
Olympiads
in Informatics12

IOI
InternatIonal olympIad In InformatIcs

I S S N 1 8 2 2 - 7 7 3 2

Olympiads
in Informatics
Volume 12, 2018

O
lym

p
iad

s in
 In

form
atics V

olu
m

e 12, 2018

Olympiads
in Informatics
Volume 12, 2018

T. BELL
Computer Science in K-12 Education: The Big Picture

3

M. DOLINSKY, M. DOLINSKAYA
How to Start Teaching Programming at Primary School

13

M.C. FONTAINE
Tidal Flow: A Fast and Teachable Maximum Flow Algorithm

25

D. GINAT, H. GALILI, N. LAVEE
Algorithmic Cognition and Pencil-Paper Tasks

43

M. JOVANOV, M. MIHOVA, B. KOSTADINOV, E. STANKOV
New Approach for Comparison of Countries’ Achievements in Science Olympiads

53

T. KAKESHITA
National Survey of Japanese Universities on Computing Education: Analysis of Departments
Majored in Computing Discipline

69
B. KOSTADINOV, M. JOVANOV, E. STANKOV

Platform for Analysing and Encouraging Student Activity on Contest and E-learning Systems

85
H. MANABE, S. TANI, S. KANEMUNE, Y. MANABE

Creating the Original Bebras Tasks by High School Students

99
P.S. PANKOV, A.A. KENZHALIEV

Combinatorial Property of Sets of Boxes in Multidimensional Euclidean Spaces and
Theorems in Olympiad Tasks

111
W. van der VEGT

How Hard Will this Task Be? Developments in Analyzing and Predicting Question
Difficulty in the Bebras Challenge

119

REPORTS
N. AMAROLI, G. AUDRITO, L. LAURA

Fostering Informatics Education through Teams Olympiad

133
M. ANDERLE.

PRASK – an Algorithmic Competition for Middle Schoolers in Slovakia E.

147
Á. ERDőSNé NéMETH, L. ZSAKÓ

Grading Systems for Algorithmic Contest

159
Y. NAKANO, K. IZUTSU

The Next Course of Study from 2022 and a History of the Subject “Informatics” in Japanese
High Schools

167
Y. NAKAYAMA , Y. NAKANO, Y. KUNO, B.T. WADA, H. KAKUDA,

M. HAGIYA, K. KAKEHI
Current Situation of Teachers of Informatics at High Schools in Japan

177
M.S. TSVETKOVA, V.M. KIRYUKHIN

International School in Informatics “Junior” for IOI Training

187

ISSN 1822-7732

ISSN 1822-7732

INTERNATIONAL OLYMPIAD IN INFORMATICS

VILNIUS UNIVERSITY

OLYMPIADS IN INFORMATICS

Volume 12 2018

Selected papers of
the International Conference joint with

the XXX International Olympiad in Informatics
Tsukuba, Japan, 1–8 September, 2018

OLYMPIADS IN INFORMATICS

Editor-in-Chief
Valentina Dagienė
Vilnius University, Lithuania, valentina.dagiene@mii.vu.lt

Executive Editor
Richard Forster
British Informatics Olympiad, UK, forster@olympiad.org.uk

Technical Editor
Tatjana Golubovskaja
Vilnius University, Lithuania, tatjana.golubovskaja@mii.vu.lt

International Editorial Board
Benjamin Burton, University of Queensland, Australia, bab@maths.uq.edu.au
Michal Forišek, Comenius University, Bratislava, Slovakia, misof@ksp.sk
Gerald Futschek, Vienna University of Technology, Austria, futschek@ifs.tuwien.ac.at
Mile Jovanov, Sts. Cyril and Methodius University, Macedonia,
 mile.jovanov@finki.ukim.mk
Marcin Kubica, Warsaw University, Poland, kubica@mimuw.edu.pl
Ville Leppänen, University of Turku, Finland, villelep@cs.utu.fi
Krassimir Manev, New Bulgarian University, Bulgaria, kmanev@nbu.bg
Seiichi Tani, Nihon University, Japan, tani.seiichi@nihon-u.ac.jp
Peter Waker, International Qualification Alliance, South Africa,
 waker@interware.co.za
Willem van der Vegt, Windesheim University for Applied Sciences, The Netherlands,
 w.van.der.vegt@windesheim.nl

The journal Olympiads in Informatics is an international open access journal devoted to publishing
original research of the highest quality in all aspects of learning and teaching informatics through
olympiads and other competitions.

http://ioinformatics.org/oi_index.shtml

ISSN 1822-7732 (Print)
 2335-8955 (Online)

© International Olympiad in Informatics, 2018
 Vilnius University, 2018
 All rights reserved

Olympiads in Informatics, 2018 Vol. 12, 1–2
© 2018 IOI, Vilnius University

Foreword

The International Olympiad in Informatics (IOI) is an annual international informatics
competition for individual contestants from over 80 invited countries, accompanied by
social and cultural programs as well as a half-day scientific conference for delegation
leaders, organisers and guests. The IOI community has an excellent opportunity to
communicate during this international event. Many countries have a variety of things
to present and discuss. The national olympiads do not exist in isolation, and the papers
from the 12th IOI conference show how similar problems arise in different countries
and different environments.

The IOI journal is focused on the research and practice of computing professionals
who work in the field of teaching informatics to talented secondary and high school
students. The journal is closely connected to the scientific conference annually orga-
nized during the IOI. The 12th volume has two tracks: the first section of the journal
focuses on research, and the second section is devoted to sharing national experi-
ences.

This year IOI is taken place in Tsukuba, Ibaraki, Japan from September 1st to
September 8th, 2018. Therefore focused attention is given to informatics education
in Japan. T. Kakeshita from Saga university has conducted a “National Survey of
Japanese Universities on Computing Education: Analysis of Departments Majored in
Computing Discipline”, and H. Manabe, S. Tani, S. Kanemune, Y. Manabe has pre-
sented a paper on “Creating original Bebras tasks by high school students“. Y. Nakano
and K. Izutsu discuss „The next Course of Study from 2022 and a prospect of informa-
tion studies education in Japanese senior high schools”. Y. Nakayama, Y. Nakano, Y.
Kuno, B. T. Wada, H. Kakuda, M. Hagiya, and K. Kakehi analyse “Current Situation
of Teachers of Informatics at High Schools in Japan”.

M.C. Fotaine presents a long study on “Tidal Flow: A Fast and Teachable Maxi-
mum Flow Algorithm”.

D. Ginat together with his colleagues H. Galili and N. Lavee discuss a “Algorith-
mic cognition and pencil-paper tasks”, which underline the aspects of abstraction,
heuristics, creativity, and declarative conceptions.

Some of the other papers in this volume deal with teaching programming at pri-
mary schools, combinatorial property of sets of boxes in multidimensional Euclidean
spaces and theorems in olympiad tasks. A new approach for comparison of countries’
achievements in science olympiads is presented by J. Jovanov, M. Mihove, B. Kostadi-
nov, and E. Stankov. The same authots (except M. Mihove) wrote an article “Platform
for analysing and encouraging student activity on contest and e-learning systems”

We understand the need for continuing to share our national experiences – our
problems are common problems. In the second part of the volume, M. Anderle from
Slovakia, N. Amaroli, G. Audrito, L. Laura from Italy, and several authors from Japan
presented their experience. M.S. Tsetvova and V.M. Kiryukhin informed about an in-
ternational junior school in informatics for IOI training.

Many thanks to the Editorial Board of the IOI journal and also to all those who had
assisted with the volume – especially authors and reviewers. A lot of work is required
there by starting from writing papers until finishing their final collection for the vol-
ume.

In particular, we would like to thank the organisational committee for IOI’2018
in Tsukuba, Ibaraki and the Japanese organisation of this year’s IOI for giving us the
opportunity to host the IOI conference.

Editors

Olympiads in Informatics, 2018, Vol. 12, 3–11
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.01

3

Computer Science in K-12 Education:
The Big Picture

Tim BELL
University of Canterbury, Christchurch, New Zealand
e-mail: tim.bell@canterbury.ac.nz

Abstract. As topics from computer science are increasingly being taught in K-12 schools, it
is valuable for those teaching within new curricula to be aware of the purpose of the various
components that students are expected to learn. We explore the main purposes of having com-
puter science in curricula in the first place, and then use examples to show how particular topics
that might be regarded by some as esoteric can be related to the bigger picture of what is trying
to be achieved. The model used is to relate curriculum content to how it affects people, both
those who are learning the subject, and those who will be using digital technologies developed
by those who have just learned to develop them. This provides a framework to help teachers
to motivate themselves, their students, and other stakeholders to engage with new curriculum
content.

Keywords: CS education, curriculum, teaching programming.

1. Introduction

Until recently it has been rare for K-12 students to have topics relating to computer sci-
ence as part of a formal national or state curriculum. However, recently many countries
have been introducing topics such as programming and computational thinking (Hubwi-
eser, Giannakos, Berges, et al., 2015; Duncan and Bell, 2015; Heintz et al., 2016). There
are several motivations for this, which can loosely be divided into growing students’
interest to increase the uptake of the subject by students, and building up knowledge and
skills to support students’ careers.

As can happen with any curriculum, there is a risk that students see multiple topics
spread over a number of years as a disjoint set of independent academic ideas and
practical skills that don’t necessarily have an obvious purpose. Teachers themselves also
need to recognise why a topic is important for their students to understand, and others in
the community (including parents and school officials) will also need help to form views
on the relevance and importance of new curriculum content.

T. Bell 4

In this paper we will explore the bigger picture of what curricula should be trying to
achieve, and the purpose of including various components in typical curricula, so that all
of those involved in it can keep a vision of the broader purpose.

2. The Purpose of K-12 Curricula

As topics relating to computer science enter international curricula, the public percep-
tion of the content is often simplified to the term “coding”, or sometimes referred to
as “computational thinking” to show that there is more depth to the subject. In reality,
most countries are adopting broader curricula that cover issues such as the performance
of algorithms, data representation and data structures, software engineering, networks,
security, and more (Hubwieser, Giannakos, Berges, et al. 2015; Duncan and Bell, 2015;
Heintz et al., 2016).

Even if only focussing on programming, the goal should be considerably more than
learning to code in some particular language(s). A key goal should be to help students
find out if it is something that they might be passionate about, and to give them a vi-
sion of what they might do with the wide possibilities that skill in computer science
and programming can open up. This is particularly important because stereotypes of
who might be good at “coding” can deter those who would enjoy it from even trying
(Overdorf and Lang, 2011). Helping students to explore the subject means that it is
important that it is presented in a way that they can see the purpose, and appreciate
that programming is a skill that supports problem solving and creativity, and can be
applied to many areas.

Making programming accessible to those who might not think they are interested
involves a delicate balance between supporting students to have early success, while
being careful to help them see that it is a skill that will take many of hours of experience
to build competence. This relates to Papert’s “low floor” and “high ceiling” (Resnik,
2009). There are wide ranging views on how long it takes to learn programming, and
in fact, there are many definitions of what it means to be a competent programmer; in a
commercial environment it might mean knowing how to solve clients’ problems using
a particular language or software stack, while in a research context or programming
competition it could involve having a wide range of skills around implementing sophis-
ticated and novel algorithms. Students who are new to programming need to maintain
confidence as they learn, but both under- and over-confidence can lead to them being
disheartened and giving up. Peter Norvig (director of research at Google) wrote an arti-
cle titled “Teach Yourself Programming in Ten Years”,1 which tries to provide a balance
to books that give the impression that programming can be learned very quickly, with
titles such as “Teach Yourself Java in 24 Hours”. Of course, the message isn’t that one
should plan to spend 10 years learning before becoming a software developer, but that,
like any skill, there is always more to learn, and mastery can involve a lot of experience
and learning – the more we learn, the more we realise that we don’t know! Having the

1 http://norvig.com/21-days.html

Computer Science in K-12 Education: The Big Picture 5

topic in the school curriculum gives students more opportunity to develop skills gradu-
ally over time, and also to find out the accompanying skills that are needed to support
their programming (such as math for analysing algorithms, communication skills for
working with other programmers, and logic for reasoning about program correctness).

The success of helping students discover their passion for computer science can de-
pend on the way it is taught, as can happen with any other subject. This means that hav-
ing well-prepared teachers with a good understanding of the purpose of the curriculum
is key to its success.

For those who have already discovered their passion, there is a need to support them
through clubs and competitions that allow them to extend their skill beyond the basics
covered in school curricula. In the past, such organisations have provided a key oppor-
tunity for students passionate about computing to build relationships with like-minded
friends and experience success in a context where they are understood. Such organisa-
tions are likely to become more important as the subject becomes formalised in K-12,
since there will always be those who may become bored with the basic curriculum that
is designed for typical students, and need opportunities to stretch themselves. Giving
students a vision of what they can do is fundamental to education, and clubs and com-
petitions give students a chance to expand their vision by providing the opportunity to
interact with a range of people, including industry professionals, experienced academ-
ics, and club/competition alumni.

As well as helping students discover their passion, having computer science as a
subject in schools also gives students more time to develop their skills over a period of
several years. As with other subjects, knowledge in this area doesn’t necessarily have
the goal of preparing students for a career in computing, as a general understanding of
how digital systems work and what programming is can help students to function in an
informed way in an increasingly digital society.

For example, many employees work with spreadsheets as part of their day to day
work, yet it is well established that may of the spreadsheets used in practice contain
substantive errors (Powell, 2008). This is not surprising when spreadsheet design is seen
as having a significant overlap with the skills required to do programming, including
proper testing, use of logic in selection (if) commands, and understanding the difference
between constants and variables including using effective naming.

Broader topics such as Artificial Intelligence give students a chance to understand a
little of the mechanisms behind these apparently mysterious technologies, particularly
in the light of the ethical and moral decisions that society is increasingly likely to have
to make as the capabilities of such systems grow.

In addition to benefiting students by helping them find out if computing is an area
that they have a passion for, new curricula are also intended to benefit broader society,
including industry and national interests, by addressing talent shortages and encouraging
creativity and entrepreneurship, as well as increasing national digital capabilities that are
increasingly needed to maintain security and financial stability for a country.

Whether the motivation is to benefit students or society, the reason for offering a
computing curriculum is ultimately to benefit people, and ideally society is better off
for having increased capability in this area. Of course, digital systems don’t always

T. Bell 6

have a positive benefit, and students should also be made aware of the ethics sur-
rounding the development of new technologies so that they can contribute positively
to society.

3. Seeing How Curriculum Elements Fit Together

We now consider how to see the bigger picture of the curriculum when classes are nec-
essarily focussed on specific topics. A range of curricula are being developed around
the world in the area of computing; some refer to the topics as computational think-
ing, digital technologies, and computer science. All such curricula that we are aware of
include programming as a key subject, and most include a range of related topics. For
example, an analysis of curricula by Duncan and Bell (2015) classified other common
components as:

Algorithms (designing programs and/or understanding computational complex- ●
ity).
Data representation (representation of various data types, and encoding through ●
encryption, compression and error corrections).
Devices and infrastructure (including device architecture, networks and cloud ●
computing).
Digital applications (such as simulation, modelling, and creating digital content). ●
Humans and computers (including cybersafety, ethics, careers, and human-com- ●
puter interaction).

A related project has identified ten “big ideas” in computer science that were collated
by seeking input from a range of coputer science education researchers and professionals
from around the world (Bell et al., 2018). The central big idea identified was that “digital
systems are designed by humans to serve human needs”; other ideas covered topics such
as data representation, algorithms, complexity, computability, virtual representations,
time dependent operations, and communication protocols. These aren’t intended to be
exhaustive list of what there is to know, but were considered by professionals to be key
ideas that students would benefit from being aware of.

With such a diverse range of topics, it’s easy to miss seeing the forest for the trees –
learning can become a lot of small topics that can loose connection to the big picture.
In the following sections we consider three topics, and relate them to the bigger picture
to illustrate these important connections. We build on the central ideas of the discipline
being human-centric to identify the value or purpose of the topics.

4. Example: Programming

Computer programming is often characterised as “coding”, but it is a very broad range
of skills, and developing software can be broken into elements such as analysis, design,
coding, testing, and debugging. Each of these is a discipline in itself; analysis of a situ-

Computer Science in K-12 Education: The Big Picture 7

ation for which software is to be developed requires very good communication with the
people requiring the program; design involves creativity; testing requires rigour; and
debugging requires persistence. Characterising programming as simply “coding” can
hide these important human-centric qualities.

Likewise, seeing computer science education as teaching a particular language also
risks missing the point. Instead of, say, “teaching Scratch2,” we should think of it as
“teaching programming, using Scratch”; or instead of “teaching C++”, we might be
“teaching OO programming using C++”. This helps to focus on the broader skills such
as testing and debugging, rather than seeing a programming language as a piece of soft-
ware with some set of features to be learned.

Another important attitude to develop is that we don’t write computer programs for
computers; we write them for people! This puts the focus on getting the interface right;
this isn’t just about GUI and mobile interfaces, but even for a simple text or dialogue box
interface it could involve making sure that it is fast enough to have a good response time
for a user – 0.1 seconds is ideal as it will appear instantaneous, otherwise 1 second is a
good target to keep interactions at a conversational pace (Johnson, 2013). The interface
design could also take into consideration how input and output are presented, such as
having simple messages to the user that are unambiguous.

In addition to writing programs for the end user, we also write them for the next
programmer who may need to use or modify it (and the next programmer might be the
original author in a year’s time, or even the next day). For example, Fig. 1 shows a short
Python function; the reader is encouraged to work out what it does before reading on.

Fig. 2 shows the same function with a meaningful name and comment (which
makes the purpose of the function explicit), as well as a variable name that has a role
in explaining the algorithm. In fact, the name “highest_so_far” could be the basis of
an invariant for a proof of correctness for the algorithm, and helps the reader to see
what the intended invariant is. Thus by using carefully chosen language in variable
and function names, the programmer can help to organise their own thoughts as well as
capture the logical intent of the program. Using clearer language also makes it easier
to see a slight inefficiency – this implementation makes n key comparisons when only
n – 1 are required.

Counter to common stereotypes, being an effective programmer requires good so-
cial and communication skills, whether the relationship is with the user, or with other

2 Scratch is a popular language for teaching programming to beginners.

Fig. 1. A Python function.

T. Bell 8

programmers. Blackwell points out that “many skills of a professional programmer are
related to social context rather than the technical one” (Blackwell, 2002). The point of
learning programming is to develop something to help people, and the rules and conven-
tions that we teach (such as commenting code) are there to support the people who may
need to work with the program in the future.

5. Example: Formal Languages

Formal languages appear in some school curricula, and can sometimes be seen as a theo-
retical topic that is difficult to understand and doesn’t have practical relevance. Here we
consider one of the basic ideas of formal languages that often appear in introductory ma-
terial: regular languages, which can be characterised by regular expressions and parsed
by finite state automata (FSA).

Understanding regular languages through a FSA has been introduced at primary
school level through a CS Unplugged activity called “Treasure Hunt”,3 where students
create a map of ship routes between islands to try to find their way to Treasure Island.
The CS Unplugged activity involves several students, and running around a play-
ground; a similar activity that can be used by individuals is provided in the Computer
Science Field Guide,4 where a student explores an interactive map of commuter train
stations.

Follow-up activities enable students to explore conventional FSAs and the regular
languages that they represent. But the bigger picture can be found by thinking about
how these affect people. We find regular languages being used for checking user input
(such as the format of an email address or URL), and most programming languages
offer support for regular expressions. They are also fundamental to implementing pro-
gramming languages by providing lexical analysis based on a human view of the rules
(through a regular expression) rather than a computer-centric version (which is the
equivalent FSA).

Regular languages are also a gateway to the Chomsky hierarchy, which in turn ad-
dresses philosophical questions of what computing is and what can and cannot be com-
puted (the Turing Machine is based on a FSA, and is regarded as a useful abstract model

3 https://classic.csunplugged.org/finite-state-automata/
4 http://csfieldguide.org.nz/en/chapters/formal-languages.html#finite-state-automata

Fig. 2. The Python function of Fig. 1 using better style.

Computer Science in K-12 Education: The Big Picture 9

of computation). This raises very human questions about what these devices are capable
of and how the power and limitations of computation may affect us in the future.

An FSA can also be used to model interfaces; for example, Fig. 3 shows a whimsical
“map” of the interface for a simple digital watch with two buttons (A and B) that change
the state of the watch. This helps us to see an interface as a machine, rather than just a
static layout of GUI elements, and can also identify unsafe transitions in more critical in-
terfaces such as medical devices (Thimbleby, 2009). The impact on humans here ranges
from mild frustration with a poor interface, to life-and-death situations.

6. Example: Error Detection and Correction

The final example we give is exploring algorithms for error detection and correction.
An initial experience with error detection can be given in the classroom through the CS
Unplugged Magic Parity Trick.5 This involves a grid of 6 by 6 or more cards that can be
flipped to show black on one side and white on the other (each card represents one bit).
The “magic” trick uses parity forward error correction to determine which card has been
flipped while the presenter was looking away. A related “trick” is to work out the check
digit at the end of a product code; the presenter can pretend to “mind read” what it is, but
of course it can be calculated from the other digits6.

Error correction can be demonstrated by “damaging” a QR code. For example, the
QR code in Fig. 4 contains the text of the first official Morse code message sent in 1844.
To demonstrate error correction at work, the demonstrator can change some of the white
“bits” to black with a pen. The second QR code in Fig. 4 has had quite a few of the bits
changed, and yet can still be scanned correctly. The third one is probably too damaged
to scan; finding the amount of “damage” that can be done while still having the code

5 https://classic.csunplugged.org/error-detection/
6 https://csunplugged.org/en/topics/error-detection-and-correction/unit-plan/product-
code-check-digits/

Fig. 3. A “treasure map” (FSA) that represents a digital watch interface.

T. Bell 10

readable is an interesting exercise for students. The important point is that changing the
binary representation doesn’t change the message; without error correction, changing
just one bit would change a character in the message.

The bigger picture of error control is again determined by thinking about how it
affects people. Binary digits are stored and transmitted in very vulnerable situations,
and small physical issues can change single bits easily. If one bit in a file was changed
without the user knowing, then the data would be incorrect; a one-bit error could have
serious consequences for the people concerned, whether it is a financial amount, exam
result or medical data. We take it for granted that data will remain intact, or at worst,
the computer will refuse to read a whole file even if only part of it has an error. Another
important aspect is that the cost of error correction is considerably less than making full
backups; if error correction techniques weren’t used, multiple backups would be needed
to have any certainty around the accuracy of data, and we would be constantly compar-
ing copies of the data to check its integrity. The human costs here are the financial cost
of extra storage and the delays needed for checking, or if errors are ignored, the impact
on the user would be that they are working with incorrect data.

7. Conclusion

A central idea of the “big picture” of computer science is that it is about people: “digital
systems are designed by humans to serve human needs” (Bell et al., 2018). Programs are
written for people, both the users of the program, and the next person who must maintain
it. While there are some circumstances where an individual might be solely responsible
for an entire program, such as programming exercises and challenges, or encapsulated
components of a larger system, the reality is that programming generally leads to an
outcome that will affect people. The same is true of all other topics in computer science,
whether it is finding an algorithm with better time complexity (so that people can have
their problems solved faster and with less demand on computing resources), or imple-
menting checking so that data collection, storage and transmission happen accurately.
And at an even broader level, the reason that we teach these subjects is to help students
develop a vision for their own future, and to empower them to help others using skills

Fig. 4. A QR code with various amounts of “damage”.

Computer Science in K-12 Education: The Big Picture 11

acquired that enable them to work effectively with digital systems, whether evaluating
them critically or creating new systems.

In a subject where the focus is inevitably digital devices, it is good to stand back reg-
ularly and see the big picture. For any topic being taught, we want to be able to answer
the question “How will someone potentionally be better off as a result of knowing this?”
with something other than just getting good exam grades or a qualification; the topics in
curricula have been chosen because they are tools to benefit people, so the challenge is
to be aware of what those benefits are.

References

Bell, T., Tymann, P., Yehudai, A. (2018). The Big Ideas in Computer Science for K-12 Curricula. Bulletin of
EATCS, 1(124). Retrieved from
http://bulletin.eatcs.org/index.php/beatcs/article/view/521

Blackwell, A. (2002). What is programming? In: 14th workshop of the Psychology of Programming Interest
Group. 204–218.

Duncan, C., Bell, T. (2015). A Pilot Computer Science and Programming Course for Primary School students.
In: WIPSCE, 39–48. http://doi.org/10.1145/2818314.2818328

Heintz, F., Mannila, L., Färnqvist, T. (2016). A review of models for introducing computational thinking, com-
puter science and computing in K-12 education. In: Proceedings Frontiers in Education Conference (FIE).
1–9. http://doi.org/10.1109/FIE.2016.7757410

Johnson, J. (2013). Designing with the mind in mind: simple guide to understanding user interface design
guidelines. Elsevier.

Overdorf, R., Lang, M. (2011). Reaching out to aid in retention. In: Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education – SIGCSE ’11. 583.
http://doi.org/10.1145/1953163.1953325

Powell, S. G., Baker, K. R., Lawson, B. (2008). A critical review of the literature on spreadsheet errors. Decision
Support Systems, 46, 128–138. http://doi.org/10.1016/j.dss.2008.06.001

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., et al. (2009). Scratch:
programming for all. Com. of the ACM, 52(11), 60–67.

Thimbleby, H. (2009). Contributing to safety and due diligence in safety-critical interactive systems develop-
ment by generating and analyzing finite state models. In: Proceedings of the 1st ACM SIGCHI symposium
on Engineering interactive computing systems. 221–230.

T. Bell is a professor in the Department of Computer Science and Soft-
ware Engineering at the University of Canterbury, where he leads the
Computer Science Education Research Group. His “Computer Science
Unplugged” project is being widely used internationally with the sup-
porting materials (books and videos) having been translated into over
20 languages. Tim has received awards for his work in computing edu-
cation including the 2018 ACM SIGCSE Outstanding Contribution to
Computer Science Education award. He has been actively involved in
the design and deployment of the new digital technologies curriculum
in New Zealand schools.

Olympiads in Informatics, 2018, Vol. 12, 13–24
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.02

13

How to Start Teaching Programming
at Primary School

Michael DOLINSKY, Mariya DOLINSKAYA
Faculty of Mathematics and Technologies of Programming, Fr. Skorina Gomel State University
Sovetskaya str., 104, Gomel. 246019. Republic of Belarus
e-mail: dolinsky@gsu.by, mkugejko@gsu.by

Abstract. This article describes the authors’ approach to start teaching programming at the prima-
ry school, which is based on using distance learning site DL.GSU.BY for sequential leaning seven
keywords (program, var, longint, begin, readln, writeln, end) of programming language Pascal.
Then these words are using to write the simplest programs that read some numbers, do necessary
calculations and write the answer.

Keywords: primary school, programming teaching, distance learning tools.

1. Introduction

Many years the authors prepare scholars of Gomel region for Olympiads in Informatics.
All work is doing on the base of distance learning system DL.GSU.BY, created at the
Faculty of Mathematics and Technologies of Programming of F. Scorina Gomel State
University. Since 2007, training begins with the first grade of primary school. The first
stage of training – development of thinking of preschool children and children of pri-
mary school age is described in (Dolinsky, 2014). This article presents the authors’ ap-
proach to learning the first keywords used for Pascal programs: “program, var, longint,
begin, readln, writeln, end” and their translation into Russian, as well as their order in
the first program. Fig. 1 shows our training goal.

One can see that the exercise was elaborated in the year 2007. Long-term experience
of teaching children in programming using this method allowed us to better understand
the problems of studying the subject, to improve and develop the learning system.

Chapter 2 presents technology of training. Chapter 3 describes materials for work at
the table. Chapter 4 contains remarks on personal learning and teaching in the described
process. Finally, chapter 5 contains conclusions.

M. Dolinsky, M. Dolinskaya14

2. Technology of Training

Thus, a complete list of children’s problems when learning the key words for writing the
first Pascal program looks like this:

To remember the order of the keywords. ●
To remember correct spelling of the keywords. ●
Learn how to type words on the keyboard. ●
To remember translations of the keywords into Russian. ●

To simplify the memorization of the order of commands, we began to study them us-
ing a color background corresponding to the arrangement of colors in the rainbow: red,
orange, yellow, green, light blue, blue, purple.

To simplify the memorization of the meaning of the keyword, we select the corre-
sponding image, the meaning of which is explained to the child, if necessary (Fig. 2).

All exercises follow in the order of appearance of the new keyword. I.e. at the begin-
ning there are exercises for “program”, then for “var”, then for “program – var”, then for
“longint”, then for “program – var – longint” and so on. Special group of the exercise
helps memorize letters and their order in keywords. In the process of training, an “unex-
pected obstacle” appeared – it is customary to type the keywords with lowercase letters
but the uppercase letters are written on the keyboard and for many letters their lowercase
and uppercase letters are not alike.

Fig. 3 shows an exercise aimed at solving such problems:
To do the exercise one needs to click onto letter for moving, as a result it becomes of

red color. Then one needs to click on the button “<<<” to move the letter left or click on
the button “>>>” to move the letter right.

Fig. 1. Goal of teaching.

How to Start Teaching Programming at Primary School 15

One can see that at the left exercise you need to reorder uppercase letters with up-
percase example, at the exercise in the center you need to reorder lowercase letter with
lowercase example, and at the right exercise you need to reorder uppercase letters with
lowercase example. In the first and second exercises a child may simply use example
immediately, but to do the third exercise he needs to remember correspondence of the
uppercase and lowercase letters.

Practice showed that for many children it is not enough to do the exercises presented
above so we add a set of different auxiliary exercises shown below.

Program Bear cub sits at the computer and type a program

Var The magician takes out different objects from the tall
hat, and they change all the time, a bunny, ribbons …

longint The painted lilt digit “one” is well associated with the
word number

Begin Alarm clock rings at the beginning of the day

readln The book is opened to read it

writeln Pencil writes on paper

End The stop sign means the end of the program

Fig. 2. Meaning of the pictures.

Fig. 3. Exercises for permuting letters.

M. Dolinsky, M. Dolinskaya16

Fig. 4 presents exercise where one also needs to form the keyword “program” by let-
ters permutation, but there is some help: a keyboard is shown on which the letters on the
keyboard, which you need to type at the moment, are marked with a yellow color. If the
letters are typed correctly, they are green. If the child makes a mistake, the color of the
letters becomes red. The letters at input are typed as lowercase letters, showing which
lowercase letter correspond pointed uppercase letter.

Fig. 5 presents exercise for memorizing the letters and their order in the keyword
PROGRAM. The exercise starts from one letter, then come the second, the third, etc.
Fig.5 shows exercise (the eighth exercise in the packet), where one needs to put the
first four letters of the keyword PROGRAM in right order. The first letter is given,
so the cell for the second letter appears. Note that the wrong letters do not move, so
the child must find the right letter and move it to the right place. When the last fourth
letter is put in place, the exercise appears with the first 5 letters of the keyword PRO-
GRAM, etc.

The next problem that must be solved to type keywords (after remembering letters
and their order) is to remember where the letters are at the keyboard. To solve that prob-
lem we create the following exercises, represented at Fig.6 and Fig. 7.

In the exercise in Fig. 6 (left side) one needs to move each letter of the keyword onto
its position at the keyboard. Note that if a letter is moved onto its position, the letter
jumps there.

In the exercise in Fig. 6 (right side) one needs to move each letter of the keyword
from its position at the keyboard onto a cell of the keyword. If a child made an error the
letter jumps to its source position on the keyboard.

Additional tips that one can get by clicking onto button “Don’t know” is represented
in Fig. 7.

Fig. 4. Type and permute letters of the keyword PROGRAM.

How to Start Teaching Programming at Primary School 17

After the child remembers letters and their order in the keyword, correspondence
of lowercase and uppercase letters of the keyword and the letters layout on the key-
board, we can train the keyword typing. To carry out this work the following exercises
are offered:

Fig. 5. Compose the word PROGRAM letter by letter.

Fig. 6. Remember letters layout at the keyboard.

Fig. 7. Tips for exercises from Fig. 6.

M. Dolinsky, M. Dolinskaya18

Fig.8 represents exercise for typing keyword with tip. The letter to be typed is indi-
cated in yellow in the picture of the keyboard, the correct printed letters are green, but
the wrong printed letter is red.

Fig. 9 represents exercise for typing of absent letters of the keyword. At first the
letters are typed in order (first letter, second letter, etc), and then absent letters are in
random order.

Fig. 10 shows the exercises that check whether the child remembers the image, the
English keyword, the Russian translation, and their mutual correspondence.

Fig. 8. Typing of the keyword PROGRAM with tip.

Fig. 9. Typing of absent letters.

Fig. 10. Correspondence of the Russian word to the image and the English word.

How to Start Teaching Programming at Primary School 19

3. Materials for Work at the Table

When we started work in the autumn of 2007, special attention was paid to working at the
table. At first we tried to reduce the time for working with computers, so that they would be
enough for each child. Secondly, we did not have computer analogues of these exercises.

First of all, this is the workbook “Learn keywords”, presented in Fig. 11. It contains
all the keywords you need to remember: pictures, keywords, translations, and a set of
exercises for learning and memorizing. For example, join letters of a keyword, point the
position of the letter on the keyboard, etc. In addition, such notebooks help to develop
skills of correct writing letters (pen on paper) and keywords. The notebook is provided
to the child on demand, first of all, for independent work at home. To work in the lessons,
as a rule, the materials shown in Fig. 12–17 are used.

Fig. 12, for example, represents some sets of cards that are used for the words to be
remembered.

Some exercises:
Gather the cards in order shown on the Fig. 12.A)
Contest “Who will quickly collect a table with keywords from the cards”.B)
Find absent card or cards.C)

Fig. 13 contains keywords table that allows adding the following exercises:
Gather the cards with example.D)
Gather the cards onto keywords table.E)

Fig. 11. Notebooks for work at the table.

M. Dolinsky, M. Dolinskaya20

Fig. 12. Color cards with keywords.

Fig. 13. Color keyword cards with keywords table.

How to Start Teaching Programming at Primary School 21

Fig. 14 shows the table of keywords in black and white colors, which makes it dif-
ficult to apply the above exercises because of the disappearance of “color support”.

Great attention is given to work with letters of English keywords. Fig. 15 contains
cards which allow compiling the keywords from lower- and uppercase letters, with or
without samples, for a separate keyword or for all keywords.

Fig. 14. Black and white cards and sample.

Fig. 15. Box with the keywords letters.

M. Dolinsky, M. Dolinskaya22

Fig. 16 represents “paper” keyboard. Children can put letters of given keywords
onto it.

Fig. 17 shows the “prototype keyboard”, which is made from glued matchboxes con-
taining letters on the positions of the real keyboard. In this way, we can train memorizing
the keyboard layout without a computer.

4. Personal Learning and Teaching

As a result, we created a training system where each child receives exercises that are
feasible for him in complexity and at the same time leading (albeit at different speeds) to
a common goal – to teach typing key words on the keyboard of the computer in the Pas-
cal programming language: “program, var, longint, begin, readln, writeln, end”, and also
remember their order in the program and their translation into Russian. All this together
is the best basis for a simple transition to the creation of the first program “reading and
writing number”.

Fig. 16. “Paper” keyboard with letters of PROGRAM.

Fig. 17. “Box” keyboard with keyword PROGRAM.

How to Start Teaching Programming at Primary School 23

Individual training and teaching provide a rich set of exercises at the table, as well
as computer-based automatic personal exercises, appointed depending on the results
of previous exercises. In addition big set of exercise packets supporting different entry
points to learning, including: “Propaedeutics of keywords”, “Learn keywords”, “Aux-
iliary learning”: “program”, “longint”, “begin”, “readln”, “writeln”. The standard ap-
proach is to start with “Keyword Propaedeutics”, then go to “Learn keywords”. If
the child has forgotten a keyword, he can repeat it in “Auxiliary Learning” for this
keyword.

5. Conclusion

This article presents an authors’ approach to starting teaching programming in elemen-
tary school, based on the consistent use of seven key words in the Pascal programming
language necessary to create simple programs that read some numbers make the neces-
sary calculations and write the answer.

It is important to note that we have many exercises with different levels of diffi-
culty to work both on the computer and at the table. They provide effective individual
education and training for children with different levels of training and motivation. The
presented system of teaching and learning is scalable and can be used even by teachers
and parents who are initially far from programming, as shown by the present practice.
Initially, you can conduct joint training. And after that, when the child “gained speed”
successfully continue the classes on their own.

References

Dolinsky M. (2005). Algorithmization and Programming with TURBO PASCAL: From Simple to Olympiad
Problems: Tutorial. Sankt-Petersburg: “Piter” (In Russian: Алгоритмизация и программирование на ����Tur-
bo Pascal: от простых до олимпиадных задач: Учебное пособие. СПб.: Питер).

Dolinsky M. (2006). Solving of Sophisticated Olympiad Programming Problems: Tutorial. Saint-Petersburg:
“Piter” (In Russian: Решение сложных и олимпиадных задач по программированию: Учебное пособие.
СПб.: Питер).

Dolinsky M. (2013). An approach to teach introductory-level computer programming. Olympiads in Informat-
ics, 7, 14–22.

Dolinsky M. (2014). Technology for the development of thinking of preschool children and primary school
children. Olympiads in Informatics, 8, 63–68.

Dolinsky M. (2016). Gomel training school for Olympiads in Informatics. Olympiads in Informatics, 10,
237–247.

Dolinsky M. (2017). A new generation distance learning system for programming and Olympiads in Informat-
ics. Olympiads in Informatics, 11, 29–39.

Performance Statistics of Gomel pupils at international and national olympiads in informatics since 1997 up to
2017. (In Russian): http://dl.gsu.by/olymp/result.asp

M. Dolinsky, M. Dolinskaya24

M. Dolinsky is a lecturer in Gomel State University “Fr. Skaryna”
from 1993. Since 1999 he is leading developer of the educational site
of the University (dl.gsu.by). Since 1997 he is heading preparation
of the scholars in Gomel to participate in programming contests and
Olympiad in informatics. He was a deputy leader of the team of Be-
larus for IOI’2006, IOI’2007, IOI’2008 and IOI’2009. His PhD is de-
voted to the tools for digital system design. His current research is in
teaching Computer Science and Mathematics from early age.

M. Dolinskaya is student in Gomel State University “Fr. Skaryna”
from 2005 then graduate student from 2017. Since 2006 she is one of
developer of the educational site dl.gsu.by as well as teacher of pupils
from first grade. Her current research is in teaching programming from
early age.

Olympiads in Informatics, 2018, Vol. 12, 25–41
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.03

25

Tidal Flow: A Fast and Teachable
Maximum Flow Algorithm

Matthew C. FONTAINE
Independent Researcher
e-mail: tehqin@gmail.com

Abstract. Among the most interesting problems in competitive programming involve maximum
flows. However, efficient algorithms for solving these problems are often difficult for students to
understand at an intuitive level. One reason for this difficulty may be a lack of suitable metaphors
relating these algorithms to concepts that the students already understand. This paper introduces a
novel maximum flow algorithm, Tidal Flow, that is designed to be intuitive to undergraduate and
pre-university computer science students.

Keywords: algorithms, maximum flow, flow network, flow augmentation.

1. Introduction

Maximum flows are a well-researched area in optimization theory. The problem was
originally formulated by Harris and Ross (1955) and solved by using the well-known
augmenting path technique by Ford and Fulkerson (1955). Since this initial discovery,
many maximum flow algorithms have been developed (for a survey see: Ahuja et al.,
1993; Goldberg and Tarjan, 2014). Most of these algorithms are space efficient. As a
result, time complexity becomes the primary basis of comparison between maximum
flow algorithms (Goldberg and Tarjan, 2014). The maximum flow formulation opens
itself to a wide variety of applications (for examples see: Ahuja et al., 1993). This di-
versity of applications has increased the popularity of problems involving maximum
flows in the competitive programming community. Problems that require the creation
of networks with large capacities and a large number of vertices and edges demand the
use of faster flow algorithms to solve each problem in a reasonable amount of time.
These more complex algorithms can be a burden for students to understand. As pro-
posed by Forišek and Stienová (2013), there are differences among deriving, proving,
and teaching algorithms. How easy an algorithm is to teach is a factor in how widely
adopted an algorithm will be. Moreover, the theoretically best algorithms with respect
to time complexity are not always the fastest when implemented in practice (Ahuja
et al., 1997), i.e. in a programming contest setting. These considerations create a need

M.C. Fontaine26

for a fast flow algorithm that is easy to teach, is easy to implement, and offers com-
petitive in-practice performance compared to other popular flow algorithms. This paper
proposes Tidal Flow as an algorithm to satisfy these three objectives.

2. Background

This section reviews the maximum flow problem and introduces the notation that will
be used throughout the rest of the paper. It then describes three historically important
maximum flow algorithms that introduce necessary concepts for understanding the nov-
el Tidal Flow algorithm.

2.1. Maximum Flow Formulation and Notation.

This paper will use formulation and notation adapted from Goldberg and Tarjan
(2014). The input to the maximum flow problem is (   ), where  = ( ) is
a directed graph with  vertices and  edges. The input marks two special ver-
tices   2 . The vertex  is known as a source and the vertex  is known as
the sink. The function  :  !

2 TIDAL FLOW: A FAST AND TEACHABLE MAXIMUM FLOW ALGORITHM

2. Background

This section reviews the maximum flow problem and introduces the notation
that will be used throughout the rest of the paper. It then describes three histor-
ically important maximum flow algorithms that introduce necessary concepts for
understanding the novel Tidal Flow algorithm.

2.1. Maximum flow formulation and notation. This paper will use formula-
tion and notation adapted from [11]. The input to the maximum flow problem is
(G, s, t, cap), where G = (V,E) is a directed graph with n vertices andm edges. The
input marks two special vertices s, t ∈ V . The vertex s is known as a source and the
vertex t is known as the sink. The function cap : E → R+ is some strictly positive
capacity function. A maximum flow is some non-negative function f : E → R∗ that
satisfies two constraints: (1) a capacity constraint f(e) ≤ cap(e), ∀e ∈ E and (2) a
conservation constraint


(w,v)∈E f(w, v) =


(v,u)∈E f(v, u), ∀v ∈ V − {s, t}. The

capacity constraint ensures that flow sent down some edge e does not exceed its
capacity, while the conservation constraint maintains the flow entering some vertex
v equals the amount of flow leaving v. The conservation constraint is maintained
for all vertices except the source and sink. The flow value is defined as the amount
of flow leaving the source or


v∈V f(s, v). A maximum flow is one that maximizes

the flow value subject to the conservation and capacity constraints.

2.2. Residual graphs and augmenting paths. To make it easier to discover
maximum flows, it is useful to make the graph more malleable. Residual graphs are
a useful tool for this purpose. Consider each edge (w, v) ∈ E. To change the flow
along this edge, one could increase the flow by up to cap(w, v)−f(w, v) or decrease
the flow by f(w, v). Decreasing the flow is easier to manage by including a reverse
edge (v, w) with cap(w, v) where f(v, w) = −f(w, v) at all times. Now, decreasing
flow f(w, v) can be accomplished by increasing f(v, w). The amount that f(w, v)
can be decreased is given by cap(v, w) − f(v, w). Now consider a new edge set
E that contains all edges of E and all reverse edges of E. The residual graph is
Gr = (V,E) with a new function capr(w, v) = cap(w, v) − f(w, v). Conceptually
capr gives a limit on how much each e ∈ E can change along that direction.
To modify f and maintain conservation and capacity constraints, an algorithm

can discover some path P from source to sink where each edge on that path
e has capr(w, v) > 0. The algorithm can then augment each edge e ∈ P by
a = mine∈P (capr(e)). This change can be accomplished through modifying f :
f(w, v) ← f(w, v) + a and f(v, w) ← f(v, w) − a for each edge (w, v) ∈ P . P
is known as an augmenting path [7]. Each augmentation maintains the capacity
and conservation constraints and gradually increases the flow with each augmenta-
tion until a maximum flow is reached. Augmenting paths can be applied between
any two vertices w, v ∈ V . The term global augmenting path refers to augmenting
paths between s and t to distinguish this approach from techniques that make local
improvements to flow.

2.3. Dinitz’s algorithm and level graphs. Augmenting along shortest paths
was discovered to be more efficient than augmenting along other types of paths
[4, 6]. Dinitz’s algorithm works by efficiently computing a level graph from s to t
and finding paths from s to t through that level graph.

+ is some strictly positive capacity function.
A maximum flow is some non-negative function  :  !

2 TIDAL FLOW: A FAST AND TEACHABLE MAXIMUM FLOW ALGORITHM

2. Background

This section reviews the maximum flow problem and introduces the notation
that will be used throughout the rest of the paper. It then describes three histor-
ically important maximum flow algorithms that introduce necessary concepts for
understanding the novel Tidal Flow algorithm.

2.1. Maximum flow formulation and notation. This paper will use formula-
tion and notation adapted from [11]. The input to the maximum flow problem is
(G, s, t, cap), where G = (V,E) is a directed graph with n vertices andm edges. The
input marks two special vertices s, t ∈ V . The vertex s is known as a source and the
vertex t is known as the sink. The function cap : E → R+ is some strictly positive
capacity function. A maximum flow is some non-negative function f : E → R∗ that
satisfies two constraints: (1) a capacity constraint f(e) ≤ cap(e), ∀e ∈ E and (2) a
conservation constraint


(w,v)∈E f(w, v) =


(v,u)∈E f(v, u), ∀v ∈ V − {s, t}. The

capacity constraint ensures that flow sent down some edge e does not exceed its
capacity, while the conservation constraint maintains the flow entering some vertex
v equals the amount of flow leaving v. The conservation constraint is maintained
for all vertices except the source and sink. The flow value is defined as the amount
of flow leaving the source or


v∈V f(s, v). A maximum flow is one that maximizes

the flow value subject to the conservation and capacity constraints.

2.2. Residual graphs and augmenting paths. To make it easier to discover
maximum flows, it is useful to make the graph more malleable. Residual graphs are
a useful tool for this purpose. Consider each edge (w, v) ∈ E. To change the flow
along this edge, one could increase the flow by up to cap(w, v)−f(w, v) or decrease
the flow by f(w, v). Decreasing the flow is easier to manage by including a reverse
edge (v, w) with cap(w, v) where f(v, w) = −f(w, v) at all times. Now, decreasing
flow f(w, v) can be accomplished by increasing f(v, w). The amount that f(w, v)
can be decreased is given by cap(v, w) − f(v, w). Now consider a new edge set
E that contains all edges of E and all reverse edges of E. The residual graph is
Gr = (V,E) with a new function capr(w, v) = cap(w, v) − f(w, v). Conceptually
capr gives a limit on how much each e ∈ E can change along that direction.
To modify f and maintain conservation and capacity constraints, an algorithm

can discover some path P from source to sink where each edge on that path
e has capr(w, v) > 0. The algorithm can then augment each edge e ∈ P by
a = mine∈P (capr(e)). This change can be accomplished through modifying f :
f(w, v) ← f(w, v) + a and f(v, w) ← f(v, w) − a for each edge (w, v) ∈ P . P
is known as an augmenting path [7]. Each augmentation maintains the capacity
and conservation constraints and gradually increases the flow with each augmenta-
tion until a maximum flow is reached. Augmenting paths can be applied between
any two vertices w, v ∈ V . The term global augmenting path refers to augmenting
paths between s and t to distinguish this approach from techniques that make local
improvements to flow.

2.3. Dinitz’s algorithm and level graphs. Augmenting along shortest paths
was discovered to be more efficient than augmenting along other types of paths
[4, 6]. Dinitz’s algorithm works by efficiently computing a level graph from s to t
and finding paths from s to t through that level graph.

* that satisfies two con-
straints: (1) a capacity constraint  () ≤  () 8 2  and (2) a conservation con-
straint

P
()2  ( ) =

P
()2  ( ) 8 2  – f   g. The capacity constraint

ensures that flow sent down some edge  does not exceed its capacity, while the con-
servation constraint maintains the flow entering some vertex  equals the amount of
flow leaving . The conservation constraint is maintained for all vertices except the
source and sink. The flow value is defined as the amount of flow leaving the source
or

P
2  ( ). A maximum flow is one that maximizes the flow value subject to the

conservation and capacity constraints.

2.2. Residual Graphs and Augmenting Paths.

To make it easier to discover maximum flows, it is useful to make the graph more mallea-
ble. Residual graphs are a useful tool for this purpose. Consider each edge ( ) 2 . To
change the flow along this edge, one could increase the flow by up to  ( ) – ( )
or decrease the flow by  ( ). Decreasing the flow is easier to manage by including a re-
verse edge ( ) with  ( ) where  ( ) = – ( ) at all times. Now, decreasing
flow  ( ) can be accomplished by increasing ( ). The amount that  ( ) can
be decreased is given by ( ) – ( ). Now consider a new edge set  0 that con-
tains all edges of  and all reverse edges of . The residual graph is  = (  0) with
a new function  ( ) =  ( ) –  ( ). Conceptually,  gives a limit on
how much each  2  0 can change along that direction.

Tidal Flow: A Fast and Teachable Maximum Flow Algorithm 27

To modify  and maintain conservation and capacity constraints, an algorithm can dis-
cover some path  from source to sink where each edge on that path  has  ( )  0.
The algorithm can then augment each edge  2  by  = 2 ( ()).

This change can be accomplished through modifying :  ( ) ⟵ ( ) + 
and ( ) ⟵ ( ) –  for each edge ( ) 2 .  is known as an augmenting path
(Ford and Fulkerson, 1955). Each augmentation maintains the capacity and conservation
constraints and gradually increases the flow with each augmentation until a maximum
flow is reached. Augmenting paths can be applied between any two vertices   2 .
The term global augmenting path refers to augmenting paths between  and  to distin-
guish this approach from techniques that make local improvements to flow.

2.3. Dinitz’s Algorithm and Level Graphs.

Augmenting along shortest paths was discovered to be more efficient than augment-
ing along other types of paths (Dinitz, 1970; Edmonds and Karp, 1972). Dinitz’s al-
gorithm works by efficiently computing a level graph from  to  and finding paths
from  to  through that level graph.

A level graph  = ( ) is a graph where  contains all vertices  2  on
all shortest paths from  to  in  (see Fig. 1). Let  :  ! Z *denote the number
of edges on a path from  to  2  with minimum number of edges.  contains all
edges in ( ) 2  where  ( )  0 and  () + 1 =  ().

Dinitz’s algorithm computes a level graph using a breadth first search (BFS). The
algorithm then attempts to saturate enough edges in  to prevent any augmenting path
from  to . An edge  2  is saturated if  () = 0. Such a flow is called a blocking
flow of level graph .

Shimon Even revised and popularized Dinitz’s algorithm, creating the well-known
version (Dinitz, 2006). (When popularizing the algorithm, Even spelled Dinitz as Dinic
and changed the pronunciation (Dinitz, 2006).) In Even’s version, a blocking flow is
computed through a modified depth first search (DFS). The DFS finds a maximal set of
shortest augmenting paths, which is sufficient to block . The modified DFS produces
these augmenting paths in  () running time. The BFS and DFS procedures repeat
until no augmenting path exists from source to sink. Each level graph blocked increases
the length of the shortest path in the next discovered level graph, resulting in an  (2)
total running time. The original algorithm also computes a blocking flow of this level
graph in  (), but is both more complicated conceptually and harder to implement.

Fig. 1. A level graph.

M.C. Fontaine28

2.4. Ka�zanov’s Algo�ithm and P�eflows.

Karzanov formalized the concept of blocking flows and additionally introduced the con-
cept of preflows (Karzanov, 1974). In Karzanov’s algorithm, preflows are used to in
place of global augmenting paths to block the level graph. A p�eflow is similar to a
flow , but the conservation constraint is removed, meaning more flow can go into a
vertex than is leaving it. To help keep track of the amount of extra flow at some vertex a
function  :  !

2 TIDAL FLOW: A FAST AND TEACHABLE MAXIMUM FLOW ALGORITHM

2. Background

This section reviews the maximum flow problem and introduces the notation
that will be used throughout the rest of the paper. It then describes three histor-
ically important maximum flow algorithms that introduce necessary concepts for
understanding the novel Tidal Flow algorithm.

2.1. Maximum flow formulation and notation. This paper will use formula-
tion and notation adapted from [11]. The input to the maximum flow problem is
(G, s, t, cap), where G = (V,E) is a directed graph with n vertices andm edges. The
input marks two special vertices s, t ∈ V . The vertex s is known as a source and the
vertex t is known as the sink. The function cap : E → R+ is some strictly positive
capacity function. A maximum flow is some non-negative function f : E → R∗ that
satisfies two constraints: (1) a capacity constraint f(e) ≤ cap(e), ∀e ∈ E and (2) a
conservation constraint


(w,v)∈E f(w, v) =


(v,u)∈E f(v, u), ∀v ∈ V − {s, t}. The

capacity constraint ensures that flow sent down some edge e does not exceed its
capacity, while the conservation constraint maintains the flow entering some vertex
v equals the amount of flow leaving v. The conservation constraint is maintained
for all vertices except the source and sink. The flow value is defined as the amount
of flow leaving the source or


v∈V f(s, v). A maximum flow is one that maximizes

the flow value subject to the conservation and capacity constraints.

2.2. Residual graphs and augmenting paths. To make it easier to discover
maximum flows, it is useful to make the graph more malleable. Residual graphs are
a useful tool for this purpose. Consider each edge (w, v) ∈ E. To change the flow
along this edge, one could increase the flow by up to cap(w, v)−f(w, v) or decrease
the flow by f(w, v). Decreasing the flow is easier to manage by including a reverse
edge (v, w) with cap(w, v) where f(v, w) = −f(w, v) at all times. Now, decreasing
flow f(w, v) can be accomplished by increasing f(v, w). The amount that f(w, v)
can be decreased is given by cap(v, w) − f(v, w). Now consider a new edge set
E that contains all edges of E and all reverse edges of E. The residual graph is
Gr = (V,E) with a new function capr(w, v) = cap(w, v) − f(w, v). Conceptually
capr gives a limit on how much each e ∈ E can change along that direction.
To modify f and maintain conservation and capacity constraints, an algorithm

can discover some path P from source to sink where each edge on that path
e has capr(w, v) > 0. The algorithm can then augment each edge e ∈ P by
a = mine∈P (capr(e)). This change can be accomplished through modifying f :
f(w, v) ← f(w, v) + a and f(v, w) ← f(v, w) − a for each edge (w, v) ∈ P . P
is known as an augmenting path [7]. Each augmentation maintains the capacity
and conservation constraints and gradually increases the flow with each augmenta-
tion until a maximum flow is reached. Augmenting paths can be applied between
any two vertices w, v ∈ V . The term global augmenting path refers to augmenting
paths between s and t to distinguish this approach from techniques that make local
improvements to flow.

2.3. Dinitz’s algorithm and level graphs. Augmenting along shortest paths
was discovered to be more efficient than augmenting along other types of paths
[4, 6]. Dinitz’s algorithm works by efficiently computing a level graph from s to t
and finding paths from s to t through that level graph.

* is used, where  () =
P

()2  ( ) –
P

()2  ( ).
Similar to Dinitz’s algorithm, Karzanov’s algorithm repeatedly computes level

graphs and blocks them. For each level graph, the algorithm sends preflows through the
level graph and gradually restores the conservation constraint, converting the blocking
preflow into a blocking flow. The blocking flows are discovered in  (2) running time,
resulting in a  (3) running time for the algorithm.

3. Tidal Flow

This section introduces the Tidal Flow algorithm by first explaining its relationship to
Dinitz’s and Karzanov’s algorithms, then introducing an ocean tide metaphor that makes
the algorithm easier to understand at a high level, and then finally explaining the techni-
cal details and formalization of the algorithm.

3.1. Blocking Flows.

Like Dinitz’s algorithm and Karzanov’s algorithm, Tidal Flow computes blocking flows
on a level graph. Like Dinitz’s algorithm, Tidal Flow’s goal is to produce blocking flows
by discovering global augmenting paths. However, instead of computing the blocking
flow in  (), the Tidal Flow attempts to compute a blocking flow in  (). Unlike
Dinitz’s algorithm, Tidal Flow makes no guarantee to discover a blocking flow in the
level graph in one pass. To simplify the blocking procedure, the edges of the level graph
are stored as a list in BFS order (Fig. 2).

Fig. 2. A level graph stored as a list of edges.

Tidal Flow: A Fast and Teachable Maximum Flow Algorithm 29

3.2. Tide Metaphor.

Metaphors can be a powerful tool in teaching new algorithms. Forišek and Stienová give
the following definition:

A (conceptual) metaphor is a cognitive process that occurs when a sub-
ject seeks understanding of one idea (the target domain) in terms of a
different, already known idea (the source domain). The subject creates
a conceptual mapping between the properties of the source and the
target, thereby gaining new understanding about the target. (Forišek
and Stienová, 2013, adapted from Lakoff and Johnson, 2003)

Tidal Flow uses a conceptual metaphor based on oceanic tide cycles to help explain
its level graph blocking procedure.

3.3. Discovering Blocking Flows as Tides.

The goal of Tidal Flow is to produce a blocking flow on a level graph. Tidal Flow does
that through a procedure called tide cycle.

Tide cycle has three phases: high tide, low tide, and erosion.
 (1) High tide: Produce an upper bound on the amount of flow that can reach each
vertex in the level graph by passing from source to sink.
 (2) Low tide: Reduce the amount of flow that can reach each vertex to a feasible
amount by passing from sink to source.
 (3) Erosion: Change the flow on each edge used and update residual flow.

In terms of the metaphor, vertices are tide pools that temporarily collect flow during
each phase of tide cycle. Tide pools store an upper bound on the amount of flow that
can reach each vertex during high tide when flow passes from source to sink. During
low tide, flow is pushed back from sink to source. Not all flow will make it back to the
source and some tide pools retain excess flow (similar to how tide pools in nature exist
as separate bodies of water during low tide). Because the level graph is stored as a list
of edges, each phase can be implemented as a loop through the list of edges.

Consider the example level graph in Fig. 3. During the high tide phase, a func-
tion  :  !

2 TIDAL FLOW: A FAST AND TEACHABLE MAXIMUM FLOW ALGORITHM

2. Background

This section reviews the maximum flow problem and introduces the notation
that will be used throughout the rest of the paper. It then describes three histor-
ically important maximum flow algorithms that introduce necessary concepts for
understanding the novel Tidal Flow algorithm.

2.1. Maximum flow formulation and notation. This paper will use formula-
tion and notation adapted from [11]. The input to the maximum flow problem is
(G, s, t, cap), where G = (V,E) is a directed graph with n vertices andm edges. The
input marks two special vertices s, t ∈ V . The vertex s is known as a source and the
vertex t is known as the sink. The function cap : E → R+ is some strictly positive
capacity function. A maximum flow is some non-negative function f : E → R∗ that
satisfies two constraints: (1) a capacity constraint f(e) ≤ cap(e), ∀e ∈ E and (2) a
conservation constraint


(w,v)∈E f(w, v) =


(v,u)∈E f(v, u), ∀v ∈ V − {s, t}. The

capacity constraint ensures that flow sent down some edge e does not exceed its
capacity, while the conservation constraint maintains the flow entering some vertex
v equals the amount of flow leaving v. The conservation constraint is maintained
for all vertices except the source and sink. The flow value is defined as the amount
of flow leaving the source or


v∈V f(s, v). A maximum flow is one that maximizes

the flow value subject to the conservation and capacity constraints.

2.2. Residual graphs and augmenting paths. To make it easier to discover
maximum flows, it is useful to make the graph more malleable. Residual graphs are
a useful tool for this purpose. Consider each edge (w, v) ∈ E. To change the flow
along this edge, one could increase the flow by up to cap(w, v)−f(w, v) or decrease
the flow by f(w, v). Decreasing the flow is easier to manage by including a reverse
edge (v, w) with cap(w, v) where f(v, w) = −f(w, v) at all times. Now, decreasing
flow f(w, v) can be accomplished by increasing f(v, w). The amount that f(w, v)
can be decreased is given by cap(v, w) − f(v, w). Now consider a new edge set
E that contains all edges of E and all reverse edges of E. The residual graph is
Gr = (V,E) with a new function capr(w, v) = cap(w, v) − f(w, v). Conceptually
capr gives a limit on how much each e ∈ E can change along that direction.
To modify f and maintain conservation and capacity constraints, an algorithm

can discover some path P from source to sink where each edge on that path
e has capr(w, v) > 0. The algorithm can then augment each edge e ∈ P by
a = mine∈P (capr(e)). This change can be accomplished through modifying f :
f(w, v) ← f(w, v) + a and f(v, w) ← f(v, w) − a for each edge (w, v) ∈ P . P
is known as an augmenting path [7]. Each augmentation maintains the capacity
and conservation constraints and gradually increases the flow with each augmenta-
tion until a maximum flow is reached. Augmenting paths can be applied between
any two vertices w, v ∈ V . The term global augmenting path refers to augmenting
paths between s and t to distinguish this approach from techniques that make local
improvements to flow.

2.3. Dinitz’s algorithm and level graphs. Augmenting along shortest paths
was discovered to be more efficient than augmenting along other types of paths
[4, 6]. Dinitz’s algorithm works by efficiently computing a level graph from s to t
and finding paths from s to t through that level graph.

* is computed storing an upper bound on the amount of flow that can
reach each vertex. In terms of the metaphor,  () is the amount of flow stored in

Fig. 3. Example level graph with edge capacities.

M.C. Fontaine30

each tide pool at high tide.  () can be any upper bound on flow that can reach ver-
tex  through a set of augmenting paths that collectively maintain the capacity con-
straint. One could consider  to be a heuristic guessing function for Tidal Flow, simi-
lar to the heuristic function in the A* shortest path algorithm (Lerner et al., 2009).
For simplicity,  () is computed as the sum of  () for each edge ( ) that en-
ters  bounded by that edge’s capacity (Equation 1, Fig. 4). Flow is promised to each
edge ( ) 2  of the level graph  ( ) = min ( ( ) –  ( )  ()).

 () =
X

2()
 min ( ( ) –  ( )  ()) (1)

During the low tide phase, flow is pushed from sink to source backwards through
the level graph using  and  as guides for how much flow to push to each vertex. A
new function  :  !

2 TIDAL FLOW: A FAST AND TEACHABLE MAXIMUM FLOW ALGORITHM

2. Background

This section reviews the maximum flow problem and introduces the notation
that will be used throughout the rest of the paper. It then describes three histor-
ically important maximum flow algorithms that introduce necessary concepts for
understanding the novel Tidal Flow algorithm.

2.1. Maximum flow formulation and notation. This paper will use formula-
tion and notation adapted from [11]. The input to the maximum flow problem is
(G, s, t, cap), where G = (V,E) is a directed graph with n vertices andm edges. The
input marks two special vertices s, t ∈ V . The vertex s is known as a source and the
vertex t is known as the sink. The function cap : E → R+ is some strictly positive
capacity function. A maximum flow is some non-negative function f : E → R∗ that
satisfies two constraints: (1) a capacity constraint f(e) ≤ cap(e), ∀e ∈ E and (2) a
conservation constraint


(w,v)∈E f(w, v) =


(v,u)∈E f(v, u), ∀v ∈ V − {s, t}. The

capacity constraint ensures that flow sent down some edge e does not exceed its
capacity, while the conservation constraint maintains the flow entering some vertex
v equals the amount of flow leaving v. The conservation constraint is maintained
for all vertices except the source and sink. The flow value is defined as the amount
of flow leaving the source or


v∈V f(s, v). A maximum flow is one that maximizes

the flow value subject to the conservation and capacity constraints.

2.2. Residual graphs and augmenting paths. To make it easier to discover
maximum flows, it is useful to make the graph more malleable. Residual graphs are
a useful tool for this purpose. Consider each edge (w, v) ∈ E. To change the flow
along this edge, one could increase the flow by up to cap(w, v)−f(w, v) or decrease
the flow by f(w, v). Decreasing the flow is easier to manage by including a reverse
edge (v, w) with cap(w, v) where f(v, w) = −f(w, v) at all times. Now, decreasing
flow f(w, v) can be accomplished by increasing f(v, w). The amount that f(w, v)
can be decreased is given by cap(v, w) − f(v, w). Now consider a new edge set
E that contains all edges of E and all reverse edges of E. The residual graph is
Gr = (V,E) with a new function capr(w, v) = cap(w, v) − f(w, v). Conceptually
capr gives a limit on how much each e ∈ E can change along that direction.
To modify f and maintain conservation and capacity constraints, an algorithm

can discover some path P from source to sink where each edge on that path
e has capr(w, v) > 0. The algorithm can then augment each edge e ∈ P by
a = mine∈P (capr(e)). This change can be accomplished through modifying f :
f(w, v) ← f(w, v) + a and f(v, w) ← f(v, w) − a for each edge (w, v) ∈ P . P
is known as an augmenting path [7]. Each augmentation maintains the capacity
and conservation constraints and gradually increases the flow with each augmenta-
tion until a maximum flow is reached. Augmenting paths can be applied between
any two vertices w, v ∈ V . The term global augmenting path refers to augmenting
paths between s and t to distinguish this approach from techniques that make local
improvements to flow.

2.3. Dinitz’s algorithm and level graphs. Augmenting along shortest paths
was discovered to be more efficient than augmenting along other types of paths
[4, 6]. Dinitz’s algorithm works by efficiently computing a level graph from s to t
and finding paths from s to t through that level graph.

* maintains the amount of flow in tide pool .  () is initialized
with  (). When an edge ( ) is evaluated on the way back to the source, flow is
drained from  () and transferred to  () and the promised flow  ( ) is updated by
this transferred flow (Fig. 5).

In the erosion phase, the promised flow is committed to the network. In the ex-
ample, 11 units of flow were promised from source to sink, but only 9 units of flow are
committed. In the example, Tidal Flow manages to find a blocking flow in one pass
of tide cycle.

Fig. 4. High tide calculates () for each vertex . Edges store promised flow ()().

Fig. 5. Low tide pushes flow from  to . Here each vertex contains () at its highest point
during low tide.

Tidal Flow: A Fast and Teachable Maximum Flow Algorithm 31

3.4. Relationship to P�eflows.

The low tide phase of tide cycle is a type of preflow. Excesses are placed at the sink and
as much flow as possible is pushed between nodes. The preflow values never augment
the network, so Tidal Flow always maintains the conservation constraint. Instead, pre-
flows are used to discover a set of potentially overlapping augmenting paths that collec-
tively maintain the capacity constraint and augment across those paths in parallel. In this
sense Tidal Flow is both a preflow algorithm and an augmenting path algorithm.

Algorithm 1: Attempt to compute a blocking flow

TideCycle ()

 input : A list  of level graph edges in BFS order.
 output: The amount of flow sent through the level graph.
 result :  is modified by found augmenting paths.
   () = 0 8 2  ;
   () ⟵ 1;
 foreach edge  ( ) 2  do
     () ⟵ min( () –  ()  ());
     () ⟵  () +  ();
 end

 if  () = 0 then
 return 0;
 end

   () = 0 8 2  ;
   () ⟵  ();
 foreach edge  ( ) 2  in reverse order do
     () ⟵ min ( ()  () –  ()  ());
     () ⟵  () –  ();
     () ⟵  () +  ();
 end

   () = 0 8 2  ;
   () ⟵  ();
 foreach edge  ( ) 2  do
     () ⟵ min ( ()  ());
     () ⟵  () –  ();
     () ⟵  () +  ();
     () ⟵  () + ();
     ( ()) ⟵  ( ()) –  ();
 end

 return  ();

M.C. Fontaine32

4. Evaluating the Performance of Tidal Flow

4.1. Correctness.

Flow is only modified through augmenting paths, which maintain the capacity and con-
servation constraints. During each tide cycle, the amount of flow increases until no aug-
menting paths exist. Using the usual arguments involving augmenting paths, Tidal Flow
will terminate with a maximum flow.

4.2. Theoretical Performance of Tidal Flow.

Edmonds and Karp (1972) introduced an argument for bounding the running time
of the shortest augmenting path method of finding maximum flows. The tide cycle
procedure in Tidal Flow will always fully saturate at least one edge on a shortest aug-
menting path. This gives an upper bound on the time complexity of Tidal Flow to be
at most  (2). This bound may not be tight. Tide cycle will regularly find several
augmenting paths.

4.3. Diffic�lty of Bo�nding �ide Cycles.

Determining the upper bound on the number of tide cycles required to produce a block-
ing flow is difficult. During high tide, a network can trick the heuristic function  into
promising much more flow than is feasible to realize during low tide by creating a lens
(Fig. 6) somewhere in the network. A lens is a dense level subgraph with two node levels
where edges double in capacity each level.

Lenses require ≈  () nodes to magnify the flow through the network by . Us-
ing lenses, it is possible to construct level graphs requiring  ( ()) tide cycles to
block. Fig. 7 provides one such construction. Creating level graphs requiring more tide
cycle operations is not obvious.

Fig. 6. A lens. Only 4 units of flow can pass from  to , yet 64 units are promised.

Tidal Flow: A Fast and Teachable Maximum Flow Algorithm 33

4.4. Evaluating Practical Performance.

Many of the theoretically fastest maximum flow algorithms are much slower in practice
(Goldberg and Tarjan, 2014). The fastest theoretical algorithm for maximum flows is due
to Orlin (2013) and achieves a  () running time. The overhead of the algorithm and
rarity of the worst cases causes the best theoretical approach to be defeated in practice
by slower algorithms (Boykov and Kolmogorov, 2004; Goldberg et al., 2011). Though
many flow algorithms have large upper bounds on running time, they rarely achieve this
behavior in the average case.

To evaluate Tidal Flow, the algorithm was benchmarked against several maximum
flow algorithms (Table 1) that are known to do well in practice (Ahuja et al., 1997)

Fig. 7. A level graph that takes 4 tide cycles to block. The graph can be generalized to a
graph with  vertices requiring (()) tide cycles.

Table 1
Flow algorithms

Algorithm Running Time Notes

Edmonds-Karp
(Edmonds and Karp, 1972)

 (2) Shortest augmenting path

Dinitz
(Dinitz, 1970)

 (2) Even’s version with optimizations suggested in Dinitz (2006)

Preflow-Push
(Goldberg and Tarjan, 1988)

 (3) Goldberg and Tarjan’s preflow-push algorithm with the
highest-label selection rule. A simple, but inefficient, selection
implementation process yields the slower runtime

Preflow-Push (Gap)
(Goldberg and Tarjan, 1988)

 (2

TIDAL FLOW: A FAST AND TEACHABLE MAXIMUM FLOW ALGORITHM 9

Algorithm Running Time Notes

Edmonds-
Karp[6]

O(nm2) Shortest augmenting path

Dinitz[4] O(n2m) Even’s version with optimizations sug-
gested in [5]

Preflow-
Push[10]

O(n3) Goldberg and Tarjan’s preflow-push al-
gorithm with the highest-label selection
rule. A simple, but inefficient, selec-
tion implementation process yields the
slower runtime.

Preflow-
Push
(Gap)[10]

O(n2
√
m) Goldberg and Tarjan’s push relabel

method with the highest-label selection
rule. Implemented with O(1) selection
and the gap relabeling heuristic sug-
gested in [3].

Improved-
SAP[18]

O(n2m) Orlin’s improved shortest augmenting
path method

Table 1. Flow algorithms

theoretical approach to be defeated in practice by slower algorithms [2, 9]. Though
many flow algorithms have large upper bounds on running time, they rarely achieve
this behavior in the average case.
To evaluate Tidal Flow, the algorithm was benchmarked against several max-

imum flow algorithms (Table 1) that are known to do well in practice [13] and
are popular in competitive programming. Each flow algorithm was run against a
test suite of randomly generated networks that resemble classes of graphs common
in competitive programming network flow problems. The algorithms were imple-
mented in Java and each experiment measured CPU time using the StopwatchCPU
class from [19].
Three forms of graphs were tested: bipartite matching networks, grid networks,

and level graphs (Figure 8). Bipartite matching networks were split into four dif-
ferent graph classes, resulting in six total graph classes. Each graph class was
evaluated at 10 different sizes (described below). For each size of graph in each
graph class, 20 random graphs were generated. Each algorithm was run against
each test for a maximum of 20 seconds.

(1) dense-highcap-bpm: A fully connected bipartite matching graph. Ca-
pacities for internal edges were selected uniformly at random from [1, 1000].
Capacities for edges (s, v) and (v, t) were selected from [1, c(v)] where
c(v) =


(v,w)∈E cap(v, w). Graph size n represents the number of internal

vertices. A range of sizes n = [200, 2000] were selected in increments of 200.
(2) sparse-highcap-bpm: A bipartite matching graph. Each vertex v on the

source side of the bipartite graph was connected with
√
n random neighbors

on the sink side. Capacities for internal edges were selected uniformly at
random from [1, 10000]. Capacities for edges (s, v) and (v, t) were selected
from [1, c(v)] where c(v) = 1+


(v,w)∈E cap(v, w). Graph size n represents

) Goldberg and Tarjan’s push relabel method with the highest-
label selection rule. Implemented with (1) selection and the
gap relabeling heuristic suggested in Cherkassy and Goldberg
(1995)

Improved-SAP
(Orlin and Ahuja, 1987)

 (2) Orlin’s improved shortest augmenting path method

M.C. Fontaine34

and are popular in competitive programming. Each flow algorithm was run against a
test suite of randomly generated networks that resemble classes of graphs common in
competitive programming network flow problems. The algorithms were implemented
in Java and each experiment measured CPU time using the StopwatchCPU class from
Sedgewick and Wayne (2011).

Three forms of graphs were tested: bipartite matching networks, grid networks, and
level graphs (Fig. 8). Bipartite matching networks were split into four different graph
classes, resulting in six total graph classes. Each graph class was evaluated at 10 different
sizes (described below). For each size of graph in each graph class, 20 random graphs
were generated. Each algorithm was run against each test for a maximum of 20 seconds.

 (1) Dense-highcap-bpm: A fully connected bipartite matching graph. Capaci-
ties for internal edges were selected uniformly at random from [1 1000]. Ca-
pacities for edges ( ) and ( ) were selected from [1  ()] where  () = P

()2  ( ). Graph size  represents the number of internal vertices. A
range of sizes  = [200 2000] were selected in increments of 200.
 (2) Sparse-highcap-bpm: A bipartite matching graph. Each vertex  on the source
side of the bipartite graph was connected with

TIDAL FLOW: A FAST AND TEACHABLE MAXIMUM FLOW ALGORITHM 9

Algorithm Running Time Notes

Edmonds-
Karp[6]

O(nm2) Shortest augmenting path

Dinitz[4] O(n2m) Even’s version with optimizations sug-
gested in [5]

Preflow-
Push[10]

O(n3) Goldberg and Tarjan’s preflow-push al-
gorithm with the highest-label selection
rule. A simple, but inefficient, selec-
tion implementation process yields the
slower runtime.

Preflow-
Push
(Gap)[10]

O(n2
√
m) Goldberg and Tarjan’s push relabel

method with the highest-label selection
rule. Implemented with O(1) selection
and the gap relabeling heuristic sug-
gested in [3].

Improved-
SAP[18]

O(n2m) Orlin’s improved shortest augmenting
path method

Table 1. Flow algorithms

theoretical approach to be defeated in practice by slower algorithms [2, 9]. Though
many flow algorithms have large upper bounds on running time, they rarely achieve
this behavior in the average case.
To evaluate Tidal Flow, the algorithm was benchmarked against several max-

imum flow algorithms (Table 1) that are known to do well in practice [13] and
are popular in competitive programming. Each flow algorithm was run against a
test suite of randomly generated networks that resemble classes of graphs common
in competitive programming network flow problems. The algorithms were imple-
mented in Java and each experiment measured CPU time using the StopwatchCPU
class from [19].
Three forms of graphs were tested: bipartite matching networks, grid networks,

and level graphs (Figure 8). Bipartite matching networks were split into four dif-
ferent graph classes, resulting in six total graph classes. Each graph class was
evaluated at 10 different sizes (described below). For each size of graph in each
graph class, 20 random graphs were generated. Each algorithm was run against
each test for a maximum of 20 seconds.

(1) dense-highcap-bpm: A fully connected bipartite matching graph. Ca-
pacities for internal edges were selected uniformly at random from [1, 1000].
Capacities for edges (s, v) and (v, t) were selected from [1, c(v)] where
c(v) =


(v,w)∈E cap(v, w). Graph size n represents the number of internal

vertices. A range of sizes n = [200, 2000] were selected in increments of 200.
(2) sparse-highcap-bpm: A bipartite matching graph. Each vertex v on the

source side of the bipartite graph was connected with
√
n random neighbors

on the sink side. Capacities for internal edges were selected uniformly at
random from [1, 10000]. Capacities for edges (s, v) and (v, t) were selected
from [1, c(v)] where c(v) = 1+


(v,w)∈E cap(v, w). Graph size n represents

 random neighbors on the
sink side. Capacities for internal edges were selected uniformly at random from
[1 10000]. Capacities for edges ( ) and ( ) were selected from [1  ()]
where  () = 1 +

P
()2  ( ). Graph size  represents the number of in-

ternal vertices. A range of sizes  = [1000 10000] were selected in increments of
1000.
 (3) Dense-unit-bpm: A bipartite matching graph where all edge capacities are unit
capacities. Each vertex  on the source side of the bipartite graph was connected
with 10 random neighbors on the sink side. Graph size  represents the number

Fig. 8. Three forms of graph classes.

Tidal Flow: A Fast and Teachable Maximum Flow Algorithm 35

of internal vertices. A range of sizes  = [28000 105] were selected in increments
of 8000.
 (4) Sparse-unit-bpm: A bipartite matching graph where all edge capacities are unit
capacities. Each vertex  on the source side of the bipartite graph was connected
with 10 random neighbors on the sink side. Graph size  represents the number
of internal nodes. A range of sizes  = [28000 105] were selected in increments
of 8000.
 (5) Grid: An  ×  grid network where each neighbor in the four cardinal directions
is connected. The source and sink were selected uniformly at random among grid
vertices. Edge capacities were selected uniformly at random from [1 108]. Graph
size  represents an  ×  grid of vertices. A range of sizes  = [275 500] were
selected in increments of 25.
 (6) Level-10: A level graph with 10 levels where level  is fully connected to
level  + 1. Capacities for internal edges were chosen uniformly at random
from [1 1000]. Capacities for edges ( ) and ( ) were selected from [1  ()]
where  () =

P
()2  ( ). Graph size  represents a 10 ×  level graph.

A range of sizes  = [140 500] were selected in increments of 40.

5. Results

Fig. 9–Fig. 14 compare Tidal Flow against the flow algorithms from Table 1. Flow al-
gorithms that didn’t complete a majority of the tests were removed from the figures to
make it easier to directly compare Tidal Flow against more competitive algorithms.

Algorithm performance on dense-highcap-bpm (Fig. 9). On this graph class Ed-
monds-Karp only completes size 200 graphs before timing out on all remaining test
sizes. Preflow-Push (Gap) manages to complete up to 1200 size graphs but times out at
1400. The variance of Preflow-Push (Gap) is much higher than other algorithms. Pre-
flow-Push completes graphs up to size 1400, but also has a high variance. ISAP com-
pletes graphs up to size 1400. Dinitz manages to complete all tests but performs worse

Fig. 9. Algorithm performance on dense-highcap-bpm.

M.C. Fontaine36

Fig. 10. Algorithm performance on sparse-highcap-bpm.

Fig. 11. Algorithm performance on dense-unit-bpm.

Fig. 12. Algorithm performance on sparse-unit-bpm.

Tidal Flow: A Fast and Teachable Maximum Flow Algorithm 37

than Tidal Flow. Tidal Flow completes all tests and has much lower variance than any of
the other included algorithms.

Algorithm performance on sparse-highcap-bpm (Fig. 10). On this graph only
Tidal Flow and Dinitz were able to complete all tests in 20 seconds. Preflow-Push(Gap)
was the only other algorithm able to complete a test and only completed the smallest test
size in under 12 seconds before timing out. Only Dinitz and Tidal Flow are included in
this graph to allow a closer comparison of the two algorithms. Dinitz performs slightly
better than on this graph class, but Tidal Flow is comparable in performance. All tests
run under 0.7 seconds.

Algorithm performance on dense-unit-bpm (Fig. 11). Dinitz completes all tests
in under 0.2 seconds. Edmonds-Karp completes half of the test suite before timing out.
ISAP runs all tests in under 0.04 seconds. PreflowPush (Gap) runs all tests in under 0.03
seconds. Preflow-Push runs all tests in under 0.3 seconds. Tidal Flow is comparable to
Dinitz, solving all tests in under 0.2 seconds.

Algorithm performance on sparse-unit-bpm (Fig. 12). Dinitz and Tidal flow were
the only algorithms that could complete any of the tests. Dinitz performs slightly better
than Tidal Flow on this entire test suite.

Fig. 13. Algorithm performance on grid.

Fig. 14. Algorithm performance on level-10.

M.C. Fontaine38

Algorithm performance on grid (Fig. 13). Dinitz manages to complete all tests in
under 1 second. Edmonds-Karp completes up to size 350 before timing out. TidalFlow’s
average case is comparable to Dinitz but has several cases much slower.

Algorithm performance on level-10 (Fig. 14). Edmonds-Karp fails to complete any
graphs. Dinitz completes graphs up to size 340 before timing out. ISAP can complete
graphs up to size 220. PreflowPush(Gap) completes only graphs size 140. Preflow-Push
also completes only graphs of size 140. Tidal Flow completes all graphs in less than 2
seconds.

 (a) dense-highcap-bpm (b) sparse-highcap-bpm

 (c) dense-unit-bpm (d) sparse-unit-bpm

 (e) grid (f) level-10

Fig. 15. Running Tidal Flow without the heuristic function .

Tidal Flow: A Fast and Teachable Maximum Flow Algorithm 39

In Fig. 15 Tidal Flow using the heuristic function  is compared against a different
implementation of Tidal Flow that removes the heuristic function. For every class of
graphs, removing the heuristic function resulted in a significantly slower algorithm. The
algorithm also started to have a wider variance in running time.

6. Discussion

6.1. Comparison to other Fast Flow Algorithms.

Tidal Flow performed well compared to other flow algorithms. Perhaps the most surpris-
ing performance was the behavior of Preflow-Push algorithms on the generated graphs.
In Ahuja’s study (Ahuja et al., 1997) Preflow-Push algorithms perform far better than
other algorithms. This is most likely due to Preflow-Push being implemented without
the global relabeling heuristic. That heuristic seems to make a huge difference in the
behavior of Push-Relabel. In this experiment Dinitz’s algorithm significantly outper-
formed ISAP. In contrast, Ahuja’s study found the two algorithms to be comparable. The
improvements in Dinitz’s algorithm’s performance are likely due to the implementation
improvements suggested in Dinitz (2006).

Dinitz’s algorithm performed better than Tidal Flow on unit capacity bipartite match-
ing cases. Dinitz’s algorithm has a running time of  (

TIDAL FLOW: A FAST AND TEACHABLE MAXIMUM FLOW ALGORITHM 9

Algorithm Running Time Notes

Edmonds-
Karp[6]

O(nm2) Shortest augmenting path

Dinitz[4] O(n2m) Even’s version with optimizations sug-
gested in [5]

Preflow-
Push[10]

O(n3) Goldberg and Tarjan’s preflow-push al-
gorithm with the highest-label selection
rule. A simple, but inefficient, selec-
tion implementation process yields the
slower runtime.

Preflow-
Push
(Gap)[10]

O(n2
√
m) Goldberg and Tarjan’s push relabel

method with the highest-label selection
rule. Implemented with O(1) selection
and the gap relabeling heuristic sug-
gested in [3].

Improved-
SAP[18]

O(n2m) Orlin’s improved shortest augmenting
path method

Table 1. Flow algorithms

theoretical approach to be defeated in practice by slower algorithms [2, 9]. Though
many flow algorithms have large upper bounds on running time, they rarely achieve
this behavior in the average case.
To evaluate Tidal Flow, the algorithm was benchmarked against several max-

imum flow algorithms (Table 1) that are known to do well in practice [13] and
are popular in competitive programming. Each flow algorithm was run against a
test suite of randomly generated networks that resemble classes of graphs common
in competitive programming network flow problems. The algorithms were imple-
mented in Java and each experiment measured CPU time using the StopwatchCPU
class from [19].
Three forms of graphs were tested: bipartite matching networks, grid networks,

and level graphs (Figure 8). Bipartite matching networks were split into four dif-
ferent graph classes, resulting in six total graph classes. Each graph class was
evaluated at 10 different sizes (described below). For each size of graph in each
graph class, 20 random graphs were generated. Each algorithm was run against
each test for a maximum of 20 seconds.

(1) dense-highcap-bpm: A fully connected bipartite matching graph. Ca-
pacities for internal edges were selected uniformly at random from [1, 1000].
Capacities for edges (s, v) and (v, t) were selected from [1, c(v)] where
c(v) =


(v,w)∈E cap(v, w). Graph size n represents the number of internal

vertices. A range of sizes n = [200, 2000] were selected in increments of 200.
(2) sparse-highcap-bpm: A bipartite matching graph. Each vertex v on the

source side of the bipartite graph was connected with
√
n random neighbors

on the sink side. Capacities for internal edges were selected uniformly at
random from [1, 10000]. Capacities for edges (s, v) and (v, t) were selected
from [1, c(v)] where c(v) = 1+


(v,w)∈E cap(v, w). Graph size n represents

) on this class of networks
and generates blocking flows in  () time. Surprisingly, Tidal Flow is not that much
slower than Dinitz’s algorithm on these cases. Tidal Flow outperformed Dinitz’s algo-
rithm on dense level graphs and dense bipartite graphs with large edge capacities.

6.2. Importance of the Heuristic Function.

Two versions of Tidal Flow were implemented for the purpose of measuring the impor-
tance of the heuristic function . In one implementation, the heuristic function  was
removed. In every graph class, Tidal Flow performed significantly worse without the
heuristic function. The effect of the heuristic function is to help identify bottlenecks
in the network. When the heuristic function is tight, more flow can be sent down other
paths in the network during low tide. The importance of the heuristic function was most
pronounced in the grid network. This behavior is most likely due to the fact that level
graphs formed from the grid network have a large amount of separating and rejoining
paths. The heuristic function provides reasonable guidance so that less flow gets stuck in
the middle of the network during low tide on such networks.

M.C. Fontaine40

7. Concluding Remarks

This paper introduced the Tidal Flow algorithm and gave a preliminary survey measur-
ing the performance against other flow algorithms. Tidal flow is both simpler to un-
derstand and implement than other fast flow algorithms. The relationship to preflows
makes Tidal Flow a good intermediate algorithm for understanding more complicated
algorithms like Preflow-Push. Though this paper described an initial exploration of the
algorithm, there are still a number of unknowns with respect to the performance of Tidal
Flow. Though Tidal Flow performs well on random networks against other flow algo-
rithms, more extensive testing is required to determine its worst case behavior. Addition-
ally, the theoretical worst case running time of  (2) may not be tight. Whether it is
possible to create a level graph requiring more than  (()) tide cycles to block
the network is also unknown. Finally, it is unclear if a better  function exists for guiding
the low tide decisions.

8. Acknowledgements

The author is grateful to Antony Stabile and Travis Meade for their contributions in
developing and simplifying the initial version of Tidal Flow, the students of the UCF
Programming Team for the continued feedback on how Tidal Flow is taught, and Lisa
Soros and Brian Dean for feedback on a preliminary version of this paper.

References

Ahuja, R.K., Magnanti, T.L., Orlin, J.B. (1993). Network Flows: Theory, Algorithms, and Applications. Pren-
tice-Hall, Inc., Upper Saddle River, NJ, USA.

Boykov, Y., Kolmogorov, V. (2004). An experimental comparison of min- cut/max- flow algorithms for energy
minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1124–
1137.

Cherkassy, B.V., Goldberg, A.V. (1995). On implementing push-relabel method for the maximum flow problem.
In: Proceedings of the 4th International IPCO Conference on Integer Programming and Combinatorial
Optimization. London, UK, UK. Springer-Verlag, 157–171.

Dinitz, Y.A. (1970). Algorithm for solution of a problem of maximum flow in a network with power estimation.
Doklady Akademii Nauk SSSR, 11, 1277–1280.

Dinitz, Y.A. (2006). Dinitz’s algorithm: The original and even’s version. In: Theoretical Computer Science: Es-
says in Memory of Shimon Even, volume 3895. Springer, Berlin, Heidelberg, 218–240.

Edmonds, J., Karp, R.M. (1972). Theoretical improvements in algorithmic efficiency for network flow prob-
lems. J. ACM, 19(2), 248–264.

Ford, L.R., Fulkerson, D.R. (1955). Maximal flow through a network. Canadian Journal of Mathematics, 8,
399–404.

Forišek, M., Stienová, M. (2013). Explaining Algorithms Using Metaphors. Springer, New York, NY, 1 edi-
tion.

Goldberg, A.V., Hed, S., Kaplan, H., Tarjan, R.E., Werneck, R.F. (2011). Maximum flows by incremental
breadth-first search. In: Demetrescu, C. and Halldórsson, M. M. (Eds.), Algorithms – ESA 2011. Berlin,
Heidelberg. Springer Berlin Heidelberg, 457–468.

Tidal Flow: A Fast and Teachable Maximum Flow Algorithm 41

Goldberg, A.V., Tarjan, R.E. (1988). A new approach to the maximum-ow problem. J. ACM, 35(4), 921–940.
Goldberg, A.V., Tarjan, R.E. (2014). Efficient maximum flow algorithms. Communications of the ACM, 57(8),

82–89.
Harris, T. E., Ross, F. (1955). Fundamentals of a method for evaluating rail net capacities. Technical report,

Rand Corporation, Santa Monica, CA.
Ahuja, R.K., Kodialam, M., Mishra, A.K., Orlin, J. (1997). Computational investigations of maximum flow

algorithms. 97, 509–542.
Karzanov, A.V. (1974). Determining a maximal flow in a network by the method of preflows. Doklady Akademii

Nauk SSSR, 15(2), 434–437.
Lakoff, G., Johnson, M. (2003). Metaphors We Live By. University of Chicago press, Chicago, IL.
Lerner, J., Wagner, D., Zweig, K.A. (Eds.) (2009). Algorithmics of Large and Complex Networks: Design,

Analysis, and Simulation. Springer-Verlag, Berlin, Heidelberg.
Orlin, J.B. (2013). Max flows in o(nm) time, or better. In: P�oceedings of the Fo�ty�fifth Ann�al ACM Sympo-

sium on Theory of Computing, STOC’13. New York, NY, USA. ACM, 765–774.
Orlin, J.B., Ahuja, R.K. (1987). New Distance-Directed Algorithms for Maximum Flow and Parametric Maxi-

mum Flow Problems, Technical Report. MIT, Cambridge, MA.
Sedgewick, R., Wayne, K. (2011). Algorithms. Addison-Wesley Professional, 4th edition.

M. Fontaine is the host of algorithms YouTube talk show, Algorithms
Live! He is the cow artist for USA Computing Olympiad, creating the
t-shirt design since 2014 and has been a USACO coach since 2017.
He was an instructor at the University of Central Florida from 2014
to 2017 and a coach of UCF’s ACM ICPC team from 2013 to 2017.
He received his M.S. from UCF and was a research assistant at UCF’s
Institute for Simulation and Training from 2008 to 2013 studying prob-
lems in distributed game-based training.

Olympiads in Informatics, 2018, Vol. 12, 43–52
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.04

43

Algorithmic Cognition and Pencil-Paper Tasks

David GINAT
Tel-Aviv University, Science Education Department
Ramat Aviv, Tel-Aviv, Israel 69978
e-mail: ginat@post.tau.ac.il

Abstract. Pencil-paper algorithmics was displayed by several IOI studies, which examined
various structural and scientific characteristics of offered tasks, including “what makes a good
task”. We offer an additional facet, of cognitive considerations. We underline the aspects of
abstraction, heuristics, creativity, and declarative conceptions, which are relevant already with
pencil-paper algoithmics. We describe the settings of our country’s Stage-A, pencil-paper exam,
and display cognitive considerations of the exam tasks. We illustrate these considerations with
several single-input tasks, in which hidden patterns should be recognized for effective “compu-
tation by hand”.

Keywords: algorithmic problem solving, cognitive aspects.

1. Introduction

Consider the following Reversing algorithmic task. Given the following sequence of
twenty eight A/B characters: A B B B A B B A A B A A B A A B A B A A A B B A B B B A, what
is the minimal number of reverse-sub-sequence operations necessary for obtaining
the alternating sequence A B A B ... A B? (A Reverse-sub-sequence operation may
be applied on any sub-sequence of consecutive characters; e.g. if applied on the first 4
characters A B B B it will yield B B B A.)

The task specification is short. It requires no special knowledge and involves a sim-
ple operation, to be repeatedly applied on a particular input. The input is not long, but
still long enough so that one will have to reason in an ordered analysis, which will yield
an operational computation from the starting point (the input) to the desired goal. Due
to the limited size of the input, the operational computation can be performed by hand,
without a computer.

More can be said. In solving the task, one should elevate the point of view and fo-
cus on particular task elements, while ignoring others. This involves abstraction. One
should also cleverly process these elements. This involves creative employment of heu-
ristics. And one should convince herself (even if intuitively) of optimality. This involves
declarative conceptions. The cognitive aspects of abstraction, heuristics, creativity, and

D. Ginat44

declarative conceptions are essential in algorithmic problem solving. In this paper, we
relate them to the preliminary pencil-paper exam in algorithmics.

Previous IOI-related studies of pencil-paper algorithmics display and discuss tasks
to be solved at home or in an actual on-site exam (e.g., Burton, 2010; Kubica and Ra-
doszewski, 2010; van der Vegt, 2012; Radoszewski, 2014). Additional studies display
a variety of related forms of non-programming activities (e.g., Dagienė, 2006; Dagienė
and Futschek, 2008; Opmanis, 2009). These studies describe contest settings and offer
task considerations, including those that “make good tasks”. The considerations focus
on task features of structural and scientific characteristics (including time frames, tools
used, mathematical and algorithmic features, sub-tasks and more). In this paper, we re-
late to these characteristics, and add considerations of algorithmic cognition.

We introduce and discuss an approach of preliminary pencil-paper algorithmics,
which comprises the initial OI activity in Israel. In the next section we motivate and
describe the considerations underlying our approach. In the section that follows we illus-
trate the approach with different examples, additional to the Reversing task. In the last
section we mention our implementation experience and enquire about the correlation
and differences between mathematical competence and algorithmic competence.

2. Considerations of Pencil-Paper Algorithmics

We display below setting considerations and cognitive consideration that yield our ap-
proach of pencil-paper problem solving in algorithmics.

Setting Considerations

Wide population. ● In Israel, a limited amount of students study high school com-
puter science (CS), from 10-th grade. In the initial IOI activity we try to reach as
many motivated students as possible, including young mathematics students who
are not necessarily acquainted with programming.
Two-fold goal. ● We aim at promoting interest in algorithmic challenges, as well
as identifying competent algorithmics students. About 3000 students, nation-wide,
show interest in our Stage-A.
National 2-hour exam. ● We announce a national Stage-A exam in the beginning of
the academic year. The exam takes place in the schools, under the supervision of
teachers who print the exam just before it starts.
Teacher involvement. ● We encourage teachers to take part, even if small. We need
the teachers for encouraging students to prepare-for, and attend the exam.
Student preparation. ● Students should have an idea of the exam format. We display
in our website exams of previous years (from 2010).
Four/five different exam tasks. ● We estimate 15 to 45 minutes for a task, in the
2-hour exam. The tasks are ordered according to their levels of difficulty. The
first one is rather simple, so that students will feel that they managed to solve
at least one task. Some questions are optimization questions, some involve a
combinatorial computation, some display a two-player game and ask for the first

Algorithmic Cognition and Pencil-Paper Task 45

move, some are related to generic computational schemes, and some just require
logical reasoning.
Short and simple specifications. ● Reading and understanding a task takes time. We
try to minimize this time. Task specifications are very short, often with a short il-
lustration, and with a single input on which to perform a computation.
Colourful challenges. ● The tasks pose challenge. Usually, there is no story in them,
but students find the tasks colourful, due to their challenge.
No programming knowledge. ● One may do well without programming background.
In addition, programming knowledge in an early age often involves a lot of techni-
cal details, and this may not help much here. What may sometimes help is prior
experience with problem solving.
Single, non-trivial input. ● The vast majority of the tasks involve a single input. The
input is in a size that requires insight and competence. One may sometimes guess
an answer, but this is very unlikely to succeed with a set of tasks. When insight is
obtained, a pencil-paper computation may be performed in a reasonable time. If no
insight is obtained, the computation may take long time, or not take place at all.
Single integer output. ● The answers of the few thousand students are submitted
electronically. Due to the large amount of data, the task outputs are very short –
usually a single integer per task. We believe that it is sufficient for evaluation.
Hints for checking the output. ● Once insight is gained, a careful computation should
yield the right result. Still, in order to help avoiding erroneous calculations, we pro-
vide hints, such as “The digits unit is odd” or “The output is a multiple of 5”.
Partial credit. ● Since a task answer is a single-integer, there is usually no partial
credit. Yet, there are exceptions. Occasionally, upon the electronic checking we
notice that a group of students obtained the same result, which is different from the
correct one. We figure out the rationale for this result, and if we realize that it may
have been obtained from partial recognition of patterns, we give partial credit.
Passing criteria. ● We choose about 300 students, out of up to 3,000 (the number
varies in different years) based on their performance with the more challenging
questions. These students are invited to a more thorough Stage-B exam.

Cognitive Considerations

Although the tasks are single-input/single-output tasks, solved with pencil and paper,
we regard them as reflecting cognitive competencies that are essential for algorithmic
problem solving. We believe that problem solvers should dedicate non-negligible time for
solving a challenge. In a 2-hour exam, with 4 tasks (and perhaps a bonus one), one may
have about 30 minutes per task, on the average. This may be sufficient, for a competent
student in a pencil-paper stage, for gaining insight and capitalizing on it. In this amount
of time one may employ relevant cognitive faculties.

Abstraction. ● Algorithmic problem solving involves abstraction (e.g., Wing, 2006;
Armoni et al., 2006; Ginat and Blau, 2017). Abstraction may be expressed in a
variety of forms. One may notice mapping (reduction) from a given question to
another; or offer an illuminating representation that considerably simplifies the
viewpoint on a given task; or focus on particular elements while ignoring others. In

D. Ginat46

looking at the Reversing task, one should momentarily ignore the inner characters
of a reversed sub-sequence and focus only on its ends, in order to notice the asset
of concurrently “breaking” AA’s and BB’s.
Heuristics and reasoning. ● Challenging tasks are solved by employing various
kinds of heuristics, such as problem decomposition, backward reasoning, gen-
eralization, and more (Polya, 1945; Schoenfeld, 1992). Rigorous reasoning and
case analysis are combined with the application of heuristics. Hidden patterns are
unfolded. For example, in the Reversing task, careful reasoning/analysis may de-
compose the input disorders into two cases – the case of AA’s and BB’s and the
case where the ends are improper (e.g., an A in the right end). A single reverse
operation may concurrently “break” an AA and a BB. How should a disordered end
be handled? Creativity may help here.
Creativity. ● Solution processes require divergent thinking (e.g., Ginat, 2008). In do-
ing so one may need to examine several solution directions, demonstrate flexible
associations, and invoke original ideas. In attempting the case of disordered ends
in the Reversing task, one may combine flexibility with the heuristic of auxiliary
construction, and add an auxiliary A to the right end of the sequence. This will
transform the end case into an AA/BB case.
Declarative perspective. ● Algorithmic problem solvers naturally turn to operational
reasoning, and go for the “how” computation. Yet, an operative perspective may
be insufficient when one wants to be convinced of correctness and efficiency (e.g.,
Ginat, 2008). For this, one needs to see the declarative meaning, even if not for-
mally, for believing correctness. In the Reversing task, in order to be convinced of
optimality, one should notice that after the auxiliary construction (of an A added
to the right end), the number of AA’s is exactly equal to the number of BB’s, and a
single reverse operation may reduce at most 1 of each.

In the next section we demonstrate the above elements with additional tasks of differ-
ent types, which were posed in our Stage-A exams during the last five years.

3. Illustrations

In the previous section we exemplified cognitive considerations with the Reversing task.
We regard the Reversing task as relatively easy. It was one of the first two questions (out
of four) in the 2012/13 Stage-A exam. The patterns to recognize are not immediate, but
also not very challenging. The following is an additional task of limited challenge.

Sum of sub-sequences. In the following sequence of integers: 4 11 3 5 3 there are
4 sub-sequences of consecutive integers whose sums are multiples of 3. These are the
sub-sequences: 4 11; 3 (the left 3); 4 11 3; 3 (the right 3). Notice that a single integer
is regarded as a sub-sequence. So is the whole sequence. Given the following list of
integers, output the total number of sub-sequences whose sums are multiples of 3?

6 1 4 124 3 6 512 3 1 33 2 2 32 100 813 4 41 1 8 213 5 7 61 8 42 1 4 2 20 8

Hint: the total sum is a multiple of 5.

Algorithmic Cognition and Pencil-Paper Task 47

This task was one of the first two tasks of the Stage-A exam of 2014/15. The chal-
lenge here is to devise a simple scheme that offers an ordered way of counting. Problem
solvers may attempt various types of counting here. They may be based on two observa-
tions: 1. Counting is simplified by examining remainders of 3; and 2. An ordered count-
ing may be carried out with a single pass over the input in which, for each integer – the
number of sub-sequences that it “ends” will be added to a total sum. We may specify a
corresponding declarative notion.

The number of sums that are multiples of 3, which an integer v ends, is
equal to: the number of integers to the left of v in the input, for which
the mod-3 remainder of the sum from the left-end to each of them
equals the mod-3 remainder of the sum from the left-end to v.

One does not need to specify the above notion explicitly, but should be able to see it
(or an equivalent one) in order to apply an ordered operational computation with pencil
and paper. The counting involves a feature of working backwards and an abstraction
aspect in which the relevant sums are distinguished from all the possible sums. The
hint may help avoiding calculation mistakes. A student that will not gain corresponding
insight will face difficulties, and may spend a long time on the task.

* * *
The next task involves the two-player game of Chomp. This game was also posed in the
Australian Informatics Competition with a 3×3 chocolate block (Burton, 2010). We dis-
played it in our Stage-A of 2017/18 in a different form.

Board game. Given a board of N×M squares, two players play against each other.
Each player on her turn marks one of the rectangle squares. As a result, this square,
and all the squares to its right and/or above are removed. The game ends when no
squares remain. The player who makes the last move loses the game. If, for example,
in the 3×4 board below the square F is marked, then the squares B, C, D, F, G, H will be
removed. We assume that each player plays the best she can.

A B C D

E F G H

I J K L

A. In the 2×10 board below, the first player will win the game if she marks in her first
move one particular square. Which square should she mark?

A B C D E F G H I J

K L M N O P Q R S T

B. Answer the same question for the upper 3×4 board.

We ask about the first move in a 2-player game in some of our Stage-A exams.
Students who prepare, and look at previous exams should be ready for such questions.
In part A one should examine small rectangles, such as 2×2, 2×3, and 2×4 boards, and

D. Ginat48

generalize. The heuristic of generalization from simple cases will yield the following
declarative, invariant pattern for winning as the first player.

After every move of mine, the top line will be a square shorter than
the bottom line.

One does not need to specify the invariant explicitly, but should see the pattern it
involves. In part B, the board is smaller, and no generalization is needed. But thorough
case analysis should be carried out. All in all, each part involves somewhat different
competencies. In our experience, students felt enthusiastic about this task, though it was
not trivial, and not fully solved by many.

* * *

The next task involves a combinatorial computation that may be solved in various ways.
Combinatorial computations are common in algorithmic problem solving. They appear
in various forms in some of our Stage-A exams. The following task was designed by our
coaching team member Daniel Hadas, for Stage-A of 2017/18.

Watch colouring. Given a round watch with the integers 1..12, and four different
colours; what is the number of different ways to colour the 12 integers so that every
two adjacent integers will be coloured with different colours, and every two opposite
integers (e.g., 5 and 11) will be coloured with the same colour? Hint: the units digit
of the answer is 2.
This task is harder that the previous ones. A student who studied combinatorics may

have some advantage, but the solution will not be immediate. One may try diverse ways
of case analysis, but should be careful not to count some colouring twice or miss a
colouring. In our view, one needs to demonstrate creativity with suitable heuristics in
order to simplify as much as possible the view of the task.

Since the colour of every two opposite integers in the clock is the same, we may re-
duce the task to the colouring of 6 integers in a circle. Counting would have been much
simpler if the integers were in a line and not a circle, since a line has two explicit ends.
The challenge here stems from the need to avoid colouring the two ends, 1 and 6 in the
same colour. How should we do that? A creative embedment of the notion of “comple-notion of “comple-
ment” in the heuristic of decomposition paves the way. We specify the relevant observa- in the heuristic of decomposition paves the way. We specify the relevant observa-decomposition paves the way. We specify the relevant observa-paves the way. We specify the relevant observa-
tion in an operative (rather than declarative) manner.

Rather than adding-up all the legal colouring cases, count all the
ways to colour 1 to 6 in a line, and then remove the ways in which
the colours of 1 and 6 are the same; the number of removed ways is
exactly the number of all the circular colourings of 1 to 5, as we may
view 1 and 6 as one unit, with one colour.

The notion of “complement” appears here with the recognition that the number of
legal circular colourings of 1..5 complements the number of legal circular colourings of
1..6 to the number of line colourings of 1..6. Thus, a “line case” may be viewed as being
composed, number-wise, of two different “circular cases”.

Algorithmic Cognition and Pencil-Paper Task 49

At this point, one should realize that in order to answer the case of “circular 1 to
5”, one needs to know the solution of “circular 1 to 4”; which requires the solution of
“circular 1 to 3”; and so on. This observation involves the heuristic of backward reason-
ing. The pencil-paper calculation should be built bottom-up, in reverse to the backward
reasoning analysis.

All in all, this colourful challenge requires both of the heuristics of decomposition and
backward reasoning, and an elegant creative invocation of the notion of “complement”.

* * *

Our next example is different from the previous ones. It asks a question about the execu-
tion of a given algorithmic process. The question is about a particular state that will be
reached after a given amount of time. Algorithmic problem solvers need not only design
an algorithmic solution but also comprehend a given one. The question is an extension of
an old challenge (about ants), which we assumed to be unfamiliar to the students. Since
the question is somewhat different from others in our Stage-A exam, we posed it as a
bonus, fifth question (in the exam of 2015/16).

Balls on a track. Eleven identical balls are spread on a 100 cm track. The two ends
of the track – location 0 and location 100 are blocked with barriers. Each ball is put
initially in a location indicated (in cm) by an integer below. The balls start moving at
time 0, each in the direction indicated (near its location) below.

the students. Since the question is somewhat different from others in our Stage-A
exam, we posed it as a bonus, fifth question (in the exam of 2015/16).

Balls on a tr ack. Eleven identical balls are spread on a 100 cm track. The two ends
of the track - location 0 and location 100 are blocked with barriers. Each ball is put
initially in a location indicated (in cm) by an integer below. The balls start moving
at time 0, each in the direction indicated (near its location) below.

|| 6 14 24 38 44 50 54 64 74 82 88

Each ball moves in a constant velocity of 1 cm per second. When a ball collides
with a barrier in one of the ends, or when it collides with another ball, it switches its
moving direction (and continues to move in the same velocity). For example, the
balls that are initially in locations 44 and 50 will collide 3 seconds from the start,
and will switch their moving directions. What will be the location of the ball that is
initially fourth from the left (in location 38) after 5 minutes from the beginning?

The solution of this task requires abstraction. An examination of the movements of
explicit balls yields a cumbersome, probably impossible pencil-paper computation.
One may do much better with an alternative perspective, in which some details are
disregarded.

Since the balls are identical, and their velocities are the same, one may regard each
ball as anonymous and overlook the ball collisions. This viewpoint enables a view of
a collision between two balls as an event that does not have any impact on the
movements of the two identical balls in their original directions. This abstract point of
view considerably simplifies the view of the task.

In addition, one may further extend this train of thought to disregard collisions
with the right and the left ends. One may pretend that there are no left-end and right-
end, and extend the track with a sequence of its copies in each direction. This allows
one to view each ball as moving steadily in its original direction for 300 seconds.
Once one obtains the final location of each ball in the sequence of copies, one may
return to the original task, and transform this location into a concrete location in the
given track. Since the balls remain in their original order, the answer would be the
location that will be fourth from the left.

All in all, they key feature of the solution is abstraction, in which one does not
view the task in its original arrangement, but rather as one with an arrangement
yielded from an "as if" perspective (Ginat, 2010), of "anonymous" balls that collide
neither with each other nor with the barriers.

3. Discussion

The examples presented in this paper display tasks with diverse characteristics that
may be relevant for a preliminary stage of the OI activity. Elements that were
embedded in the examples include: algorithmic design with a repeatedly used
operator, summation schemes, game instances, invariance, the notion of complement,
case analysis, logical reasoning, algorithmic tracing, and more. Such elements are
apparent in algorithmic problem solving.

Each ball moves in a constant velocity of 1 cm per second. When a ball collides
with a barrier in one of the ends, or when it collides with another ball, it switches
its moving direction (and continues to move in the same velocity). For example, the
balls that are initially in locations 44 and 50 will collide 3 seconds from the start,
and will switch their moving directions. What will be the location of the ball that is
initially fourth from the left (in location 38) after 5 minutes from the beginning?
The solution of this task requires abstraction. An examination of the movements

of explicit balls yields a cumbersome, probably impossible pencil-paper computation.
One may do much better with an alternative perspective, in which some details are
disregarded.

Since the balls are identical, and their velocities are the same, one may regard each
ball as anonymous and overlook the ball collisions. This viewpoint enables a view of a
collision between two balls as an event that does not have any impact on the movements
of the two identical balls in their original directions. This abstract point of view consid-
erably simplifies the view of the task.

In addition, one may further extend this train of thought to disregard collisions with the
right and the left ends. One may pretend that there are no left-end and right-end, and ex-
tend the track with a sequence of its copies in each direction. This allows one to view each
ball as moving steadily in its original direction for 300 seconds. Once one obtains the final
location of each ball in the sequence of copies, one may return to the original task, and
transform this location into a concrete location in the given track. Since the balls remain in
their original order, the answer would be the location that will be fourth from the left.

D. Ginat50

All in all, they key feature of the solution is abstraction, in which one does not view
the task in its original arrangement, but rather as one with an arrangement yielded from
an “as if” perspective (Ginat, 2010), of “anonymous” balls that collide neither with each
other nor with the barriers.

3. Discussion

The examples presented in this paper display tasks with diverse characteristics that may
be relevant for a preliminary stage of the OI activity. Elements that were embedded in
the examples include: algorithmic design with a repeatedly used operator, summation
schemes, game instances, invariance, the notion of complement, case analysis, logical
reasoning, algorithmic tracing, and more. Such elements are apparent in algorithmic
problem solving.

Yet, the features that we tried to underline are related to essential cognitive aspects
involved in algorithmic problem solving; in particular those of abstraction, heuristics
employment, creativity, and declarative conceptions. The relevance of these aspects was
shown here with pencil and paper tasks.

We exemplified diverse appearances of these aspects with several illustrations. Ab-
straction was exemplified in the first and second tasks (Reversing and Sum of sub-
sequences) with focusing on particular elements and ignoring others. It also appeared
in the fifth task (Balls on a track) with the notion of “as if”, which involved a change of
perspectives. The employment of heuristics appeared in all the tasks. Particular heuris-
tics that were relevant included problem decomposition, auxiliary construction, gener-
alization from simple cases, and backward reasoning. Creativity appeared in two of the
tasks – creative auxiliary construction in the Reversing task, and creative decomposi-
tion, using the notion of “complement” in the fourth, Watch colouring task. Declarative
conceptions were relevant in all the tasks. It was particularly apparent in observing
optimality in the Reversing task and in recognizing an invariant pattern in the third,
Board game task.

Our experience with the presented tasks (posed in different years) show that the first
two were solved by about a third of the students, the third – by about a fifth of the stu-
dents, the fourth – by less than a tenth of the students and the fifth – by an even smaller
number of students. We noticed that many students spent a long time on the simpler
tasks, and often obtained only partial insight. They were then left with little time for the
harder tasks.

Nevertheless, students were enthusiastic about the tasks. Many spent extra time after
the exam to solve the tasks that they did not manage to solve during the exam. Some of
the teachers were enthusiastic as well, although several of them felt uncomfortable, since
they could not solve the tasks themselves. Interestingly, some of the students invited to
the next stage did not attend it, and said that they attended the Stage-A exam “just for the
challenge” of coping with colourful tasks.

Algorithmic Cognition and Pencil-Paper Task 51

Each year, after checking the answers we choose about one tenth of the students
(250–300 students) for the next stage, according to the tasks they solved. About 15% of
those invited to the next stage are girls. We pay particular attention to students that do
really well in the Stage-A exam. Quite a few remain at the top in the next stages.

Some of the top students are also very competent in our country’s IMO activity. We
wonder about the correlation between success in the IOI and success in the IMO. Obvi-
ously, there is a correlation, but there are also differences.

Mathematical thinking and algorithmic thinking involve the recognition of hidden
patterns, which is strongly tied to declarative conceptions and the notion of “knowing
that” (Ryle, 1949). Algorithmic thinking also involves a strong facet of “knowing how”.
The observations sought by algorithmic problem solvers should yield suitable opera-
tional computations. Competent IOI problem solvers effectively combine the “that” and
the “how”, and usually turn to the “how” only after seeing the “that”. For competent
IMO problem solvers seeing the “that” may often be sufficient.

At the preliminary level of pencil-paper algorithmics we may not expect involved
operational computations. However, it is still relevant to aim for an operational com-
putation that will be carried out only after hidden patters are recognized. The cognitive
aspects underlined here illuminated a facet of recognized “that” that paved the way to an
operational “how”. Suitable awareness of these aspects may assist task designers in their
designed and posed tasks, including pencil-paper tasks.

Acknowledgement

We thank Hanit Galili and Nir Lavee, from the Israel IOI team, for statistical information
about students’ success in our Stage-A tasks.

References

Armoni, M., Gal-Ezer, J., Hazzan, O. (2006). Reductive thinking in computer science. Computer Science Edu-
cation, 16(4), 281–301.

Burton, B. (2010). Encouraging algorithmic thinking without computer. Olympiads in Informatics, 4, 3–14.
Dagienė, V. (2006). Information technology contests – introduction to computer science in an attractive way.

Informatics in Education, 5(1), 37–46.
Dagienė, V., Futschek, G. (2008). Bebras international contest on informatics and computer literacy: Criteria

for good tasks. In: Mittermeir, R.T. and Syslo, M.M. (Eds.) Informatics Education – Supporting Educational
Thinking, Lecture Notes in Computer Science, 5090. Springer, 19–30.

Ginat, D. (2008). Learning from wrong and creative algorithm design. Proc of the 39th ACM Computer Science
Education Symposium – SIGCSE. ACM Press, 26–30.

D. Ginat52

Ginat, D. (2010). The baffling CS notions of “as-if” and “don’t care”. Proc of the 41st ACM Computer Science
Education Symposium – SIGCSE. ACM Press, 385–389.

Ginat, D., Blau, Y. (2017). Multiple levels of abstraction in algorithmic problem solving. Proc of the 48th ACM
Computer Science Education Symposium – SIGCSE. ACM Press, 237–242.

Kubica, M., Radoszewski, J. (2010). Algorithms without programming. Olympiads in Informatics, 4, 52–66.
Opmanis, M. (2009). Math contests: solutions without solving. Olympiads in Informatics, 9, 147–161.
Polya, G. (1954). How to Solve it. Princeton University Press.
Radoszewski, J. (2014). More algorithms without programming. Olympiads in Informatics, 8, 157–168.
Ryle, G. (1949). The Concept of Mind. The University of Chicago Press.
Schoenfeld, A.H. (1992). Learning to think mathematically: problem solving, metacognition, and sense making

in mathematics. In: Grouws D.A. (Ed.), Handbook of Research on Mathematics Teaching and Learning.
334–370.

van der Vegt, W. (2012). Theoretical tasks on algorithms; two small examples. Olympiads in Informatics, 6,
212–217.

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

D. Ginat – heads the Israel IOI project since 1997. He is the head of
the Computer Science Group in the Science Education Department at
Tel-Aviv University. His PhD is in the Computer Science domains of
distributed algorithms and amortized analysis. His current research
is in Computer Science and Mathematics Education, with particular
focus on various aspects of problem solving.

Olympiads in Informatics, 2018, Vol. 12, 53–68
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.05

53

New Approach for Comparison of Countries’
Achievements in Science Olympiads

Mile JOVANOV1, Marija MIHOVA1, Bojan KOSTADINOV2,
Emil STANKOV1

1Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University
st. Rugjer Boshkovikj 16 Skopje, Macedonia

2Cloud Solutions LLC
st. Jurij Gagarin 33/27 Skopje, Macedonia

e-mail: mile.jovanov@gmail.com, ma�ija.mihova@finki.�kim.mk,
bojankostadinov@gmail.com, emil.stankov@gmail.com

Abstract. There are several International Olympiads for secondary school students (for example,
mathematics, physics, chemistry, biology and informatics). These Olympiads are not just a science
competition, but a means to care for talent in the particular science.

The goal of this paper is to identify the necessary topics important for good results at these in-
ternational contests, and to compare the contest systems for the countries in South Eastern Europe,
in the field of Informatics (Computer Science), as a region that is one of the prominent world re-
gions in the context of high results in the international competitions. Here, we provide comparison
through detailed analysis of several countries, and further we present a new approach that may be
used to compare the achievements of the countries based on the results that students achieved at
these competitions. Finally, we present an application of this approach on the results of some of
the discussed countries compared to Macedonia.

We strongly believe that the paper will provide a valuable content and approach for the entities
involved in the organization of the contests, to measure their results compared to other countries,
to use the information for improvement, and to use their achievements to raise awareness among
the government institutions and companies in order to get support from them.

Keywords: students, STEM education, science competitions, programming.

1. Introduction

There are several International Olympiads for secondary school students, but five of them
that are most widely recognized are those in mathematics, physics, chemistry, biology
and informatics. Most of these were originally founded under the auspices of UNESCO
(Taylor, 2012). These Olympiads are not just a science competition, but a means to care
for talent in the particular science. Caring for talent involves a broad range of issues,
including identification of talent and education adjusted to that talent (Verhoeff, 2011).

M. Jovanov et al.54

In particular, the International Olympiad in Informatics (IOI, 1989) is an annual
programming competition, reserved for secondary school students. Students compete
by solving problems (of algorithmic nature) in one of several available programming
languages (C, C++, Pascal, and, as of 2015 – Java). In the last few years, participants
received full feedback for their submissions, which wasn’t the case with earlier Olympi-
ads. The contest is usually organized in two competition days, and countries are limited
to 4 competitors each (Kostadinov et al., 2015). The first IOI was held in 1989, and this
year, the thirtieth Olympiad will be held (in Tsukuba, Japan).

In general, competitions are a major factor in education (Verhoeff, 1997). A lot of
countries use different forms of competitions in order to encourage students to perform
better in school (for example, in order to earn scholarships or grants), to bring the best
out of them (by enrolling students into special programs based on their interests), or
to promote cooperation by grouping students into teams and teaching them (through
competitions) the importance of collaboration between people with different talents and
preferences (Kostadinov et al., 2015). Whatever the goal, competitions must be fair in
order to make them engaging for the participants. That is, each participant (student,
team) should have the same chances, as possible, of winning. All science Olympiads try
to satisfy this criterion.

The role of competitions in informatics is additionally emphasized in education,
since the current status of informatics education is unsatisfactory in many countries
(Guerra et al., 2012). Although computers, applications, and information technology
(IT) in general are an increasingly natural part of the everyday work in schools, focus
is mainly put on basic digital literacy skills, while the underlying principles are left
uncovered. This situation has been recognized as a problem in many countries, and
recently the introduction of computing in the curriculum (e.g. UK, Estonia) has re-
sulted in an increased debate throughout Europe (Dagienė, 2014). Macedonia is one
of the first countries that has also included Computing as a compulsory subject in the
primary school curriculum (Jovanov et al., 2016).

Having in mind the importance of competitions, especially on international levels,
each country has a specific educational system and different attitude and focus on them.
This depends on many factors that include the base of teachers in the particular field,
their dedication, as well as the dedication of the state institutions on the promotion of
the competitions and their support. In some countries the main effort for the conduction
of competitions is undertaken by private or non-government organizations or even by a
few individuals.

In this paper, we will explain the strategies for good results at IOI (and IOI-like
regional contests) in the next section, and then we will focus on the organization of the
informatics competitions in selected countries from the South Eastern Europe (SEE)
region, as a region that is one of the world’s prominent regions in the context of high
results in the international competitions. The analysis has been done through extensive
interviews with relevant representatives from Romania, Bulgaria, Serbia, Montenegro,
Slovenia and Turkey, who are involved in the organization of their competition cycles.
Additionally, we include the situation in Macedonia, from our relevant experience. The

New Approach for Comparison of Countries’ Achievements in Science Olympiads 55

findings will be summarized in a table that will allow quick comparison that may be used
for further actions on the improvement of the effort in some country. This will be given
in the following section.

Further, in Section 4, we will present a new approach that may be used to compare
the achievements of the countries based on the results that students have achieved at
these competitions, and in Section 5 we present an application of this approach on the
results of the discussed countries, especially compared to Macedonia. At the end we
present the conclusions.

2. Achieving a Good Result at an International Olympiad

To win a medal at any of the international science Olympiads, the student should really
have great qualities, but that’s not enough. Our experience in participating in competi-
tions and recruiting successful competitors shows that several factors are important:
quality education, gift, tradition, competitive environment, continuous work and qual-
ity training.

For example, Macedonia has a much smaller population than most countries, and the
number of gifted students is statistically much lower, so in order for a student to enter
in the rank of medals at the international competitions, a serious commitment to each
of these aspects is required. In the following subsections we will give our summarized
knowledge and experience in the particular topics.

2.1. Quality Education

The educational system in one country plays a major role in its success at the major com-
petitions in science. The first introduction to the basics of a particular area usually hap-
pens in schools. It is the place where the student realizes that he has the predisposition
to understand the subject. The encouragement of students who are interested in some
discipline is firstly made by their teachers in regular education and they are the ones
who can judge whether a particular student stands out from the rest of the students in the
given area. They are the first to give guidance to these students, to encourage additional
activities and to develop their love for science.

2.2. Gift

The most important thing that a student should possess to be able to win a medal at an
international Olympiad is an extremely great gift for science. According to the authors
of one of the most prestigious books in algorithms (Cormen et al., 2009), to design
and prove an algorithm is an art, so they call the development of algorithms “the art

M. Jovanov et al.56

of designing algorithms”. This is an important element especially when it comes to
competitions that happen in a short period of life, such as programming contests, in
which students have only 2–4 years to reach some level of knowledge that is needed
for success. Therefore, here the student must be able to quickly learn new methods and
techniques, to clearly perceive the problem in order to design a solution and to handle
unforeseen situations easily. The scientific committees of international Olympiads,
such as the IOI and IMO, prefer to separate students who possess extremely high
logical intelligence rather than identify those who have learned the most number of
techniques. They try to make original tasks that can be solved without the use of great
theoretical knowledge.

2.3. Tradition

Countries with long-standing tradition achieve greater successes in international compe-
titions, regardless of economic and political events or their size. A proof to this claim are
the relatively small countries such as Bulgaria, Serbia and some former Russian repub-
lics, which have also won gold medals. Each new generation learns from the previous
one and tries to surpass it, and even if it fails – the quality level cannot fall significantly,
first of all because the standards are set to a relatively high level. Knowledge from an
area in a given country is “a continuous smooth function”, which gradually changes over
time, so it is necessary to spend a few years for a greater decline or growth. And our
results show just that.

2.4. Competitive Environment

Rarely can a student greatly differ in his knowledge and skills as compared to the
students in his environment. Every student compares and competes first with the stu-
dents of his own school, his city, and finally – with the students of his country. For
each student, firstly it is most important to be selected for the international Olympiad
team, and only after to achieve significant success at the Olympiad. So, when a student
is aware that there is no competition in his/her environment, he/she will work much
less. Hence, it is extremely important to create a larger group of students capable of
achieving a good result in national competitions, so that they motivate each other to
overcome one another.

2.5. Continuous Work

As in any other area, giftedness without work will not produce results. To win a medal
at the Olympiads, one must work all year long. In informatics, students have the oppor-
tunity to participate in online contests organized worldwide.

New Approach for Comparison of Countries’ Achievements in Science Olympiads 57

2.6. Strong Training

One of the negative things about on-line competitions is that they last shorter than the
contests at the Olympiads, and that some of the problems that need to be solved there
are considerably easier. Sites rank the competitors, so it is important for them to solve as
many tasks as possible. Therefore, organized preparations (training camps) should aim,
for example, to change the students’ approach of solving easier tasks in a shorter amount
of time, to solving a difficult task in a longer amount of time. Of course, they also must
get them to improve their programming skills.

2.7. Specifics fo� the Macedonian Case

In this subsection we will point out some specifics from our personal experience in
Macedonia relevant for the topics above, which may put an additional light on the
subject.

Our experience shows that there is a small number of teachers in Macedonia who
want to work with their students additionally, who try to teach them above the standard
curriculum and who are willing to participate in competitions and other events with their
students. But does the problem lie only in the quality and commitment of teachers? In
recent years, the government has introduced several measures that should encourage
teachers to work more actively with gifted students, which include (financial) prizes for
the results achieved at international competitions. But, the measures are not “attacking”
the problem systematically, so we still lack results.

The lack of training in the regular school for informatics competitions transfers this
problem to the Computer Society of Macedonia (CSM), as a non-government institution
responsible for the participation at international Olympiads. Therefore, the trainings that
CSM organizes include not only students that are selected for the international contests
but also some other students who have shown great results in the local competitions
(close results to those of the selected students). Also, CSM tries to send students to other
international competitions outside Macedonia, including students who are not in the first
team. The trainings that are organized by CSM are really strenuous and can last more
than 10 hours per day.

In the following section we will present specifics for selected countries of the SEE
region.

3. Current Situations in Selected Countries from SEE

In this section we will present our findings, based on reports, interviews and published
papers, for the situation in selected countries.

Information regarding the situation with competitions in Serbia was provided by
Jelena Hadzi-Puric, a professor at the Faculty of Mathematics, University of Belgrade.

M. Jovanov et al.58

The annual cycle of Serbian competitions consists of four levels: Municipal or online
Qualifications, Regional, National Competition, and the Serbian Olympiad in Informat-
ics (SIO). This year, around 750 junior contestants have been involved in the first level
qualifications, and 1273 senior contestants tried to solve at least one problem. For the
Regional and National competitions, students are divided into two divisions: A and B.
Division A consists of contestants from schools that follow the program of a special high
school for gifted students – the Mathematical Grammar School. All other contestants are
included in division B. The main difference between the problems in these two divisions
is their difficulty. Furthermore, the minimum number of points needed for advancing to
the next stage can be different between divisions.

For the Regional and National competitions in Serbia, there is no global training.
However, there are some online tournaments via the online judge system (Petlja, 2018).
Furthermore, some special schools organize preparations, which vary from town to
town. A training camp for the Serbian national team (for JBOI/EJOI or BOI/IOI) is orga-
nized every year. Most of the times, the training camp is organized in Belgrade or some
mountain camp (Divcibare, Petnica), where students have lectures all day. The training
is structured so that there are two basic modes of practice: 2 hours of theoretical lecture
(on a blackboard) in the morning, and 4–5 hours of coding in the evening. Typically, this
training lasts for 5 days.

As Hadzi-Puric explains, “Before 2016, we didn’t have an official support for train-
ing camps. Our society, Mathematical Society of Serbia (DMS, 1948), had received a
portion of the money from the Ministry of Education, but just to cover travel costs for an
international Olympiad. In the last two years, the Ministry of Trade, Tourism, and Tele-
communications organized a public invitation to all interested associations and founda-
tions, having the status of non-government organizations, to submit program proposals
for co-financing from the funds allocated from the budget of the Republic of Serbia. The
subject of the invitation was granting funds (10 000 euros) for programs in the field of
information society development, i.e. within the international competitions in the field
of computer science, mathematics and physics.”

According to Ranko Cabrilo, assistant director for IT at the Examination Centre of
Montenegro (ECM, 2005), the annual computer programming competitions in Monte-
negro are organized in two levels. These are the School level competition and the State
competition. Condition to qualify for the State competition is to win more than 50% of
the total points in the School competition. Since in Montenegro, computer programming
is an elective and not a regular subject in high schools (where most students come from),
they don’t have a huge number of candidates. Prior experiences state that the number
of candidates is usually between 15 and 20. Most of the candidates successfully qualify
for the State competition. The school competition is organized and financed by schools.
All state competitions (including computer programming), from which students qualify
for the Balkan and the International Olympiads, are organized by ECM. After the State
competition, ECM organizes trainings for the best competitors, and it also covers the
travel expenses for international competitions.

As Cabrilo explains, “it is difficult to estimate the budget for covering all the ex-
penses regarding computer programming, as all competitions in various subjects are

New Approach for Comparison of Countries’ Achievements in Science Olympiads 59

also financed as computer programming. These subjects include Mathematics, Physics,
Chemistry, Biology, Geography, etc.” In any case, if there is shortage of assets, ECM
tries to include different sponsors and donors in order to smoothly organize all competi-
tions and travels.

The competition cycle in Slovenia, as Simon Weiss – the current deputy leader of
the IOI team explains, includes: 1) School level competition; 2) State level competition;
and 3) Playoff competition for IOI/BOI team selection. The School level competition
is conducted in schools. The best contestants from this competition are invited to par-
ticipate in the State competition. For the State competition, contestants are divided into
3 groups: easy group (implementation and basic algorithms), medium group (which
requires many different skills from contestants), and advanced group (for the best con-
testants). All the contestants that achieve a reasonable score from the advanced group,
the best few contestants from the medium group, and the best contestant from the easy
group, are then invited to participate in a one-day Playoff competition for selection of
teams for BOI/IOI. Typically, the number of participants in the School level competi-
tion is over 200, 75% of which qualify for the State competition, and 15 contestants
make it to the Playoff competition.

As elaborated by Constantin Galatan, the national coordinator for the contests in
informatics, in Romania, the NOI and IOI related activities are directed and financed by
the Ministry of Education of Romania. The National Olympiad in Informatics (abbrevi-
ated as ONI in Romanian) has two sections. The first section includes lower-secondary
school students: 5th to 8th grade (10–14 years of age). The second section is for high
school students: 9th to 12th grade (15–18 years of age). Similarly, the National Training
Team consists of two distinct sections: the Junior Training Team, addressed to students
from lower-secondary school level (10–14 years of age); and the Senior Training Team,
composed of upper-secondary school level students (15–18 years of age).

The Romanian National Olympiad in Informatics is organized in three stages: 1)
Municipal Olympiad in Informatics (OMI); 2) County Olympiad in Informatics (OJI);
3) National Olympiad in Informatics (ONI). The National Training Team Selection
includes another three stages: 4) Selection contest for the Junior and Senior National
Training Teams; 5) First training camp; 6) Second training camp.

For the first three stages, the students from 5th to 10th grade receive different tasks
according to the level of study. The tasks for the 11th and 12th grades are the same. Once
ONI is finished, the National Training Team is selected in the following manner: first, the
Selection Contest for the Junior and Senior National Training Teams is organized and
it is a one-day onsite contest. The first 50% of the students in the ONI contest in each
level of lower-secondary school take part in this Selection contest. The same happens in
the case of high-school students who participate in the Selection contest for the Senior
National Training Team. In order to select the National Team, the results from ONI are
also taken into consideration.

Regarding the training of the IOI candidates in Romania, two dedicated training
camps are organized, 7 days each. Usually, the first training camp takes place at the end
of April or early May, and the second one in mid-May. In between, there are online ses-

M. Jovanov et al.60

sions, but they are not part of the official training schedule of students preparing for IOI.
They participate in contests organized by Romanian websites such as infoarena.ro.

According to Biserka Yovcheva, professor involved in the Bulgarian competitions,
the Bulgarian national team for the international competitions is selected in several
stages. First, the broader national team is selected through the National Olympiad in
Informatics (NOI). NOI is organized in three stages:

Municipal competition – organized by local teachers in schools, on town level. (1)
Typically, more than 1000 students participate in the competition.
Regional competition – also conducted onsite, on town level, but using tasks pre-(2)
pared by the National Committee of the Ministry of Education and Science. The
task solutions are checked by the National Committee and around 120 contestants
qualify for the next stage, in 5 groups: E, D, C, B, and A.
National competition – the final competition. Typically, the best 25 contestants (3)
from the group C, 20 contestants from the group B, 32 contestants from the group
A, and 40 contestants from groups D and E gain the right to participate in this
competition.

The junior national team is selected from the participants of the group C, while the
senior national team is selected from the participants of the groups A and B. The best 12
junior contestants and the best 12 senior contestants from the National competitions are
invited to take part in additional 4–5 competitions before the national teams of 4 students
(each) are selected.

Preparations for the selected teams (senior/junior) are conducted twice per year – a
3 day preparation camp in June, in Sofia, and another 7-day camp in July. So far, these
preparations have been financed by the “America for Bulgaria” foundation.

There is a project within the Ministry of Education and Science in Bulgaria, named
“Student Olympiads and competitions”, for covering the finances for all the activities in
the annual competition cycle. However, the project doesn’t always cover the costs com-
pletely, so sometimes schools and sponsors provide some of the money. Furthermore,
there is a Natural Science Olympic Teams Society, which is funded by the “America for
Bulgaria” foundation, and which also participates in the financing.

As described in (Can et al., 2015), the Turkish national team for IOI/BOI is selected
after the conduction of 3 contests and 2 training camps. First, a paper-based exam on na-
tional level is held to select students that will participate in a summer camp. Nearly 1300
students from all over Turkey participate in this first-level exam, which usually is held in
May. The top 55 students from the exam qualify for the summer camp. The summer camp
lasts for 2 weeks, starting in late August and ending in early September. Lecturers in this
camp are typically academics from the most respected universities in Turkey. After the
summer camp, another contest is organized, and students that achieve high scores in this
contest are invited to participate in a winter camp. The contest is performed in two days,
according to the IOI standards, and it takes place in November. The best 18 students in
this second contest are allowed to attend the winter camp. The winter camp also lasts for
2 weeks, during February. The final step of the selection process is yet another contest
following the winter camp, from which the best 4 students are selected to be part of the
national team that represents Turkey at the international competitions – IOI and BOI.

New Approach for Comparison of Countries’ Achievements in Science Olympiads 61

Preparations for the national IOI/BOI team are organized in the 2 weeks preceding
the actual IOI. These preparations are usually held in Ankara, and include a contest in
each of the preparation days.

A critical stakeholder, which provides the finances and maintains the organizational
structure of the Olympiads in Turkey, not just in Informatics, but also in other sub-
jects (such as Mathematics, Physics, Chemistry, and Biology), is the government agency
TUBITAK. Each year, TUBITAK forms an official scientific executive committee, con-
sisting of 3 academics from universities, and this committee is responsible for all the
scientific matters – from task preparation to selection and training of national teams. The
scientific committee, in collaboration with TUBITAK, organizes the paper-based exam
in the first level as well as the training camps, and executes all the administrative tasks
regarding the participation of the national team in IOI. It also recruits faculty members,
interested graduate students, as well as alumni from previous years, to teach the contes-
tants and help them practice for competitions during the training camps.

Competitions in informatics are held in Macedonia since 1990, and, by 2018, 29
national contest cycles have been conducted – which include multiple competitions each
year, selection contests for international competitions, as well as training camps. Every
year the contestants go through many levels of competition so that the best could be
selected. The selected pupils represent themselves and Macedonia at the (Junior) Bal-
kan Olympiad in Informatics (BOI/JBOI), European Junior Olympiad in Informatics
(EJOI) and the International Olympiad in Informatics (IOI), as well as at other smaller
regional competitions. The main organizer of the competitions in informatics for pri-
mary and secondary school pupils is the Computer Society of Macedonia (Kostadinov
et al., 2015). The total budget for the complete cycle that is raised mainly by sponsors is
around 8000 euros per year.

The format of the competitions evolves each year, depending on many factors, such
as the number of interested pupils, available resources, inclusion of programming in
the schools’ curricula, etc. The number of participants in the base contest is approx.
450, including around 50 juniors. Presently, the competitions are organized for primary
and secondary school pupils, and include: School Qualification Competition, Regional/
Municipality Competition, National Competition, National Olympiad, and (potentially)
Selection Contests for International Competitions.

In order to support several competition types, to enable a large number of students to
participate in the competitions, and to introduce as many pupils as possible to the art of
programming, all of the competitions in informatics that are part of the national contest
cycle (accredited by the Ministry of Education), are organized using the MENDO com-
petition management system (Kostadinov et al., 2010).

We have summarized the gathered information above in Table 1. As it can be seen,
different countries include different number of students in the first (base) contest,
which is not strictly proportional to the population of the respective countries. The
smallest number of students is in Montenegro (only 15 to 20), and the largest number
is in Romania (4000). Turkey involves 1300 pupils in the competitions although it
is the country with highest population among the examined countries. The number
of cycles through which the teams for international contests are elected also varies

M. Jovanov et al.62

from 2 (Montenegro) to 5 (Romania, Bulgaria, Macedonia). Training of contestants
is present in each country, but the form, quantity and regularity differs. Finances, as
an important issue, vary from country to country. Firstly, some of the countries have
organized state institutional support, while others depend on sponsors and sporadic
institutional support. The budget varies from 7 000 to 80 000 euros (as an approxi-
mative value, since the support is given from different state institutions for different
activities throughout the annual cycle).

Table 1
Summary of current situations in selected countries from SEE

Country Levels in the
competition cycle

Number of 1st
level participants

Training of
contestants

Financing

Serbia Municipal, Regio-
nal, National, Ser-
bian Olympiad in
Informatics (SIO)

Over 1200 senior
and around 750
junior contestants

Online tourna-
ments (via the
online judge
system Petlja),
preparations or-
ganized by some
schools, training
camp for the
selected teams
(JBOI/EJOI and
BOI/IOI)

Before 2016, no financial support
whatsoever for training camps,
only travel costs for international
Olympiads covered by Ministry of
Education. Starting from 2016, a
budget of 10 000 euros is allocated
by the Ministry of Trade, Tourism
and Telecommunications of
Republic of Serbia

Montenegro School level com-
petition, State
competition

Between
15 and 20

Training camp
for the best
contestants in the
State competition

School competitions are organized
and financed by schools; state
competitions and training camp
organized by the Examination
Center of Montenegro, which
also covers the travel costs for
international Olympiads

Slovenia School level com-
petition, State com-
petition, Playoff
competition for IOI/
BOI team selection

120
(plus 100 junior
contestants)

Preparations (2
lecture cycles)
for the best
contestants in the
State competition

Budget: 7 000 euros

Romania Municipal Olympiad
in Informatics (OMI),
Country Olympiad in
Informatics (OJI),
National Olympiad
in Informatics
(ONI), Selection
Contest for Junior
and Senior National
Training Team, First
and Second training
camp

Around 4000
students

Two training
camps (7 days
each), online con-
tests organized
by Romanian
websites such as
infoarena.ro

All the activities are directed
and financed by the Ministry of
Education of Romania

Continued on next page

New Approach for Comparison of Countries’ Achievements in Science Olympiads 63

Table 1 – continued from previous page

Country Levels in the
competition cycle

Number of 1st
level participants

Training of
contestants

Financing

Bulgaria Municipal, Regional,
National Olympiad
in Informatics, 4–5
additional compe-
titions for the
national (IOI/BOI/
JBOI/EJOI) team
selection

More than
1000 students

P r e p a r a t i o n s
for the selected
teams for IOI/
BOI – 2 camps
(a 3-days and a
7-days camp)

Budget: 80 000 euros. There is a
national project for financing by
the Ministry of Education, but
sometimes schools, sponsors or
even parents participate financially.
There are also other sources of
financing as well, e.g. the “America
for Bulgaria” foundation

Turkey First National Paper-
Based Exam, Progra-
mming Contest, Te-
am Selection Contest
(IOI/BOI)

Approximately
1300 students

Summer School
(2 weeks),
Winter School
(2 weeks),
IOI camp
(2 weeks)

Financing provided by the
government agency TUBITAK.
Budget: 40 000 US dollars

Macedonia School Qualification
Competition, Regio-
nal and National
Competition, Nati-
onal Olympiad ,
and (potentially)
Selection Contests
for International
Competitions

Approximately
450 students

Sporadic summer
schools (around 1
week)

Financing provided by sponsors of
Computer Society of Macedonia.
Budget: 8 000 euros

4. A New Approach for Comparison of the Countries’ Achievements

Each country is represented at the international Olympiads with a fixed number of candi-
dates, i.e. each country may bring up to 4 contestants at IOI, up to 6 contestants at IMO,
and so on. This clearly creates a challenge if someone wants to measure the achievement
of one country compared to another. The main inequality is that each country is repre-
sented with a fixed number of contestants instead of some kind of proportional or merit-
based quotas. A country with population of two million people is obviously expected to
achieve a lower result than a country with population of 20 million, or even two billion.
The question is – by how much?

As stated in (Taylor, 2012): “The attitudes of the IMO and IOI are almost diametri-
cally opposed when it comes to publication of results. Although earlier I recall the at-
titude of the IMO to scores was to emphasize that the IMO was an individual rather
than team event, IMO now on its official web site https://www.imo-official.org/
results.aspx publishes the results of every student question by question, even if they
get no points, and they also provide official placing for each country each year. This is
accepted and completely non-controversial within the IMO community. There are two
possible ways of providing a premiership for countries. One would be to use every point
won by the student (as IMO does), while the other, which I have seen done by Australian

M. Jovanov et al.64

colleagues from other science Olympiads, is to use a medal count based on something
like 3, 2 and 1 points for Gold, Silver and Bronze.”

In the last years IOI also started publishing the complete lists of results for each stu-
dent, so the principle mentioned above may also be applied for these results as well.

Anyhow, these approaches that we see at the Olympiads’ websites and the websites
related to people from Olympiad communities do not consider the characteristics of each
country, especially the country’s population.

Our approach proposal is to take into account the population of the countries in
question. For example, if you consider country A with population of a and country B
with population of b, then one should expect that out of the first n students in the ranking
of the students from both countries, approx. Ca = (a * n) / (a + b) should be from country
A and approx. Cb = (b * n) / (a + b) from country B, and this should stand for every n,
when the countries are equally strong.

For example, if A is a country with population of 2 000 000, and B is a country with
population of 7 000 000, then for n = 2, Ca = 0.44 and Cb = 1.55, which means that from
the first 2 students either both should be from country B or in rare occasions one from
each country. For n = 4, Ca = 0.88 and Cb = 3.11, which means that from the first 4 stu-
dents either one should be from country A and 3 from country B or in very rare occasions
all of them should be from country B. For n = 6, Ca = 1.33 and Cb = 4.66, which means
that from the first 6 students either one or rarely 2 should be from country A and 5 or
rarely 4 from country B.

From the above example, and if we consider that at IOI every country participates
with 4 contestants, for the particular 2 countries (A and B), if the country A has 1 student
ranked in the first 4 or 5 students from the joined ranking list, then one may consider that
these 2 countries have achieved similar results. Every situation in which a student from
country A is ranked higher than fourth place in the joined ranking gives “advantage” to
the country A.

We believe that this approach is much more fair and precise, when used to compare
2 countries. Although it cannot be efficiently used when the population of the countries
is dramatically different (i.e. the ratio B/A or A/B is greater than 5) for a specific year,
it becomes usable when comparing the countries over the period of more than one (con-
secutive) years, by putting the contestants from all years in a joined ranking list.

This comparison approach that we propose may be used for analysis of the achieve-
ments of a country. The result may confirm (or throw away) the methods and approaches
used in that country in their education and competition cycles organization.

In the following section we will give a short case study with focus on the results achi-
eved by Macedonian contestants, compared to some of the neighboring countries.

5. A Case Study of the New Approach for the Macedonian Achievements

Organizer of the informatics competitions in Macedonia is the Computer Society of
Macedonia (CSM). The organization of state events deals with large number of par-
ticipants, which are mostly minors (under 18 years old) and, also, with the necessary

New Approach for Comparison of Countries’ Achievements in Science Olympiads 65

technology on site that requires staff to deal with technology malfunctions. CSM is a
nongovernmental, non-profit organization and bases the organization of the competi-
tions solely on sponsorships from companies, educational institutions, and sporadically
from donations based on application in some calls for projects. With low finances in
mind, CSM employs as cost-effective as possible ways for engaging pupils in the com-
petitions, motivating teachers and school authorities, as well as keeping the participants
informed, and “in good condition”. Among the challenges that CSM faced in the begin-
ning of the last decade was the small number of children involved in the competitions,
which, of course, led to results that were not noticeable in the worldwide IOI ranking
(Jovanov et al., 2017).

The challenges mentioned above inspired continuous evolution of the format of the
competitions. The changes undertaken ever since depend on many factors, such as the
number of interested pupils, the inclusion of programming in the schools’ curricula,
etc. Also, in the year 2010 the competition system called MENDO was developed and
introduced in the management and execution of the competitions (Kostadinov et al.,
2010). All the improvements throughout the years, led to enhancement of the interest
of pupils, and more and more pupils joined the competition process. From 48 pupils
involved in the first round of competitions in year 2009, the interest rose to approx.
450 pupils in 2017. All of the aforementioned improvements, in turn, resulted in higher
quality in the pupils’ achievements. The achievements of the pupils in the Olympiads
in Informatics are presented in Fig. 1. In this figure, the medals won by Macedonian
competitors at the international competitions in informatics (IOI, BOI, and JBOI), in
the period 1996–2016 are shown. There is a very obvious increase in the number of
medals won, prior and following 2010. The last period is the one that involves the

Fig. 1. Medals won by Macedonian competitors at the international competitions in
informatics (IOI, BOI, and JBOI), in the period 1996–2016 (Jovanov et al., 2017) .

M. Jovanov et al.66

great changes in the competitions (the form and the tools for organization) and in the
educational curriculum (Jovanov et al., 2017).

Anyhow, as organizers of the competitions, we always ask ourselves the following
questions: Have we managed to reach the maximum result for Macedonia? Is Mace-
donia’s performance on the same level as the neighboring countries, even without the
regular support from the government and the state budget?

The population of Macedonia is around 2 000 000 (CIA, 2018). The highest achiev-
ing neighboring countries of Macedonia (countries from SEE region) are Serbia (popu-
lation around 7 000 000 (SORS, 2018)), Bulgaria (population around 7 000 000 (NSI,
2017)), and Romania (population around 20 000 000 (INS, 2012)). If we employ the
new approach, it would mean that in the competition including the best participants
from Macedonia and Bulgaria or Serbia, there should be one Macedonian in the first 4
students (based on the calculations from the previous section), or in a match between
Macedonia and Romania, in the first 11 students there should be one Macedonian. Since
IOI is usually attended by the four best contestants from each country, whenever one
contestant of Macedonia is placed in front of a student from Bulgaria and Serbia, this
is a success equal to the success of those two countries. In the last two IOIs the best
Macedonian competitor has always been ranked in front of at least one competitor from
Bulgaria, Serbia and Romania. Therefore, we may consider the Macedonian results at
IOI at least equal to the strongest countries in our region.

We would not go into further deliberations and comparisons, because the focus of
this paper is on the applicability of the new approach, and not on the particular achieve-
ments of Macedonia. Presented case clearly shows its applicability.

6. Conclusion

In this paper, at the beginning, we have identified and summarized the necessary topics
important for achieving good results at international scientific Olympiads. Further, we
have presented thorough analysis of the contest systems of selected countries from South
Eastern Europe (SEE) in the field of Informatics (Computer Science), as a region that
is one of the prominent world regions in the context of high results in the international
competitions. The characteristics of the informatics contest systems of Romania, Bul-
garia, Serbia, Montenegro, Slovenia, Macedonia and Turkey were then summarized in a
table, for easy comparison.

Further we presented a new approach that may be used to compare the achievements
of countries based on the results that students achieved at Olympiads, and then we gave
an application of this approach on the results of some of the discussed countries, com-
pared to Macedonia.

We strongly believe that the content presented here, and the given approach for com-
parison, will be a valuable tool for the entities involved in the organization of the con-
tests, to measure their results compared to other countries, to use the information for
improvement, and to use their achievements to raise awareness among the government
institutions and companies in order to get support from them.

New Approach for Comparison of Countries’ Achievements in Science Olympiads 67

Acknowledgement

The research presented in this paper is partly supported by the Faculty of Computer
Science and Engineering, at the Ss. Cyril and Methodius University in Skopje. Authors
wish to thank Jelena Hadzi-Puric, Ranko Cabrilo, Simon Weiss, Constantin Galatan, Bi-
serka Yovcheva and Fatih Demirci, for supplying the information regarding the current
situation with the national competition cycle in their respective countries.

References

CAN, T., SIĞIRCI, İ.O., ABUL, O., DEMİRCİ, M.F. (2015). Informatics Olympiads in Turkey: team selection
and training. Olympiads in Informatics, 9, 225–232.

CIA – Central Intelligence Agency (1947–2018): the world factbook. (Accessed 19/5/2018).
https://www.cia.gov/library/publications/the-world-factbook/geos/mk.html

Cormen, Т.H., Leiserson, C.E., Rivest R.L., Stein C. (2009). Introduction to Algorithms, Third Edition.
Dagienė, V., Mannila, L., Poranen, T., Rolandsson, L., Stupurienė, G. (2014). Reasoning on children’s cognitive

skills in an informatics contest: findings and discoveries from Finland, Lithuania, and Sweden. In: Gülbahar
Y., Karataş E. (Eds) Informatics in Schools. Teaching and Learning Perspectives. ISSEP 2014. Lecture
Notes in Computer Science, vol. 8730. Springer, Cham.

DMS – Mathematical Society of Serbia (1948–2018).
https://dms.rs/ (accessed 19/5/2018).

ECM – Examination Centre of Montenegro (2005–2018). (Accessed 19/5/2018).
http://www.iccg.co.me/1/index.php?lang=en

Guerra, V., Kuhnt, B., Blöchliger, I. (2012). Informatics at school-worldwide. In: An international. Tech. rep.
Universität Zürich.

INS – Institutul Naţional de Statistică (2012). Rezultate definitive ale Recensământului Populaţiei şi al Locuin-
ţelor – 2011 (caracteristici demografice ale populaţiei).

IOI – International Olympiad in Informatics (1989–2018).
http://www.ioinformatics.org (accessed 19/5/2018)

Jovanov, M., Stankov, E., Mihova, M., Ristov, S., Gusev, M. (2016). Computing as a new compulsory subject
in the Macedonian primary schools curriculum. In: 2016 IEEE Global Engineering Education Conference
(EDUCON), 680–685. IEEE.

Jovanov, M., Ackovska, N., Stankov, E., Mihova, M., Gusev, M. (2017). A decade of engineering computer
engineers. In: 2017 IEEE Global Engineering Education Conference (EDUCON). Athens, 1309–1315.

Kostadinov, B., Jovanov, M., Stankov, E. (2010). A new design of a system for contest management and grading
in informatics competitions. In: ICT Innovations Conference 2010, Web Proceedings. 87–96.

Kostadinov, B., Jovanov, M., Stankov, E., Mihova, M., Stojkoska Risteska, B. (2015). Different approaches for
making the initial selection of talented students in programming competitions. Olympiads in Informatics,
9, 113–125.

NSI – National Statistical Institute of Bulgaria (1880–2018). (Accessed 13/3/2017).
http://www.nsi.bg

Petlja – Online judge system in Serbia. (Accessed 19/5/2018).
http://petlja.org

SORS – Statistical office of the Republic of Serbia (1862–2018). (Accessed 19/5/2018). stat.gov.rs
Taylor, P. (2012). Comparisons of the IMO and IOI. Olympiads in Informatics, 6, 199–204.
Verhoeff, T. (1997). The Role of Competitions in Education. Future World: Educating for the 21st Century: a

conference and exhibition at IOI.
Verhoeff, T. (2011). Beyond the Competitive Aspect of the IOI: It Is All about Caring for Talent. Olympiads in

Informatics, 5, 120–127.

M. Jovanov et al.68

M. Jovanov is an assistant professor at the Faculty of Computer Sci-
ence and Engineering, Ss. Cyril and Methodius University, in Skopje.
As the President of the Computer Society of Macedonia, he has ac-
tively participated in the organization and realization of the Macedo-
nian national competitions and Olympiads in informatics since 2001.
He has been a team leader for the Macedonian team at International
Olympiads in Informatics since 2006. His research interests include
development of new algorithms, future web, and e-education.

M. Mihova is a professor at the Faculty of Computer Science and
Engineering, Ss. Cyril and Methodius University, in Skopje. She is a
member of the board of the Computer Society of Macedonia. Her re-
search interest is in the field of applied mathematics, more specifically
applied probability and statistics, with focus on mathematical models
in reliability, especially reliability of multi-state systems.

B. Kostadinov is the founder of Cloud Solutions, an author, and a
former competitive programmer. In 2014, he defended his MSc thesis
in Intelligent information systems at the Faculty of Computer Science
and Engineering, Ss. Cyril and Methodius University, in Skopje. He
is one of the organizers of the national competitions in informatics in
Macedonia, and the Beaver event.

E. Stankov is a teaching and research assistant at the Faculty of Com-
puter Science and Engineering, Ss. Cyril and Methodius University, in
Skopje. He is a member of the Executive Board of the Computer Soci-
ety of Macedonia, and has actively participated in the organization and
realization of the Macedonian national competitions and Olympiads in
informatics since 2009. Currently he is a Ph.D. student at the Faculty
of Computer Science and Engineering. His research includes analysis
of program code correctness using different techniques, and its appli-
cation to e-learning.

Olympiads in Informatics, 2018, Vol. 12, 69–84
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.06

69

National Survey of Japanese Universities on
Computing Education: Analysis of Departments
Majored in Computing Discipline

Tetsuro KAKESHITA
Department of Information Science, Saga University
Honjo 1, Saga, Japan
e-mail: kake@is.saga-u.ac.jp

Abstract. We conducted the first national survey of computing education at Japanese universities
in 2016. In this paper, we report the survey result of the computing education at a department or
a course majored in the computing discipline. The survey covers various aspects including pro-
gram organization, quality and quantity of educational achievement, students, teaching staff and
computing environment. Thus the survey result is expected to be a good fundamental to develop
realistic computing curricula and accreditation criteria in Japan. The estimated number of comput-
ing departments and students in Japan is about 300 and 28,000 respectively. 50% of the students
belong to engineering faculties. Although 25% of the students are learning Computer Science,
50% of the students are learning computing domains other than those defined in CC2005. The
information processing society of Japan (IPSJ) and the Japanese Ministry of Education (MEXT)
utilize the survey result to develop a new computing curriculum standard J17 and national policy
of computing education respectively.

Keywords: web-based survey and analysis, college level education, curriculum development
and analysis, accreditation criteria development, computing education, quality assurance in edu-, quality assurance in edu-quality assurance in edu-
cation.

1. Introduction

Computing education is essential at modern universities since information technology
is expected as a powerful innovation driver as well as an essential infrastructure of the
modern society. There are four types of computing education in Japanese universities.

Computing education at a department or a course majored in computing disci-1.
pline.
Computing education at a non-IT department or a course as a part of their major 2.
field of study.

T. Kakeshita70

General computing education for all university students typically at the first or 3.
second academic year.
Computing education to obtain high school teacher license on computing sub-4.
jects.

We conducted a national survey of Japanese universities on computing education
in 2016 (Kakeshita, 2017). The survey is composed of five survey types A through D
described above as well as the survey type E for educational computer system. Our sur-
vey is actually the first national survey in Japan since there was no widely accepted de-
finition of computing education. This situation is essentially the same at other countries
so that we are not aware of a similar survey collecting comparable level of detailed data
as our survey.

The Science Council of Japan developed the reference standard of informatics
(Hagiya, 2015) for university education in 2016. The reference standard provides a com- for university education in 2016. The reference standard provides a com-
mon body of knowledge (BOK) for college level computing education and the Japanese
government accepted this as a definition of computing education. Thus we shall use the
reference standard as the definition of computing education in this paper.

In this paper, we report and discuss the result of the survey type A for computing
education at a department or a course majored in computing discipline. The survey is
designed to analyze and understand current status of computing education at Japanese
universities from various aspects including program organization, quality and quantity
of educational achievement, students, teaching staff and computing environment. The
analysis result will be expected as a fundamental to develop reasonable curriculum
guidelines and accreditation criteria for computing education. The analysis also clarifies
the difference of the five major computing domains, CS, CE, SE, IS and IT, which are
developed separately by different community.

The Information Processing Society of Japan (IPSJ) utilized the result to develop the
new J17 curriculum standard for computing education in 2017. The Japanese Ministry
of Education (MEXT) will utilize the survey result to improve the national policy of
computing education.

2. Survey Plan

2.1. Survey Questions

The following is the list of questions for survey type A. As the reader can understand
from the list, our survey covers various aspects of computing education. These questions
are prepared by considering the Japanese standards for establishment of universities and
our accreditation experience of computing programs in Japan.

Name of university, faculty, department and course. ●
Program organization. ●

Day time, night or remote program.•

National Survey of Japanese Universities on Computing Education ... 71

Academic discipline of the program such as engineering, social science and •
humanities.
Specific computing domain including CS, CE, SE, IS and IT defined in CC2005 •
(JTF, 2005).
Required number of credits for graduation.•
Number of subjects provided.•

Quality and quantity of educational achievement. ●
See Section 2.2 for detail.•

Enrolled students. ●
Regular academic years of the program.•
Number of students.•
Student’s choice of career after graduation.•

Teaching Staff. ●
Number, educational background, current specialized field, tenure of faculty •
members.
Number and workload of support staff.•
Number and workload of teaching assistant students.•

Computing environment. ●
Educational computer system.•
Utilization of Student’s own PC.•
Educational programming language.•

Other topics (If any). ●
Future plan and strength of the program.•
Utilization of IT certification and/or qualification.•
Special remarks.•

2.2. Survey of Quality and Quantity of Educational Achievements

The survey of quality and quantity of educational achievements is the core of our survey.
We define six achievement levels for knowledge and skill defined in Table 1. These lev-
els are used to define quality of education.

We also define a BOK based on the reference standard of informatics (Hagiya, 2015)
and additional topics related to general computing education (Kawamura, 2008). The
BOK contains 90 topics classified by 21 domains as represented in Table 2. The BOK is
used to precisely define educational contents of each program.

Although CC2005 (JTF, 2005) defines five computing domains to define typical
computing curriculums, corresponding BOKs are different depending on the domain.
We define the BOK instead of using the five different BOKs. We also expect to find edu-
cational programs other than the typical ones. Common BOK is also useful to clarify the
difference among the existing five domains (Kakeshita and Ohtsuki, 2014).

It is usual that a computing education as the major domain is performed at a depart-
ment or a course of a department. Thus a department or a course responds to the survey.
Each organization answers expected knowledge and skill levels of the students at each

T. Kakeshita72

Table 2
Common BOK Organization

Source Section Domain # of Topics

J07-GEBOK General Computing Education 9

Reference
Standard for
Informatics

(A) General Principles of Information 6

(B) Principles of Infor-
mation Processing by
Computers

Information Transformation and Transmission 4
Information Representation, Accumulation and Mana-
gement

4

Information Recognition and Analysis 4
Computation 6
Algorithms 8

(C) Technologies for con-
structing computers that
process information

Computer Hardware 3
I/O Device 4
Fundamental Software 3

(D) Understanding hu-
mans and societies that
process information

Process and Mechanism for Information Creation and
Transmission

2

Human Characteristics and Social System 3
Economic System and Information 2
IT-based Culture 2
Transition from Modern Society to Post Modern
Society

2

(E) Technologies and or-
ganizations for construc-
ting and operating systems
that process information in
societies

Technics for Information System Development 7
Technics for Information System Utilization 6
Social System Related to Information 2
Principle and Design Methodology for HCI 4

Professional Competency for IT Students 3

Generic Skill for IT Students 6

Table 1
Knowledge and Skill Level Definition

Level Knowledge Level Definition Skill Level Definition

0 Not taught (unnecessary or already taught at general computing education)

1 Not taught because of the time limitation or
because the level of the contents is too high

Taught at class with simple exercise

2 Taught at class. Students know each term Taught at class with some exercise. Students can
perform the topic if detailed instruction is provided

3 Taught at class. Students can explain the
meaning of each term

Taught at experiment with more complex exercise.
Students can perform the topic with simplified
instruction

4 Taught at class. Students can explain rela-
tionship and/or difference among related
terms

Students perform combined research project con-
taining the topic so that the students can autonomously
perform the topic

5 Taught at class or graduation research project.
Students can teach related domain or subject
of the terms to the others

Students perform combined research theme containing
the topic. Students can teach how to perform the topic
to others

National Survey of Japanese Universities on Computing Education ... 73

topic of the BOK. At the same time, the organization answers the total number of stu-
dents taking a subject teaching each topic. As a result, quality and quantity of education
at the organization can be summarized through the survey.

2.3. Survey Process

We prepared the survey in October 2016. At first we defined the survey questions and
set up the web-based survey system (Kakeshita, 2011). We utilized the web-based
survey since we did not exactly know the actual organizations for this survey in ad-
vance. After preparing various document such as user manual and detailed instruction
of the survey questions, we sent the formal request letter to all universities in Japan
with a reference letter from the Japanese Ministry of Education in order to increase
the response rate.

The survey was executed for two months starting at the beginning of November
2016. Each survey responder of survey type A must first register to the web system
and then answer the questions listed in Section 2.1. We also provided FAQ at the
survey web site and sent e-mail responses to each of the questions from the survey
responders.

After closing the survey, we reviewed the collected answers and requested the res-
ponders for possible correction of the incomplete answers.

3. Overview of the Survey Result

3.1. Response Rate Analysis

We collected 296 answers for the survey type A. We reviewed the answers and found
that 17 are invalid because of the two reasons. (1) The number of required credits is
less than 30, which is 25% of the minimum credits defined by the Japanese standards
for establishment of universities. (2) The name of the department does not indica-
te computing discipline. After contacting the 17 organizations, we obtained permis-
sion to exclude them from the computing departments. Therefore the total number of
answers is 279.

Among the 279 answers, 82 come from national universities and 166 from private
universities. 31 answers come from public universities which are founded and run by
local government such as city or prefecture.

Each answer is provided either by a faculty, collection of departments, single de-
partment or a course. Thus the number of answers does not directly represent the actual
number of computing departments in Japan. We examined the answers to have Table 3
representing the number of universities, faculties and departments having computing
department or course.

T. Kakeshita74

There is a council of informatics departments (DI-Council) in Japan whose academic
discipline is natural science or engineering. 151 departments join the DI-Council. 127
departments (84.1%) also respond to the survey so that we can estimate that the response
rate of the survey is about 85%. Considering the response rate, we estimate that the num-
ber of computing departments in Japan is approximately 300. This means that there are
quite a large number of computing departments which we are not aware in Japan.

The response rate 85% is quite high considering that each organization must in-
dependently register to the web-system. This becomes possible because of the strong
support of the Ministry of Education, Japan. Each organization responds to the survey
as a part of their job.

3.2. Student Enrollment

Table 4 represents the number of students majored in the computing discipline classified
by academic discipline and specific domain within computing.

Total number of students is 26,112. Considering the response rate, the total number
of computing students is approximately 28,000 in Japan. The numbers of male and fe-
male students are 21,529 and 4,583 respectively. 47.3% of the female students belong
to 20 universities so that the distribution is highly skewed. Since IT service is widely

Table 3
Number of Computing Departments in Japan

University Faculty Department

National 53 61 75
Public 22 22 29
Private 108 133 163

Total 183 216 267

Table 4
Distribution of Computing Students Classified by Academic Discipline and

Computing Domain

Academic Discipline CS CE SE IS IT Others Total

Engineering 5,549 1,632 78 1,664 997 3,715 13,635
Social Science 40 419 742 3,453 4,654
Physical Science 730 100 224 1,054
Humanities 125 318 443
Pharmacy and Nursing 170 70 56 296
Art 65 78 143
Education 40 40
Others 449 157 20 665 4,556 5,847

Total 6,768 1,632 300 2,373 2,677 12,362 26,112

National Survey of Japanese Universities on Computing Education ... 75

utilized in the modern society, it is expected that more female students study computing
discipline as their major in order to promote further innovation using IT. The number of
IT professionals is approximately 1 million in Japan so that more students are expected
to learn computing discipline as their major.

According to US educational survey (NCES, 2017), the Bachelor’s degree in com-
puter and information science is 59,581 in 2014-15 so that the number of computing
students in Japan is approximately 43.8% of that of US. Since the population of Japan
is 39.0% of that of US, the ratio of computing students against the population is almost
the same at both countries.

The following is the observations we found in Table 4:
The second largest academic discipline is “Others”. The corresponding depart- ●
ments are interdisciplinary, i.e. belonging to two or more disciplines. This indi-
cates the diversity nature of the computing discipline which cannot be covered by
an existing discipline.
26.5% of the departments are teaching computer science (CS) and 32.3% are ●
teaching one of the other existing computing domains. However, 41.2% of the
departments cannot be covered by a single domain. Appropriate curriculum guide-
lines are expected to be developed for these departments.
Although CS and CE are mainly taught at engineering or physical science de- ●
partments, IS and IT are also taught at social science and other departments. We
consider that there is a historical reason for this. Computing education, particularly
CS and CE, has been provided mainly at a department majored in engineering or
natural science. However the computing domain is expanding so that new domains
such as IS and IT are emerging. The departments majored in social science and
humanities also take the responsibility to provide IS and IT education.

Table 5 represents the computing student’s career selection after graduation. The
number of students does not coincide with Table 4 because of the incomplete answers.
It should be noted that career selection is completely different at national, public and
private universities. 52.8% of the students enter a graduate school at national university,
while 9.9% at private university. A possible reason is that the tuition fee of a private uni-a private uni-private uni-
versity is typically two or three times higher than that of the national or public universi-
ties. It is also recognized that many of the students enter the graduate school of the same
university they graduated. This means that 6-year education consists of undergraduate
and master course education can be effectively introduced mainly at national universi-can be effectively introduced mainly at national universi-mainly at national universi- at national universi-
ties. This also implies that mobility of the student is rather limited in Japan.

Table 5
Student’s Career Selection after Graduation

Career Selection National Public Private Total

Graduate school in computing discipline 2,620 388 1,309 4,317
Graduate school in other disciplines 338 57 237 632
Hired at company, government or school 2,409 1,093 12,198 15,700
Others (including unknown) 231 52 1,828 2,111

T. Kakeshita76

3.3. Number of Credits for Graduation

In Japan, an undergraduate program must contain at least 124 credits to obtain a Bach-
elor degree. 1 credit requires 45 hours of learning including class. Typical curriculum is
composed of general education at university level (typically 20 to 40 credits) and com-
mon education at faculty level (typically 10 to 20 credits) in addition to the specialized
education at a department or a course. An educational institution must first assign credits
to each component. Depth and width of the education is greatly affected by the allocated
credits.

Fig. 1 represents the distribution of the required number of credits for the specialized
computing education. The distribution is illustrated using a box plot and provides a re-education. The distribution is illustrated using a box plot and provides a re-. The distribution is illustrated using a box plot and provides a re-a box plot and provides a re-box plot and provides a re- and provides a re- provides a re-
alistic restriction to design computing curriculum for each domain. For example, typical
CS curriculum is composed of 75 to 100 credits. Observing this distribution, it is recom-Observing this distribution, it is recom-t is recom-
mended to design a CS curriculum guideline between 50 and 60 credits. This will allow
freedom to design computing curriculum considering strength and background at each
educational program while preserving quality assurance of computing education among
many of the CS departments. Similar discussion is possible at other domains.

4. Educational Achievements

We shall analyze the educational achievement, i.e. quality and quantity of education,
in this section. We collected 97 answers of the quality survey and 67 answers of the
quantity survey. Although the number of collected answers is smaller than the number of
responses to the survey, it is comparable to 75 which is the estimated number of samples
calculated under the assumption of universe size 300 and 10% statistical error. Therefore
our discussion can be statistically reasonable.

We define educational effort of a program for a certain topic of the BOK by the mul-
tiplication of average level value and the number of students learning the topic. We thus
define two types of effort values to teach knowledge and skill.

Fig. 2 illustrates the effort distribution of each computing domain. Each of the effort
values are summed up for each section as defined in Table 2 in order to clarify char-
acteristics of each domain. Although skill effort values are used in Fig. 1, correlation

Fig. 1. Distribution of the Number of Credits for Graduation at Each Computing Domain.

National Survey of Japanese Universities on Computing Education ... 77

coefficient between skill and knowledge effort values is 0.97 so that distribution of the
knowledge effort values is similar.

Major difference of the effort distribution among the domains arises at the sections
from (B) to (E). In CS and CE, traditional contents defined in (B) and (C) are dominant.
On the other hand, educational program of IS and IT focus more on (D) and (E). As we
discussed in Section 3.2, there are some IS and IT departments in social science where
(D) is contained in their major subjects. The contents in (E) can also be taught at social
science departments because system operation is included in (E).

We also calculated the effort at each domain defined in Table 2. The top 3 domains
with the highest effort are as follows. Many of the computing departments focus on these
educational topics.

General Computing Education ●
Generic Skill for IT Students ●
Algorithms ●

These domains are relatively easy compared to other domains. We consider that there
are two reasons that the computing departments focus on these domains. One is the
shortage of teaching staff who can teach high level computing topics. The other is the
declining academic ability of the students due to the increase of the percentage of stu-
dents who enter university or college in Japan.

On the other hand, the topics other than the above three can be considered as the
contents which an educational institution can claim their originality. Since the comput-
ing discipline is quite large, each institution is expected to focus on particular domains
which they have strength.

Fig. 3 summarizes the overall distribution of the skill levels of each computing do-3 summarizes the overall distribution of the skill levels of each computing do- summarizes the overall distribution of the skill levels of each computing do-overall distribution of the skill levels of each computing do-distribution of the skill levels of each computing do-skill levels of each computing do- levels of each computing do-each computing do-
main. The skill level is summarized for each section of the BOK defined in Table 2. The
skill level distribution at each section characterizes each computing domain. We can
observe that typical skill level of general IT education is at most 2 so that students are
taught with some exercise. However the typical skill level of competence exceeds 2. The
difference comes from that competence is usually taught during the graduation thesis
project while general IT education is taught at the first or second academic year. We also
observe that the average knowledge level is around 3 so that we can expect that a typical
student can explain the meaning of a technical term.

Fig. 2. Educational Effort Distribution of Skill Teaching for Each Computing Domain.

T. Kakeshita78

 CS CE SE

 IS IT Other

Fig. 3. Overall Distribution of Skill Levels of Each Computing Domain.

901: Data, 902: Data Structure, 903: Data Type, 904: Database, 1001: Signal Processing,

1002: Pattern Recognition, 1003: Machine Learning, 1004: Data Mining

Fig. 4. Detailed Distribution of Knowledge and Skill Levels of CS Domain
(Selected Topics of Section B).

National Survey of Japanese Universities on Computing Education ... 79

Fig. 4 represents the detailed distribution of knowledge and skill of the selected top-
ics of section B for the CS domain. The readers can observe that the achievement levels
of topic 903 (data type) is rather weak compared to other topics. Although we have simi-
lar distributions for the other combination of the other computing domain and topics,
they are omitted due to the space limitation. The box plot provides top 25%, median (top
50%) and top 75% values of the levels so that the readers can consider desirable, typical
and minimum levels for each section and/or topic.

These distributions are useful both for the computing departments and curriculum
development. From the viewpoint of a computing department, the distribution is useful
to analyze strength and weakness of their computing program for each topic. From the
viewpoint of curriculum developer, the distribution can be utilized to define realistic
requirements for the achievement levels at each topic. Such recommendation about the
achievement level can also be utilized at computing accreditation.

5. Teaching Staff

5.1. Faculty Member

Table 7 represents the number of faculty members teaching at computing departments.
Faculty members outside of the department are in charge of 23.2% of the classes. This
indicates shortage of teachers at computing departments.

The number of organizations is 119 (49.6% of the valid answers) that the num-valid answers) that the num-s) that the num-
ber of computing department graduates is less than 50% of the number of faculty
members. The number of organizations is 68 (28.3%) that the number of computing
department graduates is less than 30% of the faculty members. It is our concern that
systematic computing education may not be enough for the graduates of non-compu-
ting departments.

We also observe that the ratio of the faculty members whose current major is com-
puting is more than that of the ratio of computing department graduates. This means
that a significant number of faculty members changed their major after graduation.
However we also observe that the number of organizations is 59 (24.6%) that the ratio

Table 7
Number of Faculty Members at Computing Departments

Total Computing
Dept. Graduates

Current Major
is Computing

of Classes
in charge

Faculty members of the department (with tenure) 4,281 2,315 (54.1%) 2,943 (68.7%) 13,824
Faculty members of the department (without tenure) 643 341 (53.0%) 397 (61.7%) 1,459
Faculty members of other departments or faculties 1,200 459 (38.3%) 520 (43.3%) 2,461
Part-time instructor (outside of the university) 1,949 653 (33.5%) 940 (48.2%) 2,275

T. Kakeshita80

of faculty members is less than 50% whose current major is computing. Some of them
answered that “the number of faculty members majored in computing is not enough”
or “having help of the faculty members belonging to other departments”. We expect
these organizations to have academic positions to hire more faculty members who have
enough ability to teach contemporary computing technology.

5.2. Support Staff and Teaching Assistant

Although 78 organizations (67.5% of the valid answers) employ a support staff for
computing education, 162 do not employ support staff. We also find that 49 organiza-
tions (20.4%) do not employ teaching assistant student. Major reason of these is con-
sidered as financial restrictions. Support staff and/or teaching assistant are essential
in order to effectively support students during exercise and experiments to achieve
expected skill levels. It is expected for the government and university to provide
financial support.

The support staffs assist 541 classes with 1.6 staff per class. The teaching assis-
tants assist 3,770 classes with 77.8 man-hours per class. Thus teaching assistant stu-assistant stu- stu-
dents are more important than support staffs at many classes. We found that some of the
universities located in a metropolitan area employ students belonging to neighboring
universities as their teaching assistant.

5.3. Student/Teacher Ratio

Fig. 5 represents the distributions of the number of students per teacher of the comput-
ing domains. The box plot represents top 25%, median (50%) and 75% values so that
these values can be utilized to determine reasonable accreditation criteria (minimum
requirement and recommendation). The student/teacher ratio is less than 10 at many
of the organizations. However we found 23 organizations whose ratio exceeds 10. It is
expected to keep appropriate number of students per teacher to provide enough care
for the students.

Fig. 5. Distribution of the Number of Students per Teacher of Each Domain.

National Survey of Japanese Universities on Computing Education ... 81

6. Computing Environments

Table 8 represents situation of computing environments classified by educational computer
system and student PC purchase. The item “does not use computer system” indicates that
the department etc. does not use educational computer system provided by the university.

24.4% of the organizations have their own educational computer system so that they
can fully control the system. However 23.6% do not have any computer system. 49.5%
utilize shared computer system at various levels. This is because the computer system
budget tends to be reduced at many universities. However, as demonstrated in Table 9,
we find that utilization of computer system greatly affects average knowledge and skill
levels of the students. The reader can observe from Table 9 that the average levels are
similar between the institutions with private and shared educational computer systems.
Although it is more difficult to control the shared computer system, some of the com-
puting departments can effectively control the system in the case that they have faculty
members majored in computer system administration.

Although BYOC concept is widely known, only 24.4% of the organizations require
students to purchase their own PC. 67.4% leave students to decide whether to purchase
PC. 52 organizations do not recommend students to purchase PC although they do not
have educational computer system. We are planning to investigate the detailed reason
as a future work.

Table 8
Educational Computing Environment at Computing Departments

Required to Purchase Student PC Student PC
Recommended O

th
er

To
ta

l
(Dept.) (Faculty) (Univ.)

Private Computer System 11 3 7 47 68
Shared Computer System (University Level) 2 5 14 2 48 71
Shared Computer System (Faculty Level) 10 1 7 21 39
Shared Computer System (Campus Level) 2 1 1 5 19 28
Does not use Computer System 3 3 1 7
No Computer System 3 1 7 3 52 66

Table 9
Relationship between Educational Computer system and

Average Knowledge and Skill Levels

Educational Computer System Average Level
Knowledge Skill

Private System 1.67 1.05
Shared System 1.67 1.08
No Computer System 1.20 0.73

Total 1.63 1.04

T. Kakeshita82

Table 10 represents the top 10 educational programming languages. The score is es-
timated by the weighted sum of the answers with priority. C and Java are the traditional
choices as structured and object oriented language. C++ is utilized as “better C” because
it supports simplified I/O (cin/cout) and STL (standard template library). Python and
Ruby are utilized as simple languages with high software productivity.

The following is a list of comments from the organizations. Several difficulties can
be found from the comments. It is expected to provide appropriate support for these
organizations:

We quitted mandatory programming courses so that its effect is under investigation. ●
Some students do not understand importance of software engineering despite of ●
complexity of software development.
If a student perceives that he is not good at computer programming, the fact great- ●
ly affects student motivation.

7. Educational Efforts

Many organizations continuously improve their education program by curriculum up-
dates or by faculty reorganization. Some of the typical educational activities collected
through the survey are listed below:

Introduction of good educational practices: PBL (problem/ project based learning), ●
active learning, presentation of student research papers at academic societies, etc.
Cooperation with industry or other universities. ●
Obtain accreditation by JABEE (Japan Accreditation Board for Engineering Edu- ●
cation).
Adoption of new computing curricula such as CS2013 (JTF, 2013). ●

We also find activities related to certification or qualification in the computing dis-
cipline as listed below. Such IT qualifications will be useful for the students to get a job
after graduation.

Curriculum design considering typical IT qualification such as JITEE (IPA, 1969) ●
which is a large qualification with 500,000 applicants each year provided by the
Japanese government.
Student support to obtain IT qualification: give credits to qualification holders, ●
support seminar, funding support, etc.

Table 10
Top 10 Educational Programming Languages

Programming Language Score Programming Language Score

1. C 826.5 6. SQL 100.5
2. Java 602.5 7. Python 87.5
3. C++ 205.0 8. Visual Basic/VBA 82.0
4. JavaScript 168.5 9. PHP 72.0
5. Assembly Language 117.0 10. Ruby 31.5

National Survey of Japanese Universities on Computing Education ... 83

8. Concluding Remarks

The analysis of the survey result will be a good input to design computing curriculum
and accreditation criteria to improve computing education in Japan. Similar survey and
analysis will be also valuable in other countries.

Information technologies and social situation are rapidly changing. Computing de-
partments are receiving many educational requests from the industry and the society.
Some of them are AI, big data, data science, IoT, innovation using IT and information
security. We found that many computing departments are trying to respond to these re-
quests through the survey.

We can observe the entire picture of the computing education at Japanese universities
through the survey. Although several problems are discovered, IPSJ is willing to im-
prove the current situation through development of new computing curriculum standard
J17 and cooperation with Ministry of Education, Japan.

Acknowledgments

This survey project is supported by the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan. The authors greatly appreciate the faculty members and
the administration officers of the universities who take time to respond to the survey.
This research is also supported by JSPS KAKENHI Grant Numbers 16K01022 and
17K01036.

References

Hagiya M. (2015). Defining informatics across Bun-kei and Ri-kei, Journal of Information Processing, 23(4),
525–530. DOI: http://doi.org/10.2197/ipsjjip.23.525

IPA (1969). Japan Information-Technology Engineers Examination. Available at
https://www.jitec.ipa.go.jp/index-e.html

Joint Task Force (JTF) of ACM, AIS and IEEE-CS (2005), Computing Curricula 2005 (CC2005): The Overview
Report. Available at https://www.acm.org/binaries/content/assets/education/curricula-
recommendations/cc2005-march06final.pdf

Joint Task Force (JTF) of ACM and IEEE-CS (2013). Computer Science Curricula 2013 (CS 2013). Available at
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

Kakeshita, T. (2011). A web-based survey system to analyze outcomes and requirements: a case for college
level education and professional development in ICT. In: Proc. 5-th Int. Conf. on Society, Cybernetics and
Informatics (IMSCI 2011). 82–87.

Kakeshita, T., Ohtsuki, M. (2014). Requirement analysis of computing curriculum standard J07 and Japan Infor- T., Ohtsuki, M. (2014). Requirement analysis of computing curriculum standard J07 and Japan Infor-, Ohtsuki, M. (2014). Requirement analysis of computing curriculum standard J07 and Japan Infor- M. (2014). Requirement analysis of computing curriculum standard J07 and Japan Infor-Requirement analysis of computing curriculum standard J07 and Japan Infor-
mation Technology Engineers Examination using ICT common body of knowledge. Journal of Information
Processing, 22(1), 1–17. DOI: http://doi.org/10.2197/ipsjjip.22.1

Kakeshita, T. (2017). National survey of Japanese universities on IT education: overview of the entire project
and preliminary analysis. In: Proc. 9-th Int. Conf. on Computer Supported Education (CSEDU 2017). Porto,
Portugal, 607–618.

Kawamura, K. (2008). Computing curriculum Standard J07: computing in general education (J07-GE). IPSJ
Magazine, 49(7), 768–774. (In Japanese).

National Center for Education Statistics (NCES). Fast Facts. Available at
https://nces.ed.gov/fastfacts/

T. Kakeshita84

T. Kakeshita is an associate professor at Department of Informa-
tion Science, Saga University, Japan. He received his Ph.D. degree
in Computer Science from Kyushu University, Japan in 1989. His
major research interests include quantitative analysis of ICT educa-
tion and ICT certification, and complexity analysis of database and
software systems. He received an excellent educator award from
Information Processing Society of Japan (IPSJ) in 2013. He joined
many activities such as IPSJ educational activity, Certified IT Profes-
sional Certificate (CITP), accreditation at Japan Accreditation Board
for Engineering Education (JABEE) and ISO standard development
(ISO/IEC JTC1/SC7/WG20).

Olympiads in Informatics, 2018, Vol. 12, 85–98
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.07

85

Platform for Analysing and Encouraging Student
Activity on Contest and E-learning Systems

Bojan KOSTADINOV, Mile JOVANOV, Emil STANKOV
Faculty of Computer Science and Engineering, University Ss. Cyril and Methodius
st. Rugjer Boshkovikj 16 Skopje, Macedonia
e-mail: {bojan.kostadinov, mile.jovanov, emil.stankov}@gmail.com

Abstract. Data collection and machine learning are changing the world. Whether it is medicine,
sports or education, companies and institutions are investing a lot of time and money in systems
that gather, process and analyse data. Likewise, to improve competitiveness, a lot of countries
are making changes to their educational policy by supporting STEM disciplines. Therefore,
it’s important to put effort into using various data sources to help students succeed in STEM.
In this paper, we present a platform that can analyse student’s activity on various contest and
e-learning systems, combine and process the data, and then present it in various ways that are
easy to understand. This in turn enables teachers and organizers to recognize talented and hard-
working students, identify issues, and/or motivate students to practice and work on areas where
they’re weaker.

Keywords: students, platform, STEM, data, e-learning, programming contests.

1. Introduction

Science, Technology, Engineering and Mathematics (STEM) are academic disciplines
that have a huge potential to improve competitiveness and spur economic development.
Nowadays, many countries are working very hard to change their current education pol-
icy, in order to respond to the increased demand for occupations related to science. Even
more, the topics related to STEM are important for other jobs and aspects of life – as
creative thinking, proofs and observations can be successfully utilized in various fields.

A number of researchers have been working on developing innovative ways to mo-
tivate students and help them succeed in STEM (e.g. Hall et al., 2011; Hossain and
Robinson, 2012; Wang and Degol, 2013; Joyce, 2014; Kearney, 2016). With the increase
in popularity of various open-source software and code-repository hosting solutions,
schools and teachers have a relatively easy way of adopting software in education. Like-
wise, there are open websites and systems that offer tutorials, documentation and tasks
that anyone can freely use. In this paper, by mainly focusing on informatics and algo-

B. Kostadinov, M. Jovanov, E. Stankov86

rithmic thinking, we’ll discuss the usage of libraries and tools for gathering data and
statistics from various e-learning platforms and websites, as well as a way to process that
data to produce meaningful results. For example, by analysing student activity, we can
identify issues such as lack of motivation or inadequate use of time – thus enabling us to
help the affected students succeed better.

The paper is organized as follows. In Section 2 we will discuss education, STEM
and competitions in informatics. In Section 3 we focus on various contest and e-learning
systems for teaching informatics and preparing students for competitions. We will also
describe several popular websites that organize algorithmic contests. Section 4 contains
information regarding data collection, consent and statistics, while the following section
builds up on the facts and examples presented thus far, and describes a project called
Hero which is currently used actively to collect and process data from various systems
and websites. In Section 6 we summarize our findings.

2. Education and Contests

Numerous countries and international organizations recognize education as a basic hu-
man right. Although teaching may occur in both formal and informal settings, primary
and (sometimes) secondary education is compulsory in most countries. Additionally,
online and electronic platforms enable students and professionals to learn at their own
pace. Computer science, programming and software development are some of the most
popular fields to study online, and newer video courses and tutorials usually encompass
useful exercises that students can practice on.

Competitions are another major factor in education (Verhoeff, 1997). They can help
to encourage students to perform better in school (for example, to earn scholarships),
to form teams and study groups with individuals that have similar interests, or to win
various awards and certificates. Some companies use competitions to hire the best pro-
fessionals or university students, while schools or accredited organizations use competi-
tions to increase interest in a certain field or subject. National competitions are used to
select students that will later represent the country at global competitions (such as, for
example, the International Olympiad in Informatics).

In the list below, we present some of the most popular competitions in mathematics
and informatics. In the next section we will present several websites and grading sys-
tems which are used to award points to solutions of algorithmic problems. Some of these
websites, like Codeforces, have blogs or pages that contain tutorials that students can use
to learn programming languages, algorithms or data structures.

The International Olympiad in Informatics ● (IOI, 1989) is a popular program-
ming competition that takes place each year. Countries can send teams of 4 contes-
tants, which compete by solving various algorithmic tasks. The IOI uses an auto-
mated grading system, and most of the tasks require students to write programs in
one of the allowed programming languages.
Bebras ● (Bebras, 2004) is a competition that is organized in several countries,
with the main goal of promoting informatics, computer science and computational

Platform for Analysing and Encouraging Student Activity on Contest and ... 87

thinking among pupils. Most of the tasks are multiple-choice, fill in the blank, or
interactive problems. Compared to the IOI, which has a very low number of female
participants, Bebras is actually popular among both male and female students. The
number of participating students increases every year (see Fig. 1). The competition
is typically organized by school teachers, during regular school hours. Countries
use different (custom) grading systems to organize the event, usually developed by
the organizer or a partner.
The International Math Olympiad ● (IMO, 1959) is an international competition
in mathematics that takes place in a different country every year. The first event
took place far back in 1959 in Romania. Countries send teams of up to six students
to represent them at the prestigious IMO event. Google sponsored $1 million to the
organization behind the International Math Olympiad in 2011.

In Macedonia, regional and national competitions are organized in several STEM-
related subjects. For example, competitions in informatics are held in Macedonia since
1990, and they involve solving algorithmic tasks by coding solutions that are later au-
tomatically graded (Kostadinov et al., 2015). After several stages of competitions, the
best primary and secondary school students represent the country and themselves at the
Balkan Olympiad in Informatics (BOI), the International Olympiad in Informatics (IOI),
and the Junior BOI (for younger students).

Starting recently, there is also a separate regional and national competition for prima-
ry school students in computational thinking, using Bebras-like tasks. This has led to an
increase in the participation at the national competitions in informatics, and an improve-
ment in the gender balance (due to more female participants). Awards are given to the
best students from each grade (age group). Students that win a medal at an international
competition, as well as their teachers, are awarded a monetary prize by the Ministry of
Education of Macedonia.

Fig. 1. Number of participants at Bebras.

B. Kostadinov, M. Jovanov, E. Stankov88

3. Grading and E-learning Systems

E-learning has a lot of advantages compared to traditional learning. In most cases, when
schools or teachers discuss distance or e-learning, they talk about blended learning – or
a combination of the traditional classroom with electronic technology. However, with
the recent rise of popularity of Massive Open Online Courses (MOOCs), students and
professionals are more and more likely to take courses completely through the Inter-
net. A number of online platforms offer both free and paid courses in various areas:
examples include Coursera (Coursera, 2012) and Udacity (Udacity, 2011). Videos, ani-
mations, documents, forums and quizzes are just some of the features that are offered
by online courses.

E-learning doesn’t have to involve a traditional teacher with a degree in education.
Some popular websites also offer courses created by professionals in different fields, so
e-learning is used by students of various ages – from primary school students (where
the school or teacher uses electronic technology in addition to traditional learning), to
professionals (who are using online courses to acquire new skills). It’s believed that the
rise of e-learning, the Internet and technology will help expand access to education to
both the general public and businesses. Another big advantage compared to traditional
learning is that online courses allow people to study at their own pace.

Software development is one of the fields where e-learning can help the most. Vari-
ous platforms exist where people can learn by reading tutorials, watching videos, execut-
ing code and instantly viewing results, solving smaller tasks or running database queries
with automated feedback and more. Competitions in informatics also use grading sys-
tems to automate the process of scoring solutions – much quicker and with less chances
of error (a mistake can still be made if the grading system experiences issues, or if the
tasks and their scoring criteria aren’t defined properly).

Table 1 shows examples of a few popular websites where software engineers go to
learn, practice or compete. In this paper, we’re interested in all these types of systems,
as we want to track how students learn or practice STEM.

Since the main topic of this paper is the collection of data and statistics, it’s important
to understand what students and teachers do on these systems. Without the necessary

Table 1
Examples of systems used by programmers

Product Type Features

Udemy Online learning platform Video tutorials, discussions, quizzes, file sharing
Stack Overflow QA site Questions/answers, learning by viewing best answers on com-

mon questions
CMS System for running prog-

ramming contests
Grading solutions, answering questions, administering
contests (self-hosted)

Codeforces Site with contests & tu-
torials

Contests, practicing in virtual competitions, learning from
tutorials and posts

MENDO Site with contests & cou-
rses

Site with forum, wiki, national contests and courses for C++
and algorithms

Platform for Analysing and Encouraging Student Activity on Contest and ... 89

information, it would be impossible to decide what data to gather, process or store. Addi-
tionally, even if we had the option of downloading everything, it would still be important
to know how to merge that data with the other information from a user profile.

Codeforces, for example, allows users to participate in competitions organized on
the platform. However, it also enables them to read tutorials on various algorithms and
data structures, and practice by solving tasks given at previous competitions. When a
user solves a task on his computer, he can send it to Codeforces, and the system will
automatically grade it and show the verdict.

The platform contains hundreds of tasks (available in what’s called the “Problem-
set”), and all of them are marked with the appropriate tag referencing an algorithm,
technique or a data structure (e.g., “binary search”). Students may practice by solving
tasks at random, based on their difficulty, or based on a tag.

Topcoder, a similar site to Codeforces, also organizes competitions and provides a
section where users can practice. Additionally, it has data science tutorials on various
algorithms and data structures. Tasks are similarly marked with their type and difficulty.
By looking at a user profile, it’s possible to see his rating and the latest competitions he
participated in (i.e. his activity). It’s important to note that Topcoder hosts other types of
competitions as well – design, development, bug races, and more.

On the other hand, the grading system used at the International Olympiad in Infor-
matics, referred to as Contest Management System (CMS), is mostly used as a pure
contest management system. Organizers will upload tasks to the system, and students
will later participate in a contest by solving those tasks. Looking at a scoreboard, it is
possible to see the rankings and the results of each contestant for each task.

The accredited organization in Macedonia for conducting competitions in informat-
ics for primary and secondary school students on national level is the Computer Society
of Macedonia. A competition management system called MENDO is used to teach stu-
dents about programming and algorithms, and to prepare students for competitions in
informatics (Kostadinov et al., 2010). In the last couple of years, MENDO has been used
to organize almost all national competitions in informatics, as well as several Balkan
and Junior Balkan Olympiads in Informatics. In total, more than 300 events have been
organized, and more than 10,000 users have submitted around 350,000 solutions.

A forum, wiki and a commenting system allow users to ask questions, share solutions
or discuss programming-related topics. A number of university courses have been orga-
nized on the platform by utilizing the various features and grading options.

Tasks with automated grading are a very powerful way to test the user’s knowledge
and to provide an opportunity for practice. However, they sometimes influence students
in a negative way – for example, a user being unable to send a solution because he is not
following the system instructions (printing data in a wrong format, etc.). MENDO is an
interactive system with various feedback features, one of which is the ability to discover
issues like the one mentioned previously – i.e. it runs a solution-specific analysis and
matches issues with a preprogramed set of mistakes. Other options like the ability to
download test cases, to view solutions, and to read open tutorials (with animations and
interactivity), are also very useful and allow administrators to attract new participants
without much involvement from their schools or teachers.

B. Kostadinov, M. Jovanov, E. Stankov90

On MENDO, students also participate in competitions and other events (e.g., uni-
versity courses). During a competition, participants can (optionally) receive feedback
– depending on how an administrator wants to configure each task. After a competition
or lab exercise has completed, students (and other visitors) can view the results of the
competition. This means that, if we want to gather this data for a system that tracks or
combines user activity, we can do that easily since the information is readily available.

It’s worth pointing out that there are many other systems and websites that software
developers use. Some of them are used to organize events like Beaver – where students
solve various interactive tasks. These are mostly open websites which allow students
to view their results online. The Macedonian system (talent.mk) allows teachers and
school principals to view all results, while students can only view their personal score
(and download their certificate).

Some systems are developed and owned by companies, and are used to organize
competitions such as Google Code Jam or Facebook Hacker Cup. Students and profes-
sionals participate in those competitions by registering on the event’s website. For Code
Jam, for example, results are then published on the official website, but there are other
platforms which track that data and publish it in a more readable format (for example,
filtered by country, language or round). It is possible to view the relative rank of con-
testants versus others from the same country, view statistics about the programming
languages that contestants use to solve tasks, and more.

Other systems have been developed by universities to organize their internal courses,
quizzes or admission tests. These are mostly available via the Internet (in order to allow
students to submit homework, and for teachers to view results or add tasks), but some-
times they might be behind a university firewall.

Fig. 2. Screen with submission details on MENDO.

Platform for Analysing and Encouraging Student Activity on Contest and ... 91

4. Data and Statistics

Data science and analytics are used by various products and websites to gain valuable
knowledge about users and their behaviour. With the power of computer science, statis-
tics and artificial intelligence, software solutions can describe models and predict risk or
performance. Analytics are used in all fields of study – social sciences, legal, business,
medicine and more.

For web applications, it’s common to use a premade solution like Google Analyt-
ics to both collect data, visualize it, and provide various other insights. Developers
insert a small piece of code on a website, and the data instantly becomes available
and visible on a dashboard. User and session counters, bounce rates, real-time reports,
traffic sources, referrals, demographics and locations are just some of the information
that can be easily tracked and analysed. Usually, other sources of data include server
logs, the application’s database (relational or non-relational), hosting providers’ dash-
boards and APIs and more. Various free and commercial software solutions exist to
parse this information, compare it side-by-side, and then visualize and group critical
data.

It’s important to realize that users need to be informed on how their behaviour and
data is tracked and stored. Privacy laws in countries and regions must be respected, and
most websites already have a Privacy policy that describes what data is stored.

But, users are spending time on other websites which might be out of our control.
Some of these websites have privacy policies which allow the sharing of data, and have
APIs that other software systems can use to look and download information they might
be interested in. It might be beneficial to track, store, aggregate and present this data for
users or organizers, and thus help them make better decisions. A good example of this is
Codeforces, which has an API that can be used to monitor what tasks users are solving,
contest standings, problem statistics, user’s activity on contests and more. Each regis-
tered user on the platform has an API key which he can use to query information about
him/her, but also info about other users and contest participants. Problem statistics can
be used to discover easier and harder tasks, submission verdicts and resource consump-
tion (like time and memory used).

The system used in Macedonia, MENDO, also has an API which is used to query
and parse information. For each task, MENDO stores details about the number of us-
ers that attempted to solve the task, how many succeeded in doing so, details about the
failed submissions (whether they were too slow or outputted wrong answers), and more.
Additionally, for each user, the system knows which tasks were successfully solved, on
which tasks the user failed, which competitions the user participated in, the lectures and
tutorials that were completed and more. This data is mostly used by the students them-
selves when they connect to the website directly (outside of the API), as the system can
tag (with a different color) each solved or failed task.

Most students who use MENDO like to see more information attached to each
task or contest, as this helps them to make better decisions on how to spend their time
on the system. Administrators constantly get requests for more such features. As an
example, Fig. 3 presents some of the statistics and charts that are available after each

B. Kostadinov, M. Jovanov, E. Stankov92

contest. Others not visible on the screenshot include the points distribution, number
of students that solved each task correctly or partially, the speed of the top performers
and more.

Of course, this data is also used by contest organizers to see how well their tasks were
designed, and whether the point distribution is too low or too high.

Before proceeding to the next section and presenting our software, we will outline
the two most common ways of retrieving data from other websites, and the issues that
need to be considered.

The first option is to use the official API of the website. There are a lot of benefits
to this approach: structured data, documentation, adhering to the site policy on what
data can be retrieved, and more. Most websites allow the data to be consumed in either
JSON or XML format, and most programming languages have libraries already avail-
able. Since Application Programming Interfaces are meant to be consumed and parsed
by machines, the system will already have rate limits in place, and will expect those
endpoints to be accessed by bots.

The second option is to use web scraping – i.e. to extract data from the website by
parsing the HTML code. Since websites are designed for humans, this data might not
be structured and thus may be difficult to parse. Also, some websites employ methods
to prevent web scraping. The biggest advantage of this technique is the ability to access
everything that a regular user has access to.

Fig. 3. Screen with contest statistics on MENDO.

Platform for Analysing and Encouraging Student Activity on Contest and ... 93

With both techniques, it’s very important to adhere to the site’s policy on which data
can be retrieved and stored locally. If no such information is available, it’s common to
ask the webmaster for permission and instructions. Although some webmasters might
place restrictions on what load can be put on their server (so other users are not affected),
most will allow scraping to occur if the platform is not a competitor product and you
agree to link back to the original site.

After the data is transferred to a server, different database management systems can
be used to store and analyse it. Depending on the size of the data, a relational or non-
relational database can be used, or data can be stored with a cloud provider that offers
storage services (and optionally, analytics).

Finally, it’s worth pointing out the importance of respecting user’s privacy – even
when we store data which has been retrieved from other locations. Privacy is a major
issue, and laws seem to be getting stricter by the year. If a person wants their data to
be removed or hidden from a platform, that request should be fulfilled. With regards to
programming and storing data about contest results and training activity, most software
systems are open to users and they can then see their profile and use it to help improve
(i.e. plan what to practice on next). Organizers can also use the data to track what stu-
dents need to work on, and whether or not they are actively practicing and participating
in competitions.

5. Software

In the previous sections, we outlined several systems that are used by contestants in
algorithmic programming. Additionally, we presented a couple of ways in which the
activity on those systems can be collected. The Hero app is a software application that
tracks, stores and visualizes that data, and which is currently used by several organizers
and contestants in Macedonia.

The initial idea for a software solution like this came 1) from the work that organiz-
ers needed to do in order to track contestants after the national cycle (in order to help
them perform better at international competitions), 2) to make sure a student that did a
bad result at one competition isn’t eliminated if his results at many other online systems
are good, and 3) from various requests from contestants to learn more about the practice
plans of students that performed better than them.

In the Hero app, contestants can be registered by configuring the usernames they use
on various systems, or by searching for them by location (for example, contestant names
on Codeforces can be listed by country). Additionally, it’s possible to view rankings by
country or group. One example of grouping contestants is listing the activity of everyone
who participated at the Macedonian Olympiad in Informatics (around 20 students). This
in turn enables users of the application to quickly determine what contestants are doing.

Currently, the application tracks activity on the following systems:
mendo.mk ●
topcoder.com ●
codeforces.com ●

B. Kostadinov, M. Jovanov, E. Stankov94

As an example, when looking at a user named “John Doe”, it’s possible to see how he
performed at every competition from the national cycle (since all of them are organized
on mendo.mk), the tasks he solved by practicing on mendo.mk, TopCoder or Codeforces,
or his rank/results during TopCoder or Codeforces rounds.

Of course, if one user has problems with a certain task, he can view which other
friends from his group solved the same one, and ask for help to understand the solution
overview or source code.

It’s important to realize that several other websites offer the option to see the activity
of other users, and to organize or track a personal practice plan. However, Hero’s per-
formance, grouping and visualization abilities separate it from other similar solutions.
On Fig. 4 you can see a screenshot of the Hero app, showing student’s activity on the
MENDO contest and training management system.

A rating value is calculated for each contestant, depending on his recent competi-
tion results. Exact numbers like the count of solved tasks are also readily available. The
application has several additional views showing a calendar of future events, tutorials,
compact views of profile data and more. These can be used by both organizers, teachers
and contestants to plan practice rounds and to stay informed of various online events.
New tutorials can be added by organizers and are grouped and tagged by their com-
plexity. A calendar lists various online events on popular websites. This section of the

Fig. 4. Screenshot of the Hero app.

Platform for Analysing and Encouraging Student Activity on Contest and ... 95

platform is populated automatically by downloading event calendars available online.
The main idea is to enable students and teachers to subscribe to these events, and get
notifications on the beginning of each week, so they don’t miss an event they would
otherwise be interested in participating in.

The implementation of the application uses both web scraping and APIs to get the
necessary information. The fetching of data occurs on a schedule (every N minutes), in
order to make sure the platform doesn’t put unnecessary load on the systems it connects
to. Additionally, there is a special database table that stores the time when every call
occurred, to guarantee that a programming mistake won’t lead to an unwanted denial of
service attack.

From an implementation perspective, the Hero app runs on Node.js, a JavaScript
runtime with a non-blocking I/O model that executes code server-side. Express.js is
used as a web application framework, as it is fast and lightweight. This enables us to run
the application on inexpensive virtual machines (as it’s currently the case) or dedicated
servers, with minimal resource consumption.

Hero stores all data in a PostgreSQL database, and Docker is used to run both the
backend application and the database. PostgreSQL is an object-relational database man-
agement system which can run both on Windows and Linux. This means that all tech-
nologies that are used by Hero are open-source and free. One of the best features of
PostgreSQL is the JSONB column type, which ensures that all stored data in the column
is valid according to JSON rules, but enables applications to store data that might have
minor differences (for example, there is some data available for Codeforces contests that
isn’t available for contests from MENDO). Hero attempts to store as much data as sent
by outside APIs, even though some of that data might not be shown in the current version
of the application.

Automatic backups to another server are scheduled every day, to guarantee that ad-
ministrators won’t have to execute scripts to poll the same data that was already down-
loaded. Most database management systems have the ability to create backups without
locking or disabling the database.

The technologies used on the frontend include React and Recharts. React is an open-
source library for building user interfaces, maintained by Facebook and Instagram.
Large web applications use it to show data and forms without reloading pages. The main
purpose of Recharts, on the other hand, is to help developers to easily create charts on
React. Charts are the perfect way to present data that can be quantified, and Recharts
enables the creation of line charts, bar charts, pies, radar charts, tree maps, scatter plots
and more.

Hero can only be accessed by authorized users (students, teachers or organizers).
New users can be added by administrators through the application. Because authoriza-
tion is needed, all profiles and combined data is private and only visible from inside the
application.

Finally, it’s worth pointing out that every retrieval call (either via an API or scrap-
ing) is defined in a separate file. By creating an application using this method, it’s easy
to add additional functionality in the future, and download data from more systems or
websites. Every call is tagged with a system name or website url, and internal checks

B. Kostadinov, M. Jovanov, E. Stankov96

common to all retrieval calls guarantee that no outside system will ever experience an
undesirably high number of requests – even if a (new) developer makes a huge mistake
when programming additional calls.

Various middleware checks and database constraints are used by the application to
restrict the storage of flawed data in the database, or the addition of duplicate data. For
example, even if a user changes his username on an outside system, the application will
try to match him or her by their e-mail address, full name, and past practice and contest
experience.

6. Conclusion

Countries and various organizations are investing a lot of resources into STEM educa-
tion, since those disciplines are needed to improve competitiveness and speed up de-
velopment. Similarly, pupils and professionals interested in computer science are using
various e-learning systems and websites to stay informed of new technologies, practice
and improve their skills and get help when the need arises.

The rise of informatics has lead to the formation of several national and international
competitions, like the International Olympiad in Informatics or ACM-ICPC. Students
use various grading systems and websites to solve algorithmic tasks and prepare for
those competitions. Most of these systems offer tutorials, videos, or automated grad-
ing, and are filled with useful data on how some students practice or what knowledge
is needed to solve each task. This data can be collected, processed and analysed to help
provide recommendations to specific students on how they can use their time more ef-
fectively when learning or practicing, and to inform teachers and organizers of any lack
of activity. Privacy must be considered, as these systems help create user profiles and
can easily visualize user activity.

Data collection, analytics and machine learning can be used in all fields – including
medicine, social sciences, education and commerce. Multiple companies are investing in
research associated with this area, and several open and commercial software solutions
exist to facilitate the analysis of data and to provide recommendations.

Acknowledgement

The research presented in this paper is partly supported by the Faculty of Computer Sci-
ence and Engineering, at Ss. Cyril and Methodius University in Skopje.

Platform for Analysing and Encouraging Student Activity on Contest and ... 97

References

Codeforces. http://codeforces.com
Computer Society of Macedonia. http://zim.mk
Coursera (2012). https://www.coursera.org
Hall, C., Dickerson, J., Batts, D., Kauffmann, P., Bosse, M. (2011). Are we missing opportunities to encourage

interest in STEM fields? Journal of Technology Education, 23(1), 32–46.
 https://scholar.lib.vt.edu/ejournals/JTE/v23n1/hall.html

Hossain, M., Robinson, M.G. (2012). How to motivate U.S. students to pursue STEM (Science, Technology,
Engineering and Mathematics) careers. US-China Education Review A, 2, 442–451.

International Olympiad in Informatics (IOI) (1989–2017). http://www.ioinformatics.org
International Challenge on Informatics and Computational Thinking (Bebras) (2004–2017).

http://bebras.org/

International Mathematical Olympiad (IMO) (1959–2017). https://www.imo-official.org/
Joyce, A. (2014). Stimulating interest in STEM careers among students in Europe: Supporting career choice and

giving a more realistic view of STEM at work. European Schoolnet, Brussels.
Kearney, C. (2016). Efforts to Increase Students’ Interest in Pursuing Mathematics, Science and Technology

Studies and Careers. National Measures taken by 30 countries – 2015 Report, European Schoolnet, Brus-
sels. http://www.dzs.cz/file/3669/kearney-2016-nationalmeasures-30-countries-2015-

report-28002-29-pdf/

Kostadinov, B., Jovanov, M., Stankov, E., Mihova, M., Stojkoska Risteska B. (2015). Different approaches for
making the initial selection of talented students in programming competitions. Olympiads in Informatics,
9, 113–125.

Kostadinov, B., Jovanov, M., Stankov, E. (2010). A new design of a system for contest management and grad-
ing in informatics competitions. ICT Innovations 2010, 87–95.

TopCoder. https://topcoder.com
Udacity (2011). https://www.udacity.com
Verhoeff, T. (1997). The role of competitions in education. In: Future World: Educating for the 21st Century: a

conference and exhibition at IOI 1997.
http://www.ioinformatics.org/locations/ioi97/ffutwrld/competit.pdf

Wang, M., Degol, J. (2013). Motivational pathways to STEM career choices: Using expectancy–value per-
spective to understand individual and gender differences in STEM fields. Developmental Review, 33(4),
304–340.

B. Kostadinov, M. Jovanov, E. Stankov98

B. Kostadinov is the founder of Cloud Solutions, an author, and a
former competitive programmer. In 2014, he defended his MSc thesis
in Intelligent information systems at the Faculty of Computer Science
and Engineering, University “Ss. Cyril and Methodius”, in Skopje. He
is one of the organizers of the national competitions in informatics in
Macedonia, and the Beaver event.

M. Jovanov is an assistant professor at the Faculty of Computer Sci-
ence and Engineering, University “Ss. Cyril and Methodius”, in Sko-
pje. As the President of the Computer Society of Macedonia, he has
actively participated in the organization and realization of the Macedo-
nian national competitions and Olympiads in informatics since 2001.
He has been a team leader for the Macedonian team at International
Olympiads in Informatics since 2006, and member of the IOI Inter-
national Committee since 2015. His research interests include algo-
rithms, future web, and e-education.

E. Stankov is a teaching and research assistant at the Faculty of Com-
puter Science and Engineering, University “Ss. Cyril and Methodius”,
in Skopje. He is a member of the Executive Board of the Computer
Society of Macedonia, and has actively participated in the organization
and realization of the Macedonian national competitions and Olympi-
ads in informatics since 2009. Currently he is a Ph.D. student at the
Faculty of Computer Science and Engineering. His research includes
analysis of program code correctness using different techniques, and
its application to e-learning.

Olympiads in Informatics, 2018, Vol. 12, 99–110
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.08

99

Creating the Original Bebras Tasks
by High School Students

Hiroki MANABE1, Seiichi TANI2,
Susumu KANEMUNE3, Yoshiki MANABE4

1Hakuyo High School
2Nihon University
3Osaka Electro-Communication University
4The University of Tokyo
e-mail: manaty2005@mh.scn-net.ne.jp, tani.seiichi@nihon-u.ac.jp,
kanemune@gmail.com, yoshiki-125.kanken-1@mh.scn-net.ne.jp

Abstract. The Bebras Challenge is an International Challenge on Informatics and Computational
Thinking (CT). The goal of the challenge is to make students interested in Computer Science (CS)
and CT. The authors let students participate in Bebras in regular Informatics classes at a high
school in Japan. Not only involving the challenge, but we also implemented a learning activity
which students create original Bebras-like problems. The learning activity aims to make students
recognize that materials for algorithmic thinking are around them. Most of the students worked
well and produced idea full problems. They created many great works. And some of them were
selected as Japanese representative questions for the International Bebras Task Workshop by the
Japanese Committee for the IOI, which conducts the Bebras Challenge in Japan. Some of them
were used in the actual Bebras Challenge. In this report, we show the students’ original questions
and discuss the educational effect of this learning activity.

Keywords: Bebras Challenge, informatics.

1. Introduction

The Bebras Challenge (ICICT, undated) is an international competition in computer
science (CS) and computational thinking (CT). The goal of the challenge is to make
students interested in CS and CT. The Bebras tasks are consists of Informatics com-
prehension, Algorithmic thinking, Using computer systems, Structures, patterns and
arrangements, Puzzles, ICT and Society. It was initiated in Lithuania in 2004. Re-
cently, the competition is being spread through more than 40 countries and expected
to reach more than 40 countries this year. One of the reasons that the Bebras Challenge

H. Manabe et al.100

has been widespread is that the competition sets are composed of good tasks which
can motivate pupils to be more interested in informatics topics. The International Be-
bras Organizing Committee developed criteria for good Bebras tasks (Dagienė and
Futschek, 2008).

Good tasks:
are related to informatics, computer science or computer literacy ●
allow learning experiences ●
can be solved in 3 minutes ●
have a difficulty level ●
are adequate for the age of contestants ●
are independent of any curriculum ●
are independent of specific IT systems ●
have easily understandable problem statements ●
are presentable at a single screen page ●
are solvable at a computer, without other hardware, additional software or paper ●
and pencil
are politically correct should be funny ●
should have pictures ●
should have interactive elements (simulations, solving activities, etc.) ●
should give immediate feedback ●

Following these criteria, experts in each country create tasks and propose to Be-
bras Task Workshop held annually. The members of Bebras Task Workshop discuss and
select the tasks for Bebras challenge carefully. After the Workshop, selected tasks are
translated to each native language. And the task set for the competition is adjusted.
Therefore, the Bebras Challenge is composed of high-quality tasks. In Japan, Bebras has
four age groups:

Benjamin: grade 5 to 6.1.
Cadet: grade 7 to 8.2.
Junior: grade 9 to 10.3.
Senior: grade 11 to 12.4.

Bebras tasks are suitable CT teaching material (Izu et al., 2017). Authors used Be-
bras tasks as educational material too and incorporated the Bebras Challenge into a
high school informatics curriculum. Moreover, we also implemented a learning activity
called ‘Creating Bebras Task’ units, and students create original Bebras-Like problems.
Dagienė reported that creating Bebras Task gave teachers an opportunity to learn infor-
matics concepts deeper (Dagienė et al., 2016).

We considered that even high school students would be able to learn informatics
through problem creation. Through the observation of the attitude of the students solv-
ing Bebras tasks, we hypothesized that they would work well, and they would learn
computer science subjectively by themselves. And we expected that they create good
tasks which would be suitable for actual Bebras Challenge. In this report, we show their
progress and tasks and evaluate learning effect of ‘Creating Bebras Task’ units.

Creating the Original Bebras Tasks by High School Students 101

2. Background

2.1. Informatics Education in Japan

In Japan, all high school students learn the compulsory subject “Informatics”, which
consists of two optional subjects named “Information Study for Participating Commu-
nity (Society and Information)” and “Information Study by Scientific Approach (Infor-
mation Science)” (Kanemune et al., 2017).

In the subject ‘Information Science’, algorithmic thinking is treated. However, many
teachers feel difficulty in guiding them.

2.2. Timeline of Preparation and Conduction of Bebras Challenge in Japan

The Japanese Committee for the IOI (JCIOI, undated) conducts the Bebras Challenge
as below.

Creating tasks for submission to Bebras Task Workshop.1.
Selecting Japanese representative tasks for Bebras Task Workshop.2.
Preparation for proposal for Bebras Task Workshop.3.
Participation in Bebras Task Workshop.4.
Selection tasks for the Bebras Challenge in Japan and translating them into Japa-5.
nese.
Conduction of the Bebras Challenge.6.

3. Research Method

‘Creating Bebras Task’ units were implemented from 2014 to 2016 in ‘Information
Science’ classes, and about 320 grade 10 students joined every year. In Japan, school
year starts at April and ends in March, and there is a two week “winter break” includ-
ing the end and beginning of the year.

The Bebras Challenge is held in ‘Bebras week’ in November. Students tried Junior
tasks of the previous Bebras Challenges which were published on the website before
Bebras week, and participated in the actual Bebras Challenge.

By teachers interview after the challenge, most of the students commented:
“I enjoyed the Bebras.” In the class after the Bebras Challenge, the teacher explained
the connection between each problem and topic of the computer science, and imple-
mented ‘Creating Bebras Task’ units as homework during the winter break to the
students.

H. Manabe et al.102

3.1. Expecting to ‘Creating Bebras Task’ Units

The units had an aim for students’ learning of computer science through the imple-
mentation from 2014 to 2016, and the other aim is added in 2016. In actual Bebras,
there are many tasks using familiar stories and backgrounds such as nature or liv-
ing around us. Therefore, we considered that students would look for the task theme
around them and inspire creativity. We expected that they would learn computer sci-
ence by themselves to create tasks. We also hypothesized that watching other students’
tasks enhance learning effect. If he/she watch his/her friends’ task, he/she would solve
it. Through solving other tasks and watching other topics of computer science, stu-
dents would increase their knowledge. Therefore, we planned in a lesson to take time
to watch other tasks.

Though committee members of JCIOI, which consists of university faculty mem-
bers and high school and junior high school teachers, make task candidates for sub-
mission to BTW, students may have different views from computer science experts
and be expected to create excellent tasks. Therefore, we chose good tasks among
students’ tasks and proposed them to the meeting of JCIOI in 2014 and 2015. Some
tasks were selected to submit BTW and used in actual Bebras Challenge. Since we
realized that it is encouraging the students that there is the chance of being used in
actual contests around the world, we showed the possibility to students as another aim
of the units in 2016.

3.2. Instructions to the Students

He handed out an a4 size worksheet and instructed to write below items to each stu-
dent.

Title, Question, Choice for answer, Age category.1)
Pictures to explain the problem.2)
Answer and explanation of the problem.3)
Explanation of the connection to computer science.4)
Time for work, Comment.5)

The teacher also indicated the evaluation points of the task.
Quality of the task (i.e. whether pupils can enjoy or not).1)
Originality.2)
Understandability.3)

In order to make students learn, the teacher introduced the following items.
The previous Bebras tasks. ●
The booklet for beginners in informatics. ●

The teacher informed the students that the tasks would be used as ‘Aim for educa-
tion’ and ‘Aim for suggested tasks.’

Creating the Original Bebras Tasks by High School Students 103

3.3. Class after Suggestions of the Tasks

After the winter break, the students submitted Bebras-Like tasks they created. In each
class, the teacher scanned them into one PDF file (about 40 pages) and handed out to the
students. Moreover, the teacher made a booklet including excellent 15 tasks he selected.
He handed out the booklet to all the students in the classes and explained selected tasks.

3.4. Suggestion to the Selection Meeting of Japan IOI Committee

We suggested excellent tasks to the selection meeting of Japan IOI Committee and asked
judgements whether each task can be used as Japanese suggested tasks or not. In the
meeting, experts discussed which task was suitable for all the candidate tasks including
experts created and students created. The selected tasks were translated into English and
suggested to the Bebras Task Workshop.

4. Results

4.1. Implementation Status

As a sample, we indicate a student task (Fig.1). The problem requires participants to
think about RGB color representation by KADOMATSU, one of the Japanese symbol

Fig. 1. Example of students’ Bebras-Like task.

H. Manabe et al.104

used in the new year. The problem is understandable, and it was fun to think the answer.
Therefore, it has high quality can be used as a Bebras task directly. In the time entry,
‘4 hours’ was written as the time for work. And in the comment entry, ‘It spent much
time to decide a type of the problem’ and ‘I thought I would like to doubt solutionists’
were written.

Many other students worked well and suggested high quality tasks. The mean time
to work was about 1.8 hours, and the maximum was 12 hours. Topics as informatics
were diverse. Cipher, Barcode, Binary Numbers, Programming, Math(Probability and
Combination) were popular.

4.2. Aim for Education

To evaluate the educational effect of ‘Creating Bebras Task’ units, we used two data sets.
One set was comments data they suggested. The other set was questionnaire data after
watching tasks those other students created.

4.2.1. Creating Task Process
In the process of creating tasks, we show how students learned and wrote their im-
pressions.

First, we asked following questions:
Did you learn computer science by yourself?1)

 Yes 246 (77.4%) No 72 (22.6%)

How did you learn? (Multiple answers are possible)2)

Previous Bebras Tasks 1791.
Web Pages 952.
Books 853.
Others (ie. Asked family) 364.

Next, we analyzed student comments written in prints. The most frequently used
word was ‘difficult’. 146 students (46%) used it. The reasons were ‘To get an idea’, ‘To
explain in understandable terms’ and so on. Second frequently used word was ‘interest-
ing’. 87 students (27%) were used it.

Some comments are below:
It was difficult to think what is computer science.1.
The time I was looked for task theme was most interesting.2.
When I was gazing a clock, I suddenly got an idea. I realized inspiring.3.
After solving many Bebras Tasks, I began to create my task. 4.
I felt creating task was interesting rather than solving. It was very difficult to write 5.
sentences understandable. I was interested in thinking how could I beguile others.
I worked very hard. After due consideration not to make some patterns of answers, 6.
I created my task.

Creating the Original Bebras Tasks by High School Students 105

4.2.2. Mutual Inspection of Submitted Tasks
In a lesson after the task submission, students watched many others’ tasks. As a result,
many students noticed that there were many topics in computer science field and realized
that idea was important. 54 student (17%) commented on other students’ tasks like ‘What
a wonderful Idea!’ and ‘Solving was fun’. Some comments are below:

I realized there were many topics in computer science around us. It was enjoyable 1.
to solve good tasks those the teacher selected. This lesson was a good chance to
notice a connection between informatics and mathematics.
Creating task was challenging. But classmates created good tasks, and I understood 2.
that even high school student could create good ones by inspiration.
I was delighted!!!! My task was chosen as a good one.3.
Classmates’ tasks were difficult than I expected. So, I was very interested in.4.

4.3. Good Tasks

There are eight students’ tasks those were submitted to Bebras Task Workshop as Japa-
nese representative tasks, including ones selected as ‘Favorite Task’ in the workshop and
were used in actual Bebras Challenge in several countries. In this section, we introduce
four tasks used in Japanese Bebras Challenge and two tasks selected as ‘Favorite Task’
in the Workshop.

4.3.1. Four Tasks Used in Japanese Bebras Challenge

Task 1. Colorful Building

[Q] There is a colorful octagonal pillar (the left picture) building in the
Bebras City. Each side wall of the building is painted with different
colors, red, blue, yellow, green, purple, pink, orange and black.

From the point A, you see the blue, purple and black walls. ●
From the point B, you see the pink, yellow and purple walls. ●
From the point C, you see the green, pink, and orange walls. ●

Choose the image which you can see from a point:

The Colorful Building task deals with the concept of permutation. To find out cor-
rect answer, organizing and classifying information are required. The student who was
an author commented “I spent 30 minutes to create this. It was difficult to explain the
problem in text.

H. Manabe et al.106

Task2. Fish

[Q] Four toy fish are placed as shown in the left picture.
If you turn a toy x degrees clockwise, the toy on the diagonal turns

(360 – x) degrees clockwise.

You operate as follows:
Turn the toy in the upper left 45 degrees clockwise.1.
Turn the toy in the lower left 90 degrees clockwise.2.
Turn the toy in the lower right 90 degrees clockwise.3.
Turn the toy in the upper left 45 degrees clockwise.4.

Choose the correct figure:

The Fish task deals with computer programs – sequences of instructions. To solve
this problem using the arrows notation involves a lot of abstraction. The student who was
an author commented “I spent 1 hour to create it. It was difficult to conceive the idea.”

Task3. Log Works

[Q] A beaver creates some works which consist of the log parts (the
left picture). The log part consists of three logs and two ropes con-
nected with each other. Therefore, the log part has three ropes which
is connected to another log part.

What work the beaver cannot make from the parts?

Creating the Original Bebras Tasks by High School Students 107

The Log Works task deals with the possibility of composition and combination using
specific parts. Problems of construction such as ‘syntactic parsing’ are widely found out
on informatics. A student who was an author commented “The idea came to me sud-
denly”.

4.3.2. Two Tasks Selected as ‘Favorite Task’ in the Workshop
At some Bebras Task Workshops, the members voted “Favorite Task” among all of the
tasks. Many members selected the following two student tasks.

Task 4. Animation

[Q] B-taro is planning an animation, which shows a sequence of pictures of a face. The
animation should run smoothly. Therefore, the order of the pictures is correct, if only one
attribute of the face changes from one picture to the next. Unfortunately, the pictures got
mixed up（picture below). Now B-taro must find the correct order again. Luckily, he
knows which picture is last. He labels the five other pictures with letters A to E.

This task is introduced as sample task on the Bebras Web site. This task deals with
data structure concepts, in particular with class which is a very important concept in
object oriented programming (Dagienė, 2016).

Task 5. Sword and Shield

[Q] Luke Bevwalker adores swordsmanship. He attends a swordsmanship dojo. He finds
7 friends who also like swordsmanship. The eight beavers always train together. One day,
the master of the dojo get them to strike poses as shown below:

The master says “you can make a legendary formation if you enter the boxes observ-
ing the following two conditions simultaneously:

There is another beaver at the end of the sword. ●
The shield is positioned to block the sword. ●

H. Manabe et al.108

The master arranges the beaver (3) to the box (h).
Which beaver is in the box (b)?

The Sword and Shield task is a complex puzzle. The backtrack algorithm which
checks all the combinations requires an enormous amount of calculation. However, ap-
propriate logical thinking could reduce it dramatically. A student who was an author
commented “I tried various forms of conditions and branches to form a formation. If it
has another solutions or not? I cannot verify it.”.

5. Consideration

We consider the effectiveness of ‘Creating Bebras Task’ units as following three points.
Students’ Efforts.1.
Influence to the learning of computer science.2.
Practical use to Bebras Challenge.3.

5.1. Students’ Efforts

Many students worked this activity seriously and created high-quality tasks. Some stu-
dents created original tasks in short time by inspiration. Others created tasks in long time
seriously. Through participating to the Bebras Challenge and trying to solve previous
Bebras tasks, the students realized the features Bebras tasks have. They tried to direct the
feature inside their tasks. Such considering were difficult but fun for them.

Creating the Original Bebras Tasks by High School Students 109

5.2. Infl�ence on the Lea�ning of Comp�te� Science

By being imposed this learning activity in winter break, the students learned computer
science voluntarily by using previous Bebras tasks or textbooks. Moreover, by watching
other students’ tasks, they could realize there are many topics in computer science field.
The previous Bebras tasks and other students’ tasks were made from items around them.
Therefore, they would feel computer science close to them.

5.3. Practical Use to Bebras Challenge

Some students’ tasks were submitted to the Bebras Task Workshop. They were used in
Japanese Bebras Challenge and selected as “Favorite Task” at the Workshop. Therefore,
we recognized that even high school students can create high quality tasks which could
be used in actual Bebras Challenge.

‘Creating Bebras Task’ units were an activity to be able to contribute Bebras Chal-
lenge. For a student, the task he/she created was used in many countries and hundreds
of thousands of pupils/students tried to solve it. We consider such dreamful learning
activity was realized.

6. Conclusion

In a Japanese high school, we implemented a learning activity called ‘Creating Bebras
Task’. Creating task is more difficult than solving tasks. However, we gave an oppor-
tunity for the students to learn CS and made them feel the activity was fun. The future
works of this research are to analyze the students’ tasks more deeply and suggest as an
educational method in CS.

References

Dagienė, V., Futschek, G. (2008). Bebras international contest on informatics and computer literacy: Criteria for
good tasks, In: ISSEP 2008: Informatics Education – Supporting Computational Thinking. 19–30.

Dagienė, V., Futschek, G., Stupurienė, G. (2016). Teachers’ constructionist and deconstructionist learning by
creating Bebras tasks: Constructionism in action, Proceedings of Constructionism 2016, 257–264.

Dagienė, V., Stupurinė, G. (2016). Informatics concepts and computational thinking in K-12 education: A Lithu-
anian perspective. Journal of Information Processing, 24(4), 732–739.

ICICT (undated). International Challenge on Informatics and Computational Thinking.
http://bebras.org/

Izu, C., Mirolo, C., Settle, A., Mannila, L., Stupurienė, G. (2017). Exploring Bebras tasks content and perfor-
mance: A multinational study. Informatics in Education, 16 (1), 39–59.

JCIOI (undated). Japanese Committee for the IOI. http://bebras.eplang.jp/
Kanemune, S., Shirai, S., Tani, S. (2017). Informatics and programming education at Primary and Secondary

schools in Japan. Olympiads in Informatics, 11, 133–140.

H. Manabe et al.110

H. Manabe is a teacher at Hakuyo High School. He received Ph.D.
degrees from Osaka Electro-Communication University in 2013. He is
a member of JCIOI since 2013. He has been working on programming
education, algorithm education and statistics education.

S. Tani has been an executive director of the Japanese Committee for
IOI (JCIOI) since 2009, and before this was a director of JCIOI since
2005. He received the BSc, MSc, and Ph.D. degrees from Waseda
University, Tokyo, Japan, in 1987, 1990 and 1996, respectively. He
is currently a professor at Department of Information Science, Nihon
University. His research interests include computational complexity
theory, computational topology, and complex network analysis.

S. Kanemune is a professor at Department of Electro-Mechanical
Engineering, Osaka Electro-Communication University. He received
Ph.D. in Systems Management from Tsukuba University. He is a direc-
tor of JCIOI since 2016. He has been working on database, informa-
tion system, programming education and robotics education.

Y. Manabe is an undergraduate student at The University of Tokyo.
He had participated JCIOI annual events for kids. He developed Kanji
(Chinese character) learning software and published a journal paper
during he was in high school. His research focuses on Japanese Kanji
education.

Olympiads in Informatics, 2018, Vol. 12, 111–117
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.09

111

Combinatorial Property of Sets of Boxes
in Multidimensional Euclidean Spaces
and Theorems in Olympiad Tasks

Pavel S. PANKOV1, Azret A. KENZHALIEV2
1International University of Kyrgyzstan
2American University of Central Asia
e-mail: pps5050@mail.ru, azret.kenzhaliev@gmail.com

Abstract. Theorems (in general sense) are constituents of inventing, analysing and solving olym-
piad tasks. Also, some theorems can be proved with computer assistance only. The main idea is
(human) reducing of primary (unbounded) set to a finite one. Non-trivial immanent properties of
mathematical objects are of interest because they can be considered as alternative definitions of
these objects revealing their additional features. A non-formal indication of such property is only
inital data (size of domain) and only output data (proven/not proven) in a corresponding algorithm.
One new and two known examples of such properties are considered, some techniques to convert
theorem-proving algorithms into olympiad tasks are proposed.

Keywords: olympiads in informatics, immanent property, task, theorem, unboundedness.

1. Introduction

The aim of this paper is to propose computer-assisted search and proof of immanent
properties of mathematical objects and to use such theorems in developing of olympiad
tasks in informatics.

Theorems (in general sense, statements seemed to be true) are constituents of in-
venting, analysing and solving olympiad tasks. While authors of olympiad tasks are to
describe all statements used for substantiation of their possible solutions, we suppose
that contestants also think by means of some statements passing swiftly. We consider
this item in Section 3.

Some well-known theorems were discovered by means of computational experi-
ments or can be proved with computer assistance only. The main idea in such proofs is
(human) reducing of a primary (unbounded) set to a finite one. We recount one new and
one known examples of such theorems and hypotheses for Euclidean spaces of higher
dimensions in Section 2.

P.S. Pankov, A.A. Kenzhaliev 112

Non-trivial immanent properties of mathematical objects are of interest because they
can be considered as alternative definitions of these objects revealing their additional
features. We hope that examples in Section 2 present such properties of Euclidean spac-
es. We propose the following non-formal indication of such property: an algorithm to
prove it or any its corollary has none or only inital data (size of domain) and only output
data (proven/not proven).

Some techniques to convert theorem-proving algorithms into olympiad tasks are pro-
posed in Section 4.

2. Two Theorems on Immanent Properties of Euclidean Spaces
with Unbounded Objects

We will consider Euclidean spaces RN (N is a natural number) and “boxes” (parallelepi-
peds parallel to axes).

There are many results on “linear configurations” of finite sets of points on R2 (see
survey, Gardner, 1988, chapter 22), each of them can be considered as a theorem and
an immanent property of a plane but they contain vast numerical conditions and are not
“unique”.

Buddhist thangkas which do not “use” but “create” linear relations in planar finite
sets of points can also be considered as revealing immanent properties of a plane but
they are too complex.

We hope that the following problems are “natural” (Pankov, 2008) or have “short and
elegant formulation” (Dagienė et al., 2007).

We (Pankov et al., 2005) put the problem on affine configurations without given
quantities:
Problem 1. A finite set M is defined as follows (let its points be called M-points):

If two segments with endpoints being M-points have only mutual point then it is 1)
an M-point.

This condition is equivalent to the following (let convex hulls of non-empty
subsets of M be called HM-sets).

1’) If the intersection of two HM-sets is not empty then it is an HM-set.
The set M with any more point does not fulfill the condition 1 (1’).2)

How many points can such set in RN (N ≥ 2) contain?
Consider the plane R2. As M is finite, there is a “basic” triangle which contains only

three M-points (vertices). Exterior of such triangle consists of twelve plane sets: six rays
and six infinite domains. Three of these domains cannot contain M-points obviously.
Analysis of other nine sets is too complicated but the number of all possible cases is
finite. We wrote an interactive program and proved that there exists only essential con-
figuration and

Theorem 1. 1) The answer to Problem 1 in R2 is only 6. 2) The configuration is the fol-
lowing: three points A, B, C and three points: B’ on prolongation of the segment AB; C’
on prolongation of the segment BC; A’ on prolongation of the segment CA.

Combinatorial Property of Sets of Boxes in Multidimensional Euclidean ... 113

Also, we could construct a space model of an M-set of 8 points.
Hence, we put

Hypothesis 1. The space RN has the immanent “finite-convex-hull”-number = 2N + 2,
N ≥ 2.

The following statement would facilitate dynamical programming for sets of boxes.

Hypothesis 2. A set of (N + 1) non-overlapping boxes in RN can be separated by a coor-
dinate hyper-plane (of dimension (N − 1)).

This is obvious for N = 1 and N = 2. Also, there are obvious examples stressing es-
sentiality of this hypothesis:

Example 1 of four square boxes which cannot be separated;
Example 2 of three squares which cannot be separated by a straight line.
Hypothesis 2 seems to be too difficult to be proven for N = 3. Hence, we tried to

involve computer.
To use computer successfully for proving theorems it is necessary to reduce a task to

a finite search (see, for example, Pankov et al., 2012).
Firstly, consider four equal cubic boxes in R3.
i) There are only two essential alternatives: projections of two cubes onto a coordinate
plane are either overlapping or non-overlapping.

Hence, the task is reduced to consideration of integer cubic boxes with sides 2.
ii) Obviously, if any cube is far from others then a separating coordinate plane exists.

Specify this statement.

Lemma 1. If the convex hull of a projection of four integer cubic boxes with sides 2 onto
a coordinate (for instance, “vertical”) axis is greater than 6 then a separating (“horizon-
tal”) plane exists.

Proof. If this convex hull is greater than 6 then the gap between the projections of the
“upper” and the “lower” cubes is greater than 2. If projections of two “intermediate”
cubes do not fill the gap completely, then a separating plane exists; otherwise: if these
projections overlap then a separating plane passes either over or under them otherwise
between them.

Hence, it is sufficiently to consider arrangements of four cubes within a cube with
side 6.

Such examination (of about 9 million arrangements, see Program 1
https://cloud.mail.ru/public/MHLv/ktKFSxZ5H) proved

Theorem 2. A set of 4 non-overlapping integer cubic boxes with side 2 within a cubic
box with side 6 can be separated by a coordinate plane.

Applying Lemma 1 we obtain

Theorem 3. A set of 4 non-overlapping equal cubic boxes in R3 can be separated by a
coordinate plane.

This theorem corroborates Hypothesis 2.

P.S. Pankov, A.A. Kenzhaliev 114

By means of improving i) and ii) choppings-off there can be considered four non-
equal cubes and general boxes in R3 and five equal hyper-cubes in R4.

In other words, Hypothesis 2 may be reformulated as follows:
The space RN has the immanent “separable-boxes”-number = N + 1, N ≥ 1.

3. Theorems Related to Olympiad Tasks in Informatics

Such mathematical results represented as theorems can be classified as follows:
Theorems invented or recollected to solve or to facilitate solving of the task (such ●
as Lemma 1 above).
Theorems proven by means of computer programs written for the task. ●

In their turn, theorems used by authors of tasks must be proven strictly to justify the
author’s solution of the task. Mostly, theorems invented by participants during solving
tasks pass swiftly, in implicit form without verbal formulation. It is enough to be assured
in their validity for the participant (nevertheless, sometimes is useful to write down any
formulation to clarify the participant’s thoughts for themself).
Remark. Sufficiency of the participant’s conviction on validity of an invented “theorem”
depends on conditions of the competition. If results of testing programs are shown im-
mediately to the participant (as it is in use at the ACM-ICPC International Collegiate
Programming Contests and it was at National OI in Kyrgyzstan, March 2018) then the
participant would submit the program based on this “theorem” without firm conviction;
successive passing of all tests proves either validity of such “theorem” or its failing only
in very exotic cases which were not covered in the set of tests.

If results of testing programs appear after the contest then the participant would be
assured (in any way) in the validity of “theorem”.

As regards “theorems” to be proven by means of computer programs during a con-
test. Every correct program solving any correct task can be formally expressed as a
“theorem” but with a too vast statement, including mathematical description of the set
of initial data etc.

Some techniques to develop olympiad tasks on proving “intensional” theorems are
proposed below.

4. Developing of Tasks of Type “to Prove a Theorem”

We will consider this item on examples of Theorem 1 and Theorem 2.
Firstly, one must not propose a task of type „write a program to prove the state-

ment ...“ or „write a program to check validity of the statement...“ because the jury
would have to check listings of programs submitted what is practically impossible.

Remark. A similar situation is at mathematical olympiads. A common type of tasks is
„to prove the statement ...“ But contestants‘ solutions of such tasks put a thankless duty
for jury involving them into tangle debates and appeals: to prove that a submitted text is

Combinatorial Property of Sets of Boxes in Multidimensional Euclidean ... 115

not a complete proof (although it certainly contains parts of actual proof). We propose to
convert such tasks into quantitative ones, as well as below.

Secondly, in our opinion, it is not convenient to propose tasks with responds of type
„yes“/“no“ because there is probability of partially random guessing.

We propose to develop tasks with vast quantitive respond.
For example, Problem 1 may be put as

Task 1. Given a natural N in 2..10. How many sets M of integer points in the square
[−N..N] × [−N..N] meet the following conditions (let their points be called M-points)?

The three points (0,0),1) (1,0) and (0,1) are M-points.
If two segments with endpoints being M-points have only mutual point then it is 2)
an M-point.
The set M with any more integer point in [3) −N − 1 .. N + 1] × [−N − 1 .. N + 1] does
not meet the condition 1.

Write a program which outputs this number (mod 1000) (as usually, CPU time is
1 second).

Solving for N = 2 and N = 3 can be made by means of almost full search; solving for
N > 3 demands improving of search, i.d. elements of proof (in mind) of Theorem 1. (For
jury: answer follows immediately from Theorem 2: two options of three rays; only point
on each of them).

The general idea of computer proof of a theorem of type (*) “(∀ x ∈ X)(P(x))”
where X is an infinite set or a “too vast” one and P(x) is a predicate is reducing (*) to
(**) “(∀ x ∈ X1)(P(x))” where X1 is a finite set accessible for a computer.

Hence, the following general task for using at contests on programming can be for-
mulated:

How many x ∈ X1 meet the condition P(x)? If the contestant would be able to write
a corresponding program then the answer will be: all | X1 |. Then they may be congratu-
lated: “You have proven the theorem “(∀ x ∈ X1)(P(x))” and ipso facto done the general
theorem “(∀ x ∈ X)(P(x))” ”.

For example, Theorem 2 (CPU time of Program 1 is about 36 seconds).

Task 2. Given an integer N in 4 .. 6. How many sets of 4 non-overlapping integer cubic
boxes with side 2 within a cubic box with side 6 can be separated by a coordinate plane?
(CPU time is 1 second).

To obtain full score the participant is to improve Program 1.
Some immanent properties can be also represented as “(∃ x ∈ X)(P(x))” or “calculate

min (max) {F(x) : x ∈ X}” with unexpected result.
For example, consider the Simpson’s paradox: there exist such positive integer

numbers
(***) A1 < B1, A2 < B2, A3 < B3, A4 < B4 that
(****) A1 / B1 > A2 / B2 and A3 / B3 > A4 / B4 and (A1 + A3) / (B1 + B3) < (A2 +

A4) / (B2 + B4).

Task 3 (simple). Given N in 14..100. Find such (***) that (****) and max{B1, B2, B3,
B4} = N.

P.S. Pankov, A.A. Kenzhaliev 116

Task 4. Given N in 14 .. 100. Calculate the common fraction
max{min {A1 / B1 − A2 / B2, A3 / B3 − A4 / B4, (A2 + A4) / (B2 + B4) − (A1 + A3) /

(B1 + B3)}:
(***) , B1 ≤ N, B2 ≤ N, B3 ≤ N, B4 ≤ N}.

5. Conclusion

We hope that computer-assisted search for immanent properties of mathematical objects
would yield new intensional tasks being contributions to the mathematical science too
and their solving would be interesting for participants of various contests on informatics
and demonstrate them capacities of computers in scientific investigations.

6. Appendix – Task Spear

As gratitude to the hosts of the IOI’2018, we propose the following set of tasks for in-
vestigation.

It is known that Japan appeared as Drops into Ocean from Spear.
Let us try to optimize this process.
Task: given a binary matrix (‘0’s mean Ocean, ‘1’s do Land) and the set of possible

steps of Spear.
Initially Spear is over the NE corner of the matrix.
How many steps of Spear are necessary to create all Lands (to pass all ‘1’s ?)
The simplest sufficient set of possible steps is {S, W, E}.

Example: the matrix

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0

Possible beginnings of the optimal ways: WWSES… or SWWSE…
The answer is 32.
Until what size of the matrix can you construct an effective algorithm?
What other sets of possible steps ought to be considered (for example {S, SW, SE,

W, E})?
What effective algorithms can be developed for such sets?

Combinatorial Property of Sets of Boxes in Multidimensional Euclidean ... 117

References

Gardner, M. (1988). Time Travel and Other Mathematical Bewilderments. W.H.Freeman and Company, New
York, 1988.

Pankov, P.S., Alekseenko, S.N., Asanov, T.D. (2005). Interactive computer presentation of a configuration
closed with respect to intersection of convex hulls (in Russian). Bulletin of the Kyrgyz-Russian Slavic Uni-
versity, 5(7), 85–88.

Dagienė, V., Skupienė, J. (2007). Contests in programming: quarter century of Lithuanian experience. Olympi-
ads in Informatics: Country Experiences and Developments, 1, 37–49.

Pankov, P.S. (2008) Naturalness in tasks for Olympiads in Informatics. (Tasks and Training. Selected papers
of the International Conference joint with the XX Olympiad in Informatics. – Cairo, Egypt). Olympiads in
Informatics, 2, 16–23.

Pankov, P.S., Baryshnikov, K.A. (2012) Tasks of a Priori Unbounded Complexity. (Selected papers of the Inter-
national Conference joint with the XXIV Olympiad in Informatics. – Sirmione-Montichiari, Italy). Olympi-
ads in Informatics, 6, 110–114.

P.S. Pankov (1950), doctor of physical-math. sciences, prof., corr.
member of Kyrgyzstani National Academy of Sciences (KR NAS),
was the chairman of jury of Bishkek City OIs, 1985–2013, of Repub-
lican OIs, 1987–2012, the leader of Kyrgyzstani teams at IOIs, 2002–
2013. Graduated from the Kyrgyz State University in 1969, is a head
of laboratory of Institute of mathematics of KR NAS, a professor of
the International University of Kyrgyzstan.

A.A. Kenzhaliev (1999). Bronze medal at IOI’2016. Teacher Assistant
at American University of Central Asia. Student of Korea Advanced
Institute of Science and Technology (KAIST), Class of 2022.

Olympiads in Informatics, 2018, Vol. 12, 119–132
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.10

119

How Hard Will this Task Be? Developments in
Analyzing and Predicting Question Difficulty
in the Bebras Challenge

Willem van der VEGT
Dutch Olympiad in Informatics
Windesheim University for Applied Sciences
PO Box 10090, 8000 GB Zwolle, The Netherlands
e-mail: w.van.der.vegt@windesheim.nl

Abstract. Predicting the difficulty level of a task on the concepts of computer science or com-
putational thinking, like in the Bebras Challenge, proves to be really hard. Question difficulty
breaks down in content difficulty, stimulus difficulty and task difficulty. Several instruments are
suggested to predict the overall difficulty level, like using a questionnaire or a rubric; these instru-
ments are applied on the data of a recent contest and proved useful. Relative scoring could also
turnout helpful. Especially on content difficulty easy applicable solutions are lacking.

Keywords: Bebras contest, question difficulty, taxonomy, cognitive load theory.

1. Introduction

The Bebras Challenge is an annual International Contest on Informatics and Computa-
tional Thinking amongst the young (Bebras, 2018). Students from over fifty countries
compete in their national contest. The questions used in these contests are chosen from
a common task pool, which is composed in the Bebras Workshop where most of the
contributing countries participate. The questions are formulated in a way that no prior
knowledge is required.

The contest is about computer science and computational thinking; most of the tasks
are categorized as ALP: Algorithms and Programming or DSR: Data, Data Structures,
and Representations. A few tasks fit in the other three categories, CPH: Computer Pro-
cesses and Hardware, COM: Communications and Networking or ISS: Interactions,
Systems, and Society. Criteria for good Bebras tasks, using a former system for classifi-
cation, are formulated by Dagienė and Futchek (2008). Dagienė and Sturupienė (2016)
give an overview of current research on Bebras.

W. van der Vegt 120

Contestants compete in their own age division. In the Netherlands contestants have
40 minutes to complete 15 tasks. These can be multiple choice questions, questions
where an answer has to be given in the form of an integer or a short string, or interactive
questions. The contest runs for a week in five different ages groups; some countries will
also have an event for the youngest age group, 6–8 years, but the Dutch contest starts
for grade 3; contestants are usually aged 8 year or (much) older. The best performing
contestants for every age division are invited at a university for a second round (Bever-
wedstrijd, 2018).

There are several reasons why it is important to predict the difficulty level of a Be-
bras task in advance (Van der Vegt, 2013). In a perfect world we would always be able to
pretest questions to determine their difficulty and statistical characteristics before using
them in a contest (Kibble and Johnson, 2011). But pretesting for a contest you really
want to engage all possible students is hard to do. However, knowing the predefined
difficulty level of a question is part of the contest. It is possible that contestants take this
into account when answering a question.

Lee and Heyworth (2000) state that it is general agreed that students should be able
to score higher in a test if the items or exercises are arranged according to their difficulty
levels. They are looking for a measure of problem difficulty that can be obtained when
a problem is created. They identify four different difficulty factors for algebra prob-
lems: the perceived number of difficult steps, the number of steps required to finish the
problem, the number of operations in the problem expression and students’ degree of
familiarity with the question.

Leong (2006) explains the need to control question difficulty in test design in general.
Test that contain too many easy or too many hard questions result in skewed mark distri-
butions. And for comparison of tests through the years the distribution of item difficulty
should be comparable. Lonati, Malchiodi, Monga and Morpurgo (2017) distinguish two
main kinds of difficulties: on the one side intrinsic with the task, related to its content,
and on the other side surface difficulties, depending on the task format and linguistic,
structural and visual aspects. But Leong makes another distinction: he considers content
difficulty, depending of the subject matter being assessed, stimulus difficulty, related to
comprehending words and phrases in a test item and accompanying information, and
task difficulty, referring to the work needed to formulate or discover the answer to the
question. We will stick to his distinction.

In section 2 we will focus on content difficulty, including an enquiry on the possible
role of taxonomies for this matter.

Section 3 handles with stimulus difficulty and possible reading problems.
Section 4 is dedicated to task difficulty, using cognitive load theory as theoretical

background.
In section 5 we present a number of questionnaires, rubrics and procedures to think

about question or item difficulty.
In section 6 we analyze a recent contest in the Netherlands, using some of the tools

we found.
In section 7 we will discuss our findings and do some suggestions for future re-

search.

How Hard Will this Task Be? Developments in Analyzing and ... 121

2. Content Difficulty

Bebras is about concept in computer science and computational thinking. Barendsen
et al. (2015) show that it is possible to identify concepts on programming in various
questions in the Bebras task pool. Izu, Mirolo, Settle, Mannilla, and Stupuriene (2017)
describe how the goals of computational thinking are reflected in Bebras tasks. Lonati,
Monga, Morpurgo, Malchiodi and Calcagni (2017) categorize a lot of Bebras tasks based
on computational thinking skills.

The level of complexity of an assessment task is often determined using a taxonomy.
The level of mastery is determined by the use of cognitive skills. Dunham, Yapa and
Yu (2015) describe a way to use Bloom’s taxonomy (Bloom, Engelbart, Furst, Hill and
Krathwohl, 1956) for designing assessments in statistics education with varying diffi-
culty levels. They focus on the depth of the thought process to solve problems, and they
make explicit how to align assessment tasks on the taxonomy’s scale.

Newman, Kundert, Lane and Bull (1988) concluded that students obtained higher
scores for harder multiple choice questions when these problems were arranged in in-
creasing cognitive order, i.e. knowledge, comprehension, application. For medium and
easy question no such effect was found. But Kindle and Johnson (2011) observe that the
assignment of learning taxonomies to multiple-choice questions has no relation at all to
the difficulty of questions. They conclude that the categories in a taxonomy cannot be
used to control exam difficulty.

Another issue that arises is the so called push-down effect (Merrill, 1971). A learner
will attempt to perform a given response at the lowest possible level. For a novice a task
can be highly demanding, while experiences students are able to push down the actual
cognitive level on which they need to perform.

Finally we need to discuss the possibility to apply any taxonomy on a set of tasks
that is aimed to test for insight in concepts, like in Bebras. In a school situation for
many subjects reproduction can be a large part of an summative assessment. Bijster-
bosch (2018) concluded for instance that in the Dutch lower level secondary education
(the vmbo) over 60 % of all school exams questions on geography test reproductive
skills. But Bebras provides a challenge where reproduction should be useless; the
whole idea is to provide a set of tasks that do not require any pre-knowledge. This is
a condition where the relation between learning objectives and the levels of mastery
in a taxonomy is altered in a serious way. Adapting any form of taxonomy to this kind
of contest will be needed before it will be possible to apply a taxonomy to the content
difficulty of Bebras..

3. Stimulus Difficulty

Lumley, Routinksy, Mendelovits and Ramalingam (2012) created a scheme for describ-
ing the difficulty of reading items used in PISA. They compared the perceived and the
empirical difficulty. They were able to conclude that their set of ten variables could be

W. van der Vegt 122

reduced, because five variables explained about 57% of the variability in difficulty in
items. and found indications that the variables in Table 1 contribute to item difficulty.
Since reading and understanding a question is of course an important part of answering
a task, these variables might prove useful, also for Bebras.

Remarkable is that their variable 7, Concreteness of information, which on its own
correlated modestly but positively with item difficulty, was also found to be significant
in the multiple regression analysis, but with a negative relation to item difficulty. Re-
moving this variable lowered the explanatory power of the data. The authors suggest that
if an item becomes more difficult, the degree of abstractness of the information readers
need relates negatively to the items difficulty.

Lonati, Malchiodi, Monga and Morpurgo (2017) changed the formulation or pre-
sentation of some questions in the 2016-Bebras contest and presented these tasks to
a new group of contestants. They report remarkable changes in the results for the
altered tasks. On the task Recipe, which is on linked lists, the success rate was very
low; in interviewing contestants they discovered that the text was not understood and
generally read with no care. So they structured the problem in another way, added two
ingredients and pre-filled three out of seven fields in the answer, while creating a new
figure. They obtained a higher success rate in their control group and a significant
decrease in discrimination.

Leong (2006) describes demands to increase stimulus difficulty. Use relevant techni-
cal terms, without elaboration or clarification, in the item; present information in such
a way that requires candidates to do some re-organization. Supports that will decrease
stimulus difficulty are for instance: Highlight or emphasize terms that require careful
comprehension; tailor the resources to the task that candidates have to do.

Table 1
Revised PISA reading item difficulty scheme. Five most explaining variables

(Lumley, Routinksy, Mendelovits and Ramalingam, 2012)

3 Competing information This refers to information in the stimulus and/or in the distractors
(if multiple choice) that the reader may mistakenly select, or that
the reader may generate, because of its similarity in one or more
respects to the target information

5 Relationship between task and
required information

The relationship between the question (the whole task, including
the multiple-choice options where relevant) and the required infor-
mation – that is, the kind of answer required to gain credit

7 Concreteness of information The kind of information that readers must identify to complete a
question

8 Familiarity of information
needed to answer the question

This variable distinguishes tasks that focus on information inside or
outside the text, or the text structure, that is close to the experience
and concerns of the reader, from those focusing on what is likely to
be remote and unfamiliar

10 Extent to which information
from outside the text is required
to answer the question

This variable deals with the extent to which the reader needs to draw
on world knowledge, experience or personal beliefs and ideas and
opinions in order to answer the question

How Hard Will this Task Be? Developments in Analyzing and ... 123

 4. Task Difficulty

One of the main concerns in question difficulty is the role of the working memory of
a contestant. The working memory load is affected by the inherent nature of the ma-
terial, the intrinsic cognitive load and the manner in which the material is presented.
According to the cognitive load theory the limitations of the working memory are
rarely taken into account in conventional instruction and assessment (Kirschner,
2002).

Conventional instructions tend to impose an extraneous cognitive load on the work-
ing memory, whereas learning something requires shifting for extraneous to germane
cognitive load. Germane cognitive load is the effort that contributes to the construction
of schemas. Schemata categorize information elements according to how they will be
used. They can also reduce working memory load, since a schema can be treated as a
single element. So schema construction aids the storage and organization of information
in long-term memory and reduces working load memory.

In computer science education this process of schema formation has at least two
effects: by building ever more complex schema by assimilating portions of lower-level
schemas skills are developed, and once a particular skill is acquired, automatic pro-
cessing can bypass working memory (Shaffer, Doube & Touvinen, 2003). Indications
of working memory failures include: incomplete recall, failing to follow instructions,
place-keeping errors and task abandonment (Shilbi & West, 2018).

Most of the available research on cognitive load is focused on education and instruc-
tion. Elliot, Kurz, Beddow and Frey (2009) apply cognitive load theory to test design.
They present guidelines for testing; some for Bebras relevant suggestions are placed in
Table 2.

Leong (2006) summarizes ways to decrease the task difficulty: decrease the num-
ber of steps in executing task; break up the task into a few sub-questions, order the
steps such that they provide the scaffolding for subsequent steps. Increasing the task
difficulty can be done by raising the number of steps in executing task, or present a
task in which candidates need to devise steps to execute the task without cues and
leaders.

Table 2
Recommendations for handling cognitive load in test design

 5. Use bold for vocabulary words. Use red circles, arrows and highlighting for important
elements of visuals

 6. Integrate explanatory text close to related visuals on pages and screens

 9. Text economy; all included visuals are necessary

10. Don’t add words to self-explanatory visuals

13. Train test-takers in the test-delivery system prior to the test date

W. van der Vegt 124

5. Instruments

Several tools have been developed to help test designers to predict the difficulty level of
a question. In this section we will discuss two questionnaires, a rubric and a procedure.
Since these are compositions with many parts, we will also try to analyze the ratio be-
tween content difficulty, stimulus difficulty and task difficulty.

5.1. Questionnaires

Earlier (Van der Vegt, 2013) we proposed a questionnaire for understanding and predict-
ing the difficulty of a specific task. We focused on the question answering process, dis-
tinguishing reading, understanding, searching a mental representation, interpreting and
composing, and the size of the problem. On the latter it is possible to give numbers, but
the issues on the question answering process give more qualitative data. And weighting
these data is a hard task in itself.

The questions I.a and I.b (Table 3) are about stimulus difficulty, I.c, I.d and I.e mainly
about content difficulty and all questions II are handling task difficulty. This gives a
30/20/50 distribution on different kinds of question difficulty.

Vora, Jain, Mehta and Sankhe (2016) developed a method to assign weightage to
question difficulty. There instrument is shown in Table 4. The level of IQ is a subjective
measure, the more the question makes sense, and the more it is related to the test subject,
the more weightage is given. This is a measure for content difficulty. Length of question
and pattern are merely on stimulus difficulty and question type is on task difficulty. So
their questionnaire has a 25/50/25 distribution on different kinds of question difficulty.

The difficulty fraction is by definition the sum of the weights, minus the minimum
total weight, divided by the difference of maximum and minimum weight, and if this

Table 3
Questionnaire for difficulty level estimation (Q1)

The question answering processI.

Which problems will there be in reading the question?a.
Which problems will there be in understanding the question?b.
Which problems can arise in searching the mental representation of the text?c.
Which problems can arise when interpreting the answer?d.
Which problems can arise when composing the answer?e.

The size of the problemII.

What is the number of elements in the question?a.
What is the number of transformations for an element in the question?b.
What is the number of constraints in the question?c.
How do you rate the solution density of the problem?d.
Will it be possible to solve the problem, using only your working memory?e.

How Hard Will this Task Be? Developments in Analyzing and ... 125

fraction is below 0.1667 the question is defined as easy. A question with a difficulty frac-
tion above 0.5 is considered hard. A medium question is neither easy nor hard. So a task
that scores 31 as a total weight will have a difficulty fraction of (31 – 8) / (40 – 8) = 0.72
and such a task would be considered as a hard question. A task with a score of 8–13 points
will be easy, any task with between 14 and 24 will be medium.

5.2. Rubric

At the Bebras Workshop 2018 the Italian team presented their work on a rubric, designed
to make decisions on expected difficulty level (Bellettini, Lonati, Malchiodi, Monga and
Morpurgo, 2018) . For ten different aspects of the task they define three possible dif-
ficulty levels, and they distinguish between easy, medium and high difficulty. Their ten
aspects are stated in Table 5.

For cognitive effort they specify an easy task as one that requires to understand a
concept or a procedure and to perform a straightforward activity. A medium task is one

Table 4
Weightage assignment (Vora, Jain, Mehta and Sankhe, 2016) (Q2)

Parameter Weight range

Level of IQ (sense) 2–10
Length of question 2–10
Pattern

Repetition of keyworda.
Imageb.

 2–8
 0–2

Type of question
True/false typea.
Simple MCQb.
Calculated MCQc.
Check Box (Multiple correct answers)d.
Text Boxe.

 2
 4
 6
 8
10

Table 5
Rubric lines (Bellettini, Lonati, Malchiodi, Monga and Morpurgo, 2018) (R)

 1 Text and sentence length
 2 Familiarity of terms, notations, objects, and concepts needed to understand the task
 3 Consistency of terms and notations
 4 Other elements beside the text (pictures, diagrams, examples, etc.)
 5 Constraints, combinations, steps needed
 6 Relationships among objects to take into account
 7 Cognitive effort
 8 Use of notes or other supported material
 9 Solution space
10 Solution check

W. van der Vegt 126

that requires to analyze a context, a procedure or some properties. And a hard task re-
quires to evaluate a setting, a system, a procedure, possibly comparing different hypoth-
eses or strategies. Or it requires a creative effort to invent or build something.

In this rubric items 1, 2, 3 and 4 are about stimulus difficulty, 5 and 6 on content
difficulty, and the other four mainly on task difficulty. So this rubric has a 20/40/40 dis-
tribution on question difficulty.

5.3. Procedure

Current practice is that the author of a Bebras task suggests the appropriate age category
and difficulty level. At the international workshop, in selecting for a national contest and
in translating the task adjustments may be made. In some countries, like in the Nether-
lands, the same task will be used for several age groups, assuming that the task prove to
be more easy if the contestants are older.

Holmes and Read (2018) describe that it is very hard to make absolute judgements
on question difficulty. They use a technique where a number of experts independent
review many pairs of items and decide each time which item is more difficult to answer.
This comparative judgement can be used to capture a group consensus well, and to avoid
individual biases. This approach can be useful also for Bebras tasks; we toke a set of
six different tasks and asked a group of colleagues to order them from easy to hard. We
scored the individual results from 1 (easy) to hard (6) and added the individual scores
for each task. The total scores were a perfect match with the relative difficulty level.
Kindle and Johnson (2011) report a similar practice: Each of nine faculty members was
misjudging the difficulty level of some of the tasks in an exam, but the average score
proved to be much better.

Bramley and Wilson (2016) asked a group of experts to estimate the mean marks for
every question in a specific test, by using information on the results of previous test and
looking for nearly identical questions. Statistical information can be used by the experts
to guide their judgements. Developing a benchmark of used questions with known dif-
ficulty levels could be helpful in predicting the difficulty of new developed tasks.

6. A Recent Contest Analyzed

In an analysis after the contest we can define the actual difficulty level of each task
as the p-value: item difficulty is simply the fraction of contestants taking the test who
answered the item correctly. The larger the fraction getting an item right, the easier
the question.

For the highest age groups of the first round of Bebras in the Netherlands in 2017
graphs of the percentages of good answers are presented in Fig. 1, Fig. 2 and Fig. 3. And
though some sections of the questions are really well predicted, like the hard questions
for age group IV and a few of the easy questions in all of these contests, a lot of questions

How Hard Will this Task Be? Developments in Analyzing and ... 127

Fig. 1. Results of the 2017 contest for age group IV.

Fig. 2. Results of the 2017 contest for age group V.

Fig. 3. Results of the 2017 contest for age group VI.

W. van der Vegt 128

were under- or overestimated. An easy measure for the quality of our predictions is the
percentage of misplaced tasks. In the contest presented in Fig. 1 this was 27%, in Fig. 2
it was 40% and in Fig. 3 it was 47%. Table 6 gives an overview of this measure.

The mean scores for the questions in a difficulty group are presented in Table 7. In
all three contests the results are as expected, though the hard questions for age group
IV turned out to be extremely difficult. The hardest question for age group V turned out
to be a task we qualified as medium, and in age group VI the most difficult tasks of the

Table 6
Percentage of misplaced tasks in the first round of 2017

Year Age division Harder than
predicted

Easier than
predicted

Percentage
misplaced

2017 IV (12–14) 2 2 27%
 V (14–16) 3 3 40%
VI (16–18) 3 4 47%

Table 7
Results of the difficulty groups in the first round of 2017

Year Age division Easy questions Medium questions Hard questions

2017 IV (12–14) 66.72 55.13 9.93
 V (14–16) 71.39 53.86 30.29
VI (16–18) 72.69 53.92 30.48

Table 8
Task analysis of age group VI in Dutch Bebras 2017

Task-ID Assigned difficulty level Success Q1 Q2 R

2017-CA-12 Easy 87.42 0.40 0.22 0.30
2017-IS-01 Easy 86.37 0.40 0.28 0.35
2017-BE-05 Easy 81.62 0.50 0.31 0.40
2017-RU-03 Easy 65.70 0.55 0.38 0.55
2017-IR-07 Easy 41.39 0.70 0.47 0.60

2017-CA-07 Medium 75.88 0.60 0.53 0.55
2017-PL-02 Medium 68.17 0.65 0.59 0.60
2017-CH-01b Medium 63.73 0.75 0.59 0.60
2017-CZ-04c Medium 45.22 0.70 0.66 0.70
2017-CH-07b Medium 16.59 0.85 0.63 0.80

2017-KR-07 Hard 48.37 0.75 0.66 0.70
2017-SK-12a Hard 43.06 0.85 0.66 0.70
2017-UK-04 Hard 35.16 0.90 0.81 0.80
2017-KR-03 Hard 15.67 0.85 0.78 0.75
2017-SI-04 Hard 10.12 0.90 0.63 0.70

How Hard Will this Task Be? Developments in Analyzing and ... 129

section easy and the section medium were harder than predicted. In section 6.1 we will
analyze some of these tasks for age group VI more in detail.

Izu, Mirolo, Settle, Mannilla, and Stupurienė (2017) make a similar analysis for the
2014 and 2015 contest in five countries. They use the rank match to see how well the dif-
ficulty level was predicted; the outcomes are between 40% and 72%. This corresponds
to 100 minus the percentage misplaced, so our Dutch values for rank match are 53%,
60% and 73%.

We did an analysis for all 15 questions of the highest age group in the Dutch Bebras
2017, using the three instruments in section 5. Q1 refers to the questionnaire of Table 3; all
questions are scored as 0 for easy, 1 for medium or 2 for hard, so the total is on a scale from
0 to 20. Reported in the table is the fraction of the maximum score. Q2 stands for the ques-
tionnaire of Table 4; the result reported is the difficulty fraction. And R is the Italian rubric,
presented in Table 5, also scored using 0, 1 or 2 per item and presented as a fraction.

At first sight all three instruments can be used to order the tasks from easy to hard.
For each of the three scales we performed a linear regression, the results of which are
seen in Fig. 4. We also calculated the correlation coefficient. In all three cases this coef-

Fig.4. Lineair regression of Q1 (left), Q2 (right) and R (bottom)
and success-rate for Bebras 2017.

W. van der Vegt 130

ficient was almost -1. Q1 had a correlation coefficient of -0.90, Q2 one of -0.77 and the
result for R was -0.87. So the rule of thumb can be that the higher the difficulty fraction,
calculated with either of these instruments, will be, the harder the question will prove
in practice.

Questionnaire 2 proved the hardest to use for a scorer. Level of IQ (sense) asks for
a number on content difficulty; we used the assigned difficulty level, with a 3 for an
easy task, a 6 for a medium one and a 9 for a hard task. But these judgements were of
course already about more than content difficulty. So this measure has a systematic flaw.
For questionnaire 1 and the rubric a lot of close calls had to be answered; the rubric has
specifications when to assign a specific score for a task, but these specifications are not
always decisive enough. Questionnaire 1 is lacking these specifications at all, so scoring
is quite intuitive, but could easily be biased, since the actual results of the contest were
already available.

One of the main factors in the actual use of this kind of instruments will be the
time a scorer needs to answer all questions. The items should be well-defined and the
boundaries between possible scores need to be clear; otherwise these instruments will
never be used in designing an actual contest because no one has the time to fill in the
forms.

7. Discussion

Application of several tools, developed to predict the difficulty level of a (Bebras) task,
can help the contest designer to create a fair, balanced contest. All three investigated in-
struments can be used for this goal. In further research one could look to the best balance
for the components and weights on content, stimulus and task difficulty.

Content difficulty is the most unclear item in predicting difficulty. More research
is needed on the use of taxonomies, especially for questions that do not use any pre-
knowledge, or other systematic approaches to identify content difficulty.

The use of procedures for relative scoring seems promising. Combining individual
judgements on question difficulty can improve the overall decision. Integrating the use
of questionnaires and relative scoring based on the output by several scorers will be a
valuable condition for a more systematic preparation of this part of the contest.

Testing and the need to predict task or question difficulty go beyond the boundaries
of Bebras. A lot of recent research on cognitive psychology shows that stimulus and task
difficulty play an important role in the performance of contestants. Instruments used to
predict question difficulty should include these insights.

References

Barendsen, E., Manilla, L., Demo, B., Grgurina, N., Izu, C., Mirolo, C., Sentence, S., Settle, A., Stupurienė, G.
(2015). Concepts in K–9 computer science education. In: Dagienė, V. (Ed.), ITICSE ‘15 : Proceedings of

How Hard Will this Task Be? Developments in Analyzing and ... 131

the 2015 ACM Conference on Innovation and Technology in Computer Science Education Conference, 2015
Vilnius, Lithuania – July 04–08. 85–116.

Bebras website (2018). http://bebras.org/
Belletini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A. (2018). A rubric to help with Bebras tasks.

Presented at the Bebras Workshop 2018, Protaras, Cyprus.
Beverwedstrijd (2018). (in Dutch) http://www.beverwedstrijd.nl/
Bijsterbosch, H.D. (2018). Professional Development of Geography Teachers with Regard to Summative As-

sessment Practices. University of Utrecht.
Bloom, B.S., Engelbart, M.D., Furst, E.J., Hill, W.H., Krathwohl, D.R. (1956). Taxonomy of Educational Ob-

jects: The Classification of Educational Goals, Handbook I: Cognitive Domain. New YorkL David McKay
Co Inc.

Bramley, T., Wilson, F. (2016). Maintaining test standards by expert judgement of item difficulty. In: Research
Matters, Issue 21.

Dagienė, V., Futschek, G. (2008). Bebras international contest on informatics and computer literacy: Criteria for
good tasks. In: R.T. Mittermeier and M.M. Syslo (Eds.), ISSEP 2008, LNCS 5090. Springer-Verlag Berlin
Heidelberg, 19–30.

Dagienė, V., Sturupienė, G. (2016). Bebras – a sustainable community building model for the concept based
learning of informatics and computational thinking. Informatics in Education, 15(1), 25–44.

Dunham, B., Yapa, G., Yu, E. (2015). Calibrating the difficulty of an Assessment Tool: The Blooming of a Sta-
tistics Examination. Journal of Statistics Education, 23(3).

Elliot, S.N., Kurz, A., Beddow, P., Frey, J. (2009). Cognitive Load Theory: Instruction-based Research with
Applications for Designing Tests. Presented at the national Association of School Psychologists 39; annual
convention, Boston, MA.

Holmes, S., Rhead, S. (2017). A level and AS mathematics: an evaluation of the expected item difficulty.
Ofqual/18/6344.

Izu, C., Mirolo, C., Settle, A., Mannilla, L., Stupurienė, G. (2017). Exploring Bebras task content and perfor-
mance: A multinational study. Informatics in Education, 16, 39–59.

Kibble, J.D., Johnson, T. (2011). Are faculty predictions or item taxonomies useful for estimating the outcome
of multiple-choice examinations? Advances in Physiology Education, 35, 396–401.

Kirschner, P.A. (2002). Cognitive load theory: implications of cognitive load theory on the design of learning.
Learning and Instruction, 12, 1–10.

Lee, F.-H., Heyworth, R. (2000). Problem complexity: a measure of problem difficulty in algebra by using
computer. Educational Journal, 28(1), 85-107

Leong, S.C. (2006). On varying the difficulty of test items. Paper presented at the 32nd Annual Conference of
the International Association for Educational Assessment, Singapore.

Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A. (2017). How presentation affects the difficulty of com-
putational thinking tasks: an IRT analysis. In: Proceedings: 17th Koli Calling Conference on Computing
Education Research: Koli Calling 2017: November 16-19, 2017: Koli, Finland. ACM, 60–69.

Lonati, V., Monga, M., Morpurgo, A., Malchiodi, D., Calcagni, A. (2017). Promoting computational thinking
skills: would you use this Bebras task?, In: Proceedings of the International Conference on Informatics in
Schools: Situation, Evolution and Perspectives (ISSEP2017). Helsinki, Finland

Lumley, T., Routitsky, A. Mendelovits, J., Ramalingam, A. (2012). A framework for predicting item difficulty
in reading tests. ACEReSearch.

Merrill, M.D. (1971). Necessary psychological conditions for defining instructional outcomes. Educational
Technology, 11(8), 34–39.

Newman, D.L., Kundert, D.K., Laner, D.S., Bull, K.S. (1988). Effect on varying item order on multiple-choice
questions: Importance of statistical and cognitive difficulty. Applied Measurement in educaion, I(1), 89–
97.

Schaffer, D., Doube, W., Tuovinen, J. (2003). Applying cognitive load theory to computer science education. In:
M. Petre and D. Budgen (Eds.) Proc. Joint Conf. EASE & PPIG. 333–346.

Shibli, D., West, R. (2018). Cognitive load theory and its application in the classroom. Impact, Journal of the
Chartered College of Teaching.

Van der Vegt, W. (2013). Predicting the difficulty level of a Bebras task. Olympiads in Informatics, 7, 132–
139.

Vora, K., Jain, S., Mehta, P., Sankhe, S. (2016). Predictive analysis: Assigning weightage and difficulty level of
question using data mining. International Journal of Computer Applications, 138(9), 31–33.

W. van der Vegt 132

W. van der Vegt is teacher’s trainer in mathematics and computer
science at Windesheim University for Applied Sciences in Zwolle, the
Netherlands. He is one of the organizers of the Dutch Olympiad in
Informatics and he joined the International Olympiad in Informatics
since 1992. He is a part of the international Bebras community from
the start in 2005 and is nowadays a member of the Bebras board, with
a specific interest in task development.

Olympiads in Informatics, 2018, Vol. 12, 133–146
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.11

133

REPORTS

Fostering Informatics Education
through Teams Olympiad

Nadia AMAROLI1, Giorgio AUDRITO2, Luigi LAURA3

1IIS Aldini Valeriani Sirani, Bologna, Italy
2Department of Computer Science, University of Torino, Italy
3Department of Computer, Control, and Management Engineering,
“Sapienza” University of Roma, Italy
e-mail: nadia.amaroli@istruzione.it, giorgio.audrito@unito.it, laura@dis.uniroma1.it

Abstract. Even though the International Olympiad in Informatics directly involves a restricted
number of pupils from each country, one of its primary goals is stimulating interest in computer
science and information technology over the whole younger segment of the world’ s population.
In several countries, this aim has to be accomplished without an active intervention of the Min-
istry of Education on school programs, relying on the efforts of small devoted organizations. In
this context, promoting the involvement of a large number of school teachers may be as crucial
as difficult to achieve. Following a 9-year experience of teams competitions in Italy, recently
shared with other European countries, we argue that teams Olympiad may be an effective tool
for widening the participation of high-school students and teachers, synergistically cooperating
with existing individual competitions. On the one hand, teams contests foster peer education,
encouraging talented students to help training fellows. On the other hand, these competitions can
be more appealing both for average students, valuing group membership more than personal ac-
complishments, and most importantly, teachers: team achievements are more recognizably linked
with the overall school or teacher performance than solitary excellences, resulting in increased
returns rewarding the involved subjects.

Keywords: team work, programming contest, olympiads in informatics, peer education, program-
ming training.

N. Amaroli, G. Audrito, L. Laura134

1. Introduction

Programming competitions are an effective tool to motivate and engage students in in-
formatics concepts (Dagienė and Futschek, 2010). As such, the role played in the last
thirty years by the two arguably most important competitions, i.e., the International
Olympiads in Informatics (IOI) and the ACM International Collegiate Programming
Contest (ICPC), is widely recognized (Audrito et al., 2012; Bloomfield and Sotomayor,
2016; Combéfis et al., 2017; Combéfis and Wautelet, 2014; Dagienė, 2010; Pavlova and
Yanova, 2017; Tsvetkova, 2010).

In this paper we report our experience about the International Informatics Olympiad
in Teams (IIOT), a recent competition aimed at filling an important gap in secondary
school education: competing as a team of contestants (as in the university-targeted ACM
ICPC) as opposed to the individual competition characteristic of the IOI. The IIOT builds
over a 9-year experience of teams competitions in Italy and, in its second edition (2018),
sees the participation of Italy, Romania, Russia, Bulgaria, Moldavia and Sweden.

During these few years of existence, the IIOT encouraged computational thinking
and enhanced individual performances in Italy in a measurable way, confirming gen-
erally consensus on teamwork-based educational experiences (Tsay and Brady, 2012).
In the specific contest of informatics education, teams contests proved to have a number
of recognizable positive effects, allowing for peer education, sense of belonging, con-
nection of talented students, involvement of teachers. The recent worldwide1 success
of the Bebras contest (Dagienė, 2008; Dagienė, 2010), aimed at promoting Informatics
(Computer Science, or Computing) and computational thinking among school students
at all ages, can also be seen as a proof of the effectiveness of team contests.

This paper is organized as follows:
Section 2 details the IIOT characteristics and features, including its history, the ●
competition and organizational structures, and, most importantly, how to join it.
In Section 3 we discuss issues related to the diffusion of programming contests and ●
their application to the IIOT.
In Section 4 we report data from a national (Italian) point of view on the effects of ●
teams contests.
Concluding remarks are addressed in Section 5. ●

2. International Informatics Olympiad in Teams (IIOT)

The IIOT aims at motivating secondary school students to cultivate interest in informat-
ics and coding, while testing and proving their problem solving skills, synergistically
alongside the individual Olympiad in Informatics. Furthermore, the teamwork-oriented
methodology used by this competition targets the exchanging of knowledge and experi-

1 Currently, in the Bebras website www.bebras.org are listed 58 participating nations plus six that are plan-
ning to install a Bebras contest.

Fostering Informatics Education through Teams Olympiad 135

ence among young people with similar interests and qualifications, through the estab-
lishment of personal contacts both within and across countries.

More and more often, the world of work operates in contexts in which working
groups are pivotal to carry out projects or activities. Teamwork skills, therefore, are
usually a prerequisite for all those who are joining the current labor market: in all work-
places, or nearly so, you need to interface with other people to carry on your own activi-
ties. It is thus clear that establishing this capability can improve the performance level
and lead to a better work environment.

In this competition, teamwork allows to achieve better results from the team’ s col-
lective talents, from the members’ ability to support each other in difficult times, and
from the multiplied creativity that comes from the comparison of ideas. Ultimately, this
competition experience translates into personal growth as well as improved individual
performances, as we will detail in Section 4. Furthermore, the IIOT fills an age gap in
team competitions between the Bebras and the ACM ICPC, being aimed at students in
secondary schools.

Section 2.1 summarizes the competition history, while Sections 2.2 and 2.3 present
the contest structure and organization respectively. Finally, Section 2.4 details on the
possible ways to join the competition.

2.1. History of the Competition

Teams competitions in Italy started in 2010 with the Olimpiadi di Informatica a Squadre
(OIS) thanks to Giorgeliana Carletto, who had the initial idea and the tireless perse-
verance to make this dream become a reality. In the first edition, participating teams
belonged only to Emilia-Romagna (a region in the north of Italy, where the school of
Giorgeliana Carletto is located), they were only seven, and the competition itself was
carried out through the Croatian Open Competition in Informatics (COCI)2. Nowadays,
all of the twenty Italian regions participate into the contest, for a total of more than 400
teams, 2250 athletes and 110 schools involved in the 9th edition.

Starting from school year 2014/15 the contest is held on specifically-designed tasks,
which were first written in Italian and later in English (from school year 2016/17) for
two main reasons: to promote the international dimension of this competition, and be-
cause of the central role of this language in the today scientific community (and com-
puter science in particular).

This first edition of the International Informatics Olympiad in Teams was held in
Italy from May 17 to 20, 2017 at the IIS Aldini Valeriani-Sirani of Bologna, with the
relevant award ceremony on 20 May 2017 at the presence of the former president of
the European Commission and Italian Prime Minister Romano Prodi.

The second edition was held in Piatra Neam, Romania, from May 23 to 28, 2018.
A mainly informative web site was built by Italian organization for the International
project (http://iio.team), as well as a Facebook page of the event (https://

2 http://hsin.hr/coci

N. Amaroli, G. Audrito, L. Laura136

fb.me/iio.team). There is also a website for each national competition: the Italian
one is reachable at http://oisquadre.it, whilst the Romanian one is available at
http://cni.nt.edu.ro/ioit.

Several personalities and public organizations have supported the project in Italy so
far, including AICA, the Olympic Committee of the Olimpiadi Italiane di Informatica
(OII), the former president of the European Commission and Italian Prime Minister
Romano Prodi, Councilor Patrizio Bianchi of the Emilia-Romagna region, Ing. Romano
Volta from Datalogic.

2.2. Competition Structure

Following the corresponding rule of the IOI, contestants are students enrolled in a
school for secondary education, in the country they are representing, during at least
September–December in the year before IIOT and who are not older than 20 on July
1st of the year of IIOT. Students who are studying abroad may represent the country of
their nationality. Each team has to consist of four members and up to two reserves. A
team can include at most one awarded contestant of the National Individual Olympiad
in Informatics in the previous year. No student exchanges are allowed between teams.
Each team is given two PCs, without Internet connection besides the official platform,
no translators nor dictionaries.

Each national championship has its own rules that can be different from country to
country. Usually, the national championship consists of four preliminary competition
rounds and one national final round: one preliminary round per month starting from Octo-
ber till January, with the national finals held in the first half of March. Each team is given
a username valid for the whole competition and a different password for each round. Each
contest lasts 3 hours (4 for international rounds) and usually consists of 7 problems in
English, to be solved in C, C++ or Pascal (other languages such as Java or Python may
also be allowed in national contests) without special hardware or software requirements.
Contestants may submit written questions through the platform to the Scientific Commit-
tee concerning the formulation and interpretation of the problems during each round.

The preliminary rounds are held online, on a national dedicated platform with an
automatic evaluator (usually CMS (Maggiolo and Mascellani, 2012; Maggiolo et al.,
2014)). The national final competition, on-site, selects its participants according to
the total scores obtained in the previous 4 rounds, but its score is not added to the
previous ones. In Romania, the ten best-ranked teams are selected for the national
finals. In Italy, finalist teams are selected based on their region: each region par-
ticipates with its best-ranked team, plus the ten best teams nation-wise among the
remaining ones.

The first one (or two3) winning teams of each national final competition will partici-
pate in the IIOT. All the involved countries can also participate with one more “special

3 The host country decides the number of participating teams, depending on the number of participating
countries.

Fostering Informatics Education through Teams Olympiad 137

guest team”, from the national leader schools: their results will not be listed in the of-
ficial rank, but they will be awarded.

The reference syllabus of the competitions is that of the IOI, however, most problems
require a reduced competence set, such as: arrays, sorting and searching, greedy algo-
rithms, recursion, dynamic programming, trees and basic graph algorithms. Given the
limited time available to solve many problems, teamwork and cooperation are necessary
for winning: no single individual can outperform a group of four people, working in
pairs at a same problem and helping each other on the hardest tasks.

2.3. Organizational Structure

Enrollment in the national IIOT project (and in the IIOT itself) is completely free for all
schools, both public and private. A school for each country is appointed as the leader
school to coordinate all the activities of registration, competitions, administration of
problems and awarding of the national winning team, as well as to maintain relationships
with leading schools of other countries.

Each country in the IIOT is then represented by a National Committee (NC) that
consists of four people: the representative of the Ministry of Education or another ap-
propriate institution, the headmaster and a teacher of the leader school and the scientif-
ic coordinator. Together, the national committees of regular members form the Interna-
tional Committee (IC) and are responsible of regulation updates, overall organization,
and appointing the International Coordinator who represents the IIOT project.

Meanwhile, the Scientific Committee (SC) of each regular participant country con-
sists of few scientific experts, and has the duty to supervise the preparation and evalua-
tion of tasks for the national contests. The host country SC should prepare tasks for the
IIOT together with at least one extra proposal. These tasks will then be presented before
the contest to the International Scientific Committee (ISC) consisting of the SC of each
member country. The ISC has the right to reject tasks proposed by the host country SC,
in which case the extra proposals will be considered as replacements.

The General Assembly (GA) is composed of the national committees of each partici-
pating country together with leaders of each participating team4 and a president nomi-
nated by the host country. The GA will approve the cutoff scores for gold, silver and
bronze medals.

2.4. How to Join the IIOT

There are few different ways to approach to the IIOT, with increasing degrees of in-
volvement. Firstly, you can unofficially attend contests as a team or individually, to test
your ability or get to know the competition: starting from the last year, we host an online

4 Guest countries and teams are represented in the GA (even though not in the IC and SC). The distinction
between guest and member countries will be clarified in Section 2.4.

N. Amaroli, G. Audrito, L. Laura138

mirror contest for this purpose. You can subscribe to the Italian training platform (Di
Luigi et al., 2016) before the contests start at https://training.olinfo.it, and
during each round you can solve the problems by submitting your solutions. The official
and mirror contests have identical tasks, rules and platforms, with the sole exception of
starting times: the mirror contest is held USACO-style, so that you can choose when
to start your 3-hour time window during the 24 hours following the start of the official
contest. Unofficial ranking will be available as soon as the contest starts, on a separate
web page than the official one.

Secondly, few schools from a country might want to experimentally join the official
competition, testing themselves and their teams, and trying what attending this project
means. As experimented this year with Sweden, we propose to freely host these teams
(up to 10 for each country) on the Italian or Romanian official platforms, allowing the
winning teams of each country to possibly participate as guest at the following IIOT.
In this way, Sweden has held its national finals using the Romanian platform, during
its contest timing.

Lastly, you might join the IIOT project officially by hosting your own national
competition. In this case, you should contact us5 to organize your participation, set up
an online contest management system such as CMS (Maggiolo and Mascellani, 2012;
Maggiolo et al., 2014), and the annual host country Scientific Committee will provide
you their sets of problems for each of the qualifying contests, which you will be free to
use, adapt or discard.

Joining the international project is free of charge and you can choose between two
types of collaboration. First, you can be a regular member by giving a declaration of
intent on hosting a future IIOT edition. In this case, your National Committee shall sit
at the table as peer with other National Committees, and your participation into the
International Final will be free of charge (except for travel expenses). Otherwise, you
could attend it as guest participant: in this case, you will not need to host future IIOT
editions nor take part into the decision tables, while still be allowed to attend the Inter-
national final with your national teams, upon paying a participation fee decided upon
discretion of the host country.

3. Organizing a Team-Based Informatics Contest

Successfully organizing a competition is a demanding task, involving countless choices
for which a definitive answer may not even be possible. We hereby try to motivate and
discuss the issues and solutions we encountered during these few years of experience,
hoping they could provide a solid ground for further development and help newly join-
ing countries for the setup of their national competitions.

Section 3.1 discusses the goals that motivated our quest for a better competition,
Section 3.2 presents the technical issues encountered and respective solutions adopted,
Section 3.3 lists the main organizational issues and solutions.

5 iiot@iio.team

Fostering Informatics Education through Teams Olympiad 139

3.1. Motivating Goals

During our Italian experience, the basic motivating goal has always been widening the
participation to the highest possible extent, in order to maximize the impact of the proj-
ect. Towards this aim, we need to cope with the plurality and diversity of subjects that
take different roles in the competition. Firstly, students may come from very different
schools, with a theoretic or technical focus, and have varying sets of skills and com-
petences. Teachers as well may have various backgrounds: mathematics (strongly rep-
resented in Italy), computer science or even electronics. Some of them, which are not
acquainted with the practice of information technology, need to be supported by techni-
cians in their school and/or possibly by the organizers themselves. University teachers
and students need to be involved into the project as well: to prepare tasks, manage the
contest platform, help teachers and technicians during the lab’ s preparation, and overall
helping with the organization of the events.

In order for a competition to be successful, a broad participation must be achieved
among all roles, by building a network linking together people united by their similar
interests in informatics and problem solving. This bring us to the second goal: providing
a fertile environment for building connections between different people joined by their
passion, in this way encouraging their positive involvement in the subject.

Meanwhile, we are obviously interested into our students personal growth. For a
team-based contest, this process can simultaneously involve social and teamwork skills
on one side, technical coding and problem solving skills on the other side. As our
milestone goal, we aim to improve the performance of students in individual competi-
tions and coding in general, while encouraging a cooperative attitude instead of a more
solitary or “nerd” one: looking at mates with respect and tolerance, not estranged but
rather actively immersed into the surrounding environment. Regarding the technical
skills, we aim in particular at providing a fruitful training for the individual Olympiad:
as contests are held regularly and progressively, students can be lead through a growth
path directed at their personal performance in individual contests, learning new skills
from teachers, mates and experience.

3.2. �echnical and Scientific Iss�es

Several technical and scientific issues have to be addressed in order to met the goals
just stated. Firstly, in order to handle online contests with thousands of students simul-
taneously competing, we had to host the CMS platform on the Google Cloud Platform
as locally available servers were failing to deliver an acceptable quality of service. We
used a standard machine with 50GB SSD storage for the database and main instance of
CMS, together with three preemptible machines devoted to the Contest Web Server, and
eight preemptible worker machines with high CPU settings. Virtual worker machines on
the cloud proved to have higher variability in execution times than worker processes on

N. Amaroli, G. Audrito, L. Laura140

locally controlled hardware, however, the difference was not so significant to impair the
evaluation process.

Another subtle issue with online contests is that of ensuring a fair competition with-
out any form of physical control: to address this issue, we opted for an approach mixing
automatic tools and teacher accountability. We handed multi-platform instructions to
teachers on how to block Internet access for contest computers, while implementing an
automatic connection check in the contest website, which sends alert mails to teachers
whenever one of their teams is spotted to be connected to the Internet. After the end of
the contest, teachers are queried about their teams who hit a certain threshold number
of warnings (if any), and we decide together with them whether to penalize the teams in
question. Furthermore, a semi-automatic check for plagiarisms is done based on JPlag,6
and plagiarisms found are correspondingly penalized. Finally, we plan to implement
in CMS for next year a checker ensuring that submitted source code does not contain
pragma instructions and inline assembly, which are against the spirit of the competition
and prohibited in other contests such as the ACM ICPC.

The selection and preparation of tasks requires a similarly careful attention than that of
the technical framework. In order to engage students with different preparation levels and
back-grounds, we attempt to build set of tasks with amusing narratives and widely vary-
ing scopes, ranging from extremely easy to technically involved or logically tricky. This
requires contests made from several problems: we believe that the chosen number of seven
problems is appropriate for this purpose. Even though this number is lower than the aver-
age number of problems in the ACM ICPC team contests, the discrepancy is mitigated by
the presence of subtasks of various difficulty into which each task is fragmented. For next
year, we plan to encourage the participation of younger and less experienced contestants
by introducing a progressive syllabus, dividing required competences into three increasing
levels: a starting level for newbie programmers, an intermediate level with selected topics
from school programs, and an advanced level corresponding to the IOI syllabus. The tasks
will then be sorted and explicitly marked according to their syllabus level.

As previously mentioned, the involvement of teachers is crucial for the correct run-
ning of the competitions, and even more so for enriching the participation and prepara-
tion of students. Since team performances are more easily connected to quality teaching
than solitary excellences, teachers are often more motivated to get involved into team
contests than into individual competitions. In order to promote the involvement of teach-
ers into the competition, we plan for next year to allow and encourage teachers to submit
tasks for consideration into the competitions, while acknowledging the task author in the
final competition booklets.

3.3. Organizational Issues

Among the organizational issues, the first one we had to face is schools and teams en-
rollment. In the first editions of the OIS, we managed enrollment manually through for-

6 https://jplag.ipd.kit.edu

Fostering Informatics Education through Teams Olympiad 141

mal emails. As the number of participating schools and teams grew, manual enrollment
became unfeasible, and we had to switch to an online registration form: a first online
form is designed for enrolling schools, and then a second online form is sent to enrolled
schools for submitting teams. These forms are advertised to schools across all Italy with
the help of the Ministry of Education.

Once the enrollment has taken place, it is crucial to keep active channels of com-
munication between the organization and school referents. With the plethora of com-
munication systems available in the modern world (phone calls, text messages, emails,
WhatsApp or Telegram) it is sometimes difficult to reach an agreement on a preferred
set of communication methods. At the moment, we are encouraging the usage of email
for formal communications, and of WhatsApp for urgent, non-official messages. These
channels are used for general information and support, but also to gather the school
feedbacks needed to pursue the evolution of the competition. Several ideas arising from
valuable feedback have been (or are going to be) implemented, such as: unofficial mirror
contests, cooperative Internet access control, progressive syllabus.

Besides the communication problems, other issues arise in the practical organization
of the national final and international contest. Firstly, computer labs with substantial
capacity need to be found: about 60–70 PCs in the national round, 20–30 in the interna-
tional one (currently). So far, we alleviated part of the technical burden by hosting online
even the on-site competitions, reducing needs for specific hardware or configurations,
and thus being able to host the competitions in sufficiently large schools (IIS Aldini
Valeriani Sirani, Bologna).

Secondly, accommodation and cultural activities need to be prepared for the about
150 people (50 for the international contest) participating in the event. In order to in-
crease the reach of the event, we also have to look for VIPs to attend the award cer-
emony, set up entertainment and a buffet, contact press agencies and media. All of this
activities come at a cost, so that funding is usually the most critical issue. There is no
magic recipe for fund-raising, and so far we obtained the most from long-term low-bud-
get sponsoring from local businesses, integrated with limited institutional funding. For
the upcoming years, we hope to score sponsorships from larger international companies
as well (Google and/or Microsoft).

4. Impact of the Teams Olympiad in Italy

During these years of teams Olympiad in Italy we collected several positive feedbacks.
First of all, we obtained positive reactions from students and teachers resulting in a
so-far increasing number of schools and students participating in the teams Olympiad,
shown in Fig. 1. The major spike in the graph corresponds to the year 2015 when the
teams Olympiad were first disconnected from the COCI and popularized through all
Italy. Despite this increasing trend, the number of schools and students participating is
still much lower than that of the individual Olympiad: 2250 versus 14531 participants
and 110 versus 565 schools in 2018 (below 20% in both cases). Thus, there is still lee-
way for a further future increase.

N. Amaroli, G. Audrito, L. Laura142

As trainers for the individual Olympiad, we also tried to test the effectiveness of
the team Olympiads as a form of training and involvement into the subject. In fact,
participation in the teams Olympiad highly correlates with better performances at the
individual contests, as shown in Fig. 2: a small initial number of students (1% to 15%
during the years7) scores a large part of the available places and medals at the indi-
vidual Italian national contest (about 10% to 40% during the years), quite consistently
among the different score levels (non medalists, bronze, silver and gold medals). This
correlation is due to two cooperating factors: that better students are more eager to
participate to new contests, and that students get better by participating into the teams
Olympiad.

Among these factors, we claim that the second plays the more relevant role: stu-
dents get better by practicing with the teams Olympiad. Two main observations sub-
stantiate this claim. Firstly, students first participate in the teams Olympiad and then

7 Data about 2018 medalists is not available as the individual finals are yet to happen at the time
of this writing.

Fig. 1. Schools (red) and students (blue) participating in the Italian teams Olympiad.

Fig. 2. Percentage of teams Olympiad contestants among individual contestants (dotted ma-
genta), among national finalists of the individual Olympiad (blue), and among medalists in the
national contest (dashed bronze, silver, gold, and solid black overall).

Fostering Informatics Education through Teams Olympiad 143

score medals in individual contests more often than medalists happen to join the teams
Olympiad. In fact, the regulations forbade medalist to join teams until last year, so
that all the data depicted in Fig. 2 regarded no medalists joining the teams Olympiad.
Secondly, the overall level of the Italian individual competition is getting better over
the last few years.

This increase in the competition level is not only acknowledged by trainers, but
also visible in the international results of the Italian team at the IOI (see Fig. 3), where
a consistent improvement has taken place in the last few years reaching an all-time
best result in 2017 (as average quantile). As a further benchmark of the competition
level, we compared the individual informatics Olympiad with the individual math-
ematics Olympiad. Since 2012, the best students in the Italian mathematical Olympiad
are encouraged to join the informatics Olympiad with a special selection process,
resulting in a few students being invited to the national contest. Assuming the level
of the Italian mathematical Olympiad is approximately constant, we nonetheless ob-
served that a decreasing number of people from this alternate selection is able to
reach the training camps (see Fig. 4), suggesting that the level of the main selection
is improving.

Fig. 3. Individual (dotted) and average (solid black) results of the Italian IOI teams as quan-
tiles (i.e., position on scoreboard as percentage), as reported in http://stats.ioinformatics.org.
Missing data for old non-medalists is approximated to the average 25% quantile. Performance
of the four athletes is colored magenta, blue, green, red from 4th to 1st ranked respectively.

Fig. 4. Percentage of mathematical Olympiad contestants among Italian finalists.

N. Amaroli, G. Audrito, L. Laura144

As the effectiveness of teamwork in education is widely accepted and acknowl-
edged (Tsay and Brady, 2012), we find these results unsurprising. In fact, the specific
teamwork promoted by the teams Olympiad can have additional benefits than team-
work in a generic setting. In most Italian high schools, gifted students are evenly dis-
tributed across classes, so that they usually do not know each other. Teams Olympiad
thus provide a unique setting connecting talented students in the same school, enabling
not only peer education but also a sense of belonging that encourages students to pursue
their passions and goals.

5. Conclusions

In conclusion, we claim that the Olympiad in Informatics in Teams, besides allowing
students involved to learn essential Informatics, English and teamwork skills, can sig-
nificantly improve the students’ results for the IOI. In our experience, working together
with a team and comparing your own ideas with mates can improve critical thinking,
suggest new approaches and solution methods, and promote passion for the subject.
Moreover, during its four online contests before the national one, the teams Olympiad
helps students during their preparation for the individual Olympiad through problems
with bit by bit growing difficulties, engaging them with easier problems and gradually
driving them to more complex topics. These claims are corroborated by data on the
Italian competitions in the last decade, which shows not only a correlation between
participation in teams and overall results, but also an overall positive impact on the
competition level. As a consequence, a future expansion of this competition to more
countries might be able to positively effect the IOI in a significant way. Towards this
aim, we propose four ways to join the teams competition: individually through the
mirror online contests, experimentally by relying on the Italian or Romanian organi-
zation for the technical side, and regularly both as guest (non-voting, non-hosting) or
as member country. We hope these parallel paths will help in engaging an increasing
number of students and countries, by allowing anyone to join according to the level of
involvement he is able to ensure.

Acknowledgements

We thank Giorgeliana Carletto for starting both the Italian Informatics Olympiad in
Teams (OIS) first and IIOT later, but mostly for providing us an example of what a
single individual can achieve when supported by passion and devotion for a greater
goal. We also thank all the teachers that believed in the IIOT project, both at a national
and international scale, and helped us to spread the diffusion of computer science and
computational thinking. Last but not least, we are thankful to Gabriele Farina, Edoardo
Morassutto, Luca Chiodini, and William Di Luigi, that managed to make everything
work during the contests.

Fostering Informatics Education through Teams Olympiad 145

References

Audrito, G., Demo, G.B., Giovannetti, E. (2012). The role of contests in changing informatics education: A local
view. Olympiads in Informatics, 6.

Bloomfield, A., Sotomayor, B. (2016). A programming contest strategy guide. In: Proceedings of the 47th
ACM Technical Symposium on Computing Science Education, SIGCSE’16. New York, NY, USA. ACM,
609–614.

Combéfis, S., Barry, S.A., Crappe, M., David, M., de Moffarts, G., Hachez, H., Kessels, J. (2017). Learning and
teaching algorithm design and optimisation using contests tasks. Olympiads in Informatics, 11.

Combéfis, S., Wautelet, J. (2014). Programming trainings and informatics teaching through online contests.
Olympiads in Informatics, 8.

Dagienė, V. (2008). The bebras contest on informatics and computer literacy-students drive to science educa-
tion. In: Joint Open and Working IFIP Conference. ICT and Learning for the Net Generation, Kuala Lum-
pur. 214–223.

Dagienė, V. (2010). Sustaining informatics education by contests. In: International Conference on Informatics
in Secondary Schools-Evolution and Perspectives. Springer, 1–12.

Dagienė, V., Futschek, G. (2010). Introducing informatics concepts through a contest. In: IFIP Working Confer-
ence: New Developments in ICT and Education. Universite de Picardie Jules Verne, Amiens.

Di Luigi, W., Farina, G., Laura, L., Nanni, U., Temperini, M., Versari, L. (2016). oii-web: an interactive online
programming contest training system. Olympiads in Informatics, 10, 195–205.

Maggiolo, S., Mascellani, G. (2012). Introducing cms: a contest management system. Olympiads in Informat-
ics, 6, 86–99.

Maggiolo, S., Mascellani, G., Wehrstedt, L. (2014). Cms: a growing grading system. Olympiads in Informatics,
123.

Pavlova, O., Yanova, E. (2017). Olympiads in informatics as a mechanism of training world-class professionals
in ict. Olympiads in Informatics, 11.

Tsay, M., Brady, M. (2012). A case study of cooperative learning and communication pedagogy: Does working
in teams make a difference? Journal of the Scholarship of Teaching and Learning, 10(2),78–89.

Tsvetkova, M.S. (2010). The olympiads in informatics as a part of the state program of school informatization
in russia. Olympiads in Informatics, 4.

N. Amaroli is a secondary school teacher in computer science labs
and a regional school office trainer for digital competences and teach-
ing with innovation technologies. She is the International Coordinator
of the IIOT and the deputy president of the OIS. She is the author
of the computer science section in the online interactive course for
secondary school students, organized by Emilia-Romagna regional
school office and by Italian Ministry of Education.

N. Amaroli, G. Audrito, L. Laura146

G. Audrito is involved in the training of the Italian team for the IOI
since 2006, and since 2013 is the team leader of the Italian team.
Since 2014 he has been coordinating the scientific preparation of the
OIS and of the first edition of the IIOT. He got a Ph.D. in Mathemat-
ics in the University of Turin, and currently teaches “Object Oriented
Programming” in the “Piemonte Orientale” University and works as
research assistant in the University of Turin.

L. Laura is involved in the training of the Italian team for the IOI
since 2007, and since 2012 is in the organizing committee of the Ital-
ian Olympiads in Informatics. He got a Ph.D. in Computer Science
in the “Sapienza” University of Rome, and currently teaches “Web-
based Systems Design” in the Tor Vergata University of Rome and
“Information Systems” and “Machine Learning” in the LUISS Uni-
versity of Rome.

Olympiads in Informatics, 2018, Vol. 12, 147–157
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.12

147

PRASK – an Algorithmic Competition
for Middle Schoolers in Slovakia

Michal ANDERLE
Faculty of Mathematics, Physics and Informatics of the Comenius University
Bratislava, Slovakia,
e-mail: anderle.michal@gmail.com

Abstract. Although informatics education is compulsory in Slovak middle schools, its cur-
riculum is insufficient to prepare the pupils for competitions such as the national Olympiad
in informatics. There is a huge gap in knowledge that needs to be addressed. To reduce this
problem, PRASK, an algorithmic contest for middle schoolers (approx. ages 10–15), was
created in 2015. In this paper we discuss the main concepts behind this competition, ways of
dealing with insufficient computational knowledge, types of tasks used to engage and edu-
cate young competitors, and some results and lessons learned from the first four years of this
competition.

Keywords: algorithmic competition, middle schools, PRASK.

Introduction

Computer science is a rapidly evolving discipline, therefore schools are struggling to
reflect this progress in their education process. In addition to this fact, computer sci-
ence is mostly targeted at high school students, and curricula for lower grades has been
emerging only recently.

From the very beginning, education of computer science for gifted pupils was taken
over by universities, various competitions and volunteer organizations. This trend has
been present in Slovakia for more than thirty years. However, the largest algorithmic
competitions in Slovakia focuses only on high school students.

This brings up the question whether a similar format of competitions could be used
in middle schools. In this article we will introduce such competition, PRASK, point out
changes that were necessary to incorporate in order to adapt the competition to a new
audience and also problems that occurred.

M. Anderle148

Algorithmic Competition PRASK

History of Correspondence Seminars

Dagienė and Futschek (2010) believe that many countries are lacking high-quality
computer science teachers who would be able to introduce the pupils to the computer
science in an interesting way. It is therefore becoming more and more common that
instead of developing algorithmic skills, the use of specific software applications is
trained.

However, many authors believe (Dagienė and Futschek, 2010; Dagienė et al., 2015;
Dagienė and Stupurienė, 2016; Forišek and Winczer, 2006; Kalas and Tomcsanyiova,
2009; Kubica and Radoszewski, 2010) that by means of informatics competitions, we
can present various parts and used concepts of computer science. Competitions like
Olympiad in informatics, Bebras and many others have been the result of this line of
thinking. And also many years of experience show that such a way of presenting com-
puter science can be very effective.

Slovak Republic has a rich history of algorithmic competitions. The Olympiad in
informatics was established in 1985 and has been educating talented pupils for more
than 33 years. There is even older competition, Correspondence seminar in program-
ming (KSP), created in 1983. This competition serves as a stepping stone for all pupils
interested in computer science, primarily high school ones.

Correspondence seminars organized for high school students have a long tradition in
Slovakia and the Czech Republic, not only in computer science but also in mathematics
and physics. The original purpose of the seminars was to educate talented pupils in the
natural sciences. Another reason for its creation was also the above-mentioned shortage
of qualified teachers. Unfortunately, this has not changed in 35 years (Forišek, 2007),
and this form of non-formal education remains key in teaching of gifted pupils. Even
seminars for middle schools have been appearing.

Origin of the PRASK Competition

There were multiple reasons for creating algorithmic competition for middle schoolers
and they all came together in 2015. Perhaps the most significant one was the feeling of
the original founders that pupils are getting to algorithmization and programming rela-
tively late, if at all. This negatively affected competitions like KSP and Olympiad, which
lacked young competitors.

It is important to note, the pupils’ interest in algorithmization and programming
did exist, and it has also seemed that basic algorithmic concepts could be taught even
before high school. KSP organized multiple programming schools where these pre-

PRASK – an Algorithmic Competition for Middle Schoolers in Slovakia 149

sumptions were confirmed. Moreover, for mathematics and physics, there were already
successful equivalents of high school seminars for middle schoolers, so the PRASK
competition was created.

First of all, objectives of this competition and the basic assumptions had to be clari-
fied. PRASK was intended for talented pupils of middle schools interested in computer
science. However, the middle school in Slovakia consists of five years (10–15 years old)
in which the knowledge of pupils changes considerably. Consequently, the competition
primarily focuses on the last three years of middle school. But of course, involvement
of the younger pupils is always welcomed. This restriction determines the degree of
mathematical knowledge that is to be expected from all competitors, based on the Slovak
national curriculum.

However, organizers do not assume any common knowledge in field of computer
science. From personal experience and interviews with pupils, it was clear that different
schools taught different things and used different environments and tools. Therefore, the
organizers had to assume that the prior knowledge of pupils in computer science will
largely vary.

The main goal of the PRASK competition was promotion and development of al-
gorithmic and programming skills. The contest was meant to reach out to a complete
beginners who had not came across programming and algorithms whatsoever, but at
the same time provide considerable challenge to more experienced competitors. That
should provide scaffolding to the high school competitions like KSP and Olympiad in
informatics.

Format of the Competition

The format of the PRASK competition was strongly inspired by KSP. Annually, two
parts of the competition are held, each consisting of two rounds. Within one round, five
tasks are published. There are no performance categories, the tasks are assigned for ev-
eryone. Each round has a set deadline for the pupils to submit their solutions. There is at
least one month between the release of the tasks and the final deadline.

Each task has it own means of solution – some require uploading a program, other
written description of the solution. After the deadline, the pupils’ solutions are graded
and the feedback is sent back in the form of a comment. Feedback contains commenda-
tion for good work, explanation of mistakes and grading, and some follow-up questions
to the task.

At the end of both parts, the week long camp is organized for top 18 competitors.
These camps consist of algorithmic lectures, but also sports, games and team building
activities. Program of the camp is focused on presenting computer science as a fun and
interesting topic, and on building a community of young people interested in it. This
community building aspect is very important, because it ensures continuity (Forišek and
Winczer, 2006).

M. Anderle150

Tasks

The PRASK contains three types of tasks – theoretical, practical and programming.
Each type covers different area of informatics and ultimately helps developing differ-
ent abilities. Each round contains two theoretical, two programming and one practi-
cal task.

Programming Tasks

One of the main goals of the PRASK is to develop pupils’ programming skills. There-
fore, each round contains two programming tasks. In these tasks, competitors need to
write and debug a program that solves assigned task. The uploaded solutions are auto-
matically tested and the competitor finds out his/her results immediately. The solutions
can be then reworked and submitted again until the deadline.

The tasks often contain multiple easier subtasks worth partial points and the whole
process is similar to the one at the IOI. Solutions can be written in several programming
languages, Python and C++ are most frequently used.

The difficulty of programming tasks is determined by a model solution. It should
only use basic concepts – variables, cycles, conditions and arrays. In harder tasks, it is
also possible to use algorithms and data structures that are implemented in the used lan-
guages, most commonly sorting and binary search trees. Model solutions should not re-
quire knowledge of any advanced algorithms or data structures, which usually excludes
graphs. The recursion is also avoided.

However, considering these limitations, solutions require some non-trivial idea that
leads to a more effective solution. These tasks should not be just straightforward imple-
mentations. But as mentioned above, subtasks are commonly used, meaning that trivial
or slower solutions always score at least some points.

It is clear that this type of task would be inappropriate for beginners. PRASK should
be accessible to all pupils interested in computer science regardless of whether they know
how to use a programming language or not. Hence, the programming Hatchery was cre-
ated. It consists of four sets of tasks and study texts that create a tutorial to C++. In these
four sets, pupils learn to use variables, conditions, cycles and arrays. And because this
competition would require much more effort from beginners (first learn programming
language in Hatchery and then solve problems), points obtained in the Hatchery are able
to replace points from programming tasks. Each set of tasks in Hatchery can replace one
task in PRASK, which means that beginner contestant can learn programming in half a
year and then use this new knowledge to later solve tasks.

Finally, we add that the choice of C++ is purely practical. Besides the fact, that or-
ganizers themselves have more experience with this programming language, and they
were able to use existing materials when creating the Hatchery, the C++ have some
advantages over Python, e.g. support at IOI and Slovak national competitions, due to
its speed.

PRASK – an Algorithmic Competition for Middle Schoolers in Slovakia 151

Practical Tasks

Practical tasks are often interactive and present new technology or part of computer
science to the pupils. Their main goal is to promote IT and to motivate pupils to further
work. The interactivity and the unusualness of these tasks is an attraction for contestants
and indeed, this type of task is the most popular one. Presented problem is often a puzzle,
that must be solved and the feedback is immediate.

A nice example of such task is the very first task, in which pupils were referred to a
purely black web page containing a secret password. Pupils had to figure out that page
contains images of black letters, so the background of the page needs to change. It was
up to them to use Javascript, view the source code of the page, edit it locally or use en-
tirely different approach.

During the four years of this competition, pupils had to use Google, Excel, Word or
various image editors in new, inventive ways. Practical tasks also include problems, that
need to be solved by using specific technology, for example AutoHotKey for automatic
mouse and keyboard control, SQL or Prolog. For these problems, a quick tutorial is
presented, containing the necessary concepts and commands. Contestants need to learn
how to work with them and use them effectively. To help them do that, interactive web
environments and easy subproblems are offered.

Even though the tasks might be at times technologically challenging, it seems that
even such tasks do not discourage contestants. In the survey, that was performed in
January 2018, nearly 93% of participators stated that they had little to no technical
problems while competing in PRASK. This significant percentage is probably achieved
by the existence of tutorials that are applicable to different systems (Windows, Linux,
Mac), as well as the involvement of the organizers who can be contacted by the pupils
at any time.

Theoretical Tasks

Probably the most unconventional and challenging to prepare are theoretical tasks.
These tasks direct contestants to design some of the known algorithms or dive deep into
specific area of computer science. There were tasks based on well-known algorithms or
data structures (spanning trees, binary search trees) but formal languages and automa-
tons are commonly used as well. Previous knowledge is not necessary, organizers even
assume that presented problems are not known by competitors, task statement contains
all important rules and relationships, contestant needs to combine them, come up with
their new usage and formalize their thinking.

For this type of problem, participants submit a text document describing their solu-
tion. Description needs to contain not just an answer, but also approach they used to
get the answer. Some sort of formalized “algorithm” is often required as well, either in
pseudo-code or natural language.

M. Anderle152

Theoretical tasks are probably most different from practises used at IOI but are ac-
tually very reminiscent to the format of Slovak national olympiad and KSP. It focuses
on thinking process, probably the most important ability to develop. As Michal Forišek
stated (Forišek, 2007) “practice only” competition style (such as IOI) are restricted by
actual implementation and marginal issues such as debugging techniques, library knowl-
edge, etc. Slovakia is a rather small country and the number of participants in this type of
competition peaks at one hundred. Hence, very personal approach can be used.

In PRASK, this type of task lacks immediate feedback, solutions are corrected after
the deadline. But benefits include more personalized and detailed feedback and focus on
the thinking process of the contestant. It is not even uncommon to have different expec-
tations on different contestants and score them adequately to it. Even though PRASK
presents itself as a competition, the personal growth and education of participants is
even more important.

Unfortunately, theoretical tasks are the least popular among the contestants. The
main reason for this is the need to write down solutions. Up to 50% of contestants said
that they were discouraged by it. This result is not surprising, write down solution takes
most of the time and pupils are not used to it. On the other hand, we believe that this
part of competition is beneficial for the pupils, improving their ability to express and
write understandable procedures and algorithms.

Concepts used for theoretical task sometimes include one stroke drawing, various
dynamic programmings, regular expressions, error detection and correction codes, logic
gates, deterministic finite automata, mergesort, minimal spanning tree, Euclid’s algo-
rithm and others.

Experience and Challenges for the Future

Preparation of Theoretical Tasks

Because theoretical tasks are the most atypical and also the most interesting and chal-
lenging to prepare, we will discuss their preparation in more detail. As we mentioned be-
fore, theoretical tasks are used in the Slovak national olympiad as well as in correspon-
dence seminar. However, they use is a bit differently. Most of the times they are classic
tasks, but instead of implementation, contestants need to write down a description of
solution. They rely on existing knowledge, often using classic algorithms and data struc-
tures. These tasks cannot be used in PRASK, where the tasks should be solvable from
the scratch. This forces organizers to create entirely new, original tasks fulfilling all the
assumptions that are put into them. In fact, we are not aware of any other competition
that would be using similar tasks.

All of this put a lot of responsibility on tasks seters. In order for these tasks to be
solvable and understandable, a suitable form must be used. Tasks cannot use technical
terms, problem description uses a story that presents a problem in a more comprehen-

PRASK – an Algorithmic Competition for Middle Schoolers in Slovakia 153

sible form. Similar stories are used at IOI, but their part in PRASK is more crucial.
This story offers a metaphor with which pupils can work more easily. If they never
encountered graph problem, we cannot use terms as vertex or edge, we need to present
e.g. cities interconnected by roads. Note, that choice of a suitable metaphor is really
important, helping pupils to work more efficiently with original abstract concepts and
even leading them to the right solution (Forišek and Steinová, 2013). Additionally to
metaphor, theoretical tasks tend to include images or interactive environments point-
ing to various special cases that may occur. That also helps pupils to better understand
presented problem.

To create problems that are accessible for beginners and challenging for experienced
contestants, theoretical tasks are divided into several, successively more complicated,
subtasks. These subtasks are designed to progressively guide participants towards the
solution. The first subtask presents specific inputs and contestants can solve them using
just pen and paper. While solving these easy subtasks, pupil will develop some sort of
strategy or algorithm. Next subtasks ask the pupil to formalize this algorithm and formu-
late it in natural language. The hardest subtasks, meant for the experienced contestants,
often ask for a proof of correctness.

The last issue the PRASK contestants have to deal with is an estimate of time com-
plexity. It is a basic principle that must be taken into consideration when designing an
efficient algorithm and the means by which the solutions will be evaluated. Therefore,
efficiency must appear in the statement in some form. Most of the time, intuitive view of
complexity is used, asking from pupils to create algorithm that would be feasible even
with pen and paper on larger inputs. From this description is obvious that backtracking
all possibilities is correct but not fast enough. Alternatively, in some problems a number
of specific steps can be used. For example, when sorting, pupils were told to minimize
the number of comparisons.

Involvement of High School Contestant

The Correspondence seminar in programming is organized by university students at
Comenius University and is targeted at high school students. Since the PRASK is in-
tended for middle schoolers, high school students can be involved in its organization. In
fact, half of the current organizers do not attend university yet.

The selected contestants of KSP are offered the opportunity to participate in the
preparation of PRASK. This selection is based on knowledge of computer science, age
and personal interest. These young organizers are preparing a vast part of competition,
writing statements and solutions, preparing test data, and planning camp activities and
lectures. University organizers serve as their mentors, check quality of the prepared ma-
terials and give feedback. Also tasks ideas originate mostly from senior organizers.

This cooperation is very interesting and fulfilling for both sides. Seniors have the
opportunity to share their experience and high school students can improve in several
different skills. On the one hand, their understanding of computer science arises. Being

M. Anderle154

able to prepare and present lecture or create test data for algorithmic problem needs
deeper understanding of underlying concepts. On the other hand, in these activities are
also involved important soft skills. Write a clear task statement, come up with a fun idea
for camp game and implement it, and take responsibility for the participants are quali-
ties, that all will useful in their future lives.

It also helps with continuity. Many of these students will continue to be involved
in similar activities during their university years. Either in PRASK, KSP or the Slovak
national Olympiad. Helping to prepare them from young age is beneficial to all of these
competitions.

Statistics

In this part, we will take a look at some data from the first three years of PRASK
competition. First, let’s look at the number of contestants in each round, shown in
Fig. 1. It is important to note, that these numbers can be misleading. Rounds 1 and 2,
as well as rounds 3 and 4, in each year belong to one part and they are scored together.
Therefore, number of contestants in round 2 (or 4) is union of contestants in round
1 and 2 (3 and 4).

But, there is a part of contestants that only solved few easy subtasks of some interac-
tive problem, but overall they got very few points. Therefore, in Fig. 2 we will show the
number of contestants with at least half the points. We believe that it is possible to get at
least half of the points with a bit of effort and these participants are therefore reasonably
engaged in the competition.

Notice, that the number of contestants peaked during round 1 in 2015 and round 3
in 2016. In these two rounds, instead of programming tasks, the interactive and playful

Fig. 1. Number of contestants in PRASK competition.

PRASK – an Algorithmic Competition for Middle Schoolers in Slovakia 155

self-designed environments were used. Both of them were very popular, which resulted
in a higher participation rate.

The average number of points for contestant is 35.58 out of 75 possible. However, if
we take a look only at participants with at least half of the points, it grows to 56.44 which
is more than 75%. In the Fig. 3, we can take a look at the average percentage for each
tasks published during first three years. Notice, that almost all of them range between 50
and 75 percent. We can assume that the tasks are reasonably difficult and it is fairly easy
to get substantial part of the points, mainly thanks to the easiest subtasks.

Fig. 2. Number of contestants with at least half the points.

Fig. 3. Average percentage in individual tasks.

M. Anderle156

Finally, we will mention two interesting things that are present in scoreboards. The
first is that girls took a rather dominating spot. Although the majority of contestants
are still boys, first three positions during the three years were occupied only by girls.
The second interesting point is that PRASK has had some very young competitors.
There have always competed at least one fifth grader (age 10–11) and the youngest
contestant was a girl from fourth grade (10 years old, not even in middle school).

Future Challenges

PRASK is now being organized for almost four years and the fifth year is being pre-
pared. It is still evolving and there are several issues that need to be addressed.

Probably the most important is low participation count. On average, there are around
thirty participants in each round, a number we would like to increase. Since PRASK is
still fairly young, it is not well known among pupils or teachers. Teachers are the target
category we would like to focus on at first, as they have great impact on huge number
of students.

Other problem PRASK is facing is creation of consistent problem sets. Organiz-
ers are not sure about intended complexity of the tasks, which leads to trial and error
approach. Also, it is really hard to prepare high quality theoretical tasks, which poses
the biggest challenge in problem setting. Theoretical tasks also need to be popularized
among contestants. Using interactive environments would be the best, as the survey
showed, but those environments are time consuming to prepare, so the fine line needs
to be found.

Conclusion

We presented PRASK, algorithmic competition for middle schoolers, and looked at the
experience gained from the first four years of organizing it. This competition does not
imply any prerequisites on previous algorithmic knowledge, trying to offer pupils an
environment in which they can grow. The tasks are trying to concentrate on the idea of
the solution rather than the actual implementation.

It turns out that pupils have fun dealing with interactive tasks in which they receive
immediate feedback or tasks in the form of puzzles. In our opinion, theoretical tasks
have tremendous potential but they are not as popular because of the need to write down
description of the solution. For the future, the greatest challenge is to increase participa-
tion rate and improve pupils’ interest in theoretical tasks.

PRASK – an Algorithmic Competition for Middle Schoolers in Slovakia 157

References

Dagienė, V., Futschek, G. (2010). Introducing informatics concepts through a contest. In: IFIP Working Confer-
ence: New Developments in ICT and Education. Universite de Picardie Jules Verne, Amiens, 2010.

Dagienė, V., Pelikis, E., Stupurienė, G. (2015). Introducing computational thinking through a contest on infor-
matics: Problem-solving and gender issues. Informacijos Mokslai/Information Sciences, 73.

Dagienė, V., Stupurienė, G. (2016). Informatics concepts and computational thinking in K-12 education: A
Lithuanian perspective. Journal of Information Processing, 24(4):732–739.

Forišek M. (2007). Slovak IOI 2007 team selection and preparation. Olympiads in Informatics, 1, 57–65.
Forišek. M., Steinová, M. (2013). Explaining Algorithms Using Metaphors. Springer.
Forišek, M., Winczer, M. (2006). Non-formal activities as scaffolding to informatics achievement. Information.

Technologies at School, 529–534, 2006.
Kalas, I., Tomcsanyiova, M. (2009). Students’ attitude to programming in modern informatics. In: Proc. 9th

WCCE 2009, Education and Technology for a Better World.
Kubica, M., Radoszewski, J. (2010). Algorithms without programming. Olympiads in Informatics, 4.

M. Anderle is a PhD student at the Comenius University in Slovakia.
Since 2011, when he joined the university, he has been involved in the
organization of various algorithmic competitions, mostly the Slovak
national olympiad and Slovak correspondence seminar in program-
ming, and summer schools. He is also a cofounder of the algorithmic
competition for middle schoolers – PRASK.

Olympiads in Informatics, 2018, Vol. 12, 159–166
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.13

159

Grading Systems for Algorithmic Contests

Ágnes ERDőSNé NéMETH1,2, László ZSAKÓ3

1Batthyány High School, Nagykanizsa, Hungary
2Doctoral School, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
3Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
e-mail: erdosne@blg.hu, zsako@caesar.elte.hu

Abstract. Whether you teach programming or you are a competitive programmer yourself, one of
the main questions is how to check the correctness of solutions. There are many different types of
automatic judge systems both online and offline; you have to choose the appropriate one for the
situation. In this paper, we discuss the types of judges and the possible feedbacks given by them.
We also give an overview of the methods used by some well-known online sites from a pedagogi-
cal point of view. The technical issues of different grading systems are omitted.

Keywords: teaching programming, grading on algorithmic contests, automatic grading systems,
ACM ICPC, IOI.

1. Overview

There are many papers about the online judges from a technical viewpoint: how these
systems can be set up, what the problems with measuring the running times are, how to
make good test files, etc. (Skupas, 2010; Maggiolo, 2012; Mares, 2009). There are pa-
pers from the point of view of a jury: is the solution correct, is it readable or not, (Skupi-
ene, 2010), how can the solution’s quality be measured, what are the differences between
an accepted submission and a provably correct solution, what are the requirements of a
correct task description. There are questions partly answered about manual grading in
informatics contests (Pohl, 2008). There are papers about specific grading systems, like
USACO and UVa. (Kolstad, 2007; Revilla et al., 2008)

We think, all participants of the teaching and competing process (teachers, jury, con-
testants, students, companies) agree in the positive role of scientific, and especially in-
formatics contests. According to Manev et al. (2009), the main reasons:

It is more attractive for talented pupils when education lines up well with and is for ●
the purposes of the participating in competitions.
It is necessary to teach students to compete as early as possible. ●

In many countries there is a large gap between the knowledge and skills developed
in the regular curriculum and the ones needed for algorithmic contests. So teaching

Á. E�dősné Németh, L. Zsakó160

programming and also preparing for algorithmic contests is mostly an out-of-school ac-
tivity. It needs more independent work from students and needs more specific attitudes
from teachers.

A didactically and methodologically interesting question is how to check the solu-
tions submitted by students to a given problem, while teaching programming to them;
how to enable them to check their own solutions while practicing; and how to grade solu-
tions in algorithmic contests. All three of these situations require different approaches.

2. Grading Systems Overview

There are many online and offline grading systems for evaluating the correctness of
programs written by competitive programmers. These systems are very similar in the
sense that they all use a set of test data files uploaded by task-setters, performing black-
box testing. The programmers’ code is tested automatically, by a code-checker – not by
a human being – and contestants have to write their code accordingly. For each problem,
there is a set of one or more input files and a set of corresponding correct output files or
a specific judge tool which checks the output of the uploaded program. Each input file
is according to strict specifications described in the problem statement. The program
is run on each of those input files. In most cases, the output generated by the student’s
program must match the correct output exactly, to be accepted. The solution, in order to
be evaluated as correct, needs to produce correct output, and run within specified time
and memory constraints.

The test data should check
The complexity of the algorithm used. ●
The behaviour of the code on border cases. ●
The memory consumption. ●
The running time efficiency (constant) of the implementation. ●

The difference between the systems is the method of ranking, the grouping of test
data files, and the feedback given.

In this paper, we discuss the different methods of automatic judging, the differences
in the feedback, the question of using individual or grouped test cases, and the methods
adopted by well-known online practice sites and online competitions. We concentrate on
algorithmic tasks only, and we do not discuss the specialities of interactive and output
only tasks. We compare different methods from a pedagogical viewpoint and concen-
trate on didactical aspects: which systems can be used for different age groups and in
different phases of learning, practicing and competing.

3. Types of Grading

There are four different types of grading models, each named after the best-known con-
test or situation it is used in.

Grading Systems for Algorithmic Contests 161

3.1. ACM-Style Grading

On ACM ICPC contests, only the perfect and optimally efficient solution is worth any
points. When uploading a solution, two cases are possible:

Accepted: your program is perfect, it runs within the time limit, doesn’t exceed the ●
memory limit and for every input it prints a correct output.
Not accepted: something went wrong, the judging system gives back the first error ●
code.

Usually the correct solution is worth one point.
In many ACM ICPC tournaments, the number of teams reaching a given score de-

creases exponentially in terms of the score.
Possibilities for differentiation between teams with the same number of correct solu-

tions:
Defining the difficulty of each task: ● Xi points for the correct solution of task i (in-
stead of one point for all tasks).
Assigning a solution time to every task: measuring the elapsed time for every task ●
solved by a team or person. The solution times are summed to give a time penalty.
In this case, competitors must recognize which tasks they can solve quickly (easy
tasks) and which ones they can solve slowly (difficult tasks). The optimal strategy
is to solve easy tasks first, and leave more time-consuming tasks to the end. For
example, in the case of a 10-minute and a 50-minute task, starting with the easier
one, the solution time is 10+60 minutes, while starting with the more difficult one,
the solution time is 50+60 minutes.
Sometimes there is a penalty for wrong submissions too: e.g. +20 minutes or –X ● i
points for every incorrect solution submitted. In this case, the contestants are ad-
vised to test their solution offline at first.

This type of grading is acceptable only for older and well-practiced contestants (es-
pecially university students) who are:

Strong enough to endure failure. ●
Have enough routine to see what went wrong. ●
Well-trained enough to be able to repair and to rethink their solutions again and ●
again.

Apart from the ACM ICPC contest, the same grading is used in CodeChef Cook-off
contests, CodeForces rounds and CSAcademy (with full feedback).

3.2. IOI-Style Grading

The test files are grouped at IOI. Test cases awaiting a solution with the same asymptotic
complexity (e.g. O(n), O(n*log n), O(n2), O(n3), O(2n)) or logical complexity (e.g. prob-
lem restricted to an easier subproblem) are grouped together and worth a predetermined
amount of partial points. The judge gives the partial points only if all the tests in the

Á. E�dősné Németh, L. Zsakó162

group are passed, so only if the solution with the expected efficiency is perfect (or the
solution solves the subproblem covered by the group of test cases).

The problem with the idea is that it contradicts the modern pedagogical principle of
appreciating all the performance, rewarding all positive achievements. A fairness prob-
lem may arise as to whether a perfect O(2n) solution is better than an O(n) solution that
does not test a single special case and hence receives 0 points. But it is acceptable for
such an international competition where the competitors are well-prepared and have
advanced knowledge.

Apart from IOI, CodeChef Lunchtime uses this method for contests too.

3.3. National Olympiads

The modern pedagogical principle says that all performance and all success should be
rewarded. The individually evaluated separate test cases give this sense of achievement
to all contestants.

There must be targeted test cases prepared for:
Default values described in a task description. ●
Extreme values of the problem domain and range. ●
Different methods. ●
Typical errors. ●
Large quantities of data. ●

The number of points achievable by different solutions – according to the abovemen-
tioned metrics – has to be decided in advance. The distribution of test cases has to be
designed in such a way, that a good balance of different types of test cases is kept, and
hence the judge assigns the desired scores to different partial solutions.

When practicing, this is the best method if the online judge gives back a very de-
tailed, exact feedback for all test cases.

The national competitions, partly university and high school exams, the practice
sites of online judges – including USACO, COCI, UVa and HackerEarth – also use this
method.

3.4. Offline J�dging

When somebody begins to learn programming, it is important to develop the right coding
style and formatting; and all the small successes should be evaluated and appreciated.
Beginners need clear, accurate, detailed (usually verbal) feedback about their work.

Checking the code on a computer is a wide-ranging activity for all competitors. Writ-
ing code on paper is crucial in sitting exams without computers.

When somebody wants to hack another person’s solution, or wants to learn new
methods, they must be able to read and understand other people’s code.

Grading Systems for Algorithmic Contests 163

When there is a penalty for wrong uploads, the importance of offline judging is cru-
cial – everyone has to learn to read code and to create test data. Everybody has to test
their solution for one or two given sets of test data and must learn to make their own test
cases for different approaches.

All judges perform black-box testing only, but we think that in teaching program-
ming and preparing for contests, white-box testing must also be used.

4. Test Data

The quality of the task description and the test cases is crucial for the quality of a contest
or an online practice site. The evaluation summary presented in online judge systems
should be easy to read and to understand.

Some problems can be easily solved using heuristic algorithms, some can be solved
on a subset of test cases by generally incorrect algorithms, still receiving very good
evaluation scores (Forišek, 2006), so it is very important, that test cases used by the
judge have been carefully designed and checked as widely as they can be. Wide testing
is limited by available resources and confidentiality (for live contests).

The speciality of CodeForces Educational Rounds is that the results that are obtained
by the end of a round are preliminary, and after contest, there is a twenty-four-hour-
period of open hacks, when every visitor may try to hack any complete solution to a
problem from the round, and all successful hacks are added to the official test set and
every solution is re-tested on the now extended test set. This method makes the test cases
better after the contest, and it widens the group of possible test makers. This is good
practice and it may be worthwhile to adapt it for other contests.

5. Feedbacks

In all automatic judging system after writing a program on the contestant’s machine, the
source code is uploaded to the judging server. The source code is compiled and run on
the server. The automatic judge tests it with some inputs and outputs (string comparison)
or with a specific judge tool (for more complicated problems). After the process, the
server gives back simple or detailed feedback.

The simple feedback is: “accepted” or “not accepted” (in that case it gave back the
first error message).

The detailed feedback given back is one the following. We show the notation used by
almost all sites (HackerEarth, SPOJ, TopCoder, CSAcademy…), the one used by USA-
CO, and the one used by CodeChef, respectively, in brackets for each possible feedback.
Sometimes feedback is given for all the test cases, sometimes just till the first error.

Accepted (AC, *, ●): the program is correct. It produced the right answer within
the time and memory bounds.

Á. E�dősné Németh, L. Zsakó164

Wrong Answer (WA, x, ●): correct solution not reached for the inputs. This may
include empty or missing output as well.
Compile Error (CE, c, ●): the compiler could not compile the uploaded program.
Warning messages are ignored. Usually the compiler output messages are reported
on the screen.
Runtime Error (RE, !, ●): the uploaded program failed during execution (seg-
mentation fault, floating point exception…). Sometimes the exact cause is not re-
ported to the user, sometimes it is specified: SIGSEGV: segmentation fault, SI-
GABRT: fatal error, SIGXFSZ: output is too large, NZEC: non-zero exit code,
SIGFPE: floating point error.
Time Limit Exceeded (TL–TLE, t, ●): the program did not terminate within the
time limit. This error does not give information about whether the program would
have reached the correct solution or not.
Memory Limit Exceeded (ML–MLE, !, -): the uploaded program tried to use more ●
memory than the judge allows. This is hard to separate from Runtime Errors for
technical reasons, hence some judges do not report this.

Some systems also give other verdicts (UVa):
Output Limit Exceeded (OL–OLE): The program tried to write too much informa- ●
tion. This usually occurs if it goes into an infinite loop.
Submission Error (SE): The submission is not successful. This is due to some error ●
during the submission process, or data corruption.
Presentation Error (PE): The program outputs are correct, but outputs are not pre- ●
sented in the correct way. However, usually the judging systems ignore extra white
spaces, like ‘\n’,’\t’.
Restricted Function (RF): The uploaded program is trying to use a function which ●
may be harmful to the system.
In Queue (QU): The judge is busy and cannot attend the submission. It will be ●
judged as soon as possible.
Cannot Be Judged (CJ): The judge doesn’t have test input and outputs for the se- ●
lected problem.

6. Conclusions

Our opinion is that partial scoring and detailed feedback is a must at the beginning of
the learning process of programming. White-box testing with verbal feedback about the
coding style is an optimal case for future work.

While practicing, detailed feedback is also a must. But instead of a simple “Wrong
Answer” feedback, the detailed error signals are very useful. For example, if the task
is about finding the shortest way in a graph, the type of error would be textually in the
feedback, like:

Wrong path length. ●
The given path does not have minimal length. ●

Grading Systems for Algorithmic Contests 165

An invalid vertex is on the given path. ●
One vertex turns up several times on the given path. ●
The end of the given path is not the end of the expected path. ●
The given sequence of vertices is not a path in the graph. ●

If the error is noticeable, then the judge should give the solution back with the cause
of the error.

Our opinion – supported by our practice with high school and university students
too – is, that feedback of tests case by case is a must on exams and on national Olympi-
ads level as well.

When students are well-practiced on international level – like IOI and ACM – is the
first level at which test cases in groups are acceptable. These students’ knowledge can
be measured well through the carefully selected tasks with adequate points worth, well
grouped test cases.

From pedagogical viewpoint the ACM-style evaluation, differentiating based on
elapsed time is good for easy, have-to-solve tasks only, not for making contests for high
school students.

References

CodeChef, not-for-profit educational initiative by Directi. https://www.codechef.com
CodeForces online task archive and contest site. http://codeforces.com
COCI Croatian Open Competition in Informatics. http://hsin.hr/coci/
Cormack, G. (2006). Random factors in IOI 2005 test case scoring. Informatics in Education, 5(1), 5–14.
CSAcademy educational platform. https://csacademy.com/
Forišek, M. (2006). On the suitability of programming tasks for automated evaluation. Informatics in Educa-

tion, 5(1), 63–75.
HackerEarth: Be a better programmer! https://www.hackerearth.com/
Horváth, Gy. (2014). A programozási versenyek szerepe az oktatásban. INFOÉRA Konferencia 2014.
Kolstad, R., Piele, D. (2007). USA Computing Olympiad (USACO). Olympiads in Informatics, 1, 105–111.
Manev, K., Sredkov, M., Bogdanov, T. (2009). Grading systems for competitions in programming. Proceed-

ings of the XXXVIII. Spring Conference of the Union of Bulgarian Mathematicians, 2009.
Mares, M. (2009). Moe–Design of a Modular Grading System. Olympiads in Informatics, 3, 60–66.
MESTER online task archive and judge system. https://mester.inf.elte.hu
Maggiolo, S., Mascellani, G. (2012). Introducing CMS: A Contest Management System. Olympiads in Infor-

matics, 6, 86–99.
Pohl, W. (2008). Manual Grading in an Informatics Contest. Olympiads in Informatics, 2, 122–130.
Revilla M.A., Manzoor, S., Liu R. (2008). Competitive learning in informatics: the UVa on-line judge experi-

ence. Olympiads in Informatics, 2, 131–148.
Skupas, B. (2010). Feedback Improvement in Automatic Program Evaluation Systems. Informatics in Educa-

tion, 9(2), 229–237.
Skupiene, J. (2010). Improving the Evaluation Model for the Lithuanian Informatics Olympiads. Informatics

in Education, 9(1), 141–158.
SPOJ Sphere Online Judge. http://www.spoj.com/
TopCoder Algorithms&Analytics. https://www.topcoder.com
USACO USA Computing Olympiad open contest and training pages. http://usaco.org/
UVa Online Judge. https://uva.onlinejudge.org
Verhoeff T.(2008). Programming task Packages: Peak exchange Format, Olympiads in Informatics, 2, 192–

207.

Á. E�dősné Németh, L. Zsakó166

Á. Erdősné Németh teaches mathematics and informatics at Bat-
thyány Lajos High School in Nagykanizsa, Hungary. A lot of her stu-
dents are in the final rounds of the national programming competitions,
some on CEOI and IOI. She is a PhD student in the Doctoral School of
Faculty of Informatics, Eötvös Loránd University in Hungary. Her cur-
rent research interest is teaching computer science for talented pupils
in primary and secondary school.

L. Zsakó is a professor at Department of Media & Educational In-
formatics, Faculty of Informatics, Eötvös Loránd University in Hun-
gary. Since 1990 he has been involved in organizing of programming
competitions in Hungary, including the CEOI. He has been a deputy
leader for the Hungarian team at IOI since 1989. His research interest
includes teaching algorithms and data structures; didactics of infor-data structures; didactics of infor- structures; didactics of infor-
matics; methodology of programming in education; teaching program-
ming languages; talent management. He has authored more than 68
vocational and textbooks, some 200 technical papers and conference
presentations.

Olympiads in Informatics, 2018, Vol. 12, 167–176
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.14

167

The Next Course of Study from 2022 and
a History of the Subject “Informatics”
in Japanese High Schools

Yoshiaki NAKANO1, Katsunobu IZUTSU2

1Kobe Municipal High School of Science and Technology, Japan
2Hokkaido University of Education, Japan
e-mail: info@nakano.ac, idutsu@gmail.com

Abstract. In Japan, all senior high schools have had the subject “Informatics” since 2003. Before
that, there were not any regular classes for informatics in Japanese senior high schools. Japanese
Course of Study is revised approximately every ten years. The current one was implemented in
2013; the next one, published on March 2018, will be implemented in 2022. The authors outline
the history as well as the prospect from 2022 on of the information studies education in Japanese
senior high schools.

Keywords: general subject “Informatics”, course of study, scientific understanding of informa-
tion.

1. The Japanese Course of Study

The Japanese Course of Study is published by Japanese Ministry of Education. With
all the controversies of its legal binding power, it has tremendous influence on school
education.

In Japan, all senior high schools have had the general subject “Informatics” since
2003, before which there were not any classes of information studies as the general
education in Japanese senior high schools. Japanese Course of Study has been revised
approximately every ten years and the current one has been implemented since 2013.
The next Course of Study, which will be implemented from 2022, was published on
March 2018.

Y. Nakano, K. Izutsu168

2. Three Objectives of Information Studies Education
in Primary and Secondary Education

The information studies education in Japanese primary and secondary education encour-
ages pupils and students to develop their “Practical skills in using information actively”,
“Scientific understanding of information” and “Positive attitudes towards today’s infor- infor-infor-
mation-laden society”. The three objectives were defi ned in the fi rst report of “the Re-y”. The three objectives were defi ned in the fi rst report of “the Re-”. The three objectives were defined in the first report of “the Re-
searchers Conference for Promotion of K-12 Information Studies Education”, published
in October 1997. Based on the report, the previous Course of Study launched its version
of information studies education. (MEXT, 1997)

The three objectives are defined as follows:
“Practical skills in using information actively”: The ability to use information ●
means to collect, evaluate, express, process, and/or create the information needed,
and to dispatch and communicate it in consideration of the receiver.
“Scientific understanding of information”: Understanding the characteristics of in-characteristics of in- of in- ●
formation means to use information actively and to understand basic theories and
methods for handling information appropriately and for evaluating and improving
one’s own use of information.
“Positive attitudes towards today’s information-laden society”: The positive atti-y”: The positive atti-”: The positive atti- ●
tude that should be accompanied by the intention to understand the role and infl u-that should be accompanied by the intention to understand the role and infl u-should be accompanied by the intention to understand the role and influ-
ence of information in our life, to consider the importance of information ethics
and one’s own responsibility for information, and to participate actively in creating
a desirable society.

3. Information Studies Education in Elementary Schools

Elementary schools do not provide any specific subject of information studies but en-
courages pupils to develop their skills in using information actively by means of infor-
mation devices like personal computers in class activities centered around the subject
“Integrated Studies” (Nakano and Izutsu, 2013).

The next Course of Study for Elementary Schools describes what needs to be tak-
en into account when making teaching plans in its Chapter 1, the general provisions
(MEXT, 2017a):

In order to foster the ability to utilize information, each school should prepare the
necessary environment to utilize information devices such as computer and networks,
and enrich learning activities appropriately utilizing them.

To implement the next learning activity systematically.
Basic operations of computer such as keyboard operation.1)
Logical thinking skills by experience of computer programming.2)

What makes a great difference from the current Course of Study is “experience of
computer programming”.

The Next Course of Study from 2022 and a History of the Subject “Informatics”... 169

Moreover, the next Course of Study states on “Integrated Studies”:

It comprises the process of explorative learning, in which pupils participate in activi-
ties such as collecting information, processing and sending out information, utilizing
computers and networks properly and effectively. In doing so, pupils learn about the
basic operation of the computer to obtain the information needed and how to make a
subjective or spontaneous choice among different information means.

4. Information Studies Education in Junior High Schools

In junior high schools, the subject of Technology and Home Economics generally cov-
ers information studies. The next Course of Study classifies the field of Technology as
follows (MEXT, 2017b):

Technology of materials and their processing.A.
Technology of animal and plant growth.B.
Technology of energy conversion.C.
Technology of information.D.

The content of D “Technology of information” is defined as:
Information technology to support our life and society.(1)
Interactive content by computer programs.(2)
Measurement and control by computer programs.(3)
Development of society with information technology.(4)

Half of the 175 hours of the subject Technology and Home Economics are allotted to
the content of Technology. The learning of information used to take up half the content,
but now takes up only a quarter of it. Thus the time period for information studies that
formerly reached 44 hours currently amounts to only 22 hours. This means a significant
change in quantity as well as quality.

5. Information Studies Education in Senior High Schools

In senior high schools, the subject “Informatics” chiefly serves for information studies
education. It is comprised of General Informatics (Informatics as general subject) and
Major Informatics (Informatics as major subject).

5.1. The Subject General Informatics

Introduction of the Subject General Informatics and Previous Course of Study
The subject “Informatics” was newly established in high schools in 2003. General In-
formatics and Major Informatics were set up, and General Informatics are composed
by “Information A”, “Information B” and “Information C”. “Information A” teaches
the practical skills in using information actively, “Information B” deals with the scien-

Y. Nakano, K. Izutsu170

tific understanding of information, and “Information C” nurtures the positive attitudes
towards today’s information-laden society. Students are supposed to select one of these
three. It would have been ideal that students themselves could freely select the one suit-
able to their characteristics and their future career. However, the actual situation of most
schools was that each school designated the subject with no regard to the students’ pref-
erence. The rate of “Information A” was 80% of high schools nationwide. On the other
hand, “Information B” was only 5% and “Information C” was only 15%. Unfortunately,
most of those subjects seems to have been subject to the preconception of “the practical
skills in using information actively = the skills of using office software” (MEXT, 1999).
The classes accordingly limited themselves to exercises in using word processors and
presentation software.

Information A:
Devices for active use of information and information equipment.(1)
Collection and transmission of information and utilization of information (2)
equipment.
Integrated processing of information and utilization of computers.(3)
Development of information equipment and changes in our lives.(4)

Information B:
Solving Problems and utilizing Computers.(1)
Structure and function of computer.(2)
Modeling problems and solving by computers.(3)
Information technology supporting the information-laden society.(4)

Information C:
Digitization of information.(1)
The Internet and communication.(2)
Collection and transmission of information and personal responsibility.(3)
Progress of information technology and its impact on society.(4)

The problems with information studies education in those days were primarily at-
tributable to the inadequacy in the teacher training of the subjects. As such training, “
Teachers’ license program of the new subject Informatics for in-service teachers” was
implemented over the three years since 2000, and the teachers who completed a fif-
teen-day course acquired its certificate and were in charge of the pertinent subjects and
classes. The authors have to say that it was extremely difficult for teachers to acquire the
knowledge and skills necessary for teaching the appropriate contents of Informatics in
no more than fifteen days.

Present Situation of Informatics Teaching and Current Course of Study
In spite of those problems, it was meaningful that Informatics was established as a new
subject. It encouraged a lot of research groups of Informatics to be created in each pre-
fecture, and they were eventually put together into Japan Informatics Teachers� Associa-Japan Informatics Teachers� Associa-apan Informatics Teachers� Associa-
tion (JITA). Every year sees in its annual conference not only high school teachers but
also university professors holding research presentations. Those active comprises a driv-
ing force for improving the lesson and creating new initiatives of Informatics.

The Next Course of Study from 2022 and a History of the Subject “Informatics”... 171

The current Course of Study, being applied to the students who entered high schools
in 2013 and later, reorganized General Informatics into two subjects: "Society and Infor-
mation" and "Information Science". Their contents are as follows (MEXT, 2009):

Society and Information:
Active use of information and its expression.(1)
The Internet and communication.(2)
Issues of today’s information-laden society and information ethics.(3)
Construction of desirable information societies.(4)

Science of Information:
Personal computers and the Internet.(1)
Problem solving and effective use of personal computers.(2)
Information management and problem solving.(3)
Progress of information technology and information ethics.(4)

The subject corresponding to “Information A” disappeared, the “Society and Infor-
mation” was substituted for “Information C”, and “Information B” developed into the
“Information Science”. Nevertheless, these reformations did not change the situation in
which each school designated which subject their students should take; the 80% of high
schools assigned “Society and Information”, whereas only 20% designated “Information
Science”.

Moreover, even though more than ten years have passed since Informatics was newly
established, the situation of teaching Informatics is far from having been improved;
rather it is in a much poorer condition. Of Informatics teachers nationwide, only 20% is
dedicated, 50% teaches other subjects concurrently, and the remaining 30% do not have
an Informatics teacher’s license, only with a temporary license.

Future of Informatics and Next Course of Study
Third stage of revision of the Course of Study changes General Informatics dynamically
rather than remaining as a minor improvement of it. The previous Course of Study and
the current one both presupposed a choice among the required subjects: "Information A",
"Information B" and "Information C", or "Society and Information" and "Information
Science" and did not provide any advanced subject in General Informatics. However, in
the next Course of Study, the compulsory subject is unified into "Informatics I" and, fur-
thermore, "Informatics II" has been set as an advanced subject (Fig. 1) (MEXT, 2018).

Fig. 1. Historical shift in the subjects and levels of General Informatics.

Y. Nakano, K. Izutsu172

Aim of General Informatics
“Informatics I” and “Informatics II” provide high school students with learning activi-
ties in which they can make use of scientific viewpoints and ways of thinking about
information to discover and solve various problems by utilizing information technology
appropriately and effectively. The subject aims to nurture the propensity and ability to
participate actively in society as follows:

To understand more about information and information technology and methods (1)
to discover and solve various problems by using them, to acquire the skills needed
and to deepen their understanding of the relationship between the information
society and people therein.
To understand various events in terms of information and its connection to them, (2)
cultivate the ability to appropriately and effectively utilize information and infor-
mation technology toward finding and solving problems with the events.
To appropriately utilize information and information technology and cultivate an (3)
attitude to participate actively in the information society.

Contents of “Informatics I” and “Informatics II”
The contents of the relevant two subjects are as follows:

Informatics I:
Problem solving of information society:(1)

characteristics of information and media, utilization of information tech-
nology, problem discovery, problem solving, legal system, information se-
curity, personal responsibility, information ethics, and impact on society

Communication and information design:(2)
characteristics of media, communication means, effective communication,
and information design

Computer and programming:(3)
computer mechanism, algorithm, modeling, simulation, evaluation, and
programming

Utilization of information communication network and data:(4)
Internet structure, protocol, database, and information system

Informatics II:
Progress of information society and information technology:(1)

development of information technology, future information technology,
and information society

Communication and contents:(2)
type of communication, characteristics of media, multimedia contents
production, and information design

Information and data science:(3)
data science, database, modeling, and data processing

Information system and programming:(4)
information system, information service, information security, software
development process, and project management

The Next Course of Study from 2022 and a History of the Subject “Informatics”... 173

Exploration of problem solving using information and information technol-(5)
ogy:

imagination of new values,and effective utilization of information tech-
nology

As we noted above, “Informatics II” is positioned above “Informatics I”. The corre-
spondence between the contents of the two subjects (“Informatics I” -> “Informatics II”)
is fairly clear: (1) -> (1), (2) -> (2), (3) -> (4), (4) -> (3). (Fig. 2) (5) of “Informatics II”
amounts to exploring comprehensive tasks utilizing the knowledge and skills acquired in
“Informatics I” and “Informatics II”. We can see it as corresponding to project research
in Major Informatics, which we will see below.

Although the standard unit number of each subject remains two, the flat organi-
zation of Informatics teaching has now grown into a “two-story structure” with one
based on the other. The compulsory subjects one of which students were required to
choose are unified in Informatics I, and Informatics II opens the door to further and
deeper leaning. This structural change is likely to improve the presence of Informatics
at high school.

A slightly more concrete look at the contents will show that information de-
sign, programming, networking, information security, and databases are dealt with
in “Informatics I”. In addition, “Informatics Ⅱenriches the contents related to data
science and information systems . Placing emphasis on the scientific understand-
ing of information, it adopts further contents being dealt with in the current Major
Informatics.

There may arise a concern about the teachers, whose specialties are other subjects
or who don’t have an Informatics teacher’s license: can they appropriately teach these
contents? It can be a relieving fact that more and more university professors are ac-
tively incorporating practical training, while an increasing number of Boards of Edu-
cation are employing Informatics teachers. Additional in-service training is also sup-
porting Informatics teachers and improving their teaching environment. Educational
equipment such as computers and networks must also be improved for their active and
effective practices.

Fig. 2. Content correspondence between Informatics I and II.

Y. Nakano, K. Izutsu174

5.2. The Subject Major Informatics

Current situation
Alongside of “General Informatics”, the current Course of Study has provided 13 sub-Course of Study has provided 13 sub- has provided 13 sub-
jects of Major Informatics with senior high schools.

However, only a very small number of schools teach subjects of Major Informat-
ics. Japan does not have more than 20 senior high schools that offer the course Major
Informatics.

Aim
Major Informatics provides high school students with the practical and experiential
learning activities necessary for the acquisition of scientific viewpoints and ways of
thinking on information. This is because students will need these to realize a healthy
and sustainable development of local society and information society, including the in-
formation industry. The subject aims to help students to acquire abilities as follows:

To understand each field of information systematically, and to obtain related (1)
skills.
To discover issues relating to the information industry and cultivate the abil-(2)
ity to solve reasonably and creatively based on the ethical sense required of
workers.
To nurture the rich human nature necessary for professionals, learn by themselves (3)
to build a better society, and cultivate an attitude to actively and cooperatively
work on the creation and development of the information industry.

The difference in objectives between General Informatics and Major Informatics is
that this latter focuses on "practical and experiential learning activities", " a sound and
sustainable development of information society by the information industry", and "pro-
fessional ethics".

New Subjects of Major Informatics and their Characteristics
The new Course of Study reorganizes subjects of Major Informatics by introducing some
new subjects as well as revising the overall content of the subjects. This reorganization is
expected to help foster qualified young people who have the creative capability of solv-ied young people who have the creative capability of solv- young people who have the creative capability of solv-
ing various problems in addition to understanding occupational ethics.

The new Course of Study divides Major Informatics into 12 different subjects in
reference to four characteristics: basic, system design and management, creation and
production of information content, and synthetic.

Basic subjects: ●
“Information Industry and Society”, “Expression and Management of
Information”, “Information Technology”, and “Information Security”

System design and management subjects: ●
“Programming for Information Systems”, “Network System”, and “Database”

Creation and production of information content subjects: ●
“Information Design”, “Production and Dissemination of Contents”, and “Media
and Services”

The Next Course of Study from 2022 and a History of the Subject “Informatics”... 175

Synthetic subject: ●
“Informatics Practice” and “Project Research”

5.3. Other Subjects Related to Informatics in Special High Schools

The Course of Study notified in 1979 provided some major subjects of industry and com-
merce, which by and large corresponded to the present-day information studies. Sub-
sequently, the ministry of education established the course of information technology
in high schools of industry and that of information processing in high schools of com-that of information processing in high schools of com-of information processing in high schools of com-
merce, which have played a central role of information studies education in the nation.

Other special high schools teach some other subjects of information: “Agriculture
and Information” in agricultural schools, “Maritime Information Technology” in fishery
schools, “Nursing Information” in nursing schools, and “Welfare Information” in wel-
fare schools.

Likewise, the new Course of Study provides “Industrial Information Mathematics”,
“Programming Technology”, “Hardware Technology”, “Software Technology” and
“Computer Systems Technology” for high schools of industry and “Information Process-
ing”, “Software Application”, “Programming”, “Network Application” and “Network
Management” for high schools of commerce. The subjects will be learned by a lot of
students in a wide range of high schools.

6. Trends in General Informatics

The characteristics of General Informatics in the three sets of Course of Study can be
summarized with respect to the three objectives as in Table 2.

The third revision of Course of Study will hopefully allow us finally to start ideal
information studies education in Japanese senior high schools. However, further moni-
toring and support will be necessary to see if it will really be realized. The authors would
also like to participate continuously in the practice, observation, and support of this new
endeavor of information studies education in Japan.

Table 2
Specific gravity of the three objectives in General Informatics

Previous Current Next

Practical skills in actively using
information **** ** *

Positive attitude toward participation in today’s
information-laden society ** **** **

Scientific understanding of information * * ****

The number of asterisks in the table indicates that the objective is pursued
actively (****), moderately (**), or barely (*).

Y. Nakano, K. Izutsu176

References

MEXT* (1997). The Researchers Conference for Promotion of K-12 Information Studies Educa-
tion: For implementation of systematic information studies education (The first report).
http://www.mext.go.jp/b_menu/shingi/chousa/shotou/002/toushin/971001.htm

MEXT (1999). Course of Study for senior high schools.
http://www.mext.go.jp/a_menu/shotou/cs/1320221.htm

MEXT (2009). Course of Study for senior high schools.
http://www.mext.go.jp/a_menu/shotou/new-cs/youryou/1304427.htm

MEXT (2017a). Course of Study for elementary schools.
http://www.mext.go.jp/component/a_menu/education/micro_detail/__icsFiles/
afieldfile/2018/05/07/1384661_4_3_2.pdf

MEXT (2017b). Course of Study for junior high schools.
http://www.mext.go.jp/component/a_menu/education/micro_detail/__icsFiles/
afieldfile/2018/05/07/1384661_5_4.pdf

MEXT (2018). Course of Study for senior high schools.
http://www.mext.go.jp/component/a_menu/education/micro_detail/__icsFiles/
afieldfile/2018/04/24/1384661_6_1.pdf

Nakano, Y., Izutsu, K. (2013). The new Course of Study and a prospect of information studies
education in Japan. In: I. Diethelm et al. (Eds.) Informatics in Schools: Local Proceedings
of the 6th International Conference ISSEP 2013; Selected Papers; Oldenburg, Ger-
many, February 26–March 2, 2013. Universitätsverlag Potsdam, 89–96.

Y. Nakano received his B.Eng., M.Eng. from Shibaura Institute of
Technology in 1988, and 1990, respectively. He is the national certified
Professional Engineer of Engineering Management and Information
Engineering. He is a teacher in Kobe Municipal High School of Science
and Technology. His research interests are on informatics education
in secondary schools, teacher development and universities entrance
exam.

K. Izutsu, M.A. and PhD (Hokkaido University), is Associate Professor
of linguistics at Hokkaido University of Education. His research inter-
ests include cognitive and functional approaches to language, linguistic
pragmatics, anthropological linguistics, information and communica-
tion technology, multimodal communication, language learning and
acquisition, and human evolution and language development.

* MEXT – Ministry of Education, Culture, Sports, Science & Technology

Olympiads in Informatics, 2018, Vol. 12, 177–185
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.15

177

Current Situation of Teachers of Informatics
at High Schools in Japan

Yasuichi NAKAYAMA1*, Yoshiaki NAKANO2, Yasushi KUNO1,
Ben Tsutom WADA3, Hiroyasu KAKUDA1, Masami HAGIYA4,
Katsuhiko KAKEHI5

1The University of Electro-Communications
 Chofu, Tokyo 182-8585 JAPAN
2Kobe Municipal High School of Science and Technology
3Nagano University
4The University of Tokyo
5Waseda University, currently with Tokyo Online University
e-mail: nakayama@uec.ac.jp, info@nakano.ac, y-kuno@uec.ac.jp,
{wadaben, kakuda}@acm.org, hagiya@is.s.u-tokyo.ac.jp, kakehi@waseda.jp

Abstract. In March 2018, the Japanese Ministry of Education, Culture, Sports, Science and Tech-
nology revised the curriculum guidelines for high school, which will be applied in 2022. The
subject of Informatics has been drastically changed; ‘Informatics I’ and ‘Informatics II’ have a
predominantly scientific approach. This could be problematic given that a lot of ‘temporary teach-
ers’ and ‘teachers without a proper license’ teach Informatics, and more than half of the teachers
that teach Informatics are in charge of multiple subjects. So, it may be difficult to implement new
curriculum in the dozens of prefectures that have few teachers who specialize in Informatics. We
report on the problems our investigation revealed.

Keywords: informatics education, elementary and secondary education, teacher license.

1. Introduction

In 2003, the subject of Informatics was introduced in Japanese high schools. The Minis-
try of Education, Culture, Sports, Science and Technology (MEXT) revised curriculum
guidelines in 2013. Under the current curriculum guidelines, each high school adopts
either ‘Information study for participating community’ or ‘Information study by scien-
tific approach’.

In March 2018, MEXT revised the curriculum guidelines for high schools further
(MEXT, 2018), (Kano, 2017). The latest curriculum guidelines will be applied in 2022.
The subject of Informatics has been drastically changed, with ‘Informatics I’ and ‘Infor-
matics II’ having a mainly scientific approach.

* Corresponding Author

Y. Nakayama et al.178

Informatics is a field of science that investigates principles and technologies for de-
fining semantics, creating value, and giving order to the world, by processing infor-
mation. The principles and technologies for processing information include those of
creation, generation, collection, representation, recording, recognition, analysis, trans-
formation, and transmission (Hagiya, 2015). In order to teach Informatics to students at
high schools, a wide range of knowledge and skills related to Informatics are required.
Licensed teachers who specialize in the subjects related to Informatics are necessary.

However, there are many unlicensed teachers who teach Informatics. Researchers in
educational administration have brought attention to this since Informatics first started
being taught at high schools, but there has been little improvement (Nakano, 2006),
(Kano, 2012), (Hagiya, 2016).

In 2003 when subject of Informatics was introduced, no licensed teachers existed
because the subject did not exist until then. Since then, special rules have been applied to
teachers assigned to teach Informatics. One of the special rules is a training course held
from 2000 to 2003. A teacher who holds a license for another subject such as Mathemat-
ics, Science, etc. can obtain a license for Informatics by training for 15 days. Approxi-
mately 14,000 teachers have acquired licenses for Informatics.

Other special rules are ‘temporary teachers’ and ‘teachers without a proper license’.
These rules can be applied to other subjects, but since 2003 they have been widely used
for Informatics. A prefectural board of education can hire ‘temporary teachers’ for up to
three years if they cannot employ teachers with a proper license. In addition, the prefec-
tural board of education can allow ‘teachers without a proper license’ to teachers who
have a license for another subject.

In 2015, we requested the disclosure of administrative documents from the MEXT
in order to obtain the number of ‘temporary teachers’ and ‘teachers without a proper
license’ in 47 prefectures. So far, we have learned that a lot of ‘temporary teachers’ and
‘teachers without a proper license’ are applied for Informatics in comparison with other
subjects (Nakayama et al., 2017).

In this paper, we report the results of our latest request for disclosure of administra-
tive documents from 47 prefectures and 19 major cities. It became clear that there are
only a few teachers who specialize in Informatics (i.e., teachers who only teach Infor-
matics) even among those who hold proper licenses for it, and more than half of the
teachers who teach Informatics cover multiple subjects.

2. Procedure for Obtaining Disclosure of Administrative Documents
and the Results

We have collected data on whether holders of Informatics licenses teach only Informat-
ics or whether they also teach other subjects than Informatics.

In June 2015, MEXT required prefectures and major cities to report the recruitment,
assignment, and training of teachers for Informatics. We collected the reports of 47 pre-
fectures and 19 major cities. Although we have 20 major cities in Japan, we did not
request disclosure for Sagamihara City, as they have no municipal high school.

Current Situation of Teachers of Informatics at High Schools in Japan 179

Electronic applications were available in 44 prefectures and 18 cities. Data was pro-
vided electronically from 16 prefectures and 1 city, and paper documents were provided
from the remaining prefectures and cities.

In showing how many teachers taught Informatics, only teachers at public schools
were counted. National schools, private schools, schools with correspondence courses,
and special support schools were excluded. Table 1 and Table 2 show the number of
teachers who teach Informatics in 47 prefectures and 19 major cities as of May 2015.

Table 1
Teachers assigned for Informatics (Prefectures, May 2015)

Prefecture Full-time teachers who teach Informatics Public
schoolsTotal Teachers with proper license Temporary

teachers
Teachers without
proper licenseAssigned only

for Informatics
In charge of
multiple subjects

 1 Hokkaido 289 37 134 0 118 237
 2 Aomori 59 17 22 11 9 50
 3 Iwate 99 2 47 15 35 74
 4 Miyagi 101 13 43 3 42 76
 5 Akita 75 12 42 13 8 58
 6 Yamagata 45 3 39 0 3 28
 7 Fukushima 120 9 50 61 0 96
 8 Ibaraki 114 5 43 15 51 79
 9 Tochigi 132 4 20 108 0 52
10 Gunma 130 3 111 3 13 63
11 Saitama 231 210 21 0 0 131
12 Chiba 327 22 305 0 0 124
13 Tokyo 163 163 0 0 0 233
14 Kanagawa 316 66 203 0 47 137
15 Niigata 126 0 58 3 65 95
16 Toyama 83 3 37 2 41 44
17 Ishikawa 105 1 25 20 59 45
18 Fukui 40 1 26 12 1 40
19 Yamanashi 50 1 27 0 22 30
20 Nagano 213 9 60 0 144 102
21 Gifu 149 5 56 5 83 48
22 Shizuoka 126 11 66 0 49 108
23 Aichi 435 57 152 1 225 176
24 Mie 82 30 40 0 12 66
25 Shiga 174 4 76 5 89 42
26 Kyoto 57 10 47 0 0 43
27 Osaka 266 140 116 0 10 142
28 Hyogo 294 74 105 0 115 116
29 Nara 67 10 35 11 11 33
30 Wakayama 86 7 30 11 38 46
31 Tottori 16 4 11 0 1 19
32 Shimane 53 2 39 0 12 38

Continued on next page

Y. Nakayama et al.180

Table 1 – continued from previous page

Prefecture Full-time teachers who teach Informatics Public
schoolsTotal Teachers with proper license Temporary

teachers
Teachers without
proper licenseAssigned only

for Informatics
In charge of
multiple subjects

34 Hiroshima 84 7 50 1 26 99
35 Yamaguchi 49 0 49 0 0 38
36 Tokushima 61 0 46 1 14 31
37 Kagawa 43 6 36 1 0 30
38 Ehime 90 0 88 0 2 51
39 Kochi 56 0 14 12 30 50
40 Fukuoka 123 13 93 4 13 87
41 Saga 45 9 30 0 6 22
42 Nagasaki 61 4 32 8 17 51
43 Kumamoto 48 17 20 7 4 45
44 Oita 42 17 4 5 16 35
45 Miyazaki 47 3 17 17 10 23
46 Kagoshima 92 1 48 36 7 48
47 Okinawa 48 39 1 0 8 45

Table 2
Teachers assigned for Informatics (Major Cities, May 2015)

City Full-time teachers who teach Informatics Public
schoolsTotal Teachers with proper license Temporary

teachers
Teachers without
proper licenseAssigned only

for Informatics
In charge of
multiple subjects

48 Sapporo 9 7 2 0 0 7
49 Sendai 3 1 2 0 0 3
50 Saitama 4 4 0 0 0 4
51 Chiba 7 0 4 0 3 2
52 Kawasaki 12 3 3 0 6 6
53 Yokoyama 28 25 1 0 2 9
54 Sagamihara 0 0 0 0 0 0
55 Niigata 7 0 4 3 0 3
56 Shizuoka 3 0 3 0 0 3
57 Hamamatsu 1 1 0 0 0 1
58 Nagoya 12 9 3 0 0 15
59 Kyoto 28 6 22 0 0 11
60 Osaka 27 4 11 0 12 20
61 Sakai 2 0 2 0 0 1
62 Kobe 23 4 19 0 0 7
63 Okayama 1 0 1 0 0 1
64 Hiroshima 4 0 4 0 0 4
65 Kitakyushu 1 0 1 0 0 1
66 Fukuoka 5 0 5 0 0 3
67 Kumamoto 1 0 0 1 0 2

Current Situation of Teachers of Informatics at High Schools in Japan 181

Table 3
Teachers assigned for Informatics (47 prefectures and 19 cities, May 2015)

Full-time teachers who teach Informatics Public
schoolsTotal Teachers with proper license Tem-

porary
teachers

Teachers without
proper licenseAssigned only

for Informatics
In charge of
multiple subjects

47 prefectures 5588
(100)

1059
(19.0)

2657
(47.5)

395
(7.1)

1477
(26.4)

3368

19 cities 178
(100)

 64
(36.0)

 87
(48.9)

 4
(2.2)

 23
(12.9)

 103

Total 5766
(100)

1123
(19.5)

2744
(47.6)

399
(6.9)

1500
(26.0)

3471

Table 3 shows the total number for prefectures and major cities. We confirmed that a
lot of ‘temporary teachers’ and ‘teachers without a proper license’ teach Informatics, as
reported in (Nakayama et al., 2017).

In 47 prefectures and 19 major cities, as shown in Table 3, about thirty percent of
full-time teachers are ‘temporary teachers’ or ‘teachers without a proper license’. In
addition, about fifty percent of full-time teachers are assigned to multiple subjects, and
only about twenty percent of full-time teachers specialize in Informatics.

85％～

60％～85％

30％～60％

10％～20％

～10％

Fig. 1. Ratio of teachers who specialize in Informatics (May 2015).

Y. Nakayama et al.182

The map in Fig. 1 shows the ratio of teachers who specialize in Informatics. The num-
ber of teachers who specialize in Informatics is more than half of the full-time teachers
in Saitama Prefecture, Tokyo Prefecture, Osaka Prefecture, Okinawa Prefecture, Sap-
poro City, Saitama City, Yokohama City, Hamamatsu City, and Nagoya City (Table 4).
The number of teachers who specialize in Informatics is more than half of the schools
in Saitama Prefecture, Tokyo Prefecture, Osaka Prefecture, Hyogo Prefecture, Okinawa
Prefecture, Sapporo City, Saitama City, Kawasaki City, Yokohama City, Hamamatsu
City, Nagoya City, Kyoto City, and Kobe City (Table 5). These prefectures and cities are
located in urban areas, except for Okinawa Prefecture.

The prefectures and cities that are not listed in Table 4 and Table 5 have zero or few
teachers who specialize in Informatics. Many of these prefectures and cities are located
in rural areas.

Table 4
Teachers who specialize in Informatics per full-time teachers (May 2015)

 Teachers who specialize
in Informatics

Full-time teachers Ratio

13 Tokyo Prefecture 163 163 1.00
50 Saitama City 4 4 1.00
57 Hamamatsu City 1 1 1.00
11 Saitama Prefecture 210 231 0.91
53 Yokohama City 25 28 0.89
47 Okinawa Prefecture 39 48 0.81
48 Sapporo City 7 9 0.78
58 Nagoya City 9 12 0.75
27 Osaka Prefecture 140 266 0.53

Table 5
Teachers who specialize in Informatics per schools (May 2015)

 Teachers who specialize
in Informatics

Schools Ratio

53 Yokohama City 25 9 2.78
11 Saitama Prefecture 210 131 1.60
48 Sapporo City 7 7 1.00
50 Saitama City 4 4 1.00
57 Hamamatsu City 1 1 1.00
27 Osaka Prefecture 140 142 0.99
47 Okinawa Prefecture 39 45 0.87
13 Tokyo Prefecture 163 233 0.70
28 Hyogo Prefecture 74 116 0.64
58 Nagoya City 9 15 0.60
62 Kobe City 4 7 0.57
59 Kyoto City 6 11 0.55
52 Kawasaki City 3 6 0.50

Current Situation of Teachers of Informatics at High Schools in Japan 183

3. Discussion

As shown in Section 2, there are more Informatics teachers who specialize in Informat-
ics in urban areas than in rural areas. In particular, a lot of ‘temporary teachers’ and
‘teachers without a proper license’ teach Informatics at high schools in rural areas.

In February 2018, MEXT announced the situation of ‘teachers without a proper li-
cense’ as of May 2017; across Japan 1,148 of 3,077 ‘teachers without a proper license’
were assigned for Informatics. Licensed subjects for the above-mentioned 1,148 teach-
ers are shown in Fig. 2. We find that teachers of another subject, such as Art, Geography
and History, Home economics, Foreign languages, Health and Physical education, etc.,
teach Informatics.

In addition, more than half of the teachers with a proper license for Informatics teach
multiple subjects as shown in Section 2. Teachers in charge of multiple subjects at high
schools may be unaware that they are Informatics teachers and are responsible for Infor-
matics education, so there is a concern that they will not participate in study meetings for
Informatics, such as Zenkojoken (the study group for high school Informatics teachers
across Japan, http://www.zenkojoken.jp).

In 2013, the Japanese government declared Japan to be ‘the world’s most advanced
IT nation’ (Declaration to be the world’s most advanced IT nation, Cabinet Secretariat
2013). To this end, Japanese students will learn Informatics, and computer programming
will be introduced even in elementary schools from 2020 (Kanemune et al., 2017). In
2022, the curriculum guidelines for high schools will be drastically revised, with ‘Infor-
matics I’ and ‘Informatics II’ having a predominantly scientific approach (MEXT, 2018),
(Kano, 2017).

Given that a lot of ‘temporary teachers’ and ‘teachers without a proper license’ teach
Informatics, and even most teachers who hold a proper license for Informatics are in

0 50 100 150 200 250 300

Foreign Languages
Welfare
Fisheries

Commerce
Engineering
Agriculture

Home Economics
Nursing

Health and Physical Education
Art

Science
Mathematics

Civics
Geography and History

Japanese Language

Fig. 2. Licensed subject for teachers who teach Informatics without proper license
(May 2017).

Y. Nakayama et al.184

charge of multiple subjects, it may be hard to implement new curriculum in dozens of
prefectures that have few teachers who specialize in Informatics.

In order to enhance Informatics education, it will be necessary to develop laws like
the ‘Informatics Education Promotion Act’. We believe that it is important to allocate a
budget for and assign at least one teacher who specializes in Informatics to each school.
It is important to employ teachers who specialize in subjects relevant to Informatics and
education method in teacher training course at university to follow the remarkable ICT
innovation.

References

Cabinet Secretariat (2013). Declaration to be the world’s most advanced IT nation
http://japan.kantei.go.jp/policy/it/2013/0614_declaration.pdf

Hagiya, M. (2015). Defining Informatics across Bun-kei and Ri-kei, Journal of Information Processing,
23(4), 525–530.
http://doi.org/10.2197/ipsjjip.23.525

Hagiya, M. (2016). Disparity in Informatics education and reference standard in Informatics | Informatics as
a basic discipline for Informatics education (in Japanese), Jornal of Information Processing and Manage-
ment, 59(7), 472–478.
http://doi.org/10.1241/johokanri.59.472

Kanemune, S., Shirai, S., Tani S. (2017). Informatics and programming education at primary and secondary
schools in Japan, Olympiads in Informatics, 11, 143–150.
http://doi.org/10.15388/ioi.2017.11

Kano, T. (2012). Current Situation of the subject of Informatics in Ishikawa prefecture (in Japanese), JUCE
Journal, 138, 7–9.
http://www.juce.jp/LINK/journal/1203/pdf/02_02.pdf

Kano, T. (2017). Revision of Course of Study and Common Subject Information Department (in Japanese),
IPSJ Magazine, 58(7), 626–629.
http://id.nii.ac.jp/1001/00182243/

MEXT (2018), Curriculum guideline for high school
http://www.mext.go.jp/a_menu/shotou/new-cs/1384661.htm

Nakano, Y. (2006). A study of subject ‘Information’ in standpoint of board of education and teachers adoption
(in Japanese), IPSJ SIG Technical Reports, 2006-CE-86-5.
http://id.nii.ac.jp/1001/00054167/

Nakayama, Y., Nakano, Y., Kakuda, H., Kuno, Y., Suzuki, M., Wada, B.T., Hagiya, M., Kakehi, K. (2017).
Current situation of teachers assigned for the subject of ‘Information’ at high-schools in Japan (in Japa-
nese), IPSJ transactions on computers and education, 3(2), 41–51.
http://id.nii.ac.jp/1001/00182185/

Y. Nakayama is an associate professor in the Graduate School of Infor-
matics and Engineering at The University of Electro-Communications.
He received his B.E., M.E., and D.Eng. degrees from The University
of Tokyo in 1988, 1990, and 1993, respectively. His research interests
include operating systems, parallel and distributed computing, and In-
formatics education. He is a member of IPS Japan, and IEEE Com-
puter Society.

Current Situation of Teachers of Informatics at High Schools in Japan 185

Y. Nakano received his B.Eng., M.Eng. from Shibaura Institute of
Technology in 1988, and 1990, respectively. He is a national certified
Professional Engineer of Engineering Management and Information
Engineering. He is a teacher in Kobe Municipal High School of Sci-
ence and Technology. His research interests are on informatics educa-
tion in secondary schools, teacher development and universities en-
trance examination.

Y. Kuno received the BS, MS, and PhD degrees in information science
from the Tokyo Institute of Technology in 1979, 1981, and 1991, re-
spectively. He is a professor in University of Electro-Communications,
Tokyo, Japan. His current research interests include programming lan-
guages, programming education, and informatics education in general.
He is a member of Information Processing Society of Japan, Japan
Society for Software Science and Technology, Association for Com-
puting Machinery, and IEEE Computer Society.

B.T. Wada is a Professor of Nagano University since 1984. He was a
Visiting Professor of Division of Computer Education, College of Edu-
cation, Korea University, Korea, in 2006. He received B.Eng in 1978
from Waseda Univ., MSc in 1982 from Univ. of Tsukuba. He acts as the
Chairperson of Primary and Secondary education Committee, Infor-
matics Education Committee, Information Processing Society of Japan.
Senior member of IPSJ. Member of ACM. His current area of interest is
Education of Informatics and its international comparative study.

H. Kakuda received his B.S., M.S., D.Science degrees from Tokyo In-
stitute of Technology in 1974, 1976, and 1982, respectively. He was an
associate professor in the University of Electro-Communications, and
retired in March 2016. His research interests include human computer
interaction, computers and education, Japanese document processing,
and string manipulation. He is a member of IPSJ and ACM.

M. Hagiya received his B.Sc., M.Sc. from the University of Tokyo
in 1980, and 1982, respectively, and his Ph.D. from Kyoto University
in 1988. He is a professor at the University of Tokyo since 1995. His
main research interests is in computational models, including those for
molecular computing. He is also involved in activities for informatics
education. He is a member of IPSJ and ACM.

K. Kakehi received his B.Eng., M.Eng. from the university of Tokyo
in 1968, and 1970, respectively. He was a professor in Waseda Univer-
sity and retired in March 2016. His research interests is on program-
ming, raging over languages, tools, methods and education.

Olympiads in Informatics, 2018, Vol. 12, 187–193
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.16

187

International School in Informatics “Junior”
for IOI Training

Marina S. TSVETKOVA1, Vladimir M. KIRYUKHIN2

1Academy of Natural History, Russian Federation
 Russia, Moscow, 105037, box 47
2Dept. of Informatics and Control Processes, National Research Nuclear University
”MEPhI” 31 Kashirskoe Shosse, Moscow 115409, Russian Federation
e-mail: ms-tsv@mail.ru, vkiryukh@gmail.com

Abstract. In 2018 the IOI will celebrate its thirtieth anniversary. Over these three decades, not
only the world secondary school Olympiads in informatics community have been formed, which
covers more than 80 countries from all continents, but a formation of an united methodological
space of the school Informatics started also. This space allows many countries today to develop
school computer science education, using the experience of other countries, materials from the IOI
conference journal, sites of computer science contests, and other Internet resources. This article
describes a model for organizing an international training event for juniors – International School
in Informatics “Junior” – ISIJ.

Keywords: young talented children, informatics curriculum, model of IOI training.

1. Introduction

At the same time, the preparation of students in the different IOI countries is still very
different. In order to attract more young people all over the world to participate in pro-
gramming contest, and especially in IOI, it is necessary to solve two important tasks:
to start training as soon as possible and to allow countries (children together with their
coaches) to exchange experience (Kiryukhin, V. Tsvetkova, M., 2014).

2. Development of the International Olympiad Environment
for Olympic Training of Juniors

IOI started in 1989 in Bulgaria, Europe, with the support of UNESCO. IOI has already
been held all over the world. It has been repeatedly held in Europe and Asia. IOI 2016

M.S. Tsvetkova, V.M. Kiryukhin188

was held in Russia placed in the two continents. IOI was held in the countries of North
and South America, in Africa, and Australia. There is now no country that does not know
about IOI, as the most important Olympiad in Informatics for secondary school students
from all over the world.

The complexity of IOI tasks increases continuously and this requires strengthen-
ing of the coaches’ work and responsibility. In order to have smoothed entering of the
youngest programmers in the topics of IOI Curriculum the Olympic training should
start from an early age. Only in such way children with interests in programming
will have time to gain the necessary experience and to become competitive in IOI.
Unfortunately, not all children in the countries of the world, that are 12–15 years old,
have a school Informatics courses at this age. Something more, not all teachers of
these children can become coaches, because there are different curriculums of school
Informatics in different countries. One possible way for having an efficient training in
Informatics for juniors is to create an open teaching environment of Olympic school
Informatics for junior age and to integrate as many as possible children of 12–15
years in it.

Due to the emphasis on the early training of juniors in Olympic Informatics, the
process of searching for ways of methodological integration of IOI member countries
for work with talented children aged 12–15 has begun. Since 2015, IOI team lead-
ers have been discussing the formation of an international Olympiad environment for
training juniors. At IOI 2016 the authors presented the Russian experience in prepara-
tion of juniors for olympiads in informatics and experience of Kazan Federal Univer-
sity (KFU) in creating in Russia of regional IT educational infrastructure as “digital
bridge” from school to university (Tsvetkova M., 2016). After that in 2017 Bulgaria
started a new programming contest – the European Junior Olympiad in Informatics
(eJOI, 2017) – a possibility for more young programmers to take part in a serious
international competition.

In support of these initiatives, Russia has offered to organize an international school
in Informatics for juniors that are preparing for participation in international compe-
titions in Informatics – International School in Informatics “Junior” (shortly ISIJ or
the School). The mission of ISIJ is to create a space of Olympic startup in Informat-
ics for all juniors of the world, to unite school teachers-innovators in Informatics in
international coaching community, to stimulate exchanging of experience and creation
of tasks for talented juniors. It is important that in ISIJ the coaches of the juniors
will participate too. They will cooperate in the International Coaching Council, will
exchange experience, will create tasks, and will receive methodical training for work
with young talents. In such way ISIJ will be a training place for young IT specialists
and coaches too.

The School is organized at the site of KFU, which hosted IOI 2016. The first ses-
sion of the School was held in the summer holidays of 2018 for children from Eu-
rope and Asia, the second one is planned for the winter holidays for other interested
countries.

We hope that ISIJ will become an attractive event for Olympic training in Informat-
ics of juniors from different countries of the world and their coaches.

International School in Informatics “Junior” for IOI Training 189

3. Organization Structure ISIJ

ISIJ is organized by KFU together with scientists from the national Olympic teams in
Informatics of Russia and Bulgaria. The governing body of the School in Russia is the
Organizing Committee, which is formed by the KFU administration and scientific con-
sultants from the Russian Olympic team in Informatics.

The program and the financial support of the School are supervised by the Executive
Directorate of the School in coordination with the Organizing Committee. The School
Directorate is headed by an Executive Director who organizes the registration of par-
ticipating countries, registration of teams, implementation of the School’s program, and
manages the School Fund. The Executive Director attracts a team of specialists in the
Program Secretariat of the School. He organizes information mailing, collection of par-
ticipation fees, and visa support for foreign teams.

Information about the time schedule of the School and the participation fees is speci-
fied in the letter of the Organizing Committee to the coaches of the teams of the regis-
tered participating counties. The participation fees includes only the accommodation and
the meals for participants (breakfast, lunch, dinner and buffets), as well as some cultural
program.

In the residence of participants there is a medical staff and supporting teachers
from IT lyceum (KFU, 2018). A security measures for participants are provided. The
residence of the School is in a children’s educational institution and has comfortable
conditions for living and conducting classes. All rooms are equipped with computers
and Internet.

Organizing
Committee

International
Coaching Council

ISIJ program

Scientific and
Technical

Committee

Curriculum
Collection tasks
YandexContest

"Junior"

ISIJ Cup

School Directorate
KFU

ISIJ website

IT-lyceum
 KFU (Kazan)

Lab Аccommodations

Fig. 1. Organization structure ISIJ.

M.S. Tsvetkova, V.M. Kiryukhin190

4. Participants of ISIJ

The School is held as an international educational start-up for the national teams of
participating in IOI countries: Summer school – for the countries of Europe and Asia,
Winter school – for other interested countries.

The team of a country consists of 2 to 6 participants and one coach – the Head of the
team. Age of participants: at least 12 years of age and not older than 15 years at the end of
the previous year. Children from Russia that will participate in the School will be contes-
tants from the national Olympiad, and will be invited by the administration of the School.

5. Scientific and Technical Committee – STC ISIJ

Scientific and technical support of the School’s activities is provided by the Scientific
and Technical Committee (STC). School’s Organizing Committee is composed in coor-
dination with the School STC.

Technical support of the School is carried out by the sponsor of the School – the
Russian IT company Yandex – on the basis of a cloud system for competitions organiz-
ing and grading (Yandex Contest “Junior”), specially made for the School and opened
for filling with tasks by the Coaching Council and STC of the School.

The composition of the Russian group of member of STC is approved by the Or-
ganizing Committee of the School. Applications for membership of coaches from the
different countries in the international part of the STC are made by the countries. STC
of the School is headed by two leaders – one from Russian members and the second
one – from the international STC members. Together, both leaders organize the work of
the Coaching Council to fill the collection of tasks.

Preparation of the training tournaments and the ISIJ Cup tournament is carried out
by the STC of the School using tasks from the national Olympiads of Bulgaria, Rus-
sia and other participating countries. STC start preparation of tournaments tasks in the
Yandex Contest system (remotely) one year before the start of the next School. The
participating countries can form in the Contest system their own sections of tasks use-
ful for their teams during the School and for remote tournaments in the period between
two School’s sessions.

Tasks from the tournaments of the current year, prepared by the Coaching Council
of the School are available for participants registered for the next School as remote
homework.

6. The International Couching Council

Coaches of the participating countries compose the International Coaching Council
(ICC) of the School: one coach from each participating country.

The representative of each country in ICC provides every year one ready for use task
for the collection of tasks of the School. The task archive has to contain: statement of

International School in Informatics “Junior” for IOI Training 191

the task – in Russian or English, program-solution and checker (if necessary) written
in C++ programming language, and test cases. Description of the alternative possible
solutions is welcome.

The ICC chooses some of its members to represent ICC in the international group
of STC by public vote. The term of representation in the international group of STC is
limited to 5 years.

The Coaching Council of the School participates actively in the work with juniors –
giving consultations after tours, organizing workshops, providing translation of the tasks
to the national languages, holding thematic meetings for selection and refinement of
tasks for the task collection of the School.

7. ISIJ Program

The School is held for 11 days in the summer and for 7 days in the winter. The School’s
program includes at least five training tournament and one competitive tournament – the
ISIJ Cup. STC and the Coaching Council decide on the educational content of the tasks
on the basis of the Curriculum of EJOI (eJOI, 2017) and then select set of appropriate
tasks (according to Curriculum), on the basis of which the STC prepares tournaments.
STC and Coaching Council prepare a set of lessons to be proposed to participants and
organize pedagogical workshops and consultations for groups of coaches.

The School’s languages are Russian and English. The organizers provide participants
with technical devices for simultaneous translation for small groups with a common
language. The texts of the tasks are provided to all participants in Russian or English in
electronic form with the possibility of printing. The coaches could provide the partici-
pants with a translation of the tasks into the native language of the students.

The program includes two excursions. The program provides sports, leisure activ-
ities, chess classes, meeting with people from IT companies, scientific and practical
workshops.

The Organizing Committee approves the terms of the School taking into account the
proposals of the ICC, conducts meetings with the participants, and manages the provi-
sion of a base for the School in the campus of KFU.

8. ISIJ – Cup

On the last day of the school a ISIJ-Cup is held. The Cup is held in one round of 3 tasks
for 4 hours.

Following the results of the Cup three places for rewarding are defined: gold, silver
and bronze medalists of the Cup. In case of equal number of points, all participants with
these points are awarded the medal.

From the Russian group of participants no more than 6 participants (chosen by their
performance rating from tournaments of the School) are allowed to compete in the Cup

M.S. Tsvetkova, V.M. Kiryukhin192

are, i.e. the Russian team is has no more members than the teams of the other participat-
ing in the School countries.

The Coaching Council determines the scores necessary for awarded the Diplomas of
the Cup finalists. The number of the Diplomas is no more than 1/2 of the number of the
Cup participants.

9. ISIJ Website

On the School’s website (ISIJ, 2018) all teaching materials of the School are published
and they are accessible for the registered participants of the School only.

The site of the School contains information about the composition and contacts of
the Organizing Committee, the STC, the Directorate, and the Coaching Council, a list of
participating countries, the program of the School, the schedule of the Coaching Coun-
cil, School news, etc.

The archive of tasks of the School is placed in a special section on the Website of the
school in order to be used by registered participants and couches through the Yandex-
Contest system for the remote access throughout the year. Registration of all participants
on the school website is mandatory.

The site contains the logo of the School for the use by countries in the design of
t-shirts and other objects attributes of the School.

On the website of the School there is a history page in the form of a virtual white-
board achievements of school participants: the best participants of the year, medalists
and finalists of the school Cup, etc.

10. Certificates of Participation

All participants of the International School receive a certificate of participation.
All school coaches receive a certificate of teaching internship in the amount of 72

hours under the program “Methods of development of early talent in informatics”.
(Tsvetkova M., 2010).

Ten best participants of ISIJ on the sum of all training rounds receive the diploma
with honors and information on them is placed on a virtual distinction Board on the
website of school.

11. Conclusion

The organizers of the ISIJ hope to form an international school for juniors, including all
countries participating in IOI as well as to provide juniors from these countries remote
participation in the training tournaments of the School.

International School in Informatics “Junior” for IOI Training 193

The total experience of the IOI coaches in the implementation of the ISIJ (as the start
of the Olympic “lift”) will form the best methods of developing the talent of the juniors
and methods of teaching informatics in schools in the world. The ISIJ will be an open
Olympiad educational space for juniors in informatics.

References

eJOI (2017). European Junior Olympiad in Informatics. http://ejoi.org/
ISIJ (2018). International school in informatics “Junior”.

http://www.isij.universityevents.ru/isij2018

KFU (2018). IT-lyceum of Kazan Federal University. https://kpfu.ru/it-liceum/infrastruktura/
Kiryukhin, V.M., Tsvetkova, M.S. (2010). Strategy for ICT skills teachers and informatics olympiad coaches

development. Olympiads in Informatics, 4, 30–51.
Kiryukhin, V.M., Tsvetkova, M.S. (2014). The approach of early olympiad preparation “Olympic Lift”. Olym-

piads in Informatics, 8, 111–122.
Tsvetkova, M.S. (2016). Foreword. Olympiads in Informatics, 10 (special issue), 1–2.

M.S. Tsvetkova is professor of the Russian Academy of Natural Sci-
ences, PhD in pedagogical science, prize-winner of the competition
“Teacher of the Year of Moscow” (1998). Since 2002 she is a mem-
ber of the Central methodical commission of the Russian Olympiad in
informatics, the pedagogic coach of the Russian team for IOI. She is
author of many papers and books in Russia on the digitalization of edu-
cation and methods of development of talented students. Since 2013
she is the Leader of the Russian team for IOI. Since 2017 she is Expert
of the Committee on Education and Science of the Parliament `(State
Duma) of the Russian Federation.

V.M. Kiryukhin is professor of the Russian Academy of Natural Sci-
ences and assistant professor of National Research Nuclear Univer-
sity ”MEPhI”. He is the Chairman of the federal methodical commis-
sion in Informatics, which is responsible in Russia for carrying out
the national Olympiad in Informatics. He is author of many papers
and books on development of the Olympiad in Informatics in Russia
and preparations for the Olympiads in Informatics. He is the exclusive
representative who took part at all IOI from 1989 as a member of the
IC of IOI (1989–1992, 1999–2002, 2013–2016) and as a Leader of
the Russian team (1989, 1993–1998, 2003–2012). He received the IOI
Distinguished Service Award at 2003 and 2008 as one of the founders
of the IOI and for his long term distinguished service to the IOI from
1989 to 2008, as well as the medal “20 Years International Olympiad
in Informatics” at 2009.

About Journal and Instructions to Authors

OLYMPIADS IN INFORMATICS is a peer-reviewed scholarly journal that provides
an international forum for presenting research and developments in the specific scope
of teaching and learning informatics through olympiads and other competitions. The
journal is focused on the research and practice of professionals who are working in the
field of teaching informatics to talented student. OLYMPIADS IN INFORMATICS is
published annually (in the summer).

The journal consists of two sections: the main part is devoted to research papers
and only original high-quality scientific papers are accepted; the second section is for
countries reports on national olympiads or contests, book reviews, comments on tasks
solutions and other initiatives in connection with teaching informatics in schools.

The journal is closely connected to the scientific conference annually organized dur-
ing the International Olympiad in Informatics (IOI).

Abstracting/Indexing

OLYMPIADS IN INFORMATICS is abstracted/indexed by:
Cabell Publishing ●
Central and Eastern European Online Library (CEEOL) ●
EBSCO ●
Educational Research Abstracts (ERA) ●
ERIC ●
INSPEC ●
SCOPUS ● – Elsevier Bibliographic Databases

Submission of Manuscripts

All research papers submitted for publication in this journal must contain original un-
published work and must not have been submitted for publication elsewhere. Any manu-
script which does not conform to the requirements will be returned.

The journal language is English. No formal limit is placed on the length of a paper,
but the editors may recommend the shortening of a long paper.

Each paper submitted for the journal should be prepared according to the following
structure:

concise and informative title ●
full names and affiliations of all authors, including e-mail addresses ●
informative abstract of 70–150 words ●

list of relevant keywords ●
full text of the paper ●
list of references ●
biographic information about the author(s) including photography ●

All illustrations should be numbered consecutively and supplied with captions. They
must fit on a 124 × 194 mm sheet of paper, including the title.

The references cited in the text should be indicated in brackets:
for one author – (Johnson, 1999) ●
for two authors – (Johnson and Peterson, 2002) ●
for three or more authors – (Johnson ● et al., 2002)
the page number can be indicated as (Hubwieser, 2001, p. 25) ●

The list of references should be presented at the end of the paper in alphabetic order.
Papers by the same author(s) in the same year should be distinguished by the letters a, b,
etc. Only Latin characters should be used in references.

Please adhere closely to the following format in the list of references:
For books:

Hubwieser, P. (2001). Didaktik der Informatik. Springer-Verlag, Berlin.
Schwartz, J.E., Beichner, R.J. (1999). Essentials of Educational Technology. Allyn

and Bacon, Boston.
For contribution to collective works:

Batissta, M.T., Clements, D.H. (2000). Mathematics curriculum development as a
scientific endeavor. In: Kelly, A.E., Lesh, R.A. (Eds.), Handbook of Research De-
sign in Mathematics and Science Education. Lawrence Erlbaum Associates Pub.,
London, 737–760.

Plomp, T., Reinen, I.J. (1996). Computer literacy. In: Plomp, T., Ely, A.D. (Eds.), In-
ternational Encyclopedia for Educational Technology. Pergamon Press, London,
626–630.

For journal papers:
McCormick, R. (1992). Curriculum development and new information technolo-

gy. Journal of Information Technology for Teacher Education, 1(1), 23–49.
http://rice.edn.deakin.edu.au/archives/JITTE/j113.htm

Burton, B.A. (2010). Encouraging algorithmic thinking without a computer. Olympi-
ads in Informatics, 4, 3–14.

For documents on Internet:
International Olympiads in Informatics (2008).

http://www.IOInformatics.org/

Hassinen, P., Elomaa, J., Ronkko, J., Halme, J., Hodju, P. (1999). Neural Networks
Tool – Nenet (Version 1.1).
http://koti.mbnet.fi/~phodju/nenet/Nenet/General.html

Authors must submit electronic versions of manuscripts in PDF to the editors. The
manuscripts should conform all the requirements above.

If a paper is accepted for publication, the authors will be asked for a computerpro-
cessed text of the final version of the paper, supplemented with illustrations and tables,
prepared as a Microsoft Word or LaTeX document. The illustrations are to be presented
in TIF, WMF, BMP, PCX or PNG formats (the resolution of point graphics pictures is
300 dots per inch).

Contacts for communication

Valentina Dagienė
Vilnius University
Akademijos str. 4, LT-08663 Vilnius, Lithuania
Phone: +370 5 2109 732
Fax: +370 52 729 209
E-mail: valentina.dagiene@mii.vu.lt

Internet Address

All the information about the journal can be found at:

http://ioinformatics.org/oi_index.shtml

Publisher office: Vilnius University
 Akademijos str. 4, LT-08663 Vilnius, Lithuania
 September, 2018

Olympiads
in Informatics12

IOI
InternatIonal olympIad In InformatIcs

I S S N 1 8 2 2 - 7 7 3 2

Olympiads
in Informatics
Volume 12, 2018

O
lym

p
iad

s in
 In

form
atics V

olu
m

e 12, 2018

Olympiads
in Informatics
Volume 12, 2018

T. BELL
Computer Science in K-12 Education: The Big Picture

3

M. DOLINSKY, M. DOLINSKAYA
How to Start Teaching Programming at Primary School

13

M.C. FONTAINE
Tidal Flow: A Fast and Teachable Maximum Flow Algorithm

25

D. GINAT
Algorithmic Cognition and Pencil-Paper Tasks

43

M. JOVANOV, M. MIHOVA, B. KOSTADINOV, E. STANKOV
New Approach for Comparison of Countries’ Achievements in Science Olympiads

53

T. KAKESHITA
National Survey of Japanese Universities on Computing Education: Analysis of Departments
Majored in Computing Discipline

69
B. KOSTADINOV, M. JOVANOV, E. STANKOV

Platform for Analysing and Encouraging Student Activity on Contest and E-learning Systems

85
H. MANABE, S. TANI, S. KANEMUNE, Y. MANABE

Creating the Original Bebras Tasks by High School Students

99
P.S. PANKOV, A.A. KENZHALIEV

Combinatorial Property of Sets of Boxes in Multidimensional Euclidean Spaces and
Theorems in Olympiad Tasks

111
W. van der VEGT

How Hard Will this Task Be? Developments in Analyzing and Predicting Question
Difficulty in the Bebras Challenge

119

REPORTS
N. AMAROLI, G. AUDRITO, L. LAURA

Fostering Informatics Education through Teams Olympiad

133
M. ANDERLE.

PRASK – an Algorithmic Competition for Middle Schoolers in Slovakia

147
Á. ERDŐSNÉ NÉMETH, L. ZSAKÓ

Grading Systems for Algorithmic Contest

159
Y. NAKANO, K. IZUTSU. The Next Course of Study from 2022 and a History of the Subject

“Informatics” in Japanese High Schools

167
Y. NAKAYAMA , Y. NAKANO, Y. KUNO, B.T. WADA, H. KAKUDA, M. HAGIYA,

K. KAKEHI. Current Situation of Teachers of Informatics at High Schools in Japan

177
M.S. TSVETKOVA, V.M. KIRYUKHIN

International School in Informatics “Junior” for IOI Training

187

ISSN 1822-7732

