to use the platform and create new 
machines.
The Polyup Platform was presented at the Education Fair organized by the 3. 
Ministry of Education and at the AgTech and Green Energy Forum, joint-
ly organized by the Ministry of Agriculture and the Ministry of Energy. 
The benefits and advantages of Polyup platform were presented and discussed 
during 30 workshops and roundtables, both in Baku and the various regions.  
In order to promote the platform, the local Polyup team organized school vis-4. 
its and conducted information sessions for school principals and teachers. The 
interested teachers from more than 14 schools were trained and registered on 
the platform. Throughout the training, teachers were informed about the prin-
ciples of working with Poly Machines the creation of new Machines. Moreover, 
teachers developed their skills to create project-based machines. As a result 
of training program, teachers and students were engaged and actively partici-
pated in the Azerbaijani and international challenges established by Polyup. 
The methodology for using Polyup online platform during lessons is as shown 
in Table 1:

According to the observations, the Polyup online platform is mainly used dur-
ing lessons in the following forms (see Table 2):
During the info sessions and pilot implementation, all teachers were also intro-5. 
duced to  Azerbaijan Poly Challenge. They were trained on how to join the Chal-
lenge. Starting from March 2019, five Azerbaijan  Poly Challenges were held and 
five winners were awarded with different prizes, such as tablets and notebooks. 
Moreover, one of the project participants, who joined the international challenge 
“Youcubed Prize”, has won a chance to participate in online course for math 
teachers organized by Stanford University. More than 200 teachers and 1000 
students from Azerbaijan participated in the Azerbaijan and international chal-
lenges.

According to the results of a survey conducted by local Polyup team students, 
Polyup project raised interest and competitiveness among them, since the platform is 
focused on game-based learning. Therefore, with the support of the Ministry of Educa-
tion, more schools, students, and teachers are expected to be involved in the future.

Table 1
The methodology for using Polyup

№ Methodology Recommendations

1 Practical lessons Can be used as mathematical calculations in the process of teaching STEM 
subjects

2 Project-based lessons Can be used as integration with social sciences in the form of long and 
short-term projects

3 Problem based lessons Can be used to connect mathematics with real-life experiences



Computational Thinking in K-12: Azerbaijan’s Experience 223

Reference

NCSM (2018). Computer Science and K-12 Mathematics, NCSM.  
Polyup Casual Modding Platform (2019). http://www.polyup.com. Accessed May 1, 2019. 
Tabesh, Y. (2018). Digital Pedagogy in Mathematical Learning, Invited Lectures from the 13th International 

Congress on Mathematical Education, ICME-13 Monographs, Springer.

Y. Tabesh Co-founder of Polyup. Visiting Professor at Stanford Uni-
versity. Distinguished faculty at Sharif University of Technology. 
Erdös award winner 2010.

Table 2

Polyup online platform using during lessons

№ Type of 
activity

Use form Used tools Recommendations for use

1 Class Teacher assigns a class work. Stu-
dents fulfill their assignments. Then, 
the student who quickly finished the 
assignment performs the solution of 
task on the machine on the smart board 
and sees if the sequence is correct

Smart 
board, 
computer, 
projector

The platform can be used during les-sons 
(topic explanation, classroom assign-
ments) for classroom exercises and after-
school activities. All students are involved 
in the discussions and cooperate through 
the activities

2 Small 
groups

Teacher gives an assignment to small 
groups (consisting of 4-7 students)  of 
students. The groups solve tasks on 
the computer

Computers, 
projector

Through this type of activity, students are 
involved in a competitive environment, 
which further engages the students

3 Pairs Teacher gives an assignment to the 
students. Students solve a task on the 
computer in pairs

Computers, 
projector

Through this type of activity, students are 
involved in a competitive environment, 
which further engages the students

4 Individual Teacher gives an assignment to the 
students. Students individually solve 
tasks on their computers

Computers, 
projector

The activity identifies the individual 
potential of each student, so a teacher can 
guide them accordingly



Y. Tabesh  et al.224

S. Zarkesh Co-founder of Polyup. Student at the University of Penn-
sylvania Studying Math, Computer Science, and Business.

A. Zarkesh. Co-founder and CEO of Polyup. Serial entrepreneur with 
a background in teaching and education.

I. Fazilova Computer Science Teacher. Program manager - Innovation 
Technologies in Education.



Olympiads in Informatics, 2019, Vol. 13, 225–235
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.16

225

Kids Programming Marathon:  
A Step toward Better Engagement  
with Computer Science Education

Maya TAKI1, Ammar ALNAHHAS2

1Syrian Virtual University, Damascus, Syria
2Faculty of information technology engineering, Damascus University, Damascus, Syria
e-mail: maya.taki@gmail.com, a.alnahhas@damasuniv.edu.sy, eng.a.alnahhas@gmail.com

Abstract. Due to the importance of spreading computer science education among young people, 
we present in this paper our work in preparing and organizing a computer science competition for 
children from 8 to 15 years old, named Kids programming marathon, the marathon goes in three 
phases and targets all kids in the country, tasks of the marathon are divided into three different 
types, each type is intended to support different skills for children, we show our motivation and 
goals of the marathon, we present the process of the marathon in details and show the materials 
of the competition, how it was chosen and how it is used in the tasks, we show some statistics, 
and finally discuss the impact of the marathon on the society, and our view for the future of this 
competition.

Keywords: computer science education, competition, young people, programming marathon.

1. Introduction

As the World Development Report for 2019 (World Development Report 2019: The 
Changing Nature of Work, 2019) stated that: ”The nature of work is not only chang-
ing – it’s changing rapidly. We don’t know what jobs children in primary school today 
will compete for, because many of those jobs don’t exist yet. The great challenge is to 
equip them with the skills they’ll need no matter what future jobs look like – skills such 
as problem-solving and critical thinking, as well as interpersonal skills like empathy 
and collaboration, and the most effective way to acquire these skills is to start training 
at early ages.”

We live in a world that is rapidly evolving, with technology tightly intertwined in 
life, in school and at work. Learning computer science (CS) helps people better un-
derstand our technology-enabled world. It positions students for high-demand jobs and 
provides them with skills that are broadly applicable – illuminating new approaches to 
problem-solving, critical thinking and creativity.



M.N. Taki, A. Alnahhas 226

Technology can be a powerful force for social and economic inclusion and for ad-
dressing the many challenges facing our communities. By empowering children at early 
ages, we’re investing in building stronger and more resilient communities.

Due to the importance of early learning of analysis and logical thinking skills for 
children (2018 State of Computer Science Education, 2018) and the role of competi-
tions in introducing computer science in more interactive way, couples of years ago we 
worked with the Syrian Virtual University, the organizational team of the SCPC – the 
Syrian Collegiate Programming contest and other scientific partners to launch the kids 
programming marathon (KPM), an annual programming competition for children and 
adolescents in many regions and cities in Syria.

The Kids Programming Marathon is considered as an updated version of a similar 
competition that was part of the Syrian Olympiad in Informatics (SOI) (ALNAHHAS 
& ALAZAB, 2015; Idlbi, 2009) which was held ten years ago, and was halted in 2012, 
when the national Olympiad was restricted to secondary school students, due to the war 
conditions in Syria.

Compared to other competitions related to computer science and programming which 
are held either locally or internationally (Scratch Olympiad, IOI, Bebras) our training 
materials cover many aspects like logical problems, visual programming, and textual 
programming, in a more useful mix in introducing Computer Science concepts at early 
ages. Visual programming serves as a brief introduction to programming aspects like 
loops, conditions and variables in more interactive way and without Syntax restrictions. 
On the other hand, textual programming serves a more professional way in program-
ming that is compatible to problems in the IOI. Logic questions are needed to introduce 
computer science concepts in a very familiar way like problems in Bebras competition. 
Integrating these three aspects brings more learning benefits to contestants than just 
focusing on one aspect.

This paper demonstrates our main objectives and motivation in section 2, in addi-
tion to the materials in section 3, statistics we worked on are presented in section 4, and 
the scientific and administrative improvements we made to our previous work in SOI, 
section 5 discuss the future of the event and its impact, and we conclude the paper in 
section 6. 

2. Background and Motivation

In recent years, computing has grown in our daily lives. It is no longer confined to com-
mercial or industrial applications, but extends to all aspects of our activities in life, in 
school and at work. As computing becomes more important, children at schools became 
more interested in learning how to create new technologies other than just using word 
processing or spreadsheets.

Computer science education or “CSE” is a very large subject. It blends all the “STEM” 
subjects of science, technology, engineering and math, and also includes design. It’s 
important for students to learn these skills because computer science is everywhere. 



Kids Programming Marathon: A Step toward Better Engagement with ... 227

By increasing access to CS for all youth as early as possible, we help them prepare for 
the jobs of today and tomorrow. This education gives them the opportunity to become 
the world’s next innovators.

To accomplish this fluency, we need to deal more seriously with the syllabus of com-
puter science, and its important aspects of learning writing in addition to reading, in the 
language of the computer: learning programming and the accompanying learning of the 
basic logical and mathematical concepts contained within its practices. 

Competitions are one of the most important ways to encourage young people to dis-
cover new fields. They have been widely used to introduce children to various fields of 
science, including computer science that has algorithmic nature, in which the emphasis 
is on testing problem solving skills and logical analysis through an entertaining and rich 
experience in which the contestant learns programming the computer to serve its inter-
est. Therefore, we are working on organizing a programming marathon for children and 
adolescents, to raise the general scientific level and enhance the skills of analysis and 
creative thinking among all.

2.1. Main Objectives

Support teaching of computer science at schools, raise the general scientific level  ●
and enhance the skills of analysis and creative thinking for all children.
Support the community and provide useful content in the field of programming  ●
and informatics and the development of fluency in dealing with information 
technology.
Encouraging outstanding students in the IT field. ●
Support the youth ability to come up with solutions to problems that are facing  ●
their societies, which is considered as economically – disadvantaged after a long 
war.
Programming training will serve as a learning model, demonstrating how comput- ●
er science education with informal learning settings can support the development 
of technological fluency.
enabling youth people to design and create projects that are meaningful to them  ●
and their communities(Hubwieser, Armoni, & Giannakos, 2015).
Training and preparation at early ages which is significantly reflected on the per- ●
formance of teams participating in the Informatics Scientific Olympiad later.

2.2. Participation and Problems’ Categories

The Kids Programming Marathon includes two competitions:
The junior competition (8–11 years). ●
The senior competition (12–15 years). ●



M.N. Taki, A. Alnahhas 228

The two competitions aim to test the optimal performance of solving several ques-
tions divided into three categories:

A problem formulated as a game, required to be solved using the graphical pro- ●
gramming language Scratch, which offers an enjoyable start and easy to identify 
the concepts of programming.
Computational and Logical thinking Problems. ●
C ++ scripting problems, taking into account the complexity for each age group. ●

2.3. Structure and Stages

The Kids Programming Marathon plan consists of three phases:
Phase 1: ●  The first qualification test based on logical tests for all applicants, logical 
questions will be in the form of multiple-choice for all categories. All kids in the 
country are eligible to participate in this phase, kids should solve 20 to 30 ques-
tions with equal marks for each using a special system on computer. Participants 
should apply in special contest centers prepared for the competition, one in each 
province or area, so students are assigned a nearest geographical center to his 
residence area. Registration is held online some weeks before the competition. 
The goal of this phase is to filter the participants to find who are suitable for the 
contents and the objectives of the marathon, so all kids with 40% and higher of 
full mark are qualified to the next phase. An optional training program is offered to 
the qualified students with the help of Syrian virtual university centers and other 
sponsoring organizations and institutes.
Phase 2: ●  The second qualification test, based on tasks that cover logical and pro-
gramming tests for all candidates from the first phase. Contest are also conducted 
using a special computer system and is held in special centers where each participant 
is assigned to the nearest center. The competition consists of Five multiple-choice 
logic tasks -which are corrected automatically-, one or two scratch tasks and two 
textual programming simple tasks, both Scratch and textual programming problems 
are corrected manually by the scientific committee (details in materials section). 
Qualification of this phase is based on choosing fixed number of students with high-
er total marks. The winners constitute the participants of the marathon finals. 
Phase 3: ●  The final competition for all the candidates from the second phase, the 
contest is held in a single center in the capital where all participants from all other 
cities should gather. The contest is held using the special computer system where 
logical tasks are corrected automatically and programming tasks are corrected 
manually as will be described in the materials section of this paper, tasks are 
distributed amongst three types of the marathon, with about ten logical tasks, two 
scratch tasks for first age division and one for the second division. First division 
tasks consist of simple output-only tasks whereas second division students should 
solve two tasks using C++ programming language. The top three students of each 
division are the winners of the competition.



Kids Programming Marathon: A Step toward Better Engagement with ... 229

3. Materials

The goal of the marathon is to stimulate creativity, logical thinking and problem-solving 
capabilities of children and adolescents, so the material should be chosen carefully to 
achieve these goals. we decided that the tasks should be in different types, each type 
should be related to a target that leads to one of the general goals, besides the mixture of 
tasks should be consistent and should contribute to the general aim of the marathon.

Three main types of tasks are used with different mark distribution for each division 
of participants as will be discussed later. 

The first type is  ● Logical Thinking Tasks that aims at capturing the creativity and 
innovation skills of the participants.
The second type is  ● Scratch Tasks, where Scratch is a well-known programming 
tool for young people that helps interactively program games, stories and anima-
tions (Resnick, Kafai, & Maeda, 2005). 

The aim of these tasks is to teach kids problem solving skills without the need of 
teaching them advanced syntax of textual programming languages. 

Third type of tasks is  ● Textual Programming Tasks that target advanced problem-
solving skills including solution analysis, synthesis and testing.

3.1. Logical Thinking Tasks

These tasks are used mainly in the early phase of the marathon, whereas a different form 
is used in the proceeding phases, the advantage of this type of tasks is that it does not 
need any prior training, it is very useful to test logical thinking and deduction abilities 
of children. In the first stage a very simple form of this tasks is used, this form is similar 
to the one used in IQ tests, but it should be tolerated to be easily understood by young 
people, the target of using such tasks is to measure the logical and mental capabilities of 
kids, the following is a sample question of this type:

To prepare a pie we need 3 apples and two oranges, if we have 10 apples 
and 10 oranges, how many pies can we prepare?
A: 1
B: 3
C: 6
D: 10

Tasks of this form can be mathematical, logical or linguistic; which allows to mea-
sure different aspects of child skills. 

In the second and third phases of the marathon a different form of logical tasks are 
used, which are Bebras-like tasks, in which a story with brief description is provided, 
and a multiple-choice question is to be answered, children should analyze the content 
and find the suitable answer, this kind of questions are more suitable for second division 
where children are older, but we find that they can be used for younger children as they 



M.N. Taki, A. Alnahhas 230

accepted and many of them managed to solve them in the last year. The aim of this form 
of tasks is to measure the analytic thinking of the kids along with the ability to com-
prehend and perceive the content to get the correct answer. Fig. 1 shows an image of a 
Bebras task that is used in the last year final stage of the marathon, a convenient story is 
provided to refer to the task of finding the best path.

In our first experiment which was a part of SOI in 2007, we used a different content 
for this type of tasks, they were about logical circuits, number theory and logic, but we 
find later that these subjects are no more suitable as they does not reflect skills but just 
knowledge, besides they are now more popular and are taught at school. Whereas the 
new model of IQ style and Bebras-like tasks are more convenient as it is shown by our 
new experiment.

Tasks of this type are in multiple-choice form and are always automatically corrected 
by special contest computer system designed for the marathon. 

3.2. Scratch Tasks

Scratch is a well-known visual programming language for young people; it uses the 
principle of interactive programming to help users make games and animations. Tasks of 
this type is intended to be with algorithmic background in the marathon. So, we use this 
type of tasks to measure and teach problem solving skills to children. That means we are 
investing the programming part of Scratch rather than animation and movement parts.

To illustrate this idea, we show a sample task that has been used in the marathon be-
fore; Fig. 2 shows a sample image of Scratch task, in this task the child should program 
the movement of the characters as given in the task statement, he should process the 
interaction between the items and design the movement algorithms accordingly. We try 
to format the task in an approach where children should not rely on static knowledge of 
Scratch environment, instead the key point of the task needs to be designed according 
to the problem-solving abilities, that can be defined by using the appropriate item in the 

Fig. 1. Sample of used Bebras task in the marathon, the task is about finding a shortest path 
between the boat and the flag.



Kids Programming Marathon: A Step toward Better Engagement with ... 231

correct context, rather than just memorizing and understanding the use of each tool, this 
way the creativity of the children is measured correctly, besides; we design the task to 
have a trick that needs mathematical or algorithmic solution. Experiments held from 
2007 to 2011 showed that this type of tasks was very attractive for children and helped 
distinguishing creative ones despite the poor Scratch tools at that time. As Scratch now 
contains the concepts of lists and function it is now more suitable to design more creative 
tasks that are better to distinguish kids with high problem-solving abilities, results of the 
last two years competitions revealed that this type of tasks are more favorable among 
younger children, older children in the second division tends to prefer textual program-
ming tasks as will be discussed later.

Scratch tasks are corrected manually by scientific committee members, the task is 
divided into subtasks, each subtask is assigned a portion of the total mark, where this 
portion is given if the subtask is totally achieved with no partial marks.

3.3. Textual Programming Languages Related Tasks

We believe that even if visual programming can measure creativity and problem-solving 
skills, there is still a necessity to include this type of tasks even for the younger children 
of the first division. There are many forms of tasks in this type, depending on the phase 
and the division, 

For first division it is very difficult for kids to compose a working program, yet 
they can understand the syntax and comprehend the different items of programming 

Fig. 2. Sample of Scratch task, a game where the child should develop a suitable logic for it.



M.N. Taki, A. Alnahhas 232

language, therefore the best task form for them is to find the output of a given program, 
this task allows us to measure kids knowledge in the language syntax but it is tough 
to capture problem-solving skills by this method for children younger than 12 years 
old. This type of tasks that rely on finding the output is corrected manually; each part 
of the output is given a portion of the total mark of the task, and is given if the output 
is correct.

By the other hand, textual programming tasks including ones where a complex algo-
rithm is needed proved to be very attractive and suites adolescents in the second division, 
they preferred it over visual programming tasks and tend to find it more challenging. 

Tasks are prepared in a way that suites ages between 12 and 15, very sophisticated 
algorithms are avoided and some tasks is designed to measure programming skills rather 
than algorithmic experience of the competitors. Tasks are corrected manually, because 
part of the marks is allocated for code analysis, the task is first evaluated in a way similar 
to IOI style where output should be correct with specific time and memory limits, but if 
the task fails to generate correct output the code is examined manually and part of the 
mark is given if code reflects correct algorithm.

The most distinctive part of the marathon is the mixture of the above three differ-
ent types of tasks, the tasks complement each other and integrates together to fulfill the 
target of the marathon by encouraging all different skills of kids as well as discovering 
creative and distinguished ones, the mark ratio of each type is chosen according to the 
age division and with accordance to the goals, for the first division, Scratch tasks cover 
65% of the competition mark, 20% for logical tasks and 15% for textual programming, 
leaving a wide range for visual programming and keeping the advantage of including 
logic and textual programming. For the second division 35% of competition mark is for 
Scratch, 20% for logic and 45% for textual programming, these ratios are chosen as we 
notice that adolescents in this age prefer textual programming to visual ones.

4. Statistics 

The old competition held from 2007 to 2011 proved to be very impressive, about 70% of 
the Syrian medalists in IOI from 2012 to 2018 were winners of that competition.

As the mark distribution among task types is elaborated in the last section, along with 
the correction and mark assignment scheme, Table 1 shows the average results of the 
first division for the last year, there was 5 logical tasks with marks distributed equally, 
two scratch tasks with equal marks and four textual programming tasks in a type dis-
cussed in the material section.

Table 1
Average marks for first division

Logical tasks Scratch Textual Programming Total average

50.65% 33.8% 36.84% 37.63%



Kids Programming Marathon: A Step toward Better Engagement with ... 233

Total number of participants in the last phase was 75, we can notice that the logi-
cal tasks get high average whereas other types are around the total average, which 
reflects the need for this type of tasks in this age division. Textual programming tasks 
are pointless as the type of tasks for this division is not creative as mention earlier in 
the material section. 

Table 2 shows the average results of the second division, there were four logical 
tasks, one scratch task and two textual programming tasks, with marks distribution men-
tioned in the previous section.

It is clear that logic tasks have a very high average, this is due to the fact that all stu-
dents in the last phase of the competition are high skilled, It is normal that programming 
average is low, it is still difficult for children to compose a full working program with 
textual programming languages, actually, the average is very promising as the evalua-
tion of the tasks is similar to the IOI style with multiple test cases with small part of the 
mark allocated for code analysis as mentioned earlier.

An important point to notice is the gender distribution of the participant, Fig. 3 shows 
this distribution. There are many points to consider in this statistic, firstly the number of 
females is relatively high compared to average female participants in computer science 
competitions, this is due to the involvement level of family members for young aged 
children. The most important point to notice is that the ratio of female participants de-
creases in the second division, and taking into account that the number of female partici-
pants in the national Olympiad for secondary school students is very low, this indicates 
that the key factor of increasing females involvement in computer science competitions 
is to encourage them to participate as they are younger starting from the age of 8 and 
provide more motivation and encouragement for them to go on. To achieve this, we grant 
special awards to female participants in the marathon to motivate them to stay in the 
track and to attract more females to participate in the future.

Table 2
Average marks for second division

Logical tasks Scratch Textual Programming Total average

80.17% 41.63% 21.55% 41.31%

Fig. 3. Gender distribution of participants in KPM finals 2018.



M.N. Taki, A. Alnahhas 234

5. Discussion 

After two years of conducting the updated version of the marathon, it showed very 
important effects, the society accepted the event and adopted it very quickly, many par-
ents were enthusiastic to send their children to this competition, as there is much more 
interest in computer science education in the general opinion. It is reflected this year by 
a very large number of participants in this year version of the marathon which is still in 
the first phase as this paper is prepared (about 300% increase from the last year). So, we 
think that the marathon is approaching its goals. We are planning to improve it and skip 
any problems, so we can get a pioneer experiment that can be cloned in other developing 
counties. We are planning to target most children in the country by cooperating with spe-
cialized organizations such as Distinction and Creativity Agency which is responsible 
for organizing the national informatics Olympiad, we also prepare to integrate this com-
petition with Bebras as we are preparing to join the community shortly, the undergoing 
proposal is to find a plan to enroll the winners of Bebras in the marathon, to narrow and 
focus the efforts to train students that are really interested and have suitable talents.

The material is revised as well, we are considering using Python as a programming 
language instead of C++, as it seems to be more convenient for young people, and proved 
efficiency in many other competitions such as (ANDERLE, 2018).

We are very pleased for the wide community acceptance of the event, many institu-
tions are willing to support the organization and scientific affairs of the marathon includ-
ing Syrian virtual university, ministry of education, Distinction and creativity agency 
and Syrian computer society. 

We think KPM starts affecting the society to push toward CSE: Many educational 
institutes started to organize courses to support computer science, parents are convinced 
to send their children to CS courses. Besides, the marathon revealed the lack of CSE in 
school syllabus, so that many organizations such as DCA and SCS are considering sup-
port of this type of education more seriously.

The event is promising and constitute an important factor in both improving the com-
puter science education awareness, and support other computer science competitions 
that targets older people such as Informatics Olympiad and ICPC.

6. Conclusion 

In this paper we presented the Kids Programming Marathon, an annual computer science 
competition for children aged between 8 and 15 years. We showed the motivation and 
goals of it, where the marathon aims at preparing new generation for the future as many 
jobs will be linked to computer science, the detailed information of the KPM is present-
ed, the different phases the participants go into. We elaborated the materials used in this 
competition which is a combination of various types of tasks, where logical tasks enhance 
problem solving skills by improving the ability to connect facts logically to achieve the 
right solution, while solving the programming problems enhance the skills of dividing 



Kids Programming Marathon: A Step toward Better Engagement with ... 235

the required task into several simpler ones and the innovation in creating appropriate so-
lutions that meet the required target, which reflect directly on the final implementation of 
the program either visually with Scratch or textual with C++. We discussed some aspects 
of the event and showed our viewpoint for the future of it, the marathon had a positive 
impact on the society in the last two years, we mentioned that many organizations where 
inspired by the idea, many institutes started to prepare CS courses for young people and 
many others are considering preparing programs to fill the gap of CS in school syllabus, 
the kids programming marathon is a promising competition that should be supported in 
order to promote computer science education and for better future of our children.

References

Alnahhas, A., Alazab, E. (2015). Selecting and training students with no suitable informatics background for 
informatics Olympiads – the case of Syrian Olympiad in Informatics. Olympiads in Informatics, 9. 

Anderle, M. (2018). PRASK – an Algorithmic Competition for Middle Schoolers in Slovakia. 
Hubwieser, P., Armoni, M., Giannakos, M.N. (2015). How to implement rigorous computer science education 

in K-12 schools? Some answers and many questions. ACM Transactions on Computing Education (TOCE), 
15(2), 5. 

Idlbi, A. (2009). Taking kids into programming (contests) with Scratch. Olympiads in Informatics, 3, 17–25. 
Resnick, M., Kafai, Y., Maeda, J. (2005). A networked, media-rich programming environment to enhance tech-

nological fluency at after-school centers in economically-disadvantaged communities. 
State of Computer Science Education. (2018). Retrieved from https://advocacy.code.org/
World Development Report 2019: The Changing Nature of Work. (2019). Retrieved from Washington, DC: 

World Bank.: 

M.N. Taki is a computer engineer from the Computer & Automation 
Engineering Department at Damascus University, and has been a sci-
entific coordinator of Syrian Olympiad in Informatics in 2009–2011. 
She is the director of the Kids Programming Training program at the 
Syrian Virtual University. She has worked on introducing program-
ming to the kids and youth. Her interests include promoting usage of 
new technologies with children and special needs and to introduce 
STEAM concepts in interactive learning methods.

A. Alnahhas is a teacher assistant at the faculty of information tech-
nology engineering, Damascus University, he holds a master degree 
in artificial intelligence and is a Ph.D. candidate, he was involved in 
the training and preparation of national Olympiad in informatics since 
2005, he was involved in many computer science activities for chil-
dren, he has been the leader of Syrian delegation to IOI for many years. 
He is the member of the scientific committee of Kids programming 
marathon since 2018.





Olympiads in Informatics, 2019, Vol. 13, 237–240
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.17

237

Digital Curator 

Marina S. TSVETKOVA, Vladimir M. KIRYUKHIN
Russian Academy of Natural History, Moscow, Russian Federation 
e-mails: ms-tsv@mail.ru; vkiryukh@gmail.com 

Abstract. This article is the announcement of a chapter “Advanced digital competence of teach-
ers” in the new scientific publication “Teacher Education in the 21st Century” (IntechOpen, Lon-
don, 2019, academic edition Reginald Monyai,). This chapter is distributed under the terms of the 
Creative Commons Attribution License*. 

Keywords: digital economy, digital pedagogy, digital competence of teachers, digital school, digi-
tal curator.

1. Introduction

The school as a social institution has taken these digital waves upon itself, and this has 
influenced the extremely dynamic renewal and expansion of teachers’ competencies – 
from traditional to digital. This demanded from governments to pay close attention to the 
digital competencies of citizens, and especially teachers, who form these competencies 
in children not spontaneously, but systematically for the socialization of the younger 
generation in the information society.

A modern digital society educator must continuously enrich and complement his or 
her digital competence by working with the growing digital generation of aboriginal 
children in the digital society.

Any adult, not only a teacher, will always face a new digital wave during his life, 
which is generated by more and more technically advanced information and commu-
nication technologies. In this sense, an adult, and a teacher also, in the community of 
children, always remains an emigrant of the digital society in the new digital wave.

Now we are experiencing a digital wave of artificial intelligence – the 4th industrial 
revolution and the electronic economy (RDEP, 2018). It is connected with the penetra-
tion of numbers in the artificial world of things, which became possible to manage thanks 
to artificial intelligence already in the global information space through the Internet and 
mobile devices not only in the workplace but also in everyday life. In this new digital 
world, a teacher forms a willingness to live in a new civilization.

* https://www.intechopen.com/books/teacher-education-in-the-21st-century



M.S. Tsvetkova, V.M. Kiryukhin238

Existing experience shows that user competencies (digital literacy) in the new condi-
tions of the digital economy are transforming and include not only common for all user 
(life) digital competencies, but also professional digital competencies (profession digita-
lization) and new social digital competencies in the global information world. Consider 
this triangle of new advanced digital competencies for a teacher in the conditions of the 
4th digital wave.

Cyber-worlds, in which children of our digital wave already live, are a natural envi-
ronment of normal human activity, filled with virtual analogues: cyber art, cyber educa-
tion, cyber offices, cyber banks, cyber police, cyber libraries, cyber enterprises, cyber 
medicine… All this should be included in the basic digital competence of the teacher to 
teach children to live in a digital world and to have an idea of the penetration of all new 
digital devices into it. Life digital competence of a competent user becomes a natural 
component of the general culture of the digital world.

The new mission of a digital pedagogy teacher is to teach children to learn in a 
digital environment throughout their lives. It is also important that each teacher brings 
to the children’s community information about new professions in their subject area 
(ICT, 2011). Children are focused on the future. Their professional choice is formed in 
school, and professions are formed by the digital economy and the new digital wave 
also defines the digitalization of the professions. 

In addition to the professions of a programmer, web designer and system adminis-
trator, which are traditionally digital for the beginning of the 21st century, the digital 
economy is rapidly enriching all professions with numbers and creating new profes-
sions. New professions of the near future show the dynamic addition of the surrounding 
world with the cyber world. Knowing about these professions, helping children to get 
basic professional skills with the involvement of business partners in school are the most 
important task for the professional choice of the child, his readiness for the challenges 
of the digital world.

Social digital competence of the teacher is not only psycho-oriented, but is aimed 
to form in children the value of education and general media literacy in working with 
information in the Internet and global media, prevention of cybercrime and cyber mania, 
fostering a culture of cyber security and Internet etiquette in global knowledge networks 
as opposed to entertainment. Here the teacher should act like a digital curator for the 
socialization of children in the digital world.

2. Digital Curator 

In the new digital wave, social digital competencies require special attention for teach-
ers to work with children. It is necessary to strengthen the environment of develop-
ment of social digital competences of teachers. In many countries, teachers have already 
appeared-digital curators in libraries, social adaptation centers, but it is important that 
they are in every school.

Professional standard “Consultant in the field of digital literacy (digital curator)” 
is approved in Russia from 31.10.2018 by the Ministry of labor and social protection 



Digital Curator 239

(DC 2018). The responsible organization-developer of the professional standard was the 
all-Russian public and state educational organization “Knowledge” (RS, 2018).

The purpose of the new type of professional activity is to advise on the use of in-
formation and communication technologies in various spheres of life, to promote the 
development of digital literacy of different groups of the population.

The competencies of the digital curator are the following:
Conducting direct reception of citizens’ appeals. ●
Electronic communication on citizens’ appeals. ●
Search and processing of information required for consultations in accordance  ●
with the work assignment.
Visual and remote placement of information and consultations. ●
Maintaining a database of citizens who have applied for advice. ●
Explanation and demonstration of the ICT application algorithm. ●
Informing about the most common threats when working in the network, using the  ●
means of communication.
Informing about the main methods of combating cyber threats. ●
Conducting surveys and questionnaires on the results of activities aimed at the  ●
development of digital literacy.
Development of programs of information and educational activities for the de- ●
velopment of digital literacy of various groups of citizens and the promotion of 
consulting services.
Diagnostics of the level of digital literacy of the citizen who applied for consulta- ●
tion.
Analysis of the market of digital products and services, digital literacy of the citi- ●
zens and resources for their development (information resources, educational and 
enlightening programs).
Organization of the introduction of modern methods, techniques and forms of  ●
counseling on digital literacy development, dissemination of positive experience 
of counseling; etc.

Digital curator should know the rules of business correspondence and written eti-
quette; rules of business communication and speech etiquette; requirements for docu-
mentation; norms of the native language; principles and mechanisms of search engines, 
functionality of popular search services. He needs to know the legislation of the country 
law in the field of intellectual property, personal data, types and basic user character-
istics of mobile devices; basic principles of organization and functioning of computer 
networks. He should be familiar with the main online services for the provision of elec-
tronic services, state portals and municipal services, including services provided with 
the use of electronic social cards, electronic payments, electronic queues, and electronic 
reception. He is required to get acquainted with the trends in the development of infor-
mation and communication technologies and digital literacy; the market of modern edu-
cational programs aimed at the development of digital literacy; directions and prospects 
for the development of ICT for the citizens; modern approaches, forms, methods and 
techniques of additional education and enlightenment, features of additional education 
and education on the development of digital literacy, etc.



M.S. Tsvetkova, V.M. Kiryukhin240

Reference 

DC (2018). Professional Standard “Consultant in the Field of Digital Literacy Development (Digital Cura-
tor)”. http://www.consultant.ru/document/cons_doc_LAW_311506/

ICT (2011). The Structure of ICT Competences of Teachers / UNESCO Recommendations.  
http://unesdoc.unesco.org/images/0021/002134/213475r.pdf

RDEP (2018). Russian Digital Economy Program. http://data-economy.ru
RS (2018). Russian Society “Knowledge”.  

https://www.znanierussia.ru/useful/Pages/digital-curator.aspx

M.S. Tsvetkova, professor of the Russian Academy of Natural Sci-
ences, PhD in pedagogic science, prize-winner of competition “The 
Teacher of Year of Moscow” (1998). Since 2002 she is a member of 
the Central methodical commission of the Russian Olympiad in in-
formatics, the pedagogic coach of the Russian team on the IOI. She is 
the author of many papers and books in Russia on the informatization 
of education and methods of development of talented students. Since 
2013 she is the Russian team leader. Expert of Committee on Educa-
tion and Science State Duma of the Russian Federation (since 2017).

V.M. Kiryukhin is professor of the Russian Academy of Natural Sci-
ences. He is the author of many papers and books in Russia on devel-
opment of Olympiad movements in informatics and preparations for 
the Olympiads in informatics. He is the exclusive representative who 
took part at all IOI from 1989 to 2017 as a member of the IOI Inter-
national Committee (1989–1992, 1999–2002, 2013–2017) and as the 
Russian team leader (1989, 1993–1998, 2003–2012). He received the 
IOI Distinguished Service Award at IOI 2003, the IOI Distinguished 
Service Award at IOI 2008 as one of the founders of the IOI making his 
long term distinguished service to the IOI from 1989 to 2008 and the 
medal “20 Years since the First International Olympiad in Informatics” 
at the IOI 2009. 



About Journal and Instructions to Authors

OLYMPIADS IN INFORMATICS is a peer-reviewed scholarly journal that provides 
an international forum for presenting research and developments in the specific scope 
of teaching and learning informatics through olympiads and other competitions. The 
journal is focused on the research and practice of professionals who are working in the 
field of teaching informatics to talented student. OLYMPIADS IN INFORMATICS is 
published annually (in the summer).

The journal consists of two sections: the main part is devoted to research papers 
and only original high-quality scientific papers are accepted; the second section is for 
countries reports on national olympiads or contests, book reviews, comments on tasks 
solutions and other initiatives in connection with teaching informatics in schools.

The journal is closely connected to the scientific conference annually organized dur-
ing the International Olympiad in Informatics (IOI).

Abstracting/Indexing

OLYMPIADS IN INFORMATICS is abstracted/indexed by:
Cabell Publishing ●
Central and Eastern European Online Library (CEEOL) ●
EBSCO ●
Educational Research Abstracts (ERA) ●
ERIC ●
INSPEC ●
SCOPUS  ● – Elsevier Bibliographic Databases

Submission of Manuscripts

All research papers submitted for publication in this journal must contain original un-
published work and must not have been submitted for publication elsewhere. Any manu-
script which does not conform to the requirements will be returned.

The journal language is English. No formal limit is placed on the length of a paper, 
but the editors may recommend the shortening of a long paper.

Each paper submitted for the journal should be prepared according to the following 
structure: 

concise and informative title ●
full names and affiliations of all authors, including e-mail addresses ●
informative abstract of 70–150 words ●



list of relevant keywords ●
full text of the paper ●
list of references ●
biographic information about the author(s) including photography ●

All illustrations should be numbered consecutively and supplied with captions. They 
must fit on a 124 × 194 mm sheet of paper, including the title.

The references cited in the text should be indicated in brackets:
for one author –  (Johnson, 1999) ●
for two authors – (Johnson and Peterson, 2002) ●
for three or more authors – (Johnson  ● et al., 2002)
the page number can be indicated as (Hubwieser, 2001, p. 25) ●

The list of references should be presented at the end of the paper in alphabetic order. 
Papers by the same author(s) in the same year should be distinguished by the letters a, b, 
etc. Only Latin characters should be used in references.

Please adhere closely to the following format in the list of references:
For books:

Hubwieser, P. (2001). Didaktik der Informatik. Springer-Verlag, Berlin.
Schwartz, J.E., Beichner, R.J. (1999). Essentials of Educational Technology. Allyn 

and Bacon, Boston.
For contribution to collective works:

Batissta, M.T., Clements, D.H. (2000). Mathematics curriculum development as a 
scientific endeavor. In: Kelly, A.E., Lesh, R.A. (Eds.), Handbook of Research De-
sign in Mathematics and Science Education. Lawrence Erlbaum Associates Pub., 
London, 737–760.

Plomp, T., Reinen, I.J. (1996). Computer literacy. In: Plomp, T., Ely, A.D. (Eds.), In-
ternational Encyclopedia for Educational Technology. Pergamon Press, London, 
626–630.

For journal papers:
McCormick, R. (1992). Curriculum development and new information technolo-

gy. Journal of Information Technology for Teacher Education, 1(1), 23–49. 
http://rice.edn.deakin.edu.au/archives/JITTE/j113.htm

Burton, B.A. (2010). Encouraging algorithmic thinking without a computer. Olympi-
ads in Informatics, 4, 3–14.

For documents on Internet:
International Olympiads in Informatics (2008).   

http://www.IOInformatics.org/

Hassinen, P., Elomaa, J., Ronkko, J., Halme, J., Hodju, P. (1999). Neural Networks 
Tool – Nenet (Version 1.1).  
http://koti.mbnet.fi/~phodju/nenet/Nenet/General.html



Authors must submit electronic versions of manuscripts in PDF to the editors. The 
manuscripts should conform all the requirements above.

If a paper is accepted for publication, the authors will be asked for a computerpro-
cessed text of the final version of the paper, supplemented with illustrations and tables, 
prepared as a Microsoft Word or LaTeX document. The illustrations are to be presented 
in TIF, WMF, BMP, PCX or PNG formats (the resolution of point graphics pictures is 
300 dots per inch).

Contacts for communication

Valentina Dagienė
Vilnius University
Akademijos str. 4, LT-08663 Vilnius, Lithuania
Phone: +370 5 2109 732                              
Fax: +370 52 729 209
E-mail: valentina.dagiene@mif.vu.lt

Internet Address

All the information about the journal can be found at:

https://ioinformatics.org/page/ioi-journal



Publisher office: Vilnius University                                                                                                      
                            Akademijos str. 4, LT-08663 Vilnius, Lithuania                                
                            August, 2019





Olympiads
in Informatics
Volume 13, 2019

S. COMBÉFIS, G. DE MOFFARTS, M. JOVANOV 
TLCS: A Digital Library with Resources to Teach and Learn Computer Science

 
3

M. DOLINSKY, M. DOLINSKAYA  
Training in Writing the Simplest Programs from Early Ages

 
21

D. GINAT  
On Implicit Means of Algorithmic Problem Solving

 
31

M. JANCHESKI, S. JANCHESKA 
Multidisciplinary, Multilingual, Multilevel and Multipurpose Usage of GeoGebra Software in 
Education

 
 

41
T. KAKESHITA, M. OHTSUKI  

Survey and Analysis of Computing Education at Japanese Universities: Non-IT Departments 
and Courses

 
 

57
T. KAKESHITA, N. TAKAHASHI, M. OHTSUKI 

Survey and Analysis of Computing Education at Japanese Universities: Informatics in General 
Education

 
 

81
M. LODI, D. MALCHIODI, M. MONGA, A. MORPURGO, B. SPIELER 

Constructionist Attempts at Supporting the Learning of Computer Programming: A Survey
 

99
K. SUMI, M. OHTSUKI, T. KAKESHITA  

Survey and Analysis of Computing Education at Japanese Universities: Subject of “Informa-
tion” for High School Teacher’s License

 
 

123
W. van der VEGT, E. SCHRIJVERS 

Analyzing Task Difficulty in a Bebras Contest Using Cuttle
 

145
T. VERHOEFF 

Programming, Software Development, and Computer Science – The Golden Triangle
 

157
M. WEIGEND, J. VANÍČEK, Z. PLUHÁR, I. PESEK 

Computational Thinking Education Through Creative Unplugged Activities
 

171

REPORTS
P. ERACLEOUS, P. PAVLIKAS, A. TTOFARI, A. CHARALAMPOUS. Cyprus Olympiad 

in Informatics
 

193
M. MEDVEDIEV. The Use of E-Olymp Internet Portal in Programming Competitions 201
K. MIRJALALI, A. Keivan MOHTASHAMI, M. ROGHANI, H. ZARRABI-ZADEH.  

TPS (Task Preparation System): A Tool for Developing Tasks in Programming Contests
 

209
Y. TABESH, S. ZARKESH, A. ZARKESH, I. FAZILOVA.  Computational Thinking in K-12: 

Azerbaijan’s Experience
 

217
M. TAKI, A. ALNAHHAS. Kids Programming Marathon: A Step toward Better Engagement 

with Computer Science Education
 

225
M.S. TSVETKOVA, V.M. KIRYUKHIN. Digital Curator 237

ISSN 1822-7732



Olympiads  
in Informatics13

IOI
InternatIonal olympIad In InformatIcs

I S S N  1 8 2 2 - 7 7 3 2

Olympiads  
in Informatics
Volume 13, 2019

O
lym

p
iad

s in
 In

form
atics   V

olu
m

e 13, 2019

Olympiads
in Informatics
Volume 13, 2019

Foreword 1
S. COMBÉFIS, G. DE MOFFARTS, M. JOVANOV 

TLCS: A Digital Library with Resources to Teach and Learn Computer Science
 
3

M. DOLINSKY, M. DOLINSKAYA  
Training in Writing the Simplest Programs from Early Ages

 
21

D. GINAT  
On Implicit Means of Algorithmic Problem Solving

 
31

M. JANCHESKI, S. JANCHESKA 
Multidisciplinary, Multilingual, Multilevel and Multipurpose Usage of GeoGebra Software in 
Education

 
 

41
T. KAKESHITA, M. OHTSUKI  

Survey and Analysis of Computing Education at Japanese Universities: Non-IT Departments 
and Courses

 
 

57
T. KAKESHITA, N. TAKAHASHI, M. OHTSUKI 

Survey and Analysis of Computing Education at Japanese Universities: Informatics in General 
Education

 
 

81
M. LODI, D. MALCHIODI, M. MONGA, A. MORPURGO, B. SPIELER 

Constructionist Attempts at Supporting the Learning of Computer Programming: A Survey
 

99
K. SUMI, M. OHTSUKI, T. KAKESHITA  

Survey and Analysis of Computing Education at Japanese Universities: Subject of “Informa-
tion” for High School Teacher’s License

 
 

123
W. van der VEGT, E. SCHRIJVERS 

Analyzing Task Difficulty in a Bebras Contest Using Cuttle
 

145
T. VERHOEFF 

Programming, Software Development, and Computer Science – The Golden Triangle
 

157
M. WEIGEND, J. VANÍČEK, Z. PLUHÁR, I. PESEK 

Computational Thinking Education Through Creative Unplugged Activities
 

171

REPORTS
P. ERACLEOUS, P. PAVLIKAS, A. TTOFARI, A. CHARALAMPOUS. Cyprus Olympiad 

in Informatics
 

193
M. MEDVEDIEV. The Use of E-Olymp Internet Portal in Programming Competitions 201
K. MIRJALALI, A. Keivan MOHTASHAMI, M. ROGHANI, H. ZARRABI-ZADEH.  

TPS (Task Preparation System): A Tool for Developing Tasks in Programming Contests
 

209
Y. TABESH, S. ZARKESH, A. ZARKESH, I. FAZILOVA.  Computational Thinking in K-12: 

Azerbaijan’s Experience
 

217
M. TAKI, A. ALNAHHAS. Kids Programming Marathon: A Step toward Better Engagement 

with Computer Science Education
 

225
M.S. TSVETKOVA, V.M. KIRYUKHIN. Digital Curator 237

ISSN 1822-7732


