
Olympiads
in Informatics10

IOI
International Olympiad in Informatics

I S S N 1 8 2 2 - 7 7 3 2

Olympiads
in Informatics
Volume 10, 2016

O
lym

p
iad

s in
 In

form
atics V

olu
m

e 10, 2016

Olympiads
in Informatics
Volume 10, 2016

J. ALEMANY FLOS, J. VILELLA VILAHUR
eSeeCode: Creating a Computer Language from Teaching Experiences

3

R. CASTRO, N. LEHMANN, J. PÉREZ, B. SUBERCASEAUX
Wavelet Trees for Competitive Programming

19

S. COMBéFIS, G. BERESNEVIČIUS, V. DAGIENĖ. Learning Programming through Games
and Contests: Overview, Characterisation and Discussion

39

Á. ERDőSNé NéMETH, L. ZSAKÓ
The Place of the Dynamic Programming Concept in the Progression of Contestants’ Thinking

61

S. GRÜTTER, D. GRAF, B. SCHMID
Watch them Fight! Creativity Task Tournaments of the Swiss Olympiad in Informatics

73

J.I. GUNAWAN. Understanding Unsolvable Problem 87
J. HROMKOVIČ. Homo Informaticus – Why Computer Science Fundamentals are an Unavoid-

able Part of Human Culture and How to Teach Them

99
J. HROMKOVIČ, T. KOHN, D. KOMM, G. SERAFINI

Examples of Algorithmic Thinking in Programming Education

111
M. KABÁTOVÁ, I. KALAŠ, M. TOMCSÁNYIOVÁ. Programming in Slovak Primary Schools 125
E. KALINICENKO, M. OPMANIS. Collecting, Processing and Maintaining IOI Statistics 161
A. KARCZMARZ, J. ŁĄCKI, A. POLAK, J. RADOSZEWSKI, J.O. WOJTASZCZYK

Distributed Tasks: Introducing Distributed Computing to Programming Competitions

177
M.M.I. LIEM. Reshaping Indonesian Students Training for IOI 195
W. Di LUIGI, G. FARINA, L. LAURA, U. NANNI, M. TEMPERINI, L. VERSARI

oii-web: an Interactive Online Programming Contest Training System

207
W. van der VEGT.

Bridging the Gap Between Bebras and Olympiad; Experiences from the Netherlands
223

T. VERHOEFF. Problem Solving, Presenting, and Programming: A Matter of Giving and Taking 231

REPORTS
M. DOLINSKY. Gomel Training School for Olympiads in Informatics 237
V. DUMANYAN, A. ANDREASYAN.

Armenia: IOI Participation and National Olympiads in Informatics

249
A. GREMALSCHI, A. PRISACARU, S. CORLAT.

Olympiads in Informatics in Republic of Moldova

255
A. IGLIKOV, M. KUTYBAYEV, B. MATKARIMOV. IOI 2015 Report 263
A. KHUDER, D. TSEDEVSUREN. The Informatics Olympiad in Mongolia: Training Re-

sources for non-English Speaking Students
279

I. KIRYNOVICH, A. TOLSTSIKAU. Belarusian Olympiad in Informatics 285

ISSN 1822-7732

ISSN 1822-7732

INTERNATIONAL OLYMPIAD IN INFORMATICS

VILNIUS UNIVERSITY
INSTITUTE OF MATHEMATICS AND INFORMATICS

OLYMPIADS IN INFORMATICS

Volume 10 2016

Selected papers of
the International Conference joint with

the XXVIII International Olympiad in Informatics
Kazan, Rusia, 12–19 August, 2016

OLYMPIADS IN INFORMATICS

Editor-in-Chief
Valentina Dagienė
Vilnius University, Lithuania, valentina.dagiene@mii.vu.lt

Executive Editor
Richard Forster
British Informatics Olympiad, UK, forster@olympiad.org.uk

International Editorial Board
Benjamin Burton, University of Queensland, Australia, bab@maths.uq.edu.au
Michal Forišek, Comenius University, Bratislava, Slovakia, misof@ksp.sk
Gerald Futschek, Vienna University of Technology, Austria, futschek@ifs.tuwien.ac.at
Mile Jovanov, Sts. Cyril and Methodius University, Macedonia,
 mile.jovanov@finki.ukim.mk
Marcin Kubica, Warsaw University, Poland, kubica@mimuw.edu.pl
Ville Leppänen, University of Turku, Finland, villelep@cs.utu.fi
Krassimir Manev, New Bulgarian University, Bulgaria, kmanev@nbu.bg
Seiichi Tani, Nihon University, Japan, tani.seiichi@nihon-u.ac.jp
Peter Taylor, University of Canberra, Australia, pjt013@gmail.com
Troy Vasiga, University of Waterloo, Canada, tmjvasiga@cs.uwaterloo.ca
Peter Waker, International Qualification Alliance, South Africa,
 waker@interware.co.za
Willem van der Vegt, Windesheim University for Applied Sciences, The Netherlands,
 w.van.der.vegt@windesheim.nl

The journal Olympiads in Informatics is an international open access journal devoted to
publishing original research of the highest quality in all aspects of learning and teaching
informatics through olympiads and other competitions.

http://ioinformatics.org/oi_index.shtml

ISSN 1822-7732 (Print)
 2335-8955 (Online)

© International Olympiad in Informatics, 2016
 Vilnius University, 2016
 All rights reserved

Olympiads in Informatics, 2016, Vol. 10, 1–2
© 2016 IOI, Vilnius University

1

Foreword

Time flies like an arrow

A popular example from the world of Artificial Intelligence (and Computational Lin-
guistics), the phrase “Time flies like an arrow” is used to illustrate the ambiguity of lan-
guage and the difficulty in comprehending structure. As a metaphor, it expresses how
quickly time passes. Study the syntax and you can argue that it’s an instruction to record
the movement of flies (perhaps in the manner of an arrow, or only those that are similar
to arrows), a description as to the preferences of a breed of fly, etc.… Some interpreta-
tions have meaning, others less so, but underlying this is the message that something
apparently straightforward can have multiple meanings, nuances, interpretations. An
unexpected depth of meaning within a simple form.

IO

IO – Informatics Olympiads. For those of us involved with national and international
olympiads there are numerous reasons why we got involved. For some, it has been
the challenge of competing: an opportunity to flex the intellectual muscles, a delight
in problem solving or even the pleasure of pushing yourself against other similarly
minded individuals. For others, it is the academic pursuit as the olympiads provide a
mechanism for learning and teaching: a way to practice skills and infuse knowledge; a
way to demonstrate that knowledge, skill and application to the wider world. Perhaps
for others it is the sense of community: fellow students, fellow educators, competitors
and friends. All of this before we even ask the question as why we stay involved.

10

There are, so says the old joke, 10 types of people in the world – those who understand
binary and those who do not. In our modern world it is increasingly important to be
amongst those who understand. If we go back to the first days of the IOI, computer sci-
ence was still a specialist pursuit. We had had a decade of home computers, so comput-
ers were accessible to many, and computing was appearing school curricula, but unless
you took an interest your exposure could be fleeting. We now exist in a world where
people carry powerful computers in their pockets – ask yourself how many of the com-
petitors at this year’s IOI carry a phone but do not wear a watch. So many facets of daily
life aided by computer programs, a many-headed beast that demands constantly to be

2

fed. It is not just teaching individuals how to program, most people will never write or
need to write a line of code, but an understanding of what is happening inside the black
box – how things work, what is feasible, knowing what is going wrong to know how to
make things right – is an important skill.

10

This is the 10th year for the Olympiads in Informatics journal. The first year when we
have publishing two volumes, as we are delighted to publish a special volume celebrat-
ing the informatics education of our host – special thanks is given to the guest editor
Marina Tsvetkova. We have published a total of 185 papers showcasing 200 authors
from 50 countries. Technical papers and country reports. Algorithms and tasks. Re-
views and opinions. The format of the journal is very similar to those early days; a
forum for those in the community to write about specialised technical issues, an op-
portunity to share our experiences and knowledge, and to give freedom for those who
are not academics to talk about their work. Looking back with the benefit of hindsight
we might have developed the journal in a different direction but, with that same know-
ledge, we can say that we have fulfilled (in the most part) the vision and aims that we
had when first establishing the conference.

Things are not always as they seem; it certainly does not seem like 10 years already.
Time flies like an arrow indeed.

There are individuals without whose tireless work this volume of the journal – in-
deed every volume of the journal – would not exist. As always, thanks are due to all
those who have assisted with the current volume – authors, reviewers and editors. A lot
of work goes, not only to the writing of the papers, but to an extended period of review
and correction and, in several cases, translation. Peer viewing all of the papers takes a
significant amount of time and work and special thanks should be given to those oth-
erwise unsung reviewing heroes: Benjamin Burton, Sébastien Combéfis, Walter Gan-
der, Gintautas Grigas, Mathias Hiron, Ville Leppänen, Päivi Kinnunen, Jari Koivisto,
Krassimir Manev, Martinš Opmanis, Rein Prank, Jūratė Skūpienė, Peter Taylor, Ahto
Truu, Willem van der Vegt. Particular thanks are due to the organisation committee for
IOI’2016 in Russia without whose assistance we would be unable to hold the confe-
rence. Their assistance, during what is an already busy period, is gratefully received.

Editors

Olympiads in Informatics, 2016, Vol. 10, 3–18
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.01

3

eSeeCode: Creating a Computer Language
from Teaching Experiences

Joan ALEMANY FLOS1, Jacobo VILELLA VILAHUR2
1Fundació Aula: 34 Av. Mare de Déu de Lorda, 08034 Barcelona Spain
Explorium: Samalús 1 L3, 08530 La Garriga Spain
eSeeCode.com
2Aula Escola Europea: 34 Av. Mare de Déu de Lorda, 08034 Barcelona Spain
eSeeCode.com
e-mail: jalemany@eseecode.com, jvilella@eseecode.com

Abstract. It has been almost 50 years since the creation of Logo – one of the first educational
programming languages. Although most people agreed that it was important to teach computa-
tional thinking to children, only recently have school and district leaders begun to adopt curricula
to include it – mainly through Scratch. In many cases this adoption has failed to provide the right
methodologies and tools to teachers.

In this paper, we analyse some of the different languages used in classrooms today and we
propose an improved alternative that we have created – eSeeCode. We also share our experiences
using this language in classrooms and how students can learn using this tool.

Keywords: informatics curriculum, promoting informatics, programming language.

1. Overview

Reading Papert’s Mindstorms: Children, Computers, and great ideas, one can have the
feeling that we have not advanced much in the past 35 years (Papert, 1980). Many coun-
tries are trying to include Coding as a required skill to learn in schools, either as a spe-
cific subject or as part of a technology course. However, in many schools, teachers do
not have the resources, materials and/or knowledge to bring computer science and cod-
ing into the classroom. This is the case of Spain, among other countries, where computer
science has been introduced into the curriculum, but has failed to provide the details on
how to implement it properly, thus providing teachers the freedom and responsibility to
decide how to teach some basic computer science concepts (Saez-Lopez et al., 2016,
Ackovska et al., 2015, Duke et al., 2000).

In this paper, we will analyse several computer languages and materials, and we
will explain the difficulties students find when using them in class. As Edsger Dijkstra
explains, the selection of the programming language will influence how the students will

J. Alemany Flos, J. Vilella Vilahur4

understand computer science (Dijkstra, 1999). We will base our examples on some of the
most popular computer languages used in Spain today, although this experience can be
extrapolated to many other countries.

1.1. Key Terms

To begin, we will use the term “educational computer language” in a broad sense, as a
programming language used to teach coding in classrooms, ranging from professional
computer languages such as C++ to puzzle-related languages as Lightbot. Because in
many cases language and programming environment cannot be analysed separately, we
will use them indistinguishably.

We will use the term text-based coding to describe languages that permit students to
type their own code, giving them total freedom in the expressions they write. In contrast,
we will use the term visual block based programming as the type of coding where you
select your own blocks, and build the programs with a drag-and-drop interface. There is
a fundamental difference when discussing the use of these languages in the classroom,
as the former, generally speaking, cannot prevent students from making syntax errors,
while the latter prevents these type of mistakes. Fig. 1 and Fig. 2 show different ex-
amples of text-based coding and visual block based programming.

We will differentiate between two kinds of paradigms when discussing different ap-
proaches to teaching. The first will be Problem Solving, where the teacher can present
the student a short, self-contained problem that needs to be answered. In the particular
case of this paradigm, we will also use the term Puzzle Solving. Similar in concept
to problem solving, we consider puzzle solving to have more of a recreational focus,
where there is a known set of rules that include multiple variations. For example, when
solving a sudoku puzzle there is a specific set of rules, and by changing the numbers

Fig. 2. Visual coding example with EV3 to make a Lego Robot move in a square pattern.

Fig. 1. Text-based coding example with Logo to create a square.

eSeeCode: Creating a Computer Language from Teaching Experiences 5

you change the problem. The teacher acts as a problem-setter or planifier, deciding
which problems to be solved at each moment, such as when a student is asked to code
the Eratosthenes sieve.

As an alternative to problem solving we find Project-based learning. In Spain, this
strategy is gaining increased attention in the school setting. As part of project-based
learning, students take a more active and creative role by pursuing an authentic and real-
world project that addresses essential questions and works towards gaining an enduring
understanding of a relevant issue. The teacher here is more of a guide or facilitator that
helps the student when needed. In computer science this has the form of software design,
applied programming and modelling. For example, a student could work on solving the
problem of being able to identify a number as prime or not, with the project title being
“Create a game that uses prime numbers”.

1.2. Languages

To help keep the explanation focused, we have created a list of the main languages used
in schools in Spain, and have classified them by similarity of characteristics.

The final result is shown below:
Under text-based coding we will find two separate groups: the pure educational lan-

guages such as Logo or Processing, and the professional languages such as C++, Java,
Python and Javascript.

Under visual block based coding we find again two groups: educational languages
such as Scratch, Alice, Kodu, Ev3, AppInventor, and the group of puzzle languages
such as Lightbot and Beebot. Strictly speaking, Lightbot and Beebot are not complete
languages, but they are used to teach basic structures to students. It is for this reason that
we have decided to include them in our analysis.

Although each language has its own particular characteristic, we will analyse a rep-
resentative of each group. The languages we have chosen are: Logo, C++, Scratch and
Lightbot.

2. Main Characteristics

To be able to compare the different languages we have created a short introduction for
each one.

2.1. Logo

Originally created by Wally Feurzeig and Seymour Papert in 1967, there are many ver-
sions of the language used in schools. Its main objective was to teach programming to
students from ages five to thirteen (Papert, 1980). Due to the fact that it has been around

J. Alemany Flos, J. Vilella Vilahur6

for so long, there has been more than 300 versions of the language, with a substantial
amount of literature related to it. (Boytchev, 2013).

Main characteristics:
Educational (ages 5–13).●●
The majority of versions use text-code. ●●
The first activities proposed were problem-solving oriented, although there was ●●
some space for creativity. This will vary with versions.
Uses a drawing area where you can move a pointer called a “Turtle”.●●
Main academic fields are basic algorithmics and 2D–3D geometry depending on ●●
the version.
In general there were no debuggers, but a step-by-step execution was possible ●●
in many versions, which helped locate errors. Also syntax errors are difficult to
correct.

2.2. C++

Designed by Bjarne Stroustrup in 1983, C++ is a professional computer language utilized
heavily in many academic and professional circles. It is a compiled language, allowing
the user to be able to select a programming environment. Its standard library makes it
easier to use, as compared to its predecessor C (Stroustrup, 2007). It is important to note
that in this category that there are very different approaches depending on the paradigms
used (Duke et al., 2000), but we will not take them into consideration for the current
analysis and will common ground.

Main characteristics:
Professional (ages 12+)●●
C++ uses formal code.●●
The language accepts both problem-solving activities and project-oriented ●●
learning.
No drawingarea. General interface uses a console to write and read (input/out-●●
put). This can be extended to use of files.
Main academic fields are advanced algorithms, data structures, and numerical ●●
problems. Uses of classes helps teach system design.
Depending on the Interface there is a good debugger, but syntax errors are hard ●●
to read.

2.3. Scratch

Scratch was created in 2005 by Lifelong Kindergarten research group at Massachusetts
Institute of Technology Media Lab led by Mitchel Resnick. Although you can trace some
of its origins to Logo, its different approach to teaching computer science places it in a
different category (Resnick et al., 2009).

eSeeCode: Creating a Computer Language from Teaching Experiences 7

Main characteristics:
Educational (ages 8–16).●●
It uses visual block based programming.●●
The language is more focused on project-oriented programming.●●
There is a “drawing area” used to place objects and move them around. ●●
Main academic fields cover basic algorithm, software design.●●
Due to the visual programming interface with blocks, it is impossible to get syntax ●●
errors. There is no debugger.

2.4. Lightbot

There is an educational movement promoted by code.org to reach children in different
regions of the world and give them tutorials to learn how to code. This movement started
as the “Hour of code” and has had a big impact all around the world. Almost 200,000
events were carried out in more than 140 countries. (Code.org, 2013–2016)

Many schools around the world use this material as an introductory material for
Computer Science. Among the different tutorials that you can find, we selected one that
had a large acceptance rate in the teacher community in Spain – Lightbot.

Lightbot is a puzzle-based game where you need to light some squares on a grid. It
was created in 2008 by Danny Yaroslavski, but it was with the hour of code that it be-
came popular. (Gouws et al., 2014)

Main characteristics:
Educational (ages 4–8 and 9+).●●
It uses visual block based programming.●●
The language is focused only on puzzle solving.●●
It has nice animations of a robot moving around.●●
Main academic fields cover basic algorithms (no variables).●●
Impossible to get syntax errors, the execution can be considered ●● step-by-step.

3. Developing a Curriculum

It is clear that these languages are difficult to compare to one another because of their
fundamental differences. To be able to do so we will analyse its uses in the classroom
and their main drawbacks if used alone. Later we will study the combination of one or
more language.

When considering the development of a curriculum we have to take into account
many factors, but mainly the maturity of the students (their age) and the amount of time
they will spend engaging with that curriculum. In our case we will consider students
from primary – secondary schools, and a relatively long length of time of engagement
(3–4 years). Although some consider this length insufficient (Winslow, 1996), it is a
valid starting point to achieve competence in programming. Some main objectives can

J. Alemany Flos, J. Vilella Vilahur8

be found in some studies (Duncan and Bell, 2015) and in some publications like the
Computing Progression Pathways (Dorling, 2014).

3.1. Teaching with Only One Language

Using the code.org tutorials in the classroom may seem like a good idea because of the
students’ high level of initial engagement; however, over time this strategy can backfire
if it is assigned for too long as the teacher has limited control over the content (s/he can-
not put his own problems), and the tutorials are short and very specific.

One of the program’s strong points is that the students get positive feedback and do
not feel frustrated when they fail. This is probably due to the fact that they view Lightbot
and other tutorials in code.org as a game, instead of a class problem.

If we look at the drawbacks from Lightbot we can see that the number of commands
is very limited and do not include variables. For younger children this is good because
the less options you give them the more focused and easy it will be to arrive at solutions.
On the other hand it is not good if the students are mature enough to learn and understand
it quickly. The use of loops is another drawback. To create a loop one must make a proce-
dure that calls upon itself (as in recursion). This makes an infinite type of loop. Although
the students can find it intuitive, they have a difficult time understanding conditionals
and being able to predict this kind of behaviour. Fig. 3 shows the use of loops and func-
tions. We have to keep in mind that although some teachers might use it as a tool to teach
programming, it does not cover some basic algorithmic concepts that are important, and
its programs cannot be generalised. (Lightbot 2016, Gouws et al., 2014)

Currently in Spain the most popular educational programming language is Scratch,
where it has become quite popular, evidenced by the fact that Barcelona hosted the Con-
necting Worlds Scratch Conference in 2013. With Scratch, students are engaged and
motivated (Saez-Lopez, 2016), but after many years of use their interest wanes. This is
a big drawback because it generates apathy towards programming and, in some cases,
a dislike for programming altogether. There are also some technical drawbacks. For
example, the lack of text coding makes it difficult to read and write long conditionals
and programs. There are some projects to overcome this difficulty (Harvey and Mönig

Fig. 3. Lightbot usage of recursive procedures instead of loops.

eSeeCode: Creating a Computer Language from Teaching Experiences 9

2010), but it is not included in the main tool. In addition, the high level language makes
the student miss the opportunity to understand what is behind some of the instructions.
Finally, as it can be seen in Fig. 4, Scratch allows some “parallel programming”, which
is actually not accurate as it is executed sequentially and depends on the order the pro-
cedures were created. This is a problem because the student cannot guess the results of a
given program, which is one of the main objectives when teaching CS. (Dorling, 2014)

For a long time the most popular educational programming language in Spain was Logo.
It was used in the 1980’s through early 1990’s, but its use faded away in the late 1990’s. We
can see this, for example, because it disappeared from the teacher majors in universities.
There was not an immediate substitution by another language, but the government stopped
promoting it as it was not news. This is reflected, for instance, in the use of it when training
teachers at that time. (Simon, 1996) At the onset, students were motivated by this new ap-
proach to teaching and learning (Rubinstein, 1974), but today the look of a majority of the
Logo platforms appear outdated and need a visual update. There are two major drawbacks
to Logo. Its theoretical use was for students aged 5–13, with newer versions this could be
extended until age 15, but text-based coding may bring syntax errors, and students need
some maturity to be able to correct them. If not well attended students would get frustrated
with programs that could not run. At the same time, similarly to Scratch, it has a limited
life span in the student studies due to the apparent lack of practical utility.

The last group of languages to analyse is the professional ones. This are the most
common choice among high school students. The students see the real value of cod-
ing and can explore other areas such as physics and mathematics, but because it is not
prepared for the classroom the learning curve is very steep. Winslow describes the five
steps from novice to expert (Winslow, 1996), in small-to-medium classrooms, the steep
learning curve produces a clear and early separation between those who understand the
content (and move through Winslow learning steps) and those who do not and remain as
Novices. Another drawback is that due to the lack of visual assistance (in general) and

Fig. 4. Scratch multiple parallel procedures.

J. Alemany Flos, J. Vilella Vilahur10

less attractive interface it is more difficult to motivate the students to use it. The syntax
of some functions can also be a problem for some students. For instance, the syntax of
the for loop is more complicated than in other languages, which makes basic algorithms
sometimes hard to teach (Finkel et al., 1994, Robins and Rountree, 2003). Depending
on the programming environment used, the syntax errors are very difficult to read to the
untrained eye, as can be seen in Fig. 5, where only a single character missing produces
20 lines of errors when compiling.

One big advantage is the amount of resources that can be found on the internet, in
particular online judges like Codeforces, Timus, Topcoder, etc. With this sort of informa-
tion it is really easy to prepare lists of problems for the students to engage.

It is worth pointing out that, in general, all of these languages and platforms are
student focused. There are few tools for the teachers, and this makes using only one
language more difficult. There are some positive exceptions, like the case of Jutge.org.
(Jutge 2008–2016, Giménez et al., 2012) This online automated judge has been prepared
as a tool for the classroom and not just for self-learning. Teachers can set up classes,
have their own sets of problems and can view students’ progress. This kind of platform
contributes to the gamification of learning computer science, by giving achievements,
keeping track of the number of problems solved, etc. When students perceive it as a
game, they become more motivated and less frustrated.

4. Our Proposal: eSeeCode

After the analysis of the pros and cons of the different languages we decided that we
should try to create a language that would eliminate almost all the weaknesses.

The result of our work is eSeeCode both a language and a programming environment.
Main characteristics:

Both visual code and formal code. You can transition from one to another.●●

Fig. 5. Syntax error in C++. The programming environment is CodeBlocks.

eSeeCode: Creating a Computer Language from Teaching Experiences 11

Both educational and professional language.●●
It is problem solving oriented.●●
Main academic areas cover basic and advanced algorithms, 2D geometry (turtle ●●
graphics) and numerical problems.
Has a debugger, and includes simple syntax errors handling.●●

4.1. Description of eSeeCode

eSeeCode’s environment offers four different programming levels: from a pure graphi-
cal click-and-run interface to a pure text syntax highlighting editor, with two middle in-
terfaces. We call this levels views, because we want to show the students that code is just
a representation that can have different forms. This can be seen in Fig. 6. This allows for
a smooth progress in programming learning while keeping a common general interface,
instruction set and platform. Time saved in this manner can be spent reinforcing other
important objectives or learning a complementary second language.

The Touch view is our approach to the Puzzle Solving problems and is designed to
work with students of ages 5–8. The set of instructions is represented by a set of icons
(Fig. 7). The icons at this level have no text to maximize ease of use. These instructions

Fig. 6. Different views of the same code and its result.

Fig. 7. Instruction set of the Touch view.

J. Alemany Flos, J. Vilella Vilahur12

cover the basic movement of the guide, size of the drawing, colours and general position-
ing. Each time the student clicks one instruction the environment executes it directly.

The second view created is the Drag view. This view still uses icons as instructions
but the student can move them freely once placed in the coding area. These instructions
accept different arguments and the icons change to match the values of the parameters.
Some examples of this behaviour can be seen in Fig. 8. Notice that the icons also include
a name to help the student “read” the code. To execute a program the student needs to
click the run button.

The next view is the Build view, which is similar to the Drag view as the blocks can
be displaced around the code area freely. However these blocks don’t include icons, just
the name of the instructions and the arguments. The student can read the code fully, but
to create it has to choose among a specific set available. This set is larger than the one
from the drag view and contains a greater variety of instructions. This list of instructions
allows the student to be able to explore eSeeCode by him/herselves, and provides the
student with the familiarization of the names without having to memorize the commands
and the arguments.

The last view is the Code view. In this level students can type their own code.
We created eSeeCode based on JavaScript (although this base is well hidden), so af-
ter mastering in the programming in Code view the students can program freely us-
ing this well-known programming language. The platform accepts and executes any
JavaScript program allowing for a deeper learning. A side advantage to the use of
JavaScript is the fact that it is not required to be installed to function, as it will work
with any browser.

In the Code view syntax errors are possible, but we try to give short errors that the
student can correct. This can be seen in Fig. 9. The platform also has a debugger to be
used in case the student’s program does not execute as expected. When running a pro-
gram, the editor will restyle the code to encourage students to use clean code.

In the context of the “low-floor, high-ceiling” proposed by Papert (Papert, 1980) and
used by Resnick (Resnick et al., 2009), eSeeCode has a lower-floor (easy-to-use) than
Logo and Scratch, and a much higher ceiling (being able to hold complex programs)
comparable to that of C++. The Touch view could be considered our low-floor while the
Code view our high-ceiling.

Although you can try to create long programs, we have designed eSeeCode to be a
problem-solving tool and have provided it with an optional easy-to-use Input/Output
interface.

Fig. 8. The icons of the Drag view adapt depending on their parameters.

eSeeCode: Creating a Computer Language from Teaching Experiences 13

4.2. Teacher Point of View

Programming languages, platforms, and materials are only oriented towards the stu-
dent’s use, obviating that one of the most influential parts on the learning of any process
is the teacher. Providing teacher tools, and configurable platforms is key to an excellent
use in class, given the uniqueness of each environment.

One of the main purposes of creating eSeeCode was also to be able to give the
teacher a set of tools so s/he can create high quality exercises and materials for their
courses. The interface is highly and easily configurable and it can be embedded in any
webpage, allowing the teachers to configure it for each problem if needed. The tools
already implemented are:

A tutorial creation assistant, which creates dynamic tutorials●●
A problem setter assistant, with which the teacher can restrict the views that can ●●
be used, decide which instructions are allowed (and how many times each can be
used), preload code (hidden or not to the student) so that the student only needs to
complete part of it, etc.
Create step-by-step animations of the execution of programs.●●

Some of this tools are complemented by a Moodle module that allows the teacher to
collect students problems and to set up specific exercises.

4.3. Experiences with Students

Many experiences have been carried out with students, both in an academic context and
as an extracurricular activity.

eSeeCode has been used as a language to transition from Scratch to C++, and avoid
the difficulties that appear from going from a visual block based language to a textual
based language (Dorling et al., 2015). This experience was done with 12 years old stu-
dents that had previous knowledge of Computer Science since they had taken some

Fig. 9. Syntax error in eSeeCode.

J. Alemany Flos, J. Vilella Vilahur14

Scratch courses. This allowed the teachers to teach directly using Code view, but they
allowed the students to go back to the Build view to avoid the empty page difficulty
(Resnick et al., 2009), where the student doesn’t know how to start because he is used to
having a set of blocks. With the introduction of eSeeCode the teachers had to review the
basic concepts of variables, conditionals, loops, etc. The methodology that was used was
based on Polya problem-solving principles, where the student should take the following
steps (Polya, 1945):

Understanding the problem 1.	 i.e. Can you explain the problem with different words?
Can you create your own “paper and pencil” examples?
Devising a plan. 2.	 In our case this is clearly the Algorithm. Some things to consider
when devising a plan are to try to find previous, similar problems.
Carrying out the plan. 3.	 This is the implementation of the algorithm. We propose
the “baby steps” methodology, where you write the code step-by-step and execute
along to avoid syntax errors, while making sure everything goes accordingly to the
plan.
Looking Back. 4.	 Although no judge system has been created, the student should
analyse if s/he obtained the desired result, going back to previous steps if s/he did
not.

Although this experience is different than the experiment done by Lewis in a study to
compare Scratch vs Logo (Lewis, 2010), a similar survey was created and it was taken
by 59 of the students in the course. The survey consisted of 16 questions each being a
4-level Likert scale.

As it can be seen in Fig. 10 it seems that Scratch is easier to program, but in fact
the total number of students that have a positive feedback (Strongly agree and Agree)

Fig. 10. Students responses to a 4-level likert test about the use of Scratch and eSeeCode in class.

eSeeCode: Creating a Computer Language from Teaching Experiences 15

is larger in the case of eSeeCode. One of the difficulties to analyse this question is the
fact that the problems that the students had to solve in the two languages are different.
What is interesting is that students would recommend in general to use eSeeCode to
teach programming, this might have similar reasons to what Lewis describes (Lewis,
2010), as the students feel more self-secure when typing their own code, and might see
Scratch as something different than programming. This would be interesting to analyze
in a future study.

When asking questions about the difficulties when learning the language, we en-
counter different opinions depending on the topic. In Fig. 11 we can see this results.
Similar to what happened when asking about writing a program the opinion of the
students is less strong with eSeeCode than with Scratch, although the numbers of posi-
tive vs negative are similar. We have to take into account that the view students were
using more is the Code view, which makes it difficult to give a precise analysis of the
situation.

Fig. 11. Student responses to a 4-level likert test about the difficulties when learning with
Scratch and eSeeCode.

J. Alemany Flos, J. Vilella Vilahur16

What might be interesting is that the students opinion about the difficulties of the
concept of repeat is statistically independent of the language (a Fisher exact test gives
us a p-value of 0.3401 which tells us that the groups are not significantly different) This
can be because the repeat concept is very easy to understand by the students.

Another experience we want to share is our own version of hour of code (Fig. 12)
where students had to make programs to draw some typical optical illusions. Placing
this activity in the context of students having an enjoyable time seemed to motivate
the students to complete the tutorials and to try to draw their own images. Some of the
activities were designed to be more difficult than the level of knowledge the students
possessed and were accompanied with a solution code. The students would read the
code and try to figure out the expected result. Although some students were not able to
complete the activity, most of them enjoyed it. Another experiment we conducted was
to give students the partial code for the program. In this activity we eliminated all the
numbers from the code. The student was required to fill the gaps, until the right image
would appear. Very few students would try numbers at random, the majority would
first try to understand what the code did, and place the right numbers directly.

Three different sets of students tried the platform with this activity: Students that had
never programmed before, students that had been introduced to Scratch and students that
already knew Logo and C++. The difficulties found were similar in each group, conclud-
ing that it adapts to the student’s needs.

Fig. 12. Tutorials from our Hour of Code.

eSeeCode: Creating a Computer Language from Teaching Experiences 17

4.4. Further Work

We have released eSeeCode as an open source project, and as such it is a continuing
development. We believe that further work in the platform should include:

A new and adaptable design to make it feel more modern, and more user-friendly.●●
Not allowing syntax errors in the Blocks and Build views.●●
Teacher support material to be able to be used in class by non-programmer tea-●●
chers.
A formal study of the impact in the long run process and how it can be included ●●
in the regular curriculum. We believe this study should contain reports on Scratch,
C++ and eSeeCode.

5. Conclusions

The time has come for teachers in Spain to take on the responsibility of curriculum
development. This responsibility will come first by understanding the different options
there exist, understanding the previous objectives, the ones we want to have in their
place, and taking on a global vision. Right now one language cannot satisfy all the learn-
ing process. It is also valuable for the students to know more than one language, which
would provide the option of overcoming the inherent weaknesses of each one.

eSeeCode tries to provide a new platform to overcome the main weaknesses found,
but we believe it does not need to be a replacement but rather a complement to the learn-
ing process. The trials so far show that it is a viable language to take into the classroom,
and that the students show a good overall satisfaction with it.

6. References

Ackovska, N., Erdösné NéMeth, Á., Stankov, E., Jovanov, M. (2015). Report of the IOI Workshop “Creating an
International Informatics Curriculum for Primary and High School Education”. Olympiads in Informatics,
9, 205–212.

Boytchev, P. (2014). Logo Tree Project. http://www.elica.net/download/papers/LogoTreeProject.pdf
Code.org (2013). http://www.code.org
Dijkstra, E. (1999). Computing Science: achievements and challenges. ACM SIGAPP Applied Computing, 7(2),

2–9.
Dorling, M. (2014). Computer progression pathways. Computing at Schools.

http://www.computingatschool.org.uk

Dorling, M., White, D. (2015). Scratch: a way to Logo and Python. In: SIGCSE ‘15: Proceedings of the 46th
ACM Technical Symposium on Computer Science Education.

Duncan, C., Bell, T. (2015). A pilot computer science and programming course for primary schools. In: Proceed-
ing WiPSCE ‘15 Proceedings of the Workshop in Primary and Secondary Computing Education. 39–48.

Duke, R., Salzman, E., Burmeister, J., Poon, J., Murray, L. (2000). Teaching programming to beginners –
choosing the language is just the first step. In: ACSE ‘00: Proceedings of the Australasian conference on
Computing education.

eSeeCode (2015–2016). http://www.eseecode.com
Finkel, D., Hooker C., Salvidio, S., Sullivan, M., Thomas C. (1994). Teaching C++ to high school students. In:

J. Alemany Flos, J. Vilella Vilahur18

SIGCSE ‘94: Proceedings of the twenty-fifth SIGCSE symposium on Computer science education.
FMSLogo (2006–2016). http://fmslogo.sourceforge.net/
Giménez, O., Petit, J., Roura, S. (2012). Jutge.org: an educational programming judge. In: Proc. of the 43rd

ACM Technical Symposium on Computer Science Education (SIGCSE-2012). 445–450.
Gouws, L.A., Bradshaw, K., Wentworth, P. (2013). Computational thinking in educational activities: an evalua-

tion of the educational game Light-bot. In: ITiCSE ‘13: Proceedings of the 18th ACM conference on Innova-
tion and technology in computer science education.

Harvey, B., Mönig, J., (2010) Bringing “No Ceiling” to Scratch: can one language serve kids and computer
scientists? Constructionism 2010, Paris. http://www.eecs.berkeley.edu/~bh/BYOB.pdf

Jutge.org (2012). http://www.jutge.org
Lewis C. (2010). How programming environment shapes perception, learning and goals: logo vs. Scratch. In:

SIGCSE ‘10: Proceedings of the 41st ACM technical symposium on Computer science education. 346–350.
Light-Bot (2016). http://www.lightbot.com
Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. Basic Books. Inc. USA.
Polya, G. (1945). How to solve it. Princeton University Press, USA.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, A., Eastmond, E., Brennan, K., Millner, A., Rosen-

baum, E., Silver, J., Silverman, B., Kafai, Y. (2009). Scratch: programming for all. Communications of the
ACM, 52(11).

Robins, A., Rountree, N. (2003). Learning and teaching programming: a review and discussion. Journal Com-
puter Science Educations, 13(2), 137–172.

Rubinstein, R. (1974). Using Logo in teaching. ACM SIGCUE Outlook, 9(SI).
Saez-Lopez, J.M., Roman-Gonzalez, M., Vazquez-Cano, E., (2016). Visual programming languages integrated

across the curriculum in elementary school: a two year case study using “Scratch” in five schools. Elsevier
computers & Education, 97, 129–141.

Scratch (2013–2016). https://scratch.mit.edu
Simon, J. (1996). L’evolució de l’ensenyament del llenguatge logo a l’escola de mestres Blanquerna 10 anys.

VI Seminari Logo Terrassa, Spain.
Stroustrup, B. (2007). Evolving a language in and for the real world: C++ 1991–2006. In: HOPL III: Proceed-

ings of the Third ACM SIGPLAN Conference on History of Programming Languages. ACM.
Winslow, L. (1996). Programming pedagogy – a psychological overview. ACM SIGCSE Bulletin, 28(3).

J. Alemany Flos holds a degree in mathematics and is currently com-
pleting a Master’s Degree in Advanced Mathematics and Mathemati-
cal Engineering. He is a former high school teacher, who now designs
and helps develop programming curricula in schools as a consultant.
He has been involved with the National Informatics Olympiad for the
last eight years, also attending the International Olympiad in Informat-
ics as a team leader and deputy leader since 2010.

J. Vilella Vilahur holds a degree in Computer Science and has been
teaching programming and robotics for the last ten years at Aula Escola
Europea where he also provides the IT support. He has been involved
in several open source projects and has been the lead programmer in
eSeeCode.

Olympiads in Informatics, 2016, Vol. 10, 19–37
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.02

19

Wavelet Trees for Competitive Programming

Robinson CASTRO1, Nico LEHMANN1, Jorge PÉREZ1,2,
Bernardo SUBERCASEAUX1

1Department of Computer Science, Universidad de Chile
Beauchef 851, Santiago, Chile
2Chilean Center for Semantic Web Research
email: {rocastro, nlehmann, jperez, bsuberca}@dcc.uchile.cl

Abstract. The wavelet tree is a data structure to succinctly represent sequences of elements over
a fixed but potentially large alphabet. It is a very versatile data structure which exhibits interest-
ing properties even when its compression capabilities are not considered, efficiently supporting
several queries. Although the wavelet tree was proposed more than a decade ago, it has not yet
been widely used by the competitive programming community. This paper tries to fill the gap
by showing how this data structure can be used in classical competitive programming problems,
discussing some implementation details, and presenting a performance analysis focused in a
competitive programming setting.

Key words: wavelet tree, data structures, competitive programming, quantile query, range query.

1. Introduction

Let  = (1     ) be a sequence of integers and consider the following query over .

Query 1. Given a pair of indices ( ) and a positive integer , compute the value of the
-th smallest element in the sequence ( +1     ).

Notice that Query 1 essentially asks for the value of the element that would occupy
the -th position when we sort the sequence ( +1     ). For example, for the se-
quence  = (3 7 5 2 3 2 9 3 5) and the query having ( ) = (3 7) and  = 4,
the answer would be 5, as if we order sequence (3 4 5 6 7) = (5 2 3 2 9) we
would obtain (2 2 3 5 9) and the fourth element in this sequence is 5. Consider now
the following update query.

Query 2. Given an index , swap the elements at positions  and  + 1.
That is, if  = (3 7 5 2 3 2 9 3 5) and we apply Query 2 with index 5, we

would obtain the sequence  0 = (3 7 5 2 2 3 9 3 5).
Consider now a competitive programming setting in which an initial sequence of

106 elements with integer values in the range [− 109 109] is given as input. Assume that

R. Castro et al.20

a sequence of 105 queries, each query of either type 1 or type 2, is also given as input.
The task is to report the answer of all the queries of type 1 considering the applications
of all the update queries, every query in the same order in which they appear in the
input. The wavelet tree (Grossi, 2015) is a data structure that can be used to trivially
solve this task within typical time and memory limits encountered in programming
competitions.

The wavelet tree was initially proposed to succinctly represent sequences while still
being able to answer several different queries over this succinct representation (Grossi
et al., 2003; Navarro, 2014; Grossi, 2015). Even when its compression capabilities are
not considered, the wavelet tree is a very versatile data structure. One of the main fea-
tures is that it can handle sequences of elements over a fixed but potentially large alpha-
bet; after an initial preprocessing, the most typical queries (as Query 1 above) can be
answered in time (log σ), where σ is the size of the underlying alphabet. The prepro-
cessing phase usually constructs a structure of size ( ×  log σ) for an input sequence
of  elements, where  is a factor that will depend on what additional data structures
we use over the classical wavelet tree construction when solving a specific task.

Although it was proposed more than a decade ago (Grossi et al., 2003), the wave-
let tree has not yet been widely used by the competitive programming community.
We conducted a social experiment publishing a slightly modified version of Query 1
in a well known Online-Judge system. We received several submissions from experi-
enced competitive programmers but none of them used a wavelet tree implementation
to solve the task. This paper tries to fill the gap by showing how this structure can be
used in classical (and no so classical) competitive programming tasks. As we will show,
its good performance to handle big alphabets, the simplicity of its implementation, plus
the fact that it can be smoothly composed with other typical data structures used in
competitive programming, give the wavelet tree a considerable advantage over other
structures.

Navarro (2014) presents an excellent survey of this data structure showing the most
important practical and theoretical results in the literature plus applications in a myriad
of cases, well beyond the one discussed in this paper. In contrast to Navarro’s survey,
our focus is less on the properties of the structure in general, and more on its practical
applications, some adaptations, and also implementation targeting specifically the issues
encountered in programming competitions. Nevertheless, we urge the reader wanting to
master wavelet trees to carefully read the work by Navarro (2014).

2. The Wavelet Tree

The wavelet tree (Grossi, 2015) is a data structure that recursively partitions a sequence
 into a tree-shaped structure according to the values that  contains. In this tree, every
node is associated to a subsequence of . To construct the tree we begin from the root,
which is associated to the complete sequence . Then, in every node, if there are two
or more distinct values in its corresponding sequence, the set of values is split into two
non-empty sets,  and ; all the elements of the sequence whose values belong to 

Wavelet Trees for Competitive Programming 21

form the left-child subsequence; all the elements whose values belong to  form the
right-child subsequence. The process continues recursively until a leaf is reached; a leaf
corresponds to a subsequence in which all elements have the same value, and thus no
partition can be performed.

Fig. 1 shows a wavelet tree constructed from the sequence

 = (3 3 9 1 2 1 7 6 4 8 9 4 3 7 5 9 2 7 3 5 1 3)

We split values in the first level into sets  = f1     4g and  = f5     9g.
Thus the left-child of  is associated to  0 = (3 3 1 2 1 4 4 3 2 3 1 3) If we
continue with the process from this node, we can split the values into  0 = f1 2g and
 0 = f3 4g. In this case we obtain as right child a node associated with the sequence
 00 = (3 3 4 4 3 3 3). Continuing from  00, if we split the values again (into sets
f3g and f4g), we obtain the subsequence (3 3 3 3 3) as left child and (4 4) as right
child, and the process stops.

For simplicity in the exposition, given a wavelet tree  we will usually talk about
nodes in  to denote, interchangeably, the actual nodes that form the tree and the sub-
sequences associated to those nodes. Given a node  in , we denote by Left () its
left-child and by Right () its right-child in . The alphabet of the tree is the set of
different values that its root contains. We usually assume that the alphabet of a tree is a
set Σ = f1 2     σg. Without loss of generality, and in order to simplify the partition
process, we will assume that every node  in  has an associated value m () such that
Left () contains the subsequence of  composed of all elements of  with values 
≤ m (), and Right () the subsequence of  composed of all elements with values
  m (). (In Fig. 1 the value m () is depicted under every node.) We can also as-
sociate to every node  in , two values l () and r (), such that  corresponds to
the subsequence of the root of  containing all the elements whose values are in the
range [l () r ()]. Notice that a wavelet tree with alphabet f1     σg has exactly
σ leaves. Moreover, if the construction is done splitting the alphabet into halves in every
node, the depth of the wavelet tree is (log σ).

Fig. 1. Wavelet tree for the sequence  = (3 3 9 1 2 1 7 6 4 8 9 4 3 7 5 9 2
7 3 5 1 3). Solid lines illustrate the execution of rank3( 14). Dashed lines show the
execution of quantile6( 7 16).

R. Castro et al.22

As we will see in Section 4, when implementing a wavelet tree the complete infor-
mation of the elements stored in each subsequence of the tree is not actually necessary.
But before giving any details on how to efficiently implement the wavelet tree, we use
the abstract description above to show the most important operations over this data
structure.

Traversing the Wavelet Tree

The most important abstract operation to traverse the wavelet tree is to map an index in
a node into the corresponding indexes in its left and right children. As an example, let 

be the root node of wavelet tree  in Fig. 1, and  0 = Left (). Index 14 in  (marked
in the figure with a solid line) is mapped to index 8 in  0 (also marked in the figure with
a solid line). That is, the portion of sequence  from index 1 to index 14 that is mapped
to its left child, corresponds to the portion of sequence  0 from index 1 to 8. On the other
hand, index 14 in root sequence  is mapped to index 6 in Right ().

We encapsulate the operations described above into two abstract functions,
mapLeft ( ) and mapRight ( ), for an arbitrary non-leaf node  of . In Fig. 1,
if  is the root,  0 = Left () and  00 = Right (

 0), then we have mapLeft (

14) = 8, mapRight ( 0 8) = 5 and mapLeft ( 00 5) = 3 (all indexes marked
with solid lines in the figure). Function mapLeft ( ) is essentially counting how
many elements of  until index  are mapped to the left-child partition of . Similarly
mapRight ( ) counts how many elements of  until index  are mapped to the right-
child partition of .

As we will describe in Section 4, these two operations can be efficiently implemented
(actually can be done in constant time). But before going into implementation details, we
show how mapLeft and mapRight can be used to answer three different queries by
traversing the wavelet tree, namely, rank, range quantile, and range counting.

2.1. Rank

The rank is an operation performed over a sequence  that counts the occurrences of
value  until an index  of . It is usually denoted by rank( ). That is, if  = (1

    ) then

rank( ) = jf 2 f1     g j  = gj

So for example, in sequence  in Fig. 1 we have that rank3( 14) = 3.
Assume that  is a wavelet tree for , then rank( ) can be easily computed with

the following strategy. If  ≤ m () then we know that all occurrences of  in  appear
in the sequence Left (), and thus rank( ) = rank(Left () mapLeft ( )).

Similarly, if   m () then rank( ) = rank(Right () mapRight ( )). We

Wavelet Trees for Competitive Programming 23

repeat this process until we reach a leaf node; if we reach a leaf  with this process, we
know that rank( ) = .

In Fig. 1 the execution of rank3( 14) is depicted with solid lines. We map index
14 down the tree using either mapLeft or mapRight depending on the m value
of every node in the path. We first map 14 to 8 (to the left), then 8 to 5 (to the right) and
finally 5 to 3 (to the left), reaching a leaf node. Thus, the answer to rank3( 14) is 3.

Rank is computed by performing (log σ) calls to (either) mapLeft or mapRight ,
thus the time complexity is ( × log σ) where  is the time needed to compute the
map functions. Also notice that a rank operation that counts the occurrences of  be-
tween indexes  and  can be computed by rank( ) − rank(  − 1), and thus the
time complexity is also ( × log σ). 

2.2. Range Quantile

The range quantile operation is essentially Query 1 described in the introduction: given a
sequence  = (1     ), quantile(  ) is the value of the -th smallest element
in the sequence ( +1     ). For instance in Fig. 1 for the root sequence  we have
that quantile6( 7 16) = 7 It was shown by Gagie et al. (2009) that wavelet trees
can efficiently solve this query.

To describe how the wavelet tree can solve quantile queries, lets begin with a simpler
version. Assume that  = 1 and thus, we want to find the -th smallest element among
the first  elements in . Then having a wavelet tree  for , quantile( 1 ) can
be easily computed as follows. Let  = mapLeft ( ). Recall that mapLeft ( )
counts how many elements of  until index  are mapped to the left-child of . Thus if 

≤  then we know for sure that the element that we are searching for is in the left subtree,
and can be computed as

quantile(Left () 1 mapLeft ( ))

On the other hand, if    then the element that we are searching for is in the right
subtree, but it will no longer be the -th smallest in Right () but the ( − )-th small-
est and thus can be computed as

quantile( − )(Right () 1 mapRight( ))

This process can be repeated until a leaf node is reached, in which case the answer is
the (single) value stored in that leaf.

When answering quantile(  ) the strategy above generalizes as follows. We
first compute  = mapLeft ( ) − mapLeft (  − 1). Notice that  is the number of
elements of  from index  to index  (both inclusive) that are mapped to the left. Thus,
if  ≤  then the element we are searching for is in the leftchild of  between the indexes
mapLeft (  − 1) + 1 and mapLeft ( ), and thus the answer is

R. Castro et al.24

quantile(Left () mapLeft (  − 1) + 1 mapLeft ( ))

If    then the desired element is in the right and can be computed as

quantile( − )(Right () mapLeft(  − 1) + 1 mapLeft( ))

As before, the process is repeated until a leaf node is reached, in which case the an-
swer is the value stored in that leaf. In Fig. 1 the complete execution of quantile6(

7 16) is depicted with dashed boxes in every visited node.
As for the case of the rank operation, quantile can be computed in time ( × log σ)

where  is the time needed to compute the map functions.

2.3. Range Counting

The range counting query range[](  ) counts the number of elements with values
between  and  in positions from index  to index . That is, if  = (1     ) then

range[](  ) = jf 2 f     g j  ≤  ≤ gj

A sequence of size  can be understood as the representation of a grid with  points
such that no two points share the same row. A general set of  points can be mapped to
such a grid by storing real coordinates somewhere and breaking ties somehow. For this
representation the range counting query corresponds to count the number of points in a
given subrectangle (Navarro, 2014).

To answer a range counting query over a wavelet tree  we can use the following re-
cursive strategy. Consider the interval [l () r ()] of possible elements of a sequence
. If [l () r ()] does not intersect [ ], then no element of the sequence is in [

] and the answer is 0. Another case occurs when [l () r ()] is totally contained in
[ ]; in this case all the elements of the sequence between  and  are counted, so the
answer is j[ ]j =  −  + 1.

The last case (the recursive one) is when [l () r ()] intersects [ ] (but is not
completely contained in [ ]); in that case the answer is the sum of the range counting
query evaluated in both children. The queries for children are called with the same [

] as in the parent’s call, but the indexes  and  are replaced by the mappings of these
indexes. That is, the answer is

range[](Left () mapLeft ( ) mapLeft ( )) +

		 range[](Right () mapRight ( ) mapRight ( ))

Note that if range is called on a leaf node , then l () = r () = , so the inter-
val is either completely contained (if  2 [ ]) or completely outside (if  62 [ ]).
Both cases are already considered.

Wavelet Trees for Competitive Programming 25

It is not difficult to show that for a range counting query, we have to make at most
(log σ) recursive calls (Gagie et al. (2012) show detailed proof), and thus the time
complexity is, as for rank and quantile, ( × log σ) where  is the time needed to
compute the map functions.

3. Simple Update Queries

We now discuss some simple update queries over wavelet trees. The idea is to shed light
on the versatility of the structure to support less classical operations. We looked for
inspiration in typical operations found in competitive programming problems to design
update queries that preserve the global structure of the wavelet tree. We only describe
the high level idea on how these queries can be adopted by the wavelet tree, and we later
(in Section 4) discuss on how to efficiently implement them.

3.1. Swapping Contiguous Positions

Consider Query 2 in the introduction denoted by swap( ). That is, a call to swap( )
changes  = (1     ) into a sequence (1     +1      ).

The operation swap( ) can be easily supported by the wavelet tree as follows.
Assume first that  ≤ m (). Then we have two cases depending on the value of +1.
If +1  m (), we know that  is mapped to the left subtree while +1 is mapped
to the right subtree. This means that swapping these two elements does not modify any
of the nodes of the tree that are descendants of . In order to modify , besides actu-
ally swapping the elements, we should update mapLeft ( ) and mapRight ( );
mapLeft ( ) should be decremented by 1 and mapRight ( ) should be incre-
mented by 1 as the new element in position  is now mapped to the right subtree. Notice
that these are the only two updates that need to be done to the map functions.

The other case is if +1 ≤ m (). Notice that both  and +1 are mapped to
Left (), and moreover, they are mapped to contiguous positions in that sequence.
In this case, no update should be done to mapLeft ( ) or mapRight ( ). Thus,
besides actually swapping the elements in , we should only recursively perform the
operation swap(Left () mapLeft ( )) The case in which   m () is sym-
metrical. The complete process is repeated until a leaf node is reached, in which case
nothing should be done.

To perform the swap in the worst case we would need to traverse from top to bottom
of the wavelet tree. Moreover, notice that the map functions mapLeft and mapRight
are updated in at most one node. Thus the complexity of the process is ( × log σ +

) where  is the time needed to update mapLeft and mapRight , and  is the time
needed to compute the map functions.

R. Castro et al.26

3.2. Toggling Elements

Assume that every element in a sequence  has two possible states, active or inactive,
and that an operation toggle( ) is used to change the state of element  from active
to inactive, or from inactive to active depending on its current state. Given this setting,
we want to support all the queries mentioned in Section 2, but only considering active
elements. For example, assume that  = (1 2 1 3 1 4) and only the non 1 elements
are active. Then a query quantile2

 ( 1 6) would be 3.
A simple augmentation of the wavelet tree can be used to support this update. Besides

mapLeft and mapRight , we use two new mapping/counting functions activeLeft
and activeRight . For a node  and an index , activeLeft ( ) is the number
of active elements until index  that are mapped to the left child of , and similarly
activeRight ( ) is the number of active elements mapped to the right child. Be-
sides this we can also have a count function for the leaves of the tree, activeLeaf (

), that counts the number of active elements in a leaf  until position . We next show
how these new mapping functions should be updated when a toggle operation is per-
formed. Then we describe how the queries in Section 2 should be adapted.

Upon an update operation toggle( ) we proceed as follows. If  ≤ m () then
we should update the values of activeLeft ( ) for all  ≥  adding 1 to
activeLeft ( ) if  was previously inactive, or substracting 1 in case  was pre-
viously active. Now, given that  is mapped to the left child of , we proceed recur-
sively with toggle(Left () mapLeft ( )). If   m (), we proceed sym-
metrically updating activeRight ( ) for  ≥ , and recursively calling
toggle(Right () mapRight ( )). We repeat the process until a leaf is reached,
in which case activeLeaf should also be updated (similarly as for activeLeft ).
The complexity of the toggle operation is then (( + ) ×  log σ), where  is the time
needed to update activeLeft and activeRight in every level (plus activeLeaf
in the last level), and  is the time needed to compute the map functions mapLeft
and mapRight .

Consider now the quantile(  ) query. Recall that for this query we first com-
puted a value  representing the number of elements of  from index  to index  that are
mapped to the left. If  ≤  we proceeded searching for quantile in the left subtree,
and if  ≥  we proceeded searching for quantile( − ) in the right subtree (mapping
indexes  and  accordingly in both cases). In order to consider the active/inactive state
of each element, we only need to change how  is computed; we need to consider now
how many active elements from index  to index  are mapped to the left, and thus  is
computed as

 = activeLeft (  − 1) − activeLeft ( )

Then, we proceed exactly as before: if  ≤  we search for quantile in the left
subtree, otherwise, we search for quantile( − ) in the right subtree. Notice that we
always assume that when executing quantile(  ) the number of active elements

Wavelet Trees for Competitive Programming 27

between  and  in  is not less than  (which can be easily checked using activeLeft
and activeRight ).

Queries rank and range[] are even simpler. In the case of rank we only need
to consider the active elements when we reach a leaf; in the last query rank( ) in a
leaf , we just answer activeLeaf ( ). In the case of range[](  ), we almost
keep the recursive strategy as before but now when [l () r ()] is totally contained
in [ ] we only have to consider the number of active elements between index  and
index , which is computed as

(activeLeft ( ) + activeRight ( )) −

		 (activeLeft (  − 1) + activeRight (  − 1))

In the case in which  is a leaf, this value is computed as activeLeaf ( ) −
activeLeaf (  − 1).

The complexity of these new queries is (( + ) × log σ) where  is the time
needed to compute the activeLeft and activeRight functions and  is the time
needed to compute the map functions.

3.3. Adding and Deleting Elements from the Beginning or End of the Sequence

Consider the operations pushBack( ), popBack(), pushFront( ) and
popFront(), with their typical meaning of adding/deleting elements to/from the be-
ginning or ending of sequence .

First notice that when adding or deleting elements we might be changing the alpha-
bet of the tree. To cop with this, we assume that the underlying alphabet Σ is fixed and
that the tree is constructed initially from a sequence mentioning all values in Σ . Thus,
initially there is a leaf in the tree for every possible value. We also assume that in every
moment there is an active alphabet, which is a subset of Σ , containing the values actu-
ally mentioned in the tree. To support this we just allow some sequences in the tree to
be empty; if there is some value  of Σ not present in the tree at some point, then the
sequence corresponding to the leaf node associated with  is the empty sequence. It is
straightforward to adapt all the previous queries to this new setting.

Consider now pushBack( ) and assume that before the update we have jj =

. Then, besides adding  to the end of sequence , we should update (or more pre-
cisely, create) mapLeft ( +1) and mapRight ( +1). If  ≤ m () then we
let mapLeft (  + 1) = mapLeft ( ) + 1 and mapRight (  + 1) =

mapRight ( ), and then perform pushBack(Left () ). If   m () then we let
mapLeft (  + 1) = mapLeft ( ) and mapRight (  + 1) = mapRight (

)+1, and then perform pushBack(Right () ). Finally when we reach a leaf node,
we just add  to the corresponding sequence.

The popBack() operation is similar. Assume that jj = , then besides deleting
the last element in , we should only delete that element from the corresponding sub-

R. Castro et al.28

tree. Thus, if  ≤ m () then we do popBack(Left ()), and if   m () we do
popBack (Right ()). When we reach a leaf node we just delete any element from it.
Notice that in this case no mapLeft or mapRight needed to be updated.

The pushFront and popFront are a bit more complicated. When we do
pushFront( ) we should do a complete remapping: if  ≤ m () then for every  2
f1     g we should do

 mapLeft (  + 1) = mapLeft ( ) + 1

mapRight (  + 1) = mapRight ( )

and finally set mapLeft ( 1) = 1 and mapRight ( 1) = 0 and perform the call
pushFront(Left () ). If   m () then we should do

 mapLeft (  + 1) = mapLeft ( )

mapRight (  + 1) = mapRight ( ) + 1

and finally set mapLeft ( 1) = 0 and mapRight ( 1) = 1 and perform the call
pushFront(Right () ). When a leaf node is reached we just add  at the begin-
ning of the corresponding sequence. The popFront() operation is similar. Let jj =

. If 1 ≤ m () then we should update mapLeft ( ) to mapLeft (  + 1) −
1, and mapRight ( ) to mapRight (  + 1) for all  from 1 to  − 1, and then do
popFront(Left ()). Symmetrically if 1  m () then we should update mapLeft (

) to mapLeft (  + 1), and mapRight ( ) to mapRight (  + 1) − 1 for all 
from 1 to  − 1, and then do popFront(Right ()). Upon reaching a leaf node, we just
delete the value from the front.

The complexity of all the operations above is (( + ) × log σ) where  is the
time needed to update mapLeft or mapRight in every level, and  is the time needed
to compute the map functions. Just notice that for the cases of the pushFront and pop-
Front we have to update several values of mapLeft and mapRight per level.

4. Implementation

In this section we explain how to build a wavelet tree and how to construct the auxiliary
structures to support the mapping operations efficiently. Based on this construction we
also discuss how to implement queries explained in the previous section. Additionally,
we present an implementation strategy alternative to the direct pointer based one. We
implemented both approaches in C++ and the code is available in github1.

1	https://github.com/nilehmann/wavelet-tree

Wavelet Trees for Competitive Programming 29

4.1. Construction

A wavelet tree implementation represents an array [0  − 1] of integers in the interval
[0 σ − 1]. Our construction is based on a node structure and pointers between those
nodes. Every node  will be identified by two elements  and  (which essentially
correspond to l () and r () in Section 2), and an associated sequence 

 which is
the subsequence of  formed by selecting elements in the range [ ]. As we will see,
values  and  and the sequence 

 do not need to be explicitly stored and can be
computed when traversing the tree if needed.

The construction of a wavelet tree starts creating the root node associated to the
original array  and the interval [0 σ − 1]. We then proceed recursively as follows. In
each node  we found the middle of the interval 

 = ( + )2 (which corresponds
to the value m () described in Section 2). We create two new nodes  and  as left-
child and right-child of , respectively. Then, we perform a stable partition of the array

 into two arrays 

 and , such that 
 contains all values less than or equal to


 and 

 those greater than . The construction continues recursively for the left
node with the array 

 and the interval [], and for the right node with 
 and

the interval [
 + 1 ]. The base case is reached when the interval represented by the

node contains only one element, i.e.,  = . It is not necessary to store arrays 
 cor-

responding to each node . They are only materialized at building time to construct the
auxiliary structures to support the mapping operations required to traverse the tree as
described below.

As previously discussed, the fundamental operations mapLeft and mapRight cor-
respond to count how many symbols until position  belong to the left and right node
respectively. To support these operations, when building a node  we precompute for
every position  how many elements in the array 

 belong to the right node – they are
greater than 

 – and store the results in an array . We could store a similar array  0


to store how many elements belong to the left node, but it is easy to note that values of
both arrays are related as follows:  0

 [] =  − [] + 1.

To understand how 
 is computed, it turns out useful to associate a bitvector 

that marks with 0’s elements less than or equal to 
 and with 1’s those greater than .

This bitvector must support the operation of counting how many bits are set to 1 until a
position , which is commonly referred as a rank operation. Our array 

 is computed on
build time as the partial sum of 

 by the recurrence [0] = [0] [] = [ − 1]

+ [], thus supporting the rank operation in constant time. The compression character-
istics of the wavelet tree arise mainly because it is possible to represent these bitvectors
succinctly while maintaining constant-time rank queries (Clark, 1998; Okanohara and
Sadakane, 2007; Raman et al., 2002). However, in a competitive programming setting
memory constraints are less restrictive and our representation shows off to be sufficient.
In case the memory is an issue, a practical and succinct implementation is presented by
González et al. (2005).

R. Castro et al.30

4.2. Implementing Queries and Updates

We now briey discuss how every operation in Section 2 can be efficiently implemented.

mapLeft and mapRight. These two operations can be easily implemented with the array
; in a node  the number of elements until position  that go to the left is  − [] +

1. Since we are indexing from 0, position  is mapped to the left to position  − [].
Analogously, a position  is mapped to the right to position [] − 1. Notice that both
mapping functions can thus be computed in constant time, which implies that rank,
quantile and range operations can be implemented in (log σ) time.

swap. The swap operation first map the position  down the tree until we reach a node 
where the update needs to be performed. At this point the (virtual) bitvector 

 is such
that [] 6= [ + 1]. Swapping both bits can only change the count of 1’s until posi-
tion , and thus, only [] should be updated. If [] = 0 we do [] = [] + 1, and
if [] = 1 we do [] = [] − 1. This shows that the map functions can be updated
in constant time after a swap operation, which implies that the complexity of swap is
also (log σ).

toggle. In this case we only need to implement activeLeft, activeRight and ac-
tiveLeaf. To mark which positions are active we can use any data structure represent-
ing sequences of 0’s and 1’s that efficiently supports partial sums and point updates. For
example we can use a binary indexed tree (BIT) (Fenwick, 1994) which is a standard
data structure used in competitive programming that supports both operations in (log )
time. Thus with a BIT we are adding a logarithmic factor for each query and now rank,
quantile and range operations as well as toggle can be implemented in (log  ×
log σ). In terms of construction, when using a BIT in every level we are only paying a
constant factor in the size of the wavelet tree.

pushBack and popBack. These operations only modify the array 
 in some nodes.

Pushing an element at the end updates the (virtual) bitvector 
 appending a new 0 or 1

(depending on the comparison between the new element and ), so 
 being a partial

sum of 
 of size 

 only needs a [] = [ − 1] + [ − 1] update. Popping
an element from the end updates 

 and 
 doing the inverse operation, so if 

 is of
size 

 we only need to delete [ − 1] from memory. Both operations can be done in
amortized constant time using a dynamic array, thus the complexity of all queries plus
pushBack and popBack is (log σ) time.

pushFront and popFront. These are similar to pushBack and popBack, but act at the
beginning of the bitvector . To prepend a bit  to a bitvector 

 we must prepend its
value to . If the value of  is equal to 1 we must also increment by 1 every value in
. Because it is too slow to update every position of , we define a counter δ that
starts at 0 and is incremented by 1 every time a bit equal to 1 is prepended. We then just
prepend  − δ to , in which case the real count of ones until position  is obtained
by []  +  δ. Popping an element is as easy as deleting the first element of 

 from

Wavelet Trees for Competitive Programming 31

memory and decrementing δ by 1 if the value of [0] + δ was equal to 1. If we want
to mix front and back operations, we could use a structure such as a dequeue (Knuth,
1997), which allows amortized constant time insertions at the beginning and end of an
array while maintaining constant random access time. Thus the complexity of all queries
is still (log σ) time.

4.3. Big Alphabets and the Wavelet Matrix

In a competitive programming setting the size of the array  will depend on time restric-
tions, but typically it will not exceed 106. However the number of possible values that 

can store could be without any problems around 109. Thus the number of values actually
appearing in  is much smaller than the range of possible values. For this reason one
usually have to map the values that appear in the sequence to a range [0 σ − 1]. Com-
monly, this will require a fairly fast operation to translate from one alphabet to the other
with a typical implementation using, for example, a binary search tree or a sorted array
combined with binary search.

To avoid having this map operation, the wavelet tree could be constructed directly
over the range of all possible values allowing the subsequences of some nodes to be emp-
ty. A naive pointer-based construction will require (σ) words which might be excessive
for σ = 109. Because many nodes will represent empty subsequences, one can save some
space explicitly tracking when some subsequences become empty in the tree.

There is an alternative implementation of the wavelet tree called wavelet matrix
(Claude et al., 2015) that was specifically proposed in the literature to account for big
alphabets. Given an alphabet its size can be extended to match the next power of two,
yielding a complete binary tree for the wavelet tree representation. For each level,
we could then concatenate the bitvectors of each node in that level and represent the
structure with a single bitvector by level. The border between each node is lost, but it
can be computed on the fly when traversing. This means extra queries yielding worse
performance. Instead, the wavelet matrix breaks the restriction that in each level sib-
lings must be represented in contiguous positions in the bitvector. When partitioning
a node at some level  the wavelet matrix sends all zeroes to the left section of level
 + 1 and all ones to the right. The left and the right child of some node at level  do
not occupy contiguous positions in the bitvector at level  + 1, but the left (resp. right)
child is represented in contiguous positions in the left (resp. right) section of the level
 + 1. Additionally, a value  is maintained at each level to mark how many elements
were mapped to the left.

With this structure the traversing operations can be directly implemented by per-
forming rank operations on bitvectors at each level. Specifically, instead of maintaining
an array 

 for every node, we maintain an array 
 for each level. Array 

 store the
cumulative number of 1’s in level . Then, a position  at level  is mapped to the left
to position  − [] at level  + 1. The same position  is mapped to the right to position
 + [] − 1.

R. Castro et al.32

The wavelet matrix has the advantage of being implementable using only (log σ)
extra words of memory instead of the (σ) used to store the tree structure in the pointer
based alternative while maintaining fast operations. This (log σ) words are insignifi-
cant even for σ = 109, which means that the structure could be constructed directly over
the original alphabet. On the other hand the wavelet matrix is somehow less adaptable,
because it does not support directly the pop and push updates. However, it can support
swap and toggle in a similar way as the one described for the wavelet tree.

5. Wavelet Trees in Current Competitive Programming

We conducted a social experiment uploading 3 different problems to the Sphere Online
Judge (SPOJ)2. All the problems can be solved with the techniques shown in the previ-
ous sections. We analyze the solutions to these problems submitted by SPOJ users. Our
analysis reveal two main conclusions: (1) experienced programmers do not consider the
use of wavelet trees, even in the case that its application is straightforward, and (2) for
the most complex cases when they succeed, they use fairly involved techniques produc-
ing solutions that are dangerously close to time and memory limits. We have found,
however, some incipient references of wavelet trees in the competitive programming
community3, as well as more detailed explanations in Japanese4, which obviously estab-
lish an idiomatic barrier for many programmers.

We identify the three mentioned problems as ILKQ1, ILKQ2 and ILKQ3 and they
are described as follows.

ILKQ1 considers a slightly modified version of the quantile query. The size of the initial
sequences is 105, the range of possible integer values in the sequence is [−109 109], and
the number of queries is 105. The time limit is 1s.

Link: http://www.spoj.com/problems/ILKQUERY

ILKQ2 considers rank queries plus toggling the state of arbitrary elements. The size of
the initial sequence is 105, the range of possible values is [−109 109], and the number of
rank plus toggle queries is 105. The time limit is 0.4s.

Link: http://www.spoj.com/problems/ILKQUERY2

ILKQ3 considers the quantile query of ILKQ1 plus swaps of arbitrary contiguous posi-
tions. The size of the initial sequences is 106, the range of possible values is [−109 109],
and the number of quantile plus swap queries is 105. The time limit is 1s.

Link: http://www.spoj.com/problems/ILKQUERYIII/

Notice that ILKQ3 although involves the same query as ILKQ1, it is considerable
harder as it can mix updates (in the form of swaps) and the input sequence can be 10
times bigger than for ILKQ1. Table 1 shows an analysis of the submissions received5.

2	http://www.spoj.com/
3	http://codeforces.com/blog/entry/17787
4	http://d.hatena.ne.jp/sune2/20131216/1387197255
5	 This data considers only until late March 2016.

Wavelet Trees for Competitive Programming 33

5.1. Analysis of Users Submitting Solutions

We received submissions from several type of users, several of them can be considered
as experienced programmers. From them, even expert coders (rank 100 or better on
SPOJ) got lot of Wrong Answers (WA) or Time Limit Exceeded (TLE) verdicts which
shows the intrinsic difficulty of the problems. Considering the three problems, 5 out
of the 10 distinct users who got an Accepted (AC) veredict have rank of 60 or better
on SPOJ, and 8 are well-known ACM-ICPC World finalists. For problem ILKQ3 we
received only two AC. Both users solved the problem after several WA or TLE verdicts.
For ILKQ1 and ILKQ2 the best ranked submitter was the top 1 user in SPOJ who ob-
tained AC in both problems. For ILKQ3, the best ranked submitter was among the top 5
in SPOJ and obtained only TLE veredicts.

5.2. Analysis of the Submitted Solutions

As we have told before, we received 0 submissions implementing a wavelet tree solu-
tion. We now briefly analyze the strategies of the submissions received. For the sake of
the space, we cannot deeply analyze every strategy but we provide some pointers for the
interested reader.

The most common approach for ILKQ1 was sorting queries (as the problem is of-
fline) plus the use of a tree data structure. One of the mainly used in this case was
mergesort tree. In a mergesort tree, nodes represent sequences of contiguous elements
of the original array and contains a sorted version of those sequences. Leaves represent
one element of the array, and the tree is built recursively by merging pairs of nodes
starting from the leaves. The construction can be done in ( log ) time and space.
Quantile queries can be answered by identifying the, at most (log ), nodes that define
a query range, and then doing two (nested) binary searches, one for counting elements
less than or equal than a value , and the second over  to find the -th minimum ele-
ment. The total strategy gives (log3 ) time which can be optimized up to (log2 )
using fractional cascading. This was enough given the time constraints.

Table 1
General submission statistics

Submitted Accepted Non-accepted
WA TLE RTE

ILKQ1 49 9 19 18 3
ILKQ2 32 6 15 8 3
ILKQ3 35 2 12 15 6

R. Castro et al.34

For ILKQ2 and ILKQ3 sorting of queries or any offline approach is not directly
useful as queries are mixed with updates. For ILKQ2 we received some submissions
implementing a square root decomposition strategy, and run extremely close to the time
limit. The most successful strategy in both problems was the use of ideas coming from
persistent data structures, in particular persistent segment trees6. As in any persistent
structure, the main idea is to efficiently store different states of it. Exploiting the fact that
consecutive states do not differ in more than (log ) nodes, it is possible to keep  dif-
ferent segment trees in ( log ) space. Persistent segment trees can be used to answer
quantile queries but need some more work to adapt them for updates like swaps as in
ILKQ3. The two correct solutions that we received for ILKQ3 make use of this structure.
It’s relevant to notice that given the input size and the updates, implementing a persistent
segment tree for this problem can use a considerable amount of memory. In particular,
one of the AC submissions used 500MB and the other 980MB. Our wavelet tree solution
uses only 4MB of memory.

6. Performance Tests

Existing experimental analyses about wavelet trees focus mostly on compression char-
acteristics (Claude et al., 2015). Moreover, they do not consider the time required to
build the structure because from the compression point of view the preprocessing time is
not the most relevant parameter. Thus, we conducted a series of experiments focusing on
a competitive-programming setting where the building time is important and restrictions
on the input are driven by typical tight time constraints. The idea is to shed some light on
how far the input size can be pushed. We expect these results to be useful for competitors
as well as for problem setters.

We performed experimental tests for our wavelet tree and wavelet matrix implemen-
tations comparing construction time and the performance of rank, quantile and range
counting queries. We consider only alphabets of size less than the size of the sequence.
To analyze the impact of the alphabet size, we performed tests over sequences of dif-
ferent profiles. A profile is characterized by the ratio between the size of the alphabet
and the size of the sequence. For example, a sequence of size 103 and profile 05 has an
alphabet of size 500.

Measurements. To measure construction time we generated random sequences of in-
creasing size for different profiles. For each size and profile we generated 1,000 se-
quences and we report the average time. For queries rank, quantile and range counting,
we generated 100,000 queries uniformly distributed and averaged their execution time.
The machine used is an Intel® Core™ i7-2600K running at 3.40GHz with 8GB of RAM
memory. The operating system is Arch-Linux running kernel 4.4.4. All our code are
single-threaded and implemented in C++. The compiler used is gcc version 5.3.0, with
optimization flag -O2 as customary in many programming contests.

6	bit.ly/persistent-segment-tree

Wavelet Trees for Competitive Programming 35

Results. No much variance was found in the performance between different profiles, but
as may be expected sequences of profile 1 – i.e., permutations – reported higher time in
construction and queries. Thus, we focus on the analysis of permutations to test perfor-
mance on the most stressing setting. For the range of input tested we did not observe big
differences between the wavelet tree and the wavelet matrix, both for construction and
query time. Though there are little differences, they can be attributed to tiny implemen-
tation decision and not to the implementation strategy itself.

Regarding the size of the input (Fig. 2), construction time stays within the order
of 250 milliseconds for sequences of size less than or equal to 106, but scales up to
2 seconds for sequences of size 107, which can be prohibitive for typical time con-
straints. For the case of queries rank, quantile and range counting we report in Fig. 3
the number of queries that can be performed in 1 second for different sizes of the input
sequence. For rank and quantile, around 106 queries can be performed in 1 second for
an input of size 106. In contrast for range counting, only 105 queries can be performed
in the same setting (Fig. 3).

It would be interesting as future work to perform a deep comparison between the
wavelet tree and competing structures for similar purposes such as mergesort trees
and persistent segment trees, testing time and memory usage. From our simple analy-
sis in the previous section one can infer that wavelet trees at least scales better in
terms of memory usage, but more experimentation should be done to draw stronger
conclusions.

Fig. 3. Number of queries that can be performed in one second.

Fig. 2. Construction time in milliseconds.

R. Castro et al.36

7. Concluding Remarks

Problems involving advanced data structures are appearing increasingly often in world-
wide programming competitions. In this scenario, competitive programmers often prefer
versatile structures that can be used for a wide range of problems without making a lot of
changes. Structures such as binary indexed trees or (persistent) segment trees, to name
a few, conform part of the lower bound for competitors, and must be in the toolbox of
any programmer. The wavelet tree has proven to be a really versatile structure but, as
we have evidenced, not widely used at the moment. However, we have noted that some
programmers have already perceived the virtues of the wavelet tree. We believe that the
wavelet tree, being quite easy to implement, and having such amount of applications, is
probably becoming a structure that every competitive programmer should learn. With
this paper we try to fill the gap and make wavelet trees widely available for the competi-
tive programming community.

Acknowledgments

J. Pérez is supported by the Millennium Nucleus Center for Semantic Web Research,
Grant NC120004, and Fondecyt grant 1140790.

References

Clark, D. (1998). Compact Pat Trees. PhD thesis, University of Waterloo.
Claude, F., Navarro, G., Ordóñez, A. (2015). The wavelet matrix: an efficient wavelet tree for large alphabets.

Inf. Syst., 47, 15–32.
Fenwick, P. M. (1994). A new data structure for cumulative frequency tables. Software: Practice and Experi-

ence, 24(3), 327–336.
Gagie, T., Navarro, G., and Puglisi, S.J. (2012). New algorithms on wavelet trees and applications to informa-

tion retrieval. Theor. Comput. Sci., 426, 25–41.
Gagie, T., Puglisi, S.J., Turpin, A. (2009). Range quantile queries: another virtue of wavelet trees. In: SPIRE.

1–6.
González, R., Grabowski, S., Mäkinen, V., Navarro, G. (2005). Practical implementation of rank and select

queries. In: WEA. 27–38.
Grossi, R. (2015). Wavelet trees. In: Encyclopedia of Algorithms. Springer.
Grossi, R., Gupta, A., Vitter, J.S. (2003). High-order entropy-compressed text indexes. In: SODA’03. 841–850.
Knuth, D. (1997). The Art of Computer Programming, Volume 1: Fundamental Algorithms. Third Edition.

Addison-Wesley. 238–243.
Navarro, G. (2014). Wavelet trees for all. J. Discrete Algorithms, 25, 2–20.
Okanohara, D., Sadakane, K. (2007). Practical entropy-compressed rank/select dictionary. In: ALENEX. 60–

70.
Raman, R., Raman, V., Rao, S. (2002). Succinct indexable dictionaries with applications to encoding k-ary trees

and multisets. In: SODA. 233–242.

Wavelet Trees for Competitive Programming 37

R. Castro is a computer engineering student at Department of Com-
puter Science, Universidad de Chile, bronze medalist of IOI’2013 in
Brisbane, and problem setter for OCI (Chilean Olympiad in Infor-
matics).

N. Lehmann is master’s student in computer science at Department
of Computer Science, Universidad de Chile. His research interests are
semantics, design and implementation of programming languages and
type systems. He is the Scientific Committee Director of OCI (Chilean
Olympiad in Informatics). Deputy Leader at IOI 2014 and 2015. Chil-
ean Judge of ACM ICPC 2014 and 2015.

J. Pérez is Associate Professor at the Department of Computer Sci-
ence, Universidad de Chile, and an Associate Researcher of the Chil-
ean Center for Semantic Web Research. His research interests are da-
tabase theory, data exchange and integration, graph databases, and the
application of database technologies to the Semantic Web and the Web
of Data. He is one of the directors of OCI (Chilean Olympiad in Infor-
matics), and the Chilean team leader at IOI since 2013.

B. Subercaseaux is an undergraduate student of computer science at
Department of Computer Science, Universidad de Chile, and problem
setter for OCI (Chilean Olympiad in Informatics).

Olympiads in Informatics, 2016, Vol. 10, 39–60
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.03

39

Learning Programming through
Games and Contests:
Overview, Characterisation and Discussion

Sébastien COMBÉFIS1,2, Gytautas BERESNEVIČIUS3
Valentina DAGIENĖ3

1 Electronics and IT Unit, École Centrale des Arts et Métiers (ECAM)
Promenade de l’Alma 50, 1200 Woluwé-Saint-Lambert, Belgium
2 Computer Science and IT in Education ASBL, Belgium
3Vilnius University Institute of Mathematics and Informatics
4 Akademijos Street, Vilnius LT-08663, Lithuania
E-mails: s.combefis@ecam.be; gytber@gmail.com; valentina.dagiene@mii.vu.lt

Abstract. Learning of programming and, more generally, of computer science concepts is now
reaching the public at large. It is not only reserved for people who studied informatics (computer
science) or programming anymore. Teaching programming to schoolchildren presents many
challenges: the big diversity in ability and aptitude levels; the big amount of different tools; the
time-consuming nature of programming; and of course the difficulty to motivate schoolchildren
to keep them busy with hard work. There are various platforms that offer to learn coding and
programming, in particular game-based platforms, which are more and more popular. These
latter exploits of the gamification process focused on increase in motivation and engagement
of the learners. This paper reviews the main kinds of online platforms to learn programming
and more general computer science concepts, and illustrates the review with concrete platforms
examples.

Keywords: game-based learning, gamification, learning programming, online programming plat-
form, programming contest.

1. Introduction

Informatics (computer science or computing) as a science discipline, and in particular
programming as an important part of that, is gaining a lot of popularity these years in
education. As core subjects in a computer science (CS) major, programming subjects
play an important role in a successful CS education. One of the greatest challenges
faced by most students is the understanding of programming basics, especially for nov-
ices or for those who are in their first year of studies. Students develop algorithmic

S. Combéfis, G. Beresnevičius, V. Dagienė40

thinking or computational thinking at secondary and even at primary school. Using
simple programming languages such as Scratch became accessible to young children
(Maloney et al., 2004).

Games have been used for educational purposes for decades. The popularity of games
has led to the idea of using them in the learning of programming, taking advantage of
the engaging features of games. In a very broad sense, two different approaches are used
when using games or game-like elements in educational contexts: 1) gamification and
2) serious games. The term gamification is commonly defined as the use of game design
elements in non-game contexts (Deterding et al., 2011). Serious games are associated
with a standalone game or platform, as well as indicated as a computer game (Djaout
et al., 2011). In this paper, we are going to use the general term to refer to game-based
learning with main focus on teaching programming.

Game-based learning is concerned with using games not for entertainment, but for
educational purposes. Those who work within the field of gamification focus on iden-
tifying the context and conditions that support the integration of digital games within
informal and formal learning environments. Educational scientists have pointed up
several features of games that allow them to be used as learning tools. For example,
games are engaging (Dickey, 2005) and motivating (Prensky, 2003). They also provide
a lot of experiences (Arena and Schwartz, 2013) and an excellent feedback on perfor-
mances (Shute, 2011). Finally, games support very well the learner centred education
(Gee, 2005).

A contest can be seen as a part of game-based learning. Contests make the teaching
of programming more attractive for students. Furthermore, programming with computer
is one of the appropriate and effective ways to develop problem solving skills and com-
putational thinking. During contests, students have the possibility to compare their abili-
ties and learn from others. There have been many contests in programming throughout
all over the world; most of them focus on algorithmic problem solving.

Many teaching environments already contain game-like elements such as points, in-
stant feedback, and goals. However, there are engaging aspects in games that could be
used in educational settings more widely. In well-designed games, even a failure can be
a reward and triggers positive emotions (Ravaja et al., 2005). There is no off-the-shelf
formula for designing successful games, nor is there one perfect learning environment.
However, by deepening our understanding of the effects of games and game-like en-
vironments in educational settings, we can design and support more effective learning
activities, and ultimately improve the learning of computer science.

The move from classical learning platforms to online contests and games can be
explained as a way to ensure the best motivation as possible for their users. The online
platforms can provide tools such as rankings, duels, discussion rooms, etc. to motivate
their users to participate regularly. Finally, research on gamification in all its forms has
proven that educational games improve the engagement of learners if the game is de-
signed properly (Barata et al., 2013; Nah et al., 2014). Online platforms where students
can learn programming are being developed all over the world, ranging from simple di-
rect learning platforms to platforms of games that indirectly teach programming (Com-
béfis and Wautelet, 2014).

Learning Programming through Games and Contests: Overview, ... 41

This paper reviews literature of the last decade on programming education for school
students (high, secondary and primary levels) using games and online platforms that
support games and contests which goal is to teach programming. The literature review
of programming games and an overview of programming learning platforms were struc-
tured to accomplish the following three research objectives:

To overview the last decade literature on programming education using games.1.	
To identify the important online platforms for learning programming through 2.	
games and contests.
To identify suitable tools for programming novices.3.	

The goal of the paper is twofold: from one side, to provide an overview of the work
that has been done in this area, and from the other side, to discuss the important tools
(online platforms and contests) and to improve programming education. After this intro-
ductory part, Section 2 makes a short presentation of the understanding of gamification
and overviews the literature on teaching programming using games. Section 3 pres-
ents three kinds of online platforms, which allow students to learn programming. Then
Section 4 tours several existing contest platforms. Finally, the last section concludes
the paper with some thoughts about what could be the future evolution of these online
platforms and contests and makes some suggestions for teaching programming by edu-
cational games or by other ways.

2. Short Overview of Literature

The application of game design elements of non-game scenarios is known as gamifica-
tion. Some authors stated that gamification uses elements of experiences (Deterding
et al., 2011). It must also impart some rules or structure to the experience to influence
participants’ action. Gamification adds game design elements as well as promoting the
psychological benefits and motivational ability of games but in different contexts.

Programming games are an important part of educational games. A programming
game is a computer game where the player has little or no direct influence on the
course of the game. Instead, a computer program or script is written in some domain-
specific programming language in order to control the actions of the characters or
other entities.

There are several definitions of serious games. For example, Alvarez and Michaud
(2008) state that a serious game must include a genuine entertainment element combined
seemingly with a practical dimension. Some researchers argue that all games have a
serious purpose, such as gambling. That is why a majority of simulators would be con-
sidered as serious games (Sawyer and Rejeski, 2002).

Game design may be defined as “the action of making sense of things related to a
game” (Mora et al., 2015, p. 3). Another description is “the act of deciding what a game
should be” (Schell, 2008, p. xxxviii). Game design is related to enjoyment, while gami-
fication points towards a business objective. Similarity of game design and gamification
design is that both rely on the principles of game design theory.

S. Combéfis, G. Beresnevičius, V. Dagienė42

2.1. Related Works

The ACM and IEEE computer society state that “computer science is becoming one of
the core disciplines of a 21st century university education, that is, something that any
educated individual must possess some level some level of proficiency and understand-
ing of proficiency and understanding” (ACM/IEEE…, 2013, p. 48). However, there
are a lot of students who are becoming less interested in computer science. Colleges
and universities routinely report that almost half of those students who initially choose
computer science study soon decide to abandon it. There are high dropout rates as well
as high failure rates of high school students in programming courses. Decades of effort
have been put into decreasing these rates.

There were several approaches to motivate students to learn programming. Program-
ming fundamentals may be hard skills to learn for students, especially for novices. In
order to help students, there are several attempts to teach programming by using educa-
tional or serious games.

Programming courses are an important part in computer science subjects. Object-
oriented programming is difficult for students, especially first year students. The embed-
ding of gamification in programming courses could maximize student participation and
have a positive impact on learning (Azmi et al., 2015). The gamified social activity is de-
signed to promote interaction among students and they may assist and give feedback to
each other online. Online collaborative learning and the participation of students should
be emphasised as well. Moreover, aesthetics is also a very important part in a game,
because it makes it “fun”, which contributes to engage students in the learning process.
The embedding of gamification in programming courses were analysed and showed that
gamification in online collaborative learning can enhance participation among first year
programming students. The participation is an important part in each computer science
study due to motivation and lower dropout rates.

Vihavainen et al. (2014) present another approach in a literature overview. Their
paper reports about 60 pre-interventions and post-interventions and analyses their influ-
ence on students’ pass rates in programming courses. Statistically, pass rates after these
interventions increased nearly by one third compared to traditional teaching. A more
detailed discussion is presented about seven courses on gamification intervention after
which pass rates increased by 10.8% on average.

Tillmann et al. (2013) deals with an alternative platform called “Pex4Fun”. On this
platform, grading of traditional MOOCs (Massive Open Online Course) assignments
has been changed to an automated grading assignment system based on the symbolic
execution, designed for students and teachers. This platform is a game-based learning
and teaching environment, where teachers may create interactive games for students.
Students can learn programming by playing programming games in “Pex4Fun” as well
as having programming duels between each other.

There are several important components of game elements. As Hunicke et al. (2004)
have discovered the game mechanics represents data and algorithms. Game dynamics
is the lifecycle of the mechanics that act to engage a player’s input and other’s output.
Also, game aesthetics plays important role in the emotional part of the player in order to
keep them engaged with the game.

Learning Programming through Games and Contests: Overview, ... 43

Several researchers worked on more detailed classification of games. For example,
Azmi et al. (2015) classified game elements into three categories 1) game mechanics
(badges, leaderboard, points, levels...), 2) dynamics (personal dynamics – desire for re-
ward, personal promotion; social dynamics – altruism; achievements, peer collabora-
tion), and 3) aesthetics (challenges). The gamified design needs to embed collaborative
elements for collaboration among the students. Aesthetics is recommended element in
educational games, because it makes the game “fun” and engages with the learning
process. Online educational game should have the online support as well as collabora-
tive learning.

While there is still scepticism that something called a game could be anything more
than a leisure activity, serious organizations are getting serious results with serious games.
Serious games may be defined as an application with three main components: experi-
ence, entertainment, and multimedia (Laamarti et al., 2014). Especially entertainment
dimension in serious games has the potential to enhance the user’s experience through
multimodal interaction. Additionally, digital serious games contain different media.

The paper of Laamarti et al. (2014) overviews studies on serious games in different
application areas including education, well-being, advertisement, cultural heritage, inter-
personal communication, and health care. Also, many platforms were analysed and dis-
cussed, what the necessary components of the game to be successful are. A survey on dig-
ital serious games in general is conducted and a taxonomy of serious games is created.

Several components of serious games were distinguished and categories of criteria
were suggested (Laamarti et al., 2014). These criteria may be useful for any program-
ming games as well. So, providing guidance to players within the game is important.
This will provide them with the necessary knowledge and prevents them from feeling
“lost” or disturbed. Another thing is avoiding negative consequences in the game, be-
cause otherwise it may result in the player’s low performance. Music element makes
players play the game longer, because of more motivation and engagement will be as an
effect of this. Multiplayer collaborative exercise games are more motivating and engag-
ing than single-player appropriate games. Collaborative environment increases players’
motivation. It is significantly important to offer challenges in the game for children, but
the challenges must be at the right level (neither too high, nor too low). It is the key in
keeping the players’ interest in the game. Educational games need to take into considera-
tion sound instructional models to be successful.

More detailed recommendations are provided for educational games designed for
using in a classroom. School teachers are concerned about the curriculum and they also
have limited time resources. It is recommended that educational games would be based
on the curriculum due to the acceptance of many teachers and integration in the class.

Additional recommendations for necessary components of the games to be success-
fully used can be as follows (Laamarti et al., 2014):

 a.	 User-centred software engineering: an important element is the perspective that
the designers contribute to the development teams and the experience that the
player will obtain.
 b.	 Multimodal games: multiple modalities should be incorporated (e. g. visual, au-
ditory and haptic combination).

S. Combéfis, G. Beresnevičius, V. Dagienė44

 c.	 Social well-being: stimulating a feeling of virtual presence or connectedness of
social well-being in real life.
 d.	 Adaptive gaming: a serious game should adapt or personalize a particular play-
er’s capabilities, needs, and interests.
 e.	 Standardization of evaluation: heuristic evaluation standards must turn into a
reality. That is useful for acquiring higher credibility.
 f.	 Sensory-based simulations: serious games can be created based on real world
sensory data so that real world scene would be accurately reconstructed. 

Many commercial games demonstrate the properties of sound instructional design,
even in games not intended for educational purposes (Becker, 2008). The author has
recommended the following success factors for educational games: 1) Gain attention; 2)
Inform learners of the objective; 3) Stimulate recall of prior learning; 4) Present stimu-
lus material; 5) Provide learning guidance; 6) Elicit performance; 7) Provide feedback;
8) Assess performance; 9) Enhance retention and transfer. These factors were based on
well-known learning and instructional theories.

One suggestion for recreating games is to modify an existing non-educational games
into programming games (Muratet et al., 2010). The authors have used existing online
non-educational games ideas to develop their own serious games. For example, there
is a game “Kernel Panic”, having following features: it has no resource management
except for time and space; all units are free to create; it has a small technology improve-
ment tree with less than ten units; and it uses low-end vectorial graphics, which match
the universe. In this game a player gives orders to the units to carry out operations (i.e.
moving, building, and so forth). So the authors (Muratet et al., 2010) changed the game
design that the player has to write a program code in order to make the actions of his
units and play. The authors modified some games into serious games and students, e.g.
players may play these games using different programming languages: C, C++, Java,
OCaml, Ada and an interpreted language called “Compalgo”.

Another paper (Cuba-Ricardo et al., 2015) describes some characteristics and regu-
larities from the behaviour of three students as they solved a programming problem as
well as reveals the methodology stages using several methods, techniques and tools.
The paper is limited by the time of contestants, who have between 60 and 90 minutes in
contest of final states.

Successful computer programmers must have several cognitive skills as listed by
Surakka and Malmi (2004). Contestants’ opinions must be taken into account in order
to have full view of their outputs. So, it was decided to use computer programs that take
screenshots in short periods of time. The methodology of characterizing the cognitive
process of solving programming problems was organized into five stages:

Preparation of the process.a.	
Recording the process of exercise application.b.	
Analysis, processing and assessing of the partial reports (observation of pic-c.	
tures).
An interview session.d.	
Final assessment.e.	

Learning Programming through Games and Contests: Overview, ... 45

The implementation of the methodology revealed that programmers’ took notes in
the worksheets and the reasoning followed when determining the solution algorithm.
So, monitoring programming students’ actions is a useful method to discover not only
final outputs, but intermediate results of the learning process as well. We think it may
be one of the essential issues to be taken into consideration of teaching programming
curriculum, especially for novices. Monitoring process could be done by computer auto-
mated programs and be used as a general method (e.g. it may be a live survey after your
programming contest).

Researchers focus on investigating successful components of educational games that
could help to reduce dropout rates of students in computer science. The embedding of
gamification in programming courses can be one of solutions for that: it can help to
maximize student participation and learning, motivate and reduce dropout rates, espe-
cially for novices in programming (Azmi et al., 2015). Some platforms, e.g. Prog&Play
may help even to recruit students in computer science (Muratet et al., 2010). Interven-
tion of educational games in programming courses raises pass rates by 10.8% on average
(Vihavainen et al., 2014).

A feedback is an important and necessary part in education and educational games
(Azmi et al., 2015; Cuba-Ricardo et al., 2015; Tillmann et al., 2013). Good feedback can
be implemented by providing guidance to players within the game so that they do not feel
“lost” (Becker, 2008) or by avoiding negative consequences in the game. Another solu-
tion is to make the game a multiplayer one to motivate players to play the game longer.

The most successful factors are multiple modalities of games, players’ collaboration,
adaptive or personalized game components based on real world sensory data (Laama-
rti et al., 2014). Non-educational games may be gamified and used for teaching program-
ming courses as well (Muratet et al., 2010). Contests and duels in programming games
are engaging and may be used to raise programming skills (Cuba-Ricardo et al., 2015).

All the authors that are mentioned in this section have stated that educational games
motivate students to learn. In general, you may use all these researched factors when
your own create programming games.

2.2. Taxonomy of Educational Games

As there is growth of researches in the educational games field and it is a necessity to
improve the value of teaching or learning programming by educational game, we were
working on the taxonomy of educational games. We adapted the framework of serious
games’ taxonomy based on the paper (Laamarti et al., 2014). Firstly, we will provide a
short introduction to the mentioned taxonomy. After that we will discuss our novelties
and provide a classification of several online programming games.

Five categories for serious games classification are presented by (Laamarti et al.,
2014, p. 6):

 1.	 Application Area refers to different application domains (education, well-being,
training, advertisement, interpersonal communication, health care, others). 

S. Combéfis, G. Beresnevičius, V. Dagienė46

 2.	 Activity. It depends on the activity of a player to play a game (physical exertion,
psychological, mental).
 3.	 Modality. Here it is the channel by which information is sent from the computer to
the human(s) participating in the game (visual, auditory, haptic, smell, others).
 4.	 Interaction Style. The interaction style defines whether the interaction of the
player with the game is done using keyboard, mouse, or Joystick or using some
intelligent interfaces, e. g. a brain interface, eye gaze, movement tracking, and tan-
gible interfaces. The research showed that choosing the right interface may have an
impact on the success of the game.
 5.	 Environment. This criterion defines the environment of the digital game (social
presence, mixed reality, virtual environment, 2D/3D, local awareness, mobility and
online). 

We investigated the classification and found limitations, especially when applying
for programming education by using games. For educational online programming games
an extension and adaptation of the proposed taxonomy are needed (Fig. 1).

Application area. So, an application area of programming games is only one – edu-
cation to program educational games. A field of the programming educational games
activity usually is a mental process. We will have in mind that application area of educa-
tional programming games is education, activity field is mental and we will omit these
fields as a result.

Modality. Usual modality fields of educational programming games are visual and
auditory, but sometimes it may be haptic.

Fig.1. The classification of the educational programming games (adapted and extended sche-
ma of Laamarti et al., 2014).

Learning Programming through Games and Contests: Overview, ... 47

Interaction style. Interaction style in our taxonomy is keyboard/mouse, tangible
interface, brain interface and joystick, because educational games usually may be classi-
fied just in these fields. But we remain open to discussion about this question.

Environment. As environments of programming games may be any of Laamarti
et al. suggested environments, we include all of the areas: social presence, mixed reality,
virtual environment, 2D/3D, local awareness, mobility and online.

Learning approach. We include this new field to classification of educational games.
This is because analysed research papers on educational games pays a lot of attention
to successful methods of teaching or learning. We propose that the learning approach of
educational games may be classified into single player, multi player, mixed players (part
of the game may be single-player game and part of the game may be multi-player game),
peers (it is important to pay attention to communication between peers), collaboration
(some educational games may teach team work), support of teachers (students easier
learn while they are playing with a help of teachers/lecturers).

3. Online Platforms for Learning Programming

Several different kinds of online platforms to learn programming do exist. The most
classical platforms are able to automatically execute code and provide feedback. They
provide lessons that the learner can follow and propose interactive coding exercises with
immediate correction. Combéfis and le Clément de Saint-Marcq (2012) proposes a short
review of such platforms. Swacha and Baszuro (2013) propose such a classic platform,
but they included game elements in it. For example, the courses in their platform are
characterised by the set of completed areas, the number of earned points and the attained
level. Moreover, it is possible to challenge other students and take part in contests.

In addition to the specific platforms to learn coding and programming, online courses
are also proposed in the form of MOOCs (Combéfis et al., 2014). Another example is
Khan Academy, which provides interactive lessons and videos with coding exercises
(Morrison and DiSalvo, 2014). Both these kinds of platforms propose a full course with
videos for the theory and then practical coding exercises with more or less detailed direct
automated feedback. They are designed with the learning process as the main objective.

This section presents three main categories of online game platforms with different
goals: learn to code, learn algorithmic thinking and learn to create games. Proposed ex-
amples are discussed according to the background presented in the previous section, for
the particular case of learning computer science skills. The last subsection, then discusses
how and what game elements can be added to an online platform in order to gamify it.

3.1. Learn to Code

The first category of game platforms contains those whose goal is to make their users
learning and training to code. Coding games require the learner to understand and to be

S. Combéfis, G. Beresnevičius, V. Dagienė48

able to write code to solve challenges. Different coding activities are possible, the main
ones being:

Bugfix●● : the user is given a program that contains a bug to be fixed.
Recovery●● : the user is given a program where some parts are missing that have to
be filled.
Code writing●● : the user has to write an instruction, a function or a program from
scratch.
Agent●● : the user has to write a program that represents the behaviour of an intel-
ligent agent.

To help the learner to identify the bug, additional information is provided in the state-
ment of the challenge. For example, a precise specification of the program or the results
of the execution of test sets can be provided. Once the learner has written/fixed the
code, he submits it and then gets a feedback. As summarised by Combéfis and Wautelet
(2014), feedback is very important for the learning process. Those feedbacks can take
several forms such as:

A simple succeeded/failed status.●●
The result of the execution of test sets.●●
A textual feedback providing hints regarding the failure.●●

Codecademy is an example of an online game platform to learn how to code (Fig. 2).
The left part of the window provides the explanations of the new concept to learn. In-
structions about the exercise are then provided at the very bottom of this left pane. The
learner can directly code in the editor located in the right part and then submit his/her
code for correction. If the code is wrong, a simple feedback trying to explain why is
provided and if it is right the learner earns a badge, increases his/her progress and can
go to the next lesson.

Fig. 2. Codecademy proposes a course composed of lessons in which you have to write code
and for which you will earn badges and make progress whenever you succeed.

Learning Programming through Games and Contests: Overview, ... 49

3.2. Learn Algorithmic Thinking

Coding is not the only field of computer science that can be taught through online plat-
forms. As described by Combéfis et al. (2013), it is also possible to grow algorithmic
thinking through interactive problems, in particular to learn programming concepts.

For example, LightBot (https://lightbot.com) is used to learn the notion of pro-
gramming and in particular recursion through a simple game where the user has to solve
puzzles. Each puzzle requires the learner to write a program composed of visual blocks
to drive a robot to a goal. Fig. 3 shows the main window of the game where the robot
and its environment are shown on the left and the program representing the behaviour
of the robot is shown on the right. LightBot is not a platform to learn how to code, but to
teach programming concepts. In the more advanced levels, the notions of function and
therefore recursion are introduced.

Another example is Initial Conditions (https://reheated.org/games/ini-
tial), shown in Fig. 4, where the player has to find a solution to a search problem. In
this game, the player faces to a grid with rivers and has to place a certain number of
villages so that a river passes through them and so that no two cities are adjacent (hori-
zontally or vertically).

Fig. 3. In LightBot, the player has to find a correct sequence of actions to perform so that the
robot reaches the blue cell and lighten it.

Fig. 4. In Initial Conditions, the player has to place cities on a map so that a river is passing
through them and so that two cities cannot be adjacent. This particular map has one river and
the player has to place five cities.

S. Combéfis, G. Beresnevičius, V. Dagienė50

This problem is a typical an artificial intelligence (AI) search problem that could for
example be solved using any exploration algorithms, or with a constraint programming
solver, for example. Again, it is not explicitly explained to the learner who just sees a
game with puzzles to solve. Playing the game will challenge the learner and should de-
velop algorithmic thinking in learner’s mind.

Again, if the purpose is educational, the provided feedback is very important. For
LightBot, the feedback is visual since the learners can visualise the execution of their
programs and therefore visually debug them if the robot failed to reach the goal. For
Initial Conditions, the only feedback is a success/failed status indicating which cities are
violating the constraints or which river is missing villages.

3.3. Learn to Create Games

Finally, another kind of online programming learning platforms offers the possibility for
the users to create their own games. On these platforms, the learner has to program a
game, typically with a visual programming language. For example, Scratch (https://
scratch.mit.edu) uses a visual block programming language to program the behav-
iour of sprites.

The main window of the application where the game is shown on the left part and the
code is shown on the right (Fig. 5). The behaviour of each sprite can be programmed and
they can also communicate together.

Another similar platform is Flowlab (http://flowlab.io) where the game is rep-
resented by flowchart diagrams (Fig. 6). As in Scratch, the game is built with sprites
whose individual behaviours can be programmed.

Fig. 5. The main window of the Scratch program is split into two parts: the left part shows
the sprites of the game and the right part shows the programs representing the behaviour of
the different sprites.

Learning Programming through Games and Contests: Overview, ... 51

This last category requires the learner to be able to program, but not necessarily to
write code. The focus is put on the creativity and on the skills needed to design and ar-
chitecture an application.

3.4. Gamification of an Online Learning Platform

Proposing an online platform is useful to make the material available to every learner.
But only relying on the online aspect is not enough to motivate them to learn. As detailed
in the second section, gamification can help to foster learners to make progress, increas-
ing their engagement and motivation. Several kinds of elements can be introduced to
build online game platforms:

Points and rankings amongst players.●●
Levels, grades, badges that are related to the progression.●●
Live fights/contests between players or against bots.●●

One other important element that can be taken into account is the contextualisation
of the statements of the challenges and exercises. There are indeed two main strate-
gies that can be used to gamify an online platform to learn programming. Either game
elements can be added to an already existing platform (points, rankings, badges…) or
the platform can be rethought and redesigned so that to transform it completely into

Fig. 6. In Flowlab, the user programs the game using flowchart diagrams representing the
behaviours of the different sprites it included in the game.

S. Combéfis, G. Beresnevičius, V. Dagienė52

a game. As highlighted by Morrison and DiSalvo (2014) who relate the gamification
of the Khan Academy, one critical motivational element to have is to place the user
at the centre by adding elements of pure play, to make the gaming more “playful”.
Examples of such approaches include CodeSpells (Esper et al., 2013) and Gidget (Lee
et al., 2013).

Ibáñez et al. (2014) made an experiment to explore the impact of gamification
techniques on the engagement and learning about the C programming language. The
authors conclude that the gamification they performed has a positive impact on the
students’ engagement. Most students continued to work even after having earned the
maximum amount of points. O’Donovan et al. (2013) present a case study where they
used gamification in a university-level course about game development. In their pa-
per, the authors provide insights about gamification mechanics and explain how the
design of their game has been created and which game elements have been used. Their
research allows them to conclude that the gamification they performed in a university
setting was effective, increasing the engagement and understanding of the students.
Again, it is a situation where the platform has been thought as a game from the start-
ing point.

4. Online Programming Contests

This section presents several online game platforms, so that to cover the different ten-
dencies that exist today and the characteristics presented in the previous section. The
focus has been put on platforms that available for free (at least a standard version).

4.1. Leek Wars

Leek Wars (http://leekwars.com/) is a game where the player has to program the
behaviour of a leek. The goal of the leek is to defeat another leek during a fight that takes
place in a garden. Depending on the level of the player, his/her leek can be equipped with
more weapons, health-recovering objects, etc.

The leeks are programmed in JavaScript and an API provides functions to manipu-
late the leak and to get information about the environment. This API is very well docu-
mented, which also trains learners to manipulate such documentation.

The platform offers the possibility to develop several AIs and to choose which one
to use at any time. The player can experiment his/her AIs against bots, before jumping
into the garden to fight with other real players. To motivate the player, a level system has
been put in place. For each fight that is won, the player gains experience points, which
allow him/her to level up. A higher level grants access to more objects such as weapons,
magic spells, etc. It also improves the ranking of the player.

The game also proposes a cooperative mode where teams composed of leeks belong-
ing to different players can fight against other teams. Such cooperative mode is another
technique used in games to foster people to play regularly.

Learning Programming through Games and Contests: Overview, ... 53

4.2. CodinGame

CodinGame (https://www.codingame.com) proposes coding challenges to solve.
Basically, the user is asked to code agents that have to interact in a given environment
in order to achieve a given goal. In the example shown in Fig. 8, the user has to code the
spaceship so that to destroy all the targets on the ground. The spaceship is moving from

Fig. 7. Two leeks are fighting in a war, playing alternatively one after the other. The garden is
divided into cells between which the leeks are moving and has some impassable obstacles.

Fig. 8. In this mission, the agent is a spaceship that must destroy targets on the ground. These
targets have different heights so that the spaceship must destroy them in the right order if it
does not want to enter in collision with any of them.

S. Combéfis, G. Beresnevičius, V. Dagienė54

left to right then back from right to left while descending when it reaches the rightmost
part of the world. The difficulty is that targets have different heights and the spaceship
must avoid entering in a collision with any of them.

Several test sets are provided and to succeed, the code of the player must pass them
all (some being public and others being hidden). The execution of the code also results
in an animation, which makes it possible for the learner to directly visualise the behav-
iour he/she wrote. This latter point helps to increase the motivation and engagement of
the learner, better than a simple textual test execution report. Finally, the platform of-
fers the possibility to code the agents with a lot of different programming languages.

Several challenges/missions are available for the user to tackle. They are organised
into categories such as tutoring, advanced, etc. The users can follow their progress and
that motivates to solve more challenges.

4.3. Code Hunt

CodeHunt (https://www.codehunt.com) is developed by Microsoft Research and
propose coding challenges driven by tests. The goal of the game is to guess what the
code must do, and then fix it until it passes all the tests. Fig. 9 shows the main view of
Code Hunt where the code is on the left and the results of test execution are shown on
the right. Pressing the “Capture code” button triggers the execution of a bunch of tests,
shown on the right.

When the user solves a yet unsolved puzzle, he/she gains points so that to increase
his/her position in the ranking. Moreover, some puzzles are initially locked and will only
unlock when the user has solved enough puzzles. This possibility to unlock puzzles is an
incentive for the user that motivates him/her to progress.

Fig. 9. The main window of Code Hunt is split into two parts: the left part shows the code
being run and the right part shows the result of the execution of the public tests.

Learning Programming through Games and Contests: Overview, ... 55

4.4. Code Fights

Code Fights (https://codefights.com) is a platform where users can participate
in fights against bots or other real players. A fight typically consists in three puzzles to
solve. One fight typically consists of three challenges. As shown in Fig. 10, the main
window shows the statement of the challenge on the right and the code with the results
of public tests on the right.

The learner can train him/herself by fighting bots or can defy any other player for a
fight. There are two kinds of bots: simple ones and others developed by companies. If
you manage to beat a company bot, you got a chance to be contacted by the company
to possibly get a job. Another interesting feature proposed by the platform is tourney,
where you compete with several other real players on the same challenges. To win the
tourney you have to solve all the challenges as fast as possible.

4.5. Discussion and Comparison

The presented online platforms have some common points and differences. First of all,
they are all in the “learn algorithmic thinking” category described in the previous sec-
tion. Then, the level of gamification of the different platforms is quite different. A plat-
form that has been completely designed with games in mind is one that completely
agrees with the definition of gamification, as detailed in the previous section. The first
one, namely Leek Wars, is a full online game with cooperative aspects where the ulti-
mate goal is for the player to level up to become the best leek, the one with the most

Fig. 10. The main window of Code Fights is split into two parts: the left part shows the state-
ment of the challenge and the right part shows the code and the result of the execution of the
public tests.

S. Combéfis, G. Beresnevičius, V. Dagienė56

intelligent behaviours. The three other platforms do contain some game element, but
they are not designed completely as full games. Table 1 summarises the game elements
that appear in the presented platforms.

All the platforms presented in this paper can also be classified according to the
adapted and extended schema we proposed to classify educational programming games.
Table 2 shows how that classification can be done. All the games presented in this paper

Table 1
The four presented online game platforms to learn different skills of coding training and

contains different game elements

Platform Trained skills Game elements

Leek Wars Coding agents’ AI
Inventing algorithms

Points and rankings
Challenges against bots and other players
Cooperative mode

CodinGame Understanding specifications
Coding objects’ behaviours

Points, trophies, badges, rankings
Levels and achievements
Matches against other players

Code Hunt Fixing bugs
Code recovery
Understanding tests sets results

Points and rankings
Levels with challenges to unlock

Code Fights Understanding specifications
Coding algorithms
Fixing bugs
Code recovery

Points, levels and rankings
Matches against other players or bots

Table2
Classification of the platforms

Game Modality Interaction style Environment Learning approach

Codecademy Visual Keyboard/Mouse Social Presence
2D
Online

Single Player

Code Fights Visual Keyboard/Mouse Social Presence
2D
Online

Mixed Player

Code Hunt Visual Keyboard/Mouse 2D
Online

Single Player

CodinGame Visual Keyboard/Mouse Social Presence
2D
Online

Single Player

Initial Conditions Visual Keyboard/Mouse 2D
Online

Single Player

Leek Wars Visual Keyboard/Mouse 2D
Online

Mixed Player
Collaboration

LightBot Visual Keyboard/Mouse 2D
Online

Single Player

Learning Programming through Games and Contests: Overview, ... 57

are visual ones with which the players interact with the keyboard and mouse. Concern-
ing the environment, all the games are of course online ones. They are also all 2D games
and some of them will require social presence, in particular for those where duels are
available. Finally, the learning approaches of those selected games can be either single
or mixed player. One of the game, namely Leek Wars, supports collaboration through the
creation of teams of Leeks.

5. Recommendations and Conclusions

To conclude this paper, the learning of programming is accessible not only to higher
education students, but it is accessible to others as well. A lot of online platforms have
been developed and made accessible on the Internet. In addition to the classical learn-
ing platform or MOOCs, a broad range of game-based online platforms have emerged.
The main advantage of such platforms is that they foster their users to learn and keep
progressing, making programming fun.

Tasks and challenges proposed by these games-based platforms could inspire tasks
proposed in the IOI for two main reasons. First, contestants to the IOI are probably using
those platforms so that they may be expecting similar tasks at the IOI. Second, the moti-
vational aspect of those tasks could be transferred to the IOI contest, also the making it
more motivational and interesting for its contestants.

We referred and analysed papers on gamification: contests; online platforms; online,
educational, programming and serious games. These are our main findings from these
papers for educational or serious programming games to be successful, motivating to
learn programming and so on:

Feedback and assessment is very important in any educational games. Assessment a.	
may be automated or not, but it raises efforts of students. Feedback provides in-
formation about the learning process.
Games must have aesthetics – game must be fun to engage and improve intrinsic b.	
motivation to learn computer science or programming.
Collaborative educational games raise the participation of students.c.	
Participation is necessary for motivation to learn as well as for reducing high d.	
dropout rates of programming students.
Multiplayer collaborative games are more motivating and engaging than single-e.	
player appropriate games.
Guidance in educational game helps players not to feel confused while they are f.	
playing.
Aesthetics make any educational game “g.	 fun”. It involves players into the game.
Avoid negative consequences, because otherwise players may perform low.h.	
Involve music in game design and the players will probably play the game longer.i.	
The level of challenge neither ought to be not too low nor too high (it keeps the j.	
interest of players).
Games with multiple modalities, adaptive or personalized, based on real world k.	
sensory data may be more successful.

S. Combéfis, G. Beresnevičius, V. Dagienė58

Contests and duels in programming games may be used to improve the program-l.	
ming skills.

We proposed taxonomy of the programming educational games and classified several
online programming games / platforms. All of these games are visual; interactive with
keyboard/mouse, 2D and online. The majority of them are designed for a single player,
however, two of them are designed for mixed players (game may be played as single
player or multiplayer) and one of them involves collaboration aspect. As we already
mentioned, multiplayer and collaborating games are more motivating. 3D-games some-
times have more advantages than 2D, but it depends more on a combination of many
other mentioned or not mentioned factors.

Our findings may be useful in creating educational programming games on your
own, or recreating non-educational games and gamifying them to teach programming, it
is especially useful for novices in programming. This research does not propose to use
all these factors, because some of them may be successful in one kind of games, but may
not be successful for other type of games. However, it is recommended to use at least
some of these factors due to our research analyse.

References

ACM/IEEE Computer Society (2013). Computer Science Curricula 2013.Curriculum Guidelines for Under-
graduate Degree Programs in Computer Science. ACM Press, New York, N. Y. USA. Available on the
internet: https://www.acm.org/education/CS2013-final-report.pdf

Alvarez, J., Michaud, L. (2008). Serious games: advergaming, edugaming, training, and more, IDATE, BP 4167,
34092 Montpellier Cedex 5. France, 3–6, 11–12.

Arena, D.A., Schwartz, D.L. (2013). Experience and explanation: using videogames to prepare students for
formal instruction in statistics. Journal of Science Education and Technology, 1–11.

Azmi, S., Iahad,N.A., Ahmad, N. (2015). Gamification in online collaborative learning for programming cours-
es: a literature review. ARPN Journal of Engineering and Applied Sciences, 10(23), 1–3.

Barata, G., Gama, S., Jorge, J., Goncalves, D. (2013). Engaging engineering students with gamification. In:
Proceedings of the 5th International Conference on Games and Virtual Worlds for Serious Applications
(VS-GAMES 2013). 1–8.

Becker, K. (2008). Video game pedagogy: good games = good pedagogy. In: T.C. Miller (Ed.), Dames: Purpose
and Potential in Education. Springer, NewYork, NY, 73–125.

Bishop, J., Horspool, R., Xie, T., Tillmann, N., de Halleux, J. (2015). Code hunt: experience with coding con-
tests at scale. In: Proceedings of the 37th International Conference on Software Engineering (ICSE 2015).
398–407.

Combéfis, S., Bibal, A., Van Roy, P. (2014). Recasting a traditional course into a MOOC by means of a SPOC.
In: Proceedings of the European MOOCs Stakeholders Summit 2014 (EMOOCs 2014). 205–208.

Combéfis, S., Saint-Marcq, D. (2012). Teaching programming and algorithm design with Pythia, a web-based
learning platform. Olympiads in Informatics, 6, 31–43.

Combéfis, S., Van den Schrieck, V., Nootens, A. (2013). Growing algorithmic thinking through interactive
problems to encourage learning programming. Olympiads in Informatics, 7, 3–13.

Combéfis, S., Wautelet, J. (2014). Programming trainings and informatics teaching through online contest.
Olympiads in Informatics, 8, 21–34.

Cuba-Ricardo, G., Serrano-Rodríguez, M.T.,Leyva-Figueredo, P.A., Medoza-Tauler, L.L. (2015). Methodology
for characterization of cognitive activities when solving programming problems of an algorithmic nature.
Olympiads in Informatics, 9, 27–30.

Deterding, S., Dixon, D., Khaled, R., Nacke, L. (2011). From game design elements to gamefulness: Defining
“gamification”. MindTrek, 2.

Dickey, M.D. (2005). Engaging by design: how engagement strategies in popular computer and video games
can inform instructional design. Educational Technology Research and Development, 53(2), 67–83.

Learning Programming through Games and Contests: Overview, ... 59

O’Donovan, S., Gain, J., Marais, P. (2013). A case study in the gamification of a university-level games de-
velopment course. In: Proceedings of the South African Institute for Computer Scientists and Information
Technologists Conference (SAICSIT 2013). 242–251.

Esper, S., Foster, S., Griswold, W. (2013). CodeSpells: embodying the metaphor of wizardry for programming.
In: Proceedings of the 18th ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE 2013). 249–254.

Gee, J.P. (2003). What video games have to teach us about learning and literacy. Computers in Entertainment
(CIE), 1(1), 20.

Gee, J.P. (2005). Good video games and good learning. Phi Kappa Phi Forum, 85(2), 33–37.
Hunicke, R., Leblanc, M. Zubek, R. (2004). MDA: A formal approach to game design and game research. In

Proc. AAAI workshop on Challenges in Game. AAAI Press, 1–5.
Ibáñez, M.-B., Di-Serio, Á., Delgado-Kloos, C. (2014). Gamification for engaging computer science students in

learning activities: a case study. IEEE Transactions on Learning Technologies, 7(3), 291–301.
Laamarti, F., Eid, M., El Saddik, A. (2014). An overview of serious games. International Journal of Computer

Games Technology. Article ID 358152, vol. 2014, 1–15. Available on the internet:
http://dx.doi.org/10.1155/2014/358152

Lee, M., Ko, A., Kwan, I. (2013). In-game assessments increase novice programmers’ engagement and level
completion speed. In: Proceedings of the 9th Annual International ACM Conference on International Com-
puting Education Research (ICER 2013). 153–160.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., Resnick, M. (2004). Scratch: a sneak review. In: Pro-
ceedings of the 5th International Conference on Informatics in Schools: Situation, Evolution and Perspec-
tives (ISSEP 2011). 155–164.

Mora, A., Riera, D., González, C, Arnedo-Moreno, J. (2015). A literature review of gamification design frame-
works. In: 7th International Conference on Games and Virtual Worlds for Serious Applications (VS-Games),
At Skövde. IEEE, 1–8.

Morrison, B., DiSalvo, B. (2014). Khan Academy Gamifies Computer Science. In: Proceedings of the 45th
Technical Symposium on Computer Science Education (SIGCSE 2014). 39–44.

Muratet, M., Torguet, P., Viallet, F., Jessel, J.-P. (2010). Experimental feedback on Prog&Play: a serious game
for programming practice. In: L. Kjelldahl and G. Baronosk (Eds.), EUROGRAPHICS. 1–8.

Nah, F., Zeng, Q., Telaprolu, V., Ayyappa, A., Eschenbrenner, B. (2014). Gamification of education: a review of
literature. In: Proceedings of the First International Conference on HCI in Business (HCIB 2014). 401–409.

Prensky, M. (2003). Digital game-based learning. Computers in Entertainment (CIE), 1(1), 21.
Ravaja, N., Saari, T., Laarni, J., Kallinen, K., Salminen, M., Holopainen, J., Järvinen, A. (2005). The psy-

chophysiology of video gaming: phasic emotional responses to game events. In: Proceedings of DiGRA
2005 Conference: Changing Views – Worlds in Play. Vancouver, Canada, 3, 1–13.

Sawyer, B., Rejeski, D. (2002). Serious Games: Improving Public Policy through Game-Based Learning and
Simulation. Woodrow Wilson International Center for Scholars, Washington, DC, USA.

Schell, J. (2008). The art of Game Design: A Book of Lenses. Carnegie Mellon University and Schell Games,
Pittsburgh, Pennsylvania, USA.

Shute, V.J. (2011). Stealth assessment in computer-based games to support learning. In: S. Tobias and D. Fletch-
er (Eds.).Computer Games and Instruction. Information Age: Charlotte N. C., 503–524.

Squire, K. (2008). Open-ended video games: a model for developing learning for the interactive age. In: K.
Salen (Ed.), The John D. and Catherine T. MacArthur Foundation Series on Digital Media and Learning.
MA: The MIT Press, Cambridge, 167–198.

Surakka, S., Malmi, L. (2004). Cognitive skills of experienced software developer: Delphi study. In: Korhonen
A., Malmi, L. (Eds), Kolin Kolistelut–Koli Calling 2004. In: Proceedings of the Fourth Finnish/Baltic Sea
Conference on Computer Science Education. Finland, Koli, 37–46.

Swacha, J., Baszuro, P. (2013). Gamification-based e-learning platform for computer programming education.
In: Proceedings of the X World Conference on Computers in Education (WCCE 2015). 122–130.

Tillmann, N., de Halleux, J., Xie, T., Bishop, J. (2014). Code hunt: gamifying teaching and learning of com-
puter science at scale. In: Proceedings of the First ACM Conference on Learning @ Scale Conference (L@S
2014). 221–222.

Tillmann, N., De Halleux, J., Xie, T., SumitGulwani, Bishop, J. (2013). Teaching and learning programming and
software engineering via interactive gaming. In: 35th International Conference on Software Engineering
(ICSE). IEEE, San Francisco, CA, 1117–1126.

Vihavainen, A., Airaksinen, J., Watson, Ch. (2014). A systematic review of approaches for teaching introductory
programming and their influence on success. In: ICER ‘14Proceedings of the tenth annual conference on
International computing education research. ACM, New York, NY, 19–26.

S. Combéfis, G. Beresnevičius, V. Dagienė60

S. Combéfis obtained his PhD in engineering in November 2013 from
the Université catholique de Louvain in Belgium. He is currently work-
ing as a lecturer at the École Centrale des Arts et Métiers (ECAM),
where he is mainly teaching informatics. He also got an advanced
master in pedagogy in higher education in June 2014. He founded the
Belgian Olympiad in Informatics (be-OI) with Damien Leroy in 2010.
In 2012, he introduced the Bebras contest in Belgium and at the same
time he founded the CSITEd non-profit organisation that aims at pro-
moting computer science in secondary schools.

G. Beresnevičius is a doctoral student of informatics engineering at
the Institute of Mathematics and Informatics of Vilnius University. He
obtained his master degree in Mathematics and Informatics Didactics
with Cum Laude diploma in Vilnius University. His research focuses
on teaching informatics, especially programming through games, as
well as the theories of serious games and gamification. He participated
in several international conferences and presented his research. He
likes programming websites using HTML, CSS, JavaScript, PHP and
MySQL languages.

V. Dagienė is head of the Informatics Methodology Department at the
Institute of Mathematics and Informatics of Vilnius University. Her
current research is in Computer Science Education, focusing on cogni-
tive aspects of algorithmic thinking as well as computational think-
ing. She has published over 200 scientific papers and methodological
works, has written more than 50 textbooks in the field of informat-
ics and information technology for primary and secondary education.
She works with various expert groups all over the world. In 2004, she
established the Bebras Challenge on Informatics and Computational
Thinking, which is successfully implemented in more than 50 coun-
tries. She has participated in several EU-funded R&D projects, as well
as in a number of national research studies connected with technology
and education.

Olympiads in Informatics, 2016, Vol. 10, 61–72
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.04

61

The Place of the Dynamic Programming Concept
in the Progression of Contestants’ Thinking

Ágnes Erdősné Németh1,2, László ZSAKÓ3

1Batthyány High School, Nagykanizsa, Hungary
2Doctoral School, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
3Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
e-mail: erdosne@blg.hu, zsako@caesar.elte.hu

Abstract. The special problem-solving strategies have been receiving a lot of attention lately,
whether it is teaching computational thinking for all or computer science for competitors. A di-
dactically interesting question is how problem solving can be developed in children’s minds, what
steps and tasks lead through from understanding the idea to its professional usage. In this paper
we present and explain how and in what forms the given problem-solving strategies, especially
the dynamic programming concept, appear in children’s informatics studies: from CS unplugged
activities through Bebras tasks and national CS competitions to efficient coding at the IOI.

Keywords: dynamic programming concept, teaching informatics in primary and secondary
schools, preparing for contests.

1. Overview

There are a lot of problem-solving strategies which every contestant has to be familiar
with. In this paper, we want to focus on one of the most important ones, specifically dy-
namic programming, because “[Until] you understand dynamic programming, it seems
like magic” (Skiena, 2008).

The dynamic programming name came from Bellmann in the 1950’s (Dreyfus,
2002). He wanted to find a name for the multistage decision making process, in which
the general case is very hard to solve thus one must use the divide & conquer concept. It
leads back to special cases, when the solution is expressed more easily – not in terms of
the unknown function, but in terms of an action or decision.

If we want to speak about dynamic programming, we also have to examine other cor-
responding concepts, like recursion, memoization and divide & conquer.

The concept of recursion consists of a recursive function and a recursive implemen-
tation; it is a top-down approach. Usually the runtime of the algorithm is exponential
and this technique usually fails already in a small sample size. The memoization is a
top-down approach as well, it is more effective than recursion. The core idea is the

Á. Erdősné Németh, L. Zsakó62

same: recursive function and recursive implementation, but storing the calculated re-
sults, thus without calling the recursive step again when the actual state previously
appeared.

When we are experienced enough to implement a recursive approach correctly,
there is a special technique for dramatically reducing the runtimes of certain algo-
rithms from exponential to polynomial or from factorial to exponential, at the expense
of higher memory usage. This is done by solving sub-problems and storing the results
using a dynamic programming concept. The concept is about a recursive function, but
the implementation is to build the values from bottom up without calling the recursive
step repeatedly.

The simplest type of dynamic programming is when an array is filled – namely a
table – cell-by-cell in a predetermined order, implementing the recursive function from
bottom up. We will call it a basic DP.

Some people use the term dynamic programming only for those recursive problems,
which involve optimization, but the technique of completing a table to solve any other
type of problem is almost the same when it comes to implementing the solution. We will
call it classic DP.

The dynamic programming as problem-solving strategy is the implementation of the
following five steps (Horváth, 2004):

Analysing the (optimal) solution’s structure.1.	
Dividing it into subproblems and components:2.	

Dependence of components must be acyclic.a.	
Every subproblem (optimal) solution should be a (recursive) expression of b.	
components’ (optimal) solution.

Expressing each subproblem’s (optimal) solution as a (recursive) function of com-3.	
ponents’ (optimal) solution.

These three steps are the planning of recursive algorithm. DP comes from the next
two steps:

Calculating subproblems’ (optimal) solutions from bottom up (completing a ta-4.	
ble).
Calculating an (optimal) solution from the previously calculated and stored infor-5.	
mation.

If you are familiar with the basic DP techniques then you could continue with some
advanced techniques (Steinhardt, 2008).

The first advanced type is to keep track of all possible transition states. In this case
DP means filling out a table row-by-row, with the values depending on the row number
and values in the previous row.

Second advanced type is the dynamic greedy type.
The third advanced type is a steady state convergence, only for more experienced

students. In this case the recursive equation must be repeatedly applied, then values will
converge exponentially to the correct values.

All of the DP types have a place in different stages and in different ages of contes-
tants’ studies.

The Place of the Dynamic Programming Concept in the Progression ... 63

2. Place of Dynamic Programming in Algorithms Textbooks

There are a lot of textbooks about algorithms. They discuss all algorithms sequentially
and directly as they are written for university students. The structure of these books and
the place of dynamic programming in them is different.

In the textbook of Skiena (2008) the DP takes place after data structures, sorting and
selecting algorithms, graphs, combinatorics, backtrack and parallel programming. In the
chapter of dynamic programming, he compares algorithms using cache vs. computa-
tion at first. After this, he discusses the problem of string matching, longest increas-
ing subsequence and partition problem. The limitation of DP is presented via travelling
salesperson’s problem and there are some words about correctness and efficiency of DP.
Just after the DP concept comes the recursion and memoization, the concepts of the top-
down structures.

In the textbook of Kleinberg and Tardos (2006) there are basic algorithms, graphs and
greedy algorithms first. To process sets which can be divided into independent parts they
recommend divide & conquer concept. Just after this method, they speak about DP: the
recursion, the memoization and iteration over sub-problems are the parts of this chapter.

In the textbook of Dasgupta et al. (2006), dynamic programming is presented after arith-
metics, primes, cryptography, hashing, divide & conquer, graphs and greedy algorithms via
examples: travelling salesman’s problem, longest increasing subsequence and knapsack.

In the textbook of Sedgewick and Wayne (2011) there is no chapter dedicated to DP,
but the concept appears in some points of the book.

In the textbook of Gupta (2009) DP comes after introduction to algorithms, divide &
conquer method and greedy method.

Bebis (2007) has lot of chapters about sorting and searching methods, DP comes
after that.

There are not two textbooks, in which the place of DP is the same in the sequence
of algorithms. Sometimes it comes before graphs (Gupta, 2009), often it comes after
graphs. Occasionally it is before recursion (Kleinberg and Tardos, 2006), but in the most
common order its place is after recursion and memoization. Sometimes it is placed be-
fore the greedy algorithms, sometimes after. Textbooks do not usually stress the differ-
ences between dynamic programming and greedy approach, nor warn they about the
danger of accidentally using one instead of the other.

These textbooks are almost useless for primary and secondary school pupils because
of their advanced mathematics and informatics contents. Some parts of them may be
useful in upper secondary, just for contestants preparing for IOI.

3. New Way for Contestants Learning DP in Upper Secondary School

Last year there was a paper in IOIJournal about the critical analysis of textbooks and
new way of teaching DP (Forišek, 2015) for upper secondary school students preparing
for national olympiads and IOI. He started with the Fibonacci sequence – something is

Á. Erdősné Németh, L. Zsakó64

well-known by children from math studies – implementing it with a recursive function
and making this function more efficient with memoization. He compares iterative and
dynamic solution, then introduces DP bottom-up. He demonstrates that the exponential
solution longest common subsequence problem with a top-down approach turns poly-
nomial (o(n2)) with a bottom-up approach. It is a very good structure if students want to
prepare for olympiads all at once.

There is a book about competitive programming, which was written for contestants
preparing for ACM ICPC and IOI (Halim and Halim, 2014). It is not a real textbook, it
teaches the effective type detection of tasks and the correct, error-free coding, not the
concepts behind the algorithms. According to it contestants’ main goal ‘should be to
honing [their] ability to recognize a problem as DP, finding the recursive formula for
such a problem, coding the problem, and doing all of this quickly’.

After data structures and problem-solving strategies like searching – iterative & re-
cursive – divide & conquer concept and greedy algorithms comes dynamic program-
ming through an example: UVA 11450 wedding shopping. The chapter begins with the
repetition of recursion, backtrack, optimization and counting problems. It shows, that
this task’s solution: greedy method failed with wrong answer (WA), divide & conquer
method failed with WA (because of non-independent parts), complete search failed
with time limit exceeded (TLE). The dynamic programming method with top-down
(memoization) and with bottom-up approach is working. After this very detailed analy-
sis he gives six more example with analysis and many task recommendation to become
familiar with this method.

We think these methods work effectively for students in upper-secondary-school-age
(grade 11–13) preparing purposefully for national and international olympiads.

4. Teaching Dynamic Programming in Primary and Secondary School

If the students know structured programming concept (Floyd), they are familiar with
the top-down concept too, because of stepwise refinement; and they are familiar with
the concept of bottom-up, because concrete objects and functions. So the pupils knows
top-down and bottom-up paradigms as soon as they begin to implement a computer
program.

We think teaching dynamic programming ideally begins in upper primary school in
mathematics and informatics lessons. Implementation of DP on computers is possible
when children are familiar with the basic data structures (integer, boolean, array), basic
algorithms (sequence, iteration, selection, searching, procedures and functions) and the
concept of recursion.

4.1. CSUnlugged

There is not any activity yet that covers dynamic programming in the CSUnplugged re-
pository, but there is an intention to make a good one from the change-making problem.

The Place of the Dynamic Programming Concept in the Progression ... 65

4.2. BEBRAS

In the Bebras competitions there are tasks about DP every year. There are other tasks,
in which the recursion is the best solution. There are many in which the greedy gives
wrong answer and the dynamic programming concept must be used for the right solu-
tion.

On Bebras competitions the DP problems appear in a wide range of age groups and
difficulties also. It proves that the concept of DP comes much earlier than at the end of
secondary school and it is understandable for everybody, not only for contestants: it is
part of computational thinking skills.

The easiest task of DP is from 2013 for grade 5–8: the Pairs without Crossing (Kreu-
zungsfreie Pärchen). The brute force algorithm is working, but takes long time to try
every possible connection pairs, the dynamic concept make it easy. In 2011 the problem
Earn coins (Münzen verdienen) is a special case of the classic knapsack problem. This
one was one of the hard problems for the grade 5–6, middle for grade 7–8 and easy for
grade 9–10. In 2014 another classic DP problem appeared, the Expensive Bridges (Teure
Brücken) which one was hard problem for the grade 7–8, middle for grade 9–10 and easy
for grade 11–13.

There are more problems connected to DP for secondary-school-age students: the
Jumping Puddles (Pützenspringen), the game ROOK, in 2010 the task Pinecone (Tan-
nenzapfen), in 2014 the Best translation (Beste übersetzung) and in 2015 the Fireworks2
(das Feuerwerk2).

4.3. Tasks for Contestants of Upper-Primary-School-Age

In the grade 5–6 we could start with LOGO programming. It provides a strong foun-
dation in the basic programming structures, like sequence, iteration and selection.
Through the drawings, it also visualizes the concept of recursion well. They can imag-
ine and implement binary tree (Fig. 1), the Sierpinski-triangle (Fig. 2), the Koch-curve
(Fig. 3).

 Fig. 1. Binary tree. Fig. 2. Sierpinski-triangle.

Fig. 3. Koch-curve.

Á. Erdősné Németh, L. Zsakó66

In Hungary and many other countries, they meet table filling and the thought of
recursion in mathematics. They calculate total number of possible paths in a grid of
characters, from the top-left corner to the right-bottom corner to spell a given word
(Fig. 4). They calculate total number of possible paths, even if there are empty squares
in the grid (Fig. 5).

Pupils of grade 7–8 meet simple recursive sequences and functions, like the Fibo-
nacci sequence. In mathematics lessons, they meet combinatorial problems (permuta-
tion, variation and combination without repetition) without naming them. They come
across problems, like longest/shortest path in a directed/undirected graphs and coloring
problems on very small graphs, coin changing problem for small numbers, shaking
hands/sitting in a row/around a table, they calculate extreme values in Diophantine
problems. These problems are solved with table filling or with recursive expressions.
The formulas, like n! or �𝑛𝑘� are not formulated.

They can solve problems like these:

How many different, 10 cm high towers can build from 2 cm high blue, 2 cm high
yellow and 1 cm high red building blocks?

If they draw it systematically (seeing the blocks from bottom), they can guess the
recursive expression an = an – 1 + 2*an – 2 and they check it empirically. The solu-
tions are: 1, 3, 5, 11, 21, 43, 85, 171, 341, 683.

How many different covering exist on a 2*8 table with 1*2 size dominos?

 Fig. 4. Spelling a given word. Fig. 5. Spelling a given word with a pit.

Fig. 6. a1 = 1, a2 = 3, a3 = 5, a4 = 11 – Counting with drawing systematically.

Fig. 7. a1 = 1, a 2 = 2, a 3 = 3, a 4 = 5 – Counting with drawing systematically.

The Place of the Dynamic Programming Concept in the Progression ... 67

If they draw it systematically (seeing the blocks from the right), they can guess the
recursive expressionan=an–1+an–2 and they check it empirically. The solutions are:1,
2, 3, 5, 8, 13, 21, 34. The solution can be built for any given N with a table filling.

In primary schools the children meet problems with large numbers also, like 1000
points, 2016 numbered cards, 10 000 people. In such cases, the obvious idea is – instead
of the original task – to examine a simplest problem. What happens if the number of
points is 2, 3, 4, ..., the number of cards is 5, 6, 7,…, the number of people is 2, 3, 4,…?
If any regularity is noticed, they try to verify it empirically and apply it on the original
problem with large numbers. On primary-school-level, formulating and using the hy-
potheses is enough to solve such problems.

On the other hand, these problems can be implemented on the computer, as a recur-
sive expression or with table filling for larger numbers. The next classical problems are
the first appearance of dynamic programming approach for them:

Robot – A robot starts from the top left corner (1,1) of a MxN grid. At each step
the robot can make one of the two choices: move one cell to the right or move one
cell down. How many possible paths are there for the robot to reach the right-
bottom corner of the grid?

The robot problem can occur in many variations at grade 7 and 8:
The question is the same, but there are cells in a grid, on which the robot can’t ●●
step on (traps).
The question is the same, but there are cells in a grid, on which the robot have ●●
to step on (mandatory fields).
In every cell there are given number of pearls and the question is, what is the ●●
maximum number of pearls the robot can collect on its way.
Mix of traps and pearls.●●

Staircase – You are standing in front of a staircase, which has N stairs. Your goal
is to reach the top. If you are standing on the ith step, you can hop to (i+1)st or
(i+2)nd or (i+3)rd step. Given N, calculate the count of total possible paths for you
to reach Nth stair!

Coin Change – You want to make change for given N cents and you have infinite
supply of each of S1, S2, .. , Sm valued coins. How many ways can you make the
change?

Subset sum – Detect, if any of the subset from a given set of N non-negative in-
tegers sums up to a given value S!

Dice Throw Problem – Given N dice, each with m faces, numbered from 1 to m.
Find the number of ways to get sum X! (X is the summation of values shown by
the dices.)

Flooring – How many different coverings exist on a 1*N floor with 1*1 and 1*2
parquet pieces? How many different covering exist on 2*N floor with 1*2 parquet
pieces?

Á. Erdősné Németh, L. Zsakó68

Towers – How many different, N meters high towers can be built from 2 meters
high blue, 2 meters high yellow and 1 meter high red blocks?

The previous dynamic programming problems should be solved at the primary-
school-level as the analogous math problems: children formulate and use the hypo-
thetical recursive expressions and implement them with table filling, without extensive
argumentation. Mostly they cannot calculate directly the answer, but they can give a
recursive formula and the direction of filling the table, and this way they can solve the
problem. They can solve basic DP problems, without optimization.

On informatics contest the children use basic data structures (integer, boolean, one
and two-dimensional array of integers, simple strings) and basic algorithms can be ap-
plied for various problems in various wording. Choosing, selecting, counting, search-
ing, summarizing, selecting maximum/minimum, sorting, separating into two groups,
prime testing are these basic algorithms. Stages of solving tasks are understanding the
problem, choosing the right data structure, selecting right algorithm, implementing and
testing it. In addition to the conservative tasks there are ad-hoc problems where children
can apply basic algorithms creatively. The basic DP problems appear in the regional and
national rounds of competitions.

4.4. Tasks in Lower-Secondary-School-Age

In Hungary and many other countries the children continue to learn combinatorial prob-
lems in grades 9–10 in mathematics lessons, they group and formalise these problems.
During these years, they also meet the idea of mathematical induction, so they can prove
the previously discovered recursive formulae. They learn about sequences and some-
times they give the explicit formulae for recursive expressions. They know the formula
of n! and �𝑛𝑘� , they also learn Pascal-triangle. But they do not necessarily know the
relationship between the binomial coeffitients and the Pascal-triangle.

They can discover and solve more complex recursive expressions, sometimes these
functions call each other, like:

How many different covering exist on a 2*N table with 1*2 and 1*1 size dominos?

Drawing it systematically is not enough to formulate the recursive expression.
One must analyze possible cases. The result comes with two expressions in simul-
taneous recursion: dn = an–1 + fn–1, fn = an–1 + dn–1, an = 2*an–1 + an–2 + fn–1 + dn–1.
After simplification: an = 3*an–1 + an–2 – an–3.

Fig. 8. a1 = 2, a2 = 7, a3 = 22, a4 = 71 – Counting with drawing systematically.

The Place of the Dynamic Programming Concept in the Progression ... 69

In this age they learn the basics of graph theory in mathematics, they learn types
of graphs (trees, binary trees, relational matrix), storage of graphs (vertex matrix, edge
matrix, edge list) and algorithms of graphs (breadth first traversal, depth first traversal,
relations) in informatics. They meet recursion again, divide and conquer, backtrack, and
greedy algorithms too, on basic level.

They learn all classic dynamic programming problems, as follows:

Partition problem – Divide the set of numbers into two groups, where sum of
each group is same!

Longest Increasing Subsequence – Find the length of the longest subsequence
of a given sequence, such that all the elements are sorted in increasing order.

Knapsack Problem – A thief robbing a store can carry a maximal weight of W
in his knapsack. There are N items and ith item weighs wi and is worth vi dollars.
What items should the thief take?

Contiguous subsequence with maximum value – Find the contiguous array
with the maximum sum in a given an array, containing both positive and negative
integers!

Minimal number of coins for change – What is the minimal number of coins, to
make change for a given amount T only coins of values v1, v2, …, vn can be used?

These examples can be solved by using recursion with optimization, the right order
of filling the table must be given usually it is not evident. There are a number of varia-
tions of these problems, sometimes the difference is merely wording.

Next type of DP problems is game strategy in various formats, like:

Optimal Strategy – Consider a row of N coins of values v1, ..., vN, where N is
even. We play a game against an opponent by alternating turns. In each turn, a
player removes either the first or last coin from the row and receives the value
of the coin. Determine the maximum possible amount of money we can definitely
win if we move first?

Basic data structures may be supplemented with string and real. There are a number
of dynamic programming problems with strings, too:

Longest Common Subsequence – Find the longest common subsequence of two
strings, where the elements are letters from the two strings and they should be in
the same order!

Longest Common Substring – Find the longest common substring of two
strings!

Edit Distance – Given two strings and a set of operations Change (C), insert (I)
and delete (D). Find minimum number of operations required to transform one
string into another!

On informatics contest classic dynamic tasks can be in every round, so the contestants
have to be ready to solve it.

Á. Erdősné Németh, L. Zsakó70

4.5. National Olympiads

In grades 11–12 contestants prepare for national Olympiads. They know a lot of algo-
rithms, in these years they learn to use advanced data structures, like set, priority queue,
stack, and they implement previously learned algorithms with these data types. While in
previous years they were asked for the existence of the solution or the number of steps
in the solution, now they also have to decrypt the entire path traversal in dynamic pro-
gramming problems.

Sometimes there are strict memory limits and there is no space for the whole table. In
this case, only the values of those cells have to be stored in memory, which are essential
to the calculation of the next row. During the decryption process the rebuilding of the
table may be as hard and interesting to implement as the original problem.

They learn about combinatorial and geometrical problems.
Within the concept of divide and conquer, recursion or dynamic programming more

complicated expressions should be optimized.
There are advanced DP problems: all possible transitions and dynamic greedy type.
Example of complicated problems:

Balanced Partition – There is a set of N integers each in the range 0 ... K. Parti-
tion these integers into two subsets such that you minimize |S1 – S2|, where S1
and S2 denote the sums of the elements in each of the two subsets!

The dynamic programming concept among strings also leads complicated problems,
like:

Shortest Palindrome – Form a shortest palindrome by appending characters at
the start of the given string.

Palindrome Min Cut – Find the minimum number of cuts required to separate
the given string into a set of palindromes.

Longest Palindromic Substring – Find the longest palindromic substring of a
given string!

Longest Palindromic Subsequence – Find the longest palindromic subsequence
of a given string!

The contestants in the upper secondary age want to be computer scientists or engi-
neers, they do not only know the basic algorithms but they can cope with complex tasks.

4.6. Regional and International Olympiads

When you want to prepare for Regional or International Olympiads you have to know
everything about dynamic programming which is included in the textbooks. You have
to solve a huge number of tasks. On Olympiads the solution of tasks are some kind of
creative mixture of known algorithms.

Some examples:

Interval-Scheduling Problem (Greedy and DP Approach) N k-tuples processes
are given with start & end times. Select as many processes as possible such that

The Place of the Dynamic Programming Concept in the Progression ... 71

(I) no two selected processes intersect and (II) at most one process is selected
from each k-tuple!

intersec Complete all tasks given the deadline, so that no task overlap!

Box Stacking – You are given a set of N types of rectangular 3-D boxes, where
the i^th box has height h(i), width w(i) and depth d(i). You want to create a stack
of boxes which is as tall as possible, but you can only stack a box on top of an-
other box if the dimensions of the 2-D base of the lower box are each strictly
larger than those of the 2-D base of the higher box. You can rotate a box, any of
the side can be its base. It is also allowable to use multiple instances of the same
type of box.

Counting Boolean Parenthesizations – You are given a boolean expression con-
sisting of a string of the symbols ‘true’, ‘false’, ‘and’, ‘or’ and ‘xor’. Count the
number of ways to parenthesize the expression such that it will evaluate to true.
For example, there are 2 ways to parenthesize ‘true and false xor true’ such that
it evaluates to true. The order is defined only by parentheses.

There are many tasks for practice on the online preparing and contest sites, like
usaco.org, codeforces.com, codechef.com, uva.onlinejudge.org, spoj.pl. If you have met
each type of concept detailed above, the textbook of Halim is a good choice for prepar-
ing for IOI.

5. Conclusions

Some antecedents of the dynamic programming concept for example the concept of re-
cursion, might come up in earlier mathematics and informatics studies. If you are aware
of this, introducing DP as a new problem-solving strategy is much easier.

We think, if you want to teach the technique of DP you have to start from a simple
recursion then through memoization and table filling you could end with a real DP for
optimization problems. You could start the whole process in the primary school age and
circularly, returning to it in higher and higher levels your students would be familiar with
this hard concept.

In the upper primary school, the basic DP comes up: a recursive expression imple-
mented with table filling. At the beginning of secondary school, the classic DP programs
continue the sequence: recursive expressions with optimization and at implementation
the right order of table filling need to be thought of. In upper secondary school, the
children can be familiar used with advanced types of DP: all of the previous problems
with the retrieval of the way, how the optimal solution is built up, dynamic greedy type
and the type, when you have to keep track of all possible transition states. Preparing for
Olympiads, the students need everything from textbooks and the combination of other
types of approaches.

Finally, it would not be magic for the contestants, just a useful problem-solving
strategy.

Á. Erdősné Németh, L. Zsakó72

References

Bebras–International Contest on Informatics and Computer Fluency (2007–2015). http://bebras.org
http://www.beaver-comp.org.uk/; http://informatik-biber.de/archiv/

Bebis, G. (2007). CS477/677 Analysis of Algorithms.
http://www.cse.unr.edu/~bebis/CS477/

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2001). Introduction to Algorithms. MIT Press, 2nd edi-
tion.

Dagienė, V., Stupurienė, G. (2016). Bebras – a sustainable community building model for the concept based
learning of informatics and computational thinking. Informatics in Education, 15(1), 25–44.

Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V. (2006). Algorithms. McGraw-Hill.
Dreyfus, S. (2002). Richard Bellman on the birth of dynamic programming. Operations Research, INFORM.

50(1), 48–51.
Erdős, G. (2010). A rekurzív módszer. In: Magas Szintű Matematikai Tehetséggondozás Konferencia, ZALA-

MAT. 20–32.
Forišek, M. (2015). Towards a better way to teach dynamic programming. Olympiads in Informatics, 9, 45–55.
Gupta, N. (2009). Introduction to Algorithms.

http://www.curriki.org/oer/Introduction-to-Algorithms/

Halim, S., Halim, F. (2014). Competitive Programming 3. The New Lower Bound of Programming Contests.
http://cpbook.net/

Horváth, Gy. (2004). A programozási versenyek szerepe az oktatásban. In: INFOÉRA Konferencia.
http://www.infoera.hu/infoera2004/eaok/horvathgyula.pdf

Kleinberg, J., Tardos, É. (2006). Algorithm Design. Addison-Wesley.
Sedgewick, R., Wayne, K. (2011). Algorithms, Fourth Edition. Addison-Wesley.
Skiena, S.S. (2008). The Algorithm Design Manual. Springer-Verlag, 2nd edition.
Steinhardt, J. (2008). Advanced Dynamic Programming Techniques.

https://activities.tjhsst.edu/sct/lectures/0708/dpadvanced.pdf

Á. Erdősné Németh teaches mathematics and informatics at Batthyány
Lajos High School in Nagykanizsa. A lot of her students are in the final
rounds of the national programming competitions, some on CEOI and
IOI. She is a Ph.D. student in the Doctoral School of Faculty of In-
formatics, Eötvös Loránd University in Hungary. Her current research
interest is teaching computer science for talented pupils in primary and
secondary school.

L. Zsakó Dr. is a professor at Department of Media & Educational
Informatics, Faculty of Informatics, Eötvös Loránd University in Hun-
gary. Since 1990 he has been involved in organizing of programming
competitions in Hungary, including the CEOI. He has been a deputy
leader for the Hungarian team at International Olympiads in Informat-
ics since 1989. His research interest includes teaching algorithms and
data structures; didactics of informatics; methodology of programming
in education; teaching programming languages; talent management.
He has authored more than 68 vocational and textbooks, some 200
technical papers and conference presentations.

Olympiads in Informatics, 2016, Vol. 10, 73–85
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.05

73

Watch them Fight! Creativity Task Tournaments
of the Swiss Olympiad in Informatics

Samuel GRÜTTER, Daniel GRAF, Benjamin SCHMID
Swiss Olympiad in Informatics
e-mail: {samuel,daniel,benjamin}@soi.ch

Abstract. As part of the qualification process for the Swiss Olympiad in Informatics, the con-
testants are each year confronted with one “Creativity Task”. Unlike typical problems in pro-
gramming competitions, creativity tasks usually do not have an optimal solution, and are often
adaptations of popular board or computer games. After receiving all submissions, a tournament is
organized, where the students can watch how their programs play interactively against each other,
and points are awarded to the authors according to the tournament ranking.

We present and discuss this task format in general, as well as the specific creativity tasks of
the past 10 years, accompanied by an online archive of the task descriptions, sample solutions and
game servers.

Moreover, we describe our task selection process and criteria, the task creation process, and
the experience gained and best practices established in the past years.

Finally, we present the many advantages of this task format, showing why we think it is a
refreshing alternative to the common IOI-style tasks given in most national selection rounds.

Keywords: creativity tasks, interactive tasks, heuristics, programming competition, board games,
artificial intelligence contest, tournaments, task visualization.

1. Introduction

During the first round of the Swiss Olympiad in Informatics (SOI), the students have
two months to solve a set of tasks at home and submit them on the SOI website. There
are practical and theoretical tasks, and one creativity task. This paper is about the cre-
ativity tasks.

Contrary to typical tasks in programming competitions, the creativity tasks are usu-
ally designed in such a way that there is no optimal solution, or that the optimal solu-
tions are not efficient enough. The creativity tasks are often adaptations of popular
board or computer games, and the game can be played with two or more players. The
participants’ task is to write a program able to play the game. We will refer to such
programs as bots.

An interesting aspect of this task format is that the participants’ bots can play and
compete against each other.

S. Grütter, D. Graf, B. Schmid74

At the start of each year’s first round, the following material for the creativity task is
published on the SOI website:

The ●● task description, describing the rules of the game and its parameters. De-
pending on the game, these could include, for instance, width and height of the
playing field, or a map of the playing field, the number of players, the initial
amount of money/food of each player, etc. The task description also specifies
the communication protocol between the bots and the game server (see below),
which defines how the bots have to communicate their actions and how they are
informed about the other bots’ actions. All communication is done via standard
input/output.
A ●● game server, a program written by the task authors, which launches the bots,
communicates with them according to the protocol and keeps track of the game
state. It informs the bots about all the relevant changes and prints a log of each
action and state change. The server also acts as a judge that can terminate bots
that drop out of the game or take too long to answer. If the interaction protocol is
easy to read, the game server can also allow for human players that type in their
commands interactively. This way, the participants can play against their own
bots by hand.
Some ●● sample bots in various programming languages. These bots follow all the
rules of the protocol, but they just pick a random move in every step. The par-
ticipants can base their solutions on these sample bots to quickly learn how to
implement the protocol and input/output. Moreover, they can evaluate their bots
by letting them play against the sample bots.
A ●● visualization, which reads the log produced by the game server, and displays a
graphical animation of the game. For some of our tasks, the game server already
provides a rudimentary text-based visualization of the game.

After the end of the first round of the SOI, the organizers let the submitted bots
compete against each other in a large number of games covering many different configu-
rations, to make sure that the obtained results are representative and random decisions
average out well enough. The results of all these games are then aggregated into a final
score for each participant.

Between the first and the second round of the SOI, all participants are invited to an
event called “SOI-Day” consisting of task discussions, talks and presentations. At this
event, a shortened version of the the creativity task tournament is presented as if it was
a live tournament, and the participants can thrill while watching their bots compete
against the others.

2. Ten Years of Creativity Tasks

In this section, we give a brief presentation of each creativity task of the past ten years.
We omit details such as the communication protocols, and refer the reader to the online
task archive (http://creativity.soi.ch) for the full task descriptions.

Watch them Fight! Creativity Task Tournaments of the Swiss Olympiad in Informatics 75

2.1. Connect Five (2007)

Task description On a 20 × 20 grid, two players (black and white) alternate in placing a
stone of their color on an empty square. As soon as a player succeeds in placing 5 stones
in a row (horizontally, vertically or diagonally), he wins.

Note that unlike the game sold under the name “Connect Four”, the stones do not
“fall down” in their column, but stay exactly where they were placed.

Discussion This variant of the game is also known under the name “Gomoku”, and ap-
peared at the International Computer Games Association’s Computer Olympiad in 1989,
1990, 1991 and 1992.1

2.2. Fight of the Ant Populations (2008)

Task description On a grid with obstacles, multiple ant colonies are fighting against
each other. Each player controls all ants of a colony. In every turn, the player sees the
7 × 7 neighborhood of each of his ants and can move them individually to an adjacent
tile. Some tiles contain food, others contain ants or the hill of the enemy. Collecting food
and carrying it back to the own hill allows the colony to grow. If an ant attacks another
ant both die. If an ant reaches an adversarial hill, three random ants of that colony die.
Which colony survives the longest?

Discussion This game allows for a huge variety in strategies. Some submissions as-
signed different jobs to the ants, for instance: explorers that go to unknown territory,
workers that collect the closest food, guards that stay near the hill and warriors that try
to reach the hill of the enemy.

2.3. Grand Theft Cake (Portal Maze) (2009)

Task description The players are searching for a big cake in an unknown, polygonal
maze with walls all around them. They have a handheld portal device that allows them
to teleport from A to B instantly. They can walk around with a speed of 1 meter per
second. In 0.1 seconds, they can look in a direction to learn how far away the wall is.
It takes 5 seconds to shoot a portal in a direction (either of type A or B). The cake is a
circle of one meter diameter. The goal is to find the cake and return to the starting posi-
tion as quickly as possible.

Discussion The submitted solutions made creative use of the portal. Some just used it
to return to the start quickly, others repeatedly used it as a shortcut throughout the entire
search for the cake.

1	http://www.game-ai-forum.org/icga-tournaments/game.php?id=30

S. Grütter, D. Graf, B. Schmid76

2.4. Tanks (2010)

Task description Each player controls a tank, which can move on a line and fire one
missile per round. The tanks can use different weapons, which are specified by their
range, their impact radius, and their damage points. The tanks have an unlimited number
of missiles of each weapon. When a missile hits a position, the damage points of all
tanks within the impact radius increases by the number of damage points of the weapon,
and tanks reaching a predefined number of damage points die. Moving around costs fuel,
and the fuel is limited. The last surviving tank wins.

Discussion Most submissions implemented some simple ad hoc heuristics. The winning
solution was 285 lines long and in each round, it chose the weapon and target position
which would cause the highest total damage to all opponents, supposing that they would
not move. If there was a tie between several possibilities, the one with the biggest impact
radius was chosen.

2.5. Multisnake (2011)

Task description Multisnake is a multi-player version of the popular computer game
called snake (Fig. 1). It is played on a rectangular grid which contains some obstacles.
Each player controls a snake, and in each turn, all snakes move simultaneously by one
step. When a snake moves onto a field occupied by an obstacle or by a snake, it dies.
The winner is the last surviving snake. Some tiles contain a black or white ball. When a
snake eats a white ball, it grows by one, and when it eats a black ball, it shrinks by one.
To enforce termination of the game, all snakes grow by one each T turns, where T is a
small positive integer.

Discussion The winning solution was 1005 lines long, implemented a complex scoring
function for possible states, and explored them recursively.

Fig. 1. Multisnake.

Watch them Fight! Creativity Task Tournaments of the Swiss Olympiad in Informatics 77

2.6. Find the Anthill (2012)

Task description In this second ant-themed task, the story was more peaceful: each ant
just has to find the way back to its own ant hill (Fig. 2). The big difference is that this
time each ant is controlled by a separate instance of the participant’s submission. So the
program controlling a single ant does not know where the other ants of its colony are,
unless they are in its 7 × 7 field of view.
Like in nature, there is a distributed way of communication though: scents. The ants can
place one out of 256 different scents on their current tile and they can sense the scents
that other ants (of their own or of other colonies) put there. So if one ant sees the hill, it
can leave hints for its colleagues.

Discussion Successful submissions made creative use of the scent hints to share knowl-
edge between the ants. Some even tried to learn and imitate the marking patterns of the
opponents to mess with it and cause confusion.

2.7. Who wants to be a billionaire (2013)

Task description The task is to write a bot which can interactively answer multiple
choice questions with four possible answers, using Wikipedia articles as a knowledge
base. For each question, the bot is allowed to consult up to 25 articles on the English
Wikipedia. To do so, the bot has to provide a query string to the game server, and the
game server will look up the article on Wikipedia (or in its cache), and feed a plain text
version to the bot.

Discussion Most solutions were based on keyword search combined with some strategy
to avoid frequent words which do not carry any meaning. The submitted bots would not
have become billionaires, but the best was still twice as good as a random bot (which
would have scored

tournaments are fun to watch as the interaction between the bots suggests that the
contestants are immediately fighting against each other.
Finally, we believe that creativity tasks are also a way to train for the newer, less-
standard IOI tasks where heuristical solutions are required. Examples of such creative
IOI tasks include Languages and Maze from IOI 2010, Odometer from IOI 2012 and
Art Class from IOI 2013.
4.4. Disadvantages of this Task Format
It often proved challenging to find tasks that beginners can easily get started with but
still leave a lot of options for the creativity of more advanced students. This higher
initial hurdle lead to fairly small numbers of serious submissions for many of the
presented tasks. From an organizer's point of view, creativity tasks take significantly
more time to prepare and grade than regular tasks.
5. Conclusion
In summary, creativity tasks proved to be a beneficial addition to the types of
algorithmic challenges given in the first national round of the Swiss Olympiad in
Informatics.
We provide the full description and supplementary material for the presented tasks
online at http://creativity.soi.ch and we want to encourage other delegations to
experiment with such task types and look forward to learning about their experiences.
Acknowledgments
We would like to thank all the volunteers of the Swiss Olympiad in Informatics who
created, prepared and graded these tasks over the years.
References
Aigner, M., Fromme, M. (1984). A game of cops and robbers. Discrete Applied
Mathematics, 8(1), 1–12.
Burton, B. (2008). Breaking the routine: events to complement Informatics Olympiad
training. Olympiads in Informatics, 2, 5–15.
Forišek, M. (2013). Pushing the boundary of programming contests. Olympiads in
Informatics, 7, 23–35.
Gardner, M. (1973) Sim, Chomp and Race Track: new game for the intelligent (and not
just for Lady Luck). Scientific American, 228(1), 108–115.
Verhoeff, T. (2009). 20 years of IOI competition tasks. Olympiads in Informatics, 3,
149–166.

1
4 of the points).

Fig. 2. Find the Anthill.

S. Grütter, D. Graf, B. Schmid78

There were 11 submissions, and for the tournament, they were fed a total of 547
questions. Table 1 shows the ranking and their percentage of correct answers. Note that
the primary ranking criterion was whether they were compilable and never crashed, and
the number of correct answers was only the secondary criterion.

2.8. Cops and Robbers (Scotland Yard) (2014)

Task description Some cops are hunting a robber in a city whose streets and junctions
are given as an undirected connected graph (Fig. 3). Initially, the cops and robbers are
positioned on distinct junctions (nodes in the graph), and in each round, the robber and
all cops move along an edge of the graph. As soon as a cop moves onto the same node
as the robber, the cops win, and if this never happens during a predefined number of
rounds, the robber wins.

One bot controls the robber, and another bot controls all cops. Every bot must be
able to play both roles. At any time, the bots know the entire graph and the positions of
all agents.

Discussion This is a classic problem in graph theory and we refer to Aigner and Fromme
for a nice introduction (Aigner and Fromme, 1984).

The participants mostly implemented sophisticated scoring functions that would for
instance weigh the distance between the cops and the robbers against the number of pos-
sible escape routes.

Fig. 3. Cops and Robbers.

Table 1
The ranking and their percentage of correct answers

rank 1 2 3 4 5 6 7 8 9 10 10

% correct 50% 37% 35% 45% 36% 28% 27% 2% 0% N/A N/A
behavior never crashed sometimes crashed did not compile

Watch them Fight! Creativity Task Tournaments of the Swiss Olympiad in Informatics 79

2.9. Diamond Auction (2015)

Task description The players are at an auction bidding for diamonds. Each player starts
with the same amount of gold and for each diamond everyone can bid an amount of his
choosing. The highest bid gets the diamond, but all offered gold has to be paid. The goal
is to maximize the number of bought diamonds using only the given amount of gold. To
allow for more interesting strategies, there are several games played with the same play-
ers without restarting the participant’s programs. This way, they can learn and exploit
each other’s strategies.

Discussion Being a very simple game with a simple protocol, we had many submissions
for this task. Many of them implemented a random strategy sometimes even worse than
our sample bots. Most of the more successful solutions tried to imitate the opponent or
to predict the next move. The following graph (Fig. 4) shows the last game of the final,
the lines showing the bids of the two players for the different rounds. Although the bids
seem random the players are able to predict each others bid and bid just a little bit more.
This results in a very clever use of the available gold.

2.10. Vector Car Racing (2016)

Task description Each player controls a car and in each round he can change his veloc-
ity vector by at most one in both directions. The game is played on a grid (i.e. a graph
paper) with a start, a goal, some checkpoints and some walls enclosing a racetrack. The
goal is to visit each checkpoint at least once and be the first to reach the goal. Should a
player drive into the wall (e.g. if he didn’t slow down early enough in a turn) he will be
reset to the last visited checkpoint. To allow for some interaction, we added two items
that can manipulate the velocity vector of other players.

Discussion This game is a well known pen and paper game and goes back to Jürg Niev-
ergelt. It became widely known by an article in Martin Gardner’s column in the Scien-
tific American (Gardner, 1973).

Fig. 4. Diamond Auction (the graph shows the last game of the final).

S. Grütter, D. Graf, B. Schmid80

The submissions fell into one of two categories: sophisticated algorithms beating
human players easily (3 submissions) or being barely able to play the game (4 submis-
sions). One example from the second category used DFS to determine the “shortest”
path resulting in some of the longest possible paths.

The winning submission consists of 1741 lines of code using a wide range of algo-
rithms. On small maps it uses a four dimensional BFS (location and velocity) to find
the optimal solution. On bigger maps, a heuristic is used to improve the runtime of this
algorithm and only paths between two checkpoints are calculated. To find the best order
of checkpoints it uses some more heuristics to find a good approximations for the travel-
ing salesman problem.

2.11. Statistics

Table 2 shows our observed participation rates in the last ten years. Given the bonus-like
character of the creativity tasks, participation rates in the past years fluctuated heavily.
Usually, only students with enough time (and interest) left after solving the five classical
problems tackled the creativity task. Tasks with a very simple interface (like the dia-
mond auction in 2015) seem to have drawn additional interest, probably because writing
a first solution was easily possible within an hour, also for beginners.

3. Implementation Details

3.1. Our Task Selection and Creation Process

The SOI is organized by a team of approximately twenty people, most of whom are
former participants and now university students. Each year when the preparations of the
first round of the SOI start, they discuss a few proposals for the creativity task on their
internal mailing list. Once the task is chosen, two to three organizers are selected to
write the detailed task description and implement the game server and the visualization.
A few more organizers proofread the task description and write sample bots in as many
languages as possible.

Table 2
Participation rates in the last ten years

year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

task c5 ants maze tanks snake ants quiz c&r

(4 submissions). One example from the second category used DFS to determine
the “shortest” path resulting in some of the longest possible paths.

The winning submission consists of 1741 lines of code using a wide range of
algorithms. On small maps it uses a four dimensional BFS (location and velocity)
to find the optimal solution. On bigger maps, a heuristic is used to improve the
runtime of this algorithm and only paths between two checkpoints are calculated.
To find the best order of checkpoints it uses some more heuristics to find a good
approximations for the traveling salesman problem.

2.11 Statistics

The table below shows our observed participation rates in the last ten years.
Given the bonus-like character of the creativity tasks, participation rates in the
past years fluctuated heavily. Usually, only students with enough time (and
interest) left after solving the five classical problems tackled the creativity task.
Tasks with a very simple interface (like the diamond auction in 2015) seem to
have drawn additional interest, probably because writing a first solution was
easily possible within an hour, also for beginners.

year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
task c5 ants maze tanks snake ants quiz c&r  race
creativity 17 N/A 4 6 2 10 11 9 25 7
total 21 31 35 40 48 29 29 28 52 72

3 Implementation Details

3.1 Our Task Selection and Creation Process

The SOI is organized by a team of approximately twenty people, most of whom
are former participants and now university students. Each year when the prepa-
rations of the first round of the SOI start, they discuss a few proposals for the
creativity task on their internal mailing list. Once the task is chosen, two to three
organizers are selected to write the detailed task description and implement the
game server and the visualization. A few more organizers proofread the task
description and write sample bots in as many languages as possible.

The organizers of the creativity task are usually people who have successfully
taken part in the creativity task a few years before when they were participants,
and they are supported by older organizers who prepared the creativity task
a few times before. This ensures a good knowledge transfer, which leads to
good creativity tasks, even though this task format is more challenging for task
creators than ordinary tasks and even though every year, many organizers join
and leave the team.

8

race
creativity 17 N/A 4 6 2 10 11 9 25 7

total 21 31 35 40 48 29 29 28 52 72

Watch them Fight! Creativity Task Tournaments of the Swiss Olympiad in Informatics 81

The organizers of the creativity task are usually people who have successfully taken
part in the creativity task a few years before when they were participants, and they are
supported by older organizers who prepared the creativity task a few times before. This
ensures a good knowledge transfer, which leads to good creativity tasks, even though
this task format is more challenging for task creators than ordinary tasks and even though
every year, many organizers join and leave the team.

3.2. Evaluating the Submissions

After the end of the first round of the SOI, the organizers review and compile all submis-
sions for the creativity task, and then run a large number of games, covering a represen-
tative selection of different game parameter and player combinations. The results of all
these games are then aggregated into a final score for each participant, and points for the
creativity task are awarded as follows:

A bot that follows the protocol and is capable of playing the game without violating ●●
any rules is awarded a predefined percentage p of the points, usually between 30%
and 50%, depending on how difficult the task is. We also look at the source code to
see if it witnesses more effort than just copying one of the provided sample bots.
The rest of the points are awarded according to the aggregated score described ●●
above, in such a way that the participant ranked last gets p points, and the partici-
pant ranked first gets full score.
If the bot contains minor bugs, such that it can still play in most games, but some-●●
times crashes, runs into an infinite loop, or violates the rules, some points are de-
ducted.

This grading scheme ensures that every effort to write a program for this task is re-
warded, even if it ranks last, which hopefully encourages beginners to tackle this task.

3.3. Technical Considerations

Ease of running the game server and the visualization It is crucial that all participants
are able to run the game server on their own computers.2 However, the game server
needs to be able to invoke other programs (the bots) and read from their standard output
and write to their standard input, a feature which is hard to get operating system indepen-
dent. And even if the game server works on all major operating systems, the instructions
on how to install the dependencies, compile and run it might look so long and compli-
cated that beginners are quickly scared off. For the visualization, it can even get worse,
if specific graphics libraries have to be installed and linked.

2	 We cannot provide an online game server instead, because in the first round of the SOI, no participants
should be disadvantaged because they cannot use their favorite programming language. This would mean
that we would have to support a very large number of programming languages, and moreover, it would
require a big effort for the sandboxing.

S. Grütter, D. Graf, B. Schmid82

In our experience, implementing the game server in Java, which is available on all
platforms, seems to be the best solution. But even getting a Java game server to run was
a bit challenging for some participants, because some could only install Java 6 (instead
of newer versions) on their system, while others did not know how to specify the paths
to the bots as command line arguments, etc. But we could always help them by email
support or through our forum. What we do not know, however, is how many people did
not succeed in getting the server to run, but did not ask for help.

For the visualization, the two best solutions seem to be either to integrate the vi-
sualization in the Java game server, or to implement it as an HTML5/JavaScript page,
where one can paste the log of the game server, and then watch the visualization. An
advantage of the latter is that it only requires a web browser, which is available on every
computer, so we can provide some sample game logs, so that the participants can watch
some games before even starting to implement their own solution and to bother getting
the game server to run.

Fraud Detection The grading of the creativity task is not fully automated on purpose.
The submissions are compiled manually to check for compatibility issues and the source
code is read to get an idea of the participant’s solution and to check that all the rules are
followed. Given the small number of participants, this is feasible and also eliminates the
need for a separate fraud detection or sandboxing of the submitted programs.

4. Discussion

4.1. Task Selection Criteria

We now present our criteria for the selection of the creativity task. This is more a collec-
tion of useful arguments that came up in past discussions rather than an ultimate list.

Interactivity: ●● It should be interactive, and interaction should not only happen be-
tween the game server and the bots, but also between the bots, i.e. the possible
moves of a player should depend on the actions that the other players took before.
This is mostly to make the task more fun and different from the standard tasks, but
it is not strictly necessary. For instance, the Grand Theft Cake task (section 2.3),
or the Who wants to be a billionare? task (section 2.7) do not have any interaction
between the players, and still were successful creativity tasks. In the case of the
Vector Car Racing task (section 2.10), however, some special effects were added
to the traditional game to make it interactive, and to increase the size of the search
space that optimal solutions would have to explore.
Hardness: ●● There should be no optimal solution, or optimal solutions should be too
expensive to calculate.
Flat learning curve: ●● The task should be simple, with few, easy to understand
rules, so that it is suitable for beginners, but it should also offer many interesting
options for advanced participants.

Watch them Fight! Creativity Task Tournaments of the Swiss Olympiad in Informatics 83

Novelty: ●● The task should not be “too standard” to make sure one cannot just copy
and adapt a standard solution found on the internet. For instance, chess or Nine
Men’s Morris were proposed in the past years, but not chosen for this reason.
Continuous Complexity Curve: ●● There should be a continuous spectrum of imag-
ineable solutions between straightforward random bots and very sophisticated so-
lutions.
Plethora of solutions: ●● There should be many different solutions that could work
reasonably well and are feasible to implement. For instance, for some proposed
tasks, it was feared that applying a standard minimax algorithm would be almost
the only reasonable solution, and these tasks were thus not chosen.
Manual playing: ●● It is a plus if the game can be played by hand, such as Multisnake
(section 2.5) or Vector Car Racing (section 2.10), so that the participants can com-
pare their bots to their own intuitive playing style.
Visualizability: ●● A good task should allow for an appealing way of watching the
interaction between the bots and giving a dramatic view on the progress of the
game.

4.2. Similar Task and Contest Types

The IOI and other programming contest are always experimenting with new, less algo-
rithmic task types. We refer to Verhoeff (Verhoeff, 2009) for an overview of classical,
algorithmic IOI tasks. Forišek (Forišek, 2013) gives an overview of the programming
contest landscape. He also presents some tasks from the IPSC and Slovak national com-
petitions whose goal is different from just finding the fastest algorithm. Some contests
entirely focus on hard optimization problems like Topcoder’s Marathon matches and
Google’s Hash Code and other contests feature tournaments of competing bots for inter-
active problems like the AI Challenge or the Computer Olympiad.

Creativity-like tasks are also mentioned as game-playing events by Burton in (Bur-
ton, 2008), where many interesting suggestions for out-of-the-ordinary activities in
Olympiad training camps are proposed.

4.3. Advantages of this Task Format

In our opinion, creativity tasks offer a number of unique possibilities. These nonstandard
tasks can keep the participants busy for many weeks. They can try out all kinds of crazy
algorithms and even the best ones are never really done. But also students with limited
time can participate with some quick extension of the provided random bot.

The visualization of these tasks are ideal to be shown on a large screen during an
award ceremony as parents, friends and teachers can really see what the contestants
were doing. As related board and computer games are well-known, an audience that is
not familiar with specifics of the algorithmic challenge can also appreciate the results.

S. Grütter, D. Graf, B. Schmid84

The tournaments are fun to watch as the interaction between the bots suggests that the
contestants are immediately fighting against each other.

Finally, we believe that creativity tasks are also a way to train for the newer, less-
standard IOI tasks where heuristical solutions are required. Examples of such creative
IOI tasks include Languages and Maze from IOI 2010, Odometer from IOI 2012 and Art
Class from IOI 2013.

4.4. Disadvantages of this Task Format

It often proved challenging to find tasks that beginners can easily get started with but
still leave a lot of options for the creativity of more advanced students. This higher initial
hurdle lead to fairly small numbers of serious submissions for many of the presented
tasks. From an organizer’s point of view, creativity tasks take significantly more time to
prepare and grade than regular tasks.

5. Conclusion

In summary, creativity tasks proved to be a beneficial addition to the types of algorithmic
challenges given in the first national round of the Swiss Olympiad in Informatics.

We provide the full description and supplementary material for the presented tasks
online at http://creativity.soi.ch and we want to encourage other delegations
to experiment with such task types and look forward to learning about their experi-
ences.

Acknowledgments

We would like to thank all the volunteers of the Swiss Olympiad in Informatics who cre-
ated, prepared and graded these tasks over the years.

References

Aigner, M., Fromme, M. (1984). A game of cops and robbers. Discrete Applied Mathematics, 8(1), 1–12.
Burton, B. (2008). Breaking the routine: events to complement Informatics Olympiad training. Olympiads in

Informatics, 2, 5–15.
Forišek, M. (2013). Pushing the boundary of programming contests. Olympiads in Informatics, 7, 23–35.
Gardner, M. (1973) Sim, Chomp and Race Track: new game for the intelligent (and not just for Lady Luck).

Scientific American, 228(1), 108–115.
Verhoeff, T. (2009). 20 years of IOI competition tasks. Olympiads in Informatics, 3, 149–166.

Watch them Fight! Creativity Task Tournaments of the Swiss Olympiad in Informatics 85

S. Grütter was a participant at CEOI 2009 and IOI 2010, and has
helped with the organization of the Swiss Olympiad in Informatics
since 2011. He was deputy leader of the Swiss team at IOI 2013.

He holds a BSc in Computer Science from Ecole Polytechnique
Fédérale de Lausanne (EPFL), where he is currently pursuing his MSc
and working at the Scala Lab under the supervision of Prof Martin
Odersky.

His research interests are logic, formal languages, type systems and
compilers.

D. Graf participated at CEOI 2009 and IOI 2009 (bronze) and returned
to IOI as the delegation leader of the Swiss team in 2012, 2014 and
2015. He volunteers for the Swiss Olympiad in Informatics since 2010
and is its president since 2011.

He holds a MSc in Computer Science from the Swiss Federal Insti-
tute of Technology in Zurich (ETHZ), where he is currently pursuing
his PhD in the group for Algorithms, Data Structures, and Applications
of Prof. Peter Widmayer.

B. Schmid participated at IOI 2013, IOI 2014 (bronze) and CEOI 2013
(bronze). Since 2015 he helps organizing the Swiss Olympiad in In-
formatics.

He is currently pursuing a BSc in Computer Science from ETH
Zurich.

Olympiads in Informatics, 2016, Vol. 10, 87–98
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.06

87

Understanding Unsolvable Problem

Jonathan Irvin GUNAWAN
Undergraduate Student
School of Computing, National University of Singapore
Computing 1, 13 Computing Drive, Singapore 117417
e-mail: jonathan.irvin@yahoo.com

Abstract. In recent IOIs, there are several problems that seem unsolvable, until we realise that
there is a special case to the problem that makes it tractable. In IOI 2014, the problem ‘Friend’
appears to be a standard NP-hard Maximum Independent Set problem. However, the graph is gen-
erated in a very special way, hence there is a way to solve the problem in polynomial time. There
were several contestants who didn’t identify the special case in this problem, and hence were stuck
at the problem. In this paper, we will study a well-known technique called reduction to show that
a problem we are currently tackling is intractable. In addition, we introduce techniques to identify
special cases such that contestants will be prepared to tackle these problems.

Keywords: special case, unsolvable, NP-hard.

1. Introduction

The problem ‘Friend’ in IOI 2014 required contestants to find a set of vertices with maxi-
mum total weight, such that no two vertices in the set are sharing a common edge. This
is a classical Weighted Maximum Independent Set problem. We can show that Weight-
ed Maximum Independent Set problem is NP-hard by reduction from 3-SAT (Cormen
et al., 2009). Since the formulation of NP-completeness 4 decades ago, no one has been
able to propose a solution to any NP-hard problem in polynomial time. Clearly, it is not
expected that a high school student can solve the problem in 5 hours. None of the Indo-
nesian IOI 2014 team solved this problem during the contest. After returning from the
competition, I asked the Indonesian team about this problem. None of the team members
were aware of the fact that Maximum Independent Set is an NP-hard problem, and thus
were stuck trying to solve a general Maximum Independent Set problem.

A similar problem also occurred in IOI 2008. The problem ‘Island’ required contes-
tants to find a longest path in a graph with 1,000,000 vertices. The longest path problem
is a classic NP-hard problem which can be reduced from the Hamiltonian path problem.
If a contestant is not aware that the longest path problem is difficult to solve, the con-
testant may spend a lot of his/her time just to tackle the general longest path problem,
without realising that there is a special case to the given graph.

J.I. Gunawan88

Generally, some contestants spend too much thinking time trying to solve something
that is believed to be unsolvable. If only they realise that their attempt is intractable,
they may try a different approach and find a special case of this problem. In section 2
of this paper, we will introduce a classic reduction technique often used in theoretical
computer science research. In the context of competitive programming, we may find out
that a problem which we are attempting is unlikely to be solvable. After realizing that
a problem is intractable, we are going to discuss how to proceed to solve the problem
in section 3. Finally, in section 4 we will take a look at some common special cases in
competitive programming that can be used to solve these kind of problems.

Fig. 1. The result of Indonesian team in IOI 2014, taken from http://stats.ioinformat-
ics.org. The red squared column highlights the ‘Friend’ problem.

Fig. 2. IOI 2014 tasks statistics, taken from http://stats.ioinformatics.org. ‘Friend’
problem is the second least accepted problem in IOI 2014. It may be because some contes-
tants (at least all the Indonesians) were stuck at trying to solve a general case of Maximum
Independent Set.

Fig. 3. The result of Indonesian team in IOI 2008, taken from http://stats.ioinformat-
ics.org. The red squared column highlights the ‘Island’ problem.

Understanding Unsolvable Problem 89

2. Identifying Intractability of a Problem through Reduction

We would like to know that the problem that we are attempting is unlikely to have an
immediate solution. The most common way is to apply a well-known technique called
reduction. Suppose we know that problem  X  is impossible to solve, and we also know
that we can solve problem  X  by using problem  Y  as a black-box1. If we can solve
problem  Y , then we can solve problem  X  as well. Therefore, problem  Y  is also im-
possible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have
yet to be solved in polynomial time for more than 4 decades. MIN-VERTEX-COVER
is a graph problem that involves finding a minimum subset of nodes such that for every
edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a graph
problem of finding a maximum subset of nodes such that for every edge, at most one of
its endpoint is in the subset. Suppose we already know that MIN-VERTEXCOVER is
a NP-hard problem. Therefore, we can show that MAX-INDEPENDENT-SET is also a
NP-hard problem by reducing a MIN-VERTEX-COVER problem into a MAX-INDE-
PENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is an INDEPENDENT-SET of graph 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 , then 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is a
VERTEX-COVER of the graph 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 .

Proof. Let us assume that 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is not a VERTEX-COVER. Therefore, there are two
vertices 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  and there is an edge connecting 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  and 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 . Since 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 , we have 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 . As 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  and 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  are connected by an edge, we note
that 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is not an INDEPENDENT-SET. This is a contradiction. Therefore 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is a
VERTEX-COVER.

Lemma 2. If 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is a VERTEX-COVER of graph

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 , then 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is an IN-
DEPENDENT-SET of the graph 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 .

Proof. The proof is actually similar to the previous lemma. Let us assume that 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is
not a INDEPENDENT-SET. Therefore, there are two vertices 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  and there
is an edge connecting 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  and 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 . Since 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 , we have 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 . As 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  and 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  are connected by an edge, we note that 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is not a VERTEX-COVER. This is a con-
tradiction. Therefore 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is an INDEPENDENT-SET.

Theorem 1. If 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is a MAX-INDEPENDENT-SET of graph 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 , then 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is a MIN-VERTEXCOVER of the graph 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 .

Proof. We know that 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is a vertex cover by lemma 1. The only thing that remains
for us to prove is its minimality. Suppose 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is not minimum vertex cover. Then,
there is another vertex cover 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  where 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 , which implies that 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 . By lemma 2, 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is an independent set. Therefore, 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is not a maximum in-
dependent set. This is a contradiction. Therefore 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is the minimum vertex cover.

1	 We say that problem X is reducible to problem Y

J.I. Gunawan90

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily
constructed if we have a MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER
is a NP-hard problem. It is good to know as many NP-hard problem as possible. This
is necessary so that if we encounter a new problem  X , we can use any of the NP-hard
problems that we know, reduce it to problem  X , and thus prove that  X  is also NP-
hard.

3. How to Proceed

Suppose we already know that a problem is unsolvable (i.e. any known algorithm will
not solve this problem in time). In competition, it is impossible to complain that “This
is unsolvable, can you eliminate this problem?” to the judges, since the judges believe
they have a solution. Such a request is absurd when there are already several contestants
who have solved that problem. Also, in a major competition (e.g. ACM International
Collegiate Programming Contest World Finals, IOI), it is unlikely that the judges have
incorrect solution.

3.1. Approximation

In real life, when we cannot find the optimal solution, we can try to find the solution
that is close to the optimal solution. More specifically, we try to find a solution that is
not larger than 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  (where 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

) times the optimal solution for a minimisation prob-
lem. The most common approximation algorithm I found in textbooks is the 2-approx-
imation MIN-VERTEX-COVER problem, which means that the algorithm will not
choose more than twice the number of vertices than the optimal solution. However, ap-
proximation problems rarely occur in competitive programming (especially IOI). One
of the reason is because to create this kind of problem, the judges have to know the
optimal solution in order to verify that the contestant’s solution is indeed 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

-approxima-
tion. However, generating the optimal solution is impossible (or takes a long time).
Since this approach is not really suitable for competitive programming, I will not dis-
cuss this approach in detail.

3.2. Pruning

This approach is useful in some competitive programming problems. In ACM Inter-
national Collegiate Programming Contest (ICPC) World Finals 2010, problem I (Ro-
bots on Ice) required the contestant to count the number of Hamiltonian Paths with
constraints (ACM ICPC World Finals 2010 problem statement, n.d.), which is known
to be a NP-hard problem. While finding all possible paths is impossible, the solution

Understanding Unsolvable Problem 91

for this problem is to prune the exponential algorithm we use to find all possible paths
(ACM ICPC World Finals 2010 Solutions. n.d.). If at some point we know that it is
impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems
require deep analysis from the contestant. It is rare that we can get Accepted by only
“hacking” a complete search algorithm. Therefore, we will not discuss this technique
in detail.

3.3. Finding Small Constraints

Suppose there is an NP-hard problem with large 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  that is impossible to solve expo-
nentially (e.g. 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

 ). Sometimes we should also look for other small constraints
that may help. For example, a SUBSET-SUM problem is considered an NP-hard prob-
lem, and will not be solvable with 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

 . When we are given the constraint that all
the elements inside the array are small (e.g. 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

 ), this problem can be solved using 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  Dynamic Programming, where 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  is the upper bound of the elements inside
the array. Even though the running time of the algorithm is exponential to the size of
the input, the algorithm is still fast enough for the given constraint. Another way to
apply this technique is when the value of 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  is not too large (e.g. 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

 ). For ex-
ample, while 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  algorithm for 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  is unlikely to run in one second, we can,
for instance, use a 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  Meet In The Middle algorithm for solving a problem like
SUBSET-SUM. While 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  is still exponential to 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

 , it is much faster than 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

, and the range of 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  that it can solve is twice the range of 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  using a 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  solution.

Fig. 4. Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various
input sizes. This experiment is run 100 times for each value of  N  on a MacBook Pro (Retina,
13-inch, Early 2015).

J.I. Gunawan92

3.4. Finding Special Cases

This is the most suitable approach in IOI, and thus is the main focus of this paper. To
solve IOI 2008 Island and IOI 2014 Friend, we need to use this approach. We must find
a special constraint in the problem such that this constraint allows the problem to be
solvable in polynomial time. We can check whether an additional constraint causes a
problem to be solvable in polynomial time using the reduction proof of the original prob-
lem (without the additional constraint), and check whether the proof still holds given the
additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we
have a function with the following formula

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

We consider the sequence 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

 , and we define 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  to be the first 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  terms of 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

 . We want to know whether we can create a partition of 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  into two
disjoint multisets 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  and 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  such that the sum of all elements in 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  is equal to the sum
of all elements in  

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 .
This looks like a classic PARTITION problem. PARTITION problem is NP-hard by

reduction from SUBSET-SUM. Therefore, for a large value of 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

 , it is unlikely to be
able to find an algorithm that finds 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  and 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  in an efficient way. However, this sequence
is defined in a very special way, in the sense that 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  is defined using the aforementioned
recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  with length multiples of three can be
partitioned into two multisets of equal sum.

Proof. Pick any consecutive subsequence of 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  with length multiples of three, which we
will denote by 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by
F  = {f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  for some 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

 . We can parti-
tion 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  into

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  and 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  will have the same sum, as for every 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN by the construction of the function.

Understanding Unsolvable Problem 93

Theorem 2. If 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  is divisible by three, then 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  can be partitioned into two multisets
of equal sum.

Proof. If 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N)
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N), and the range of N that it can solve is twice the range of N using a O(2N) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  is divisible by three, then 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  is a prefix of 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  with length multiples of
three. By lemma 3, 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  can be partitioned into two multisets of equal sum.

Theorem 3. If 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 , 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  cannot be partitioned into two multisets of
equal sum.

Proof. Suppose 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 . Note that 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  contains 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  elements.
Since 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 , we have 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 . By lemma 3, 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  can be
partitioned into two multisets of equal sum. Therefore, the sum of all elements in 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  is even. However, the sum of all elements in 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 , which is
odd because 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  is even while 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  is odd. Therefore, there is no way to partition 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

 .

Theorem 4. If 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 . 

Figure 4: Comparison of O(2N) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  can be partitioned into two multisets of equal
sum.

Proof. Assign 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  to 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

  and 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  to 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y

Jonathan Irvin GUNAWAN

 . Since 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 , we are now trying to
partition 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition
F (N) = F (N) − f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0

(mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 . 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  will have 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  elements. Since

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 , we obtain 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 . By lemma 3, 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  can be parti-
tioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 .
We can solve this in 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 .
We will provide more examples of special cases in the following section.

4. Some Example of Special Cases

We will look at some common examples of special cases that may occur in competitive
programming problems.

4.1. Planar Graphs

Planar graph is a graph that can be drawn on a flat surface without having two edges
crossing each other (West et al., 2001). There are many graph problems which are easy
to solve if the graph is planar. We will provide several examples.

4.1.1. Number of Edges
In simple general graph, the number of edges can be up to a quadratic order with respect
to the number of vertices (i.e. 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 ). This is not the case for planar graph. In a planar
graph, we may show that 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  holds for 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  by using the Euler’s formula.
Therefore, the number of edges is 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 . Naturally, any algorithm that has 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  in its
running time can be changed into 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 . Computing shortest path in a general graph us-

J.I. Gunawan94

ing Bellman-Ford algorithm takes 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  (Halim and Halim, 2013), but it only takes 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  in a planar graph. Counting the number of connected components using DFS in
a general graph takes 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 , but it only takes 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  in a planar graph. Therefore,
if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 , the standard
DFS solution still runs under one second (in competitive programming, we assume that
1 million operations can be done in 1 second (Halim and Halim 2013)).

4.1.2. Maximum Clique Problem
The Maximum Clique problem requires us to find the maximum set of vertices in a graph,
such that every pair of vertices in the set is directly connected by an edge. By reduction
from vertex cover, the maximum clique problem on general graph is NP-hard. However,
it is easy to solve this problem in planar graph. Consider the problem of colouring a
graph such that no two adjacent vertices have the same colour. Note that if there is a
clique of size 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  in a graph, the set of the vertices inside the clique must be coloured with 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  colours. Therefore, the entire graph requires at least 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  colours. By the four colour the-
orem, any planar graph can be coloured with at most four colours. (Gonthier, 2005). Since
at most four colours are required to colour a planar graph, there does not exist a clique
with more than four vertices. Hence, we can solve the problem by checking whether there
is a clique with four vertices. If there is no clique with four vertices, we check whether
there is a clique with three vertices. Finding whether there is a clique with 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  vertices can
be solved naively in 

graph requires at least k colours. By the four colour theorem, any planar graph can be coloured with at most four
colours. (Gonthier 2005). Since at most four colours are required to colour a planar graph, there does not exist
a clique with more than four vertices. Hence, we can solve the problem by checking whether there is a clique
with four vertices. If there is no clique with four vertices, we check whether there is a clique with three vertices.
Finding whether there is a clique with k vertices can be solved naively in O(V k). Therefore, the whole solution
takes O(V 4) time, which is polynomial. The solution can be improved to O(V 2). Instead of having four nested
loops to find four vertices independently, we can have two nested loops over the edges instead and test whether
the four vertices (which are the endpoint of the two edges) form a clique. This solution takes O(E2), which is the
same as O(V 2) in planar graph.

4.1.3 Problem example

We will use a past competitive programming problem to illustrate the importance of the properties in a planar
graph. The ‘Traffic’ problem from Central European Olympiad in Informatics (CEOI) 2011 illustrates this concept
well. In this problem, there is a directed graph with up to V = 300, 000 vertices given in a 2D plane. There are
two vertical lines denoted as ‘left’ and ‘right’. All vertices are contained within the ‘left’ and ‘right’ lines, with some
vertices possibly lying on these two lines. The problem requires the contestant to print the number of visitable2
vertices lying on the ‘right’ line from every vertex lying on the ‘left’ line (which we shall call ‘left’ vertices and
‘right’ vertices for simplicity). An instance for this problem can be seen on figure 5.

Figure 5: An instance of problem ‘Traffic‘. In this example, the expected output is {4, 4, 0, 2}, since the top ‘left’
vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 ‘right’ vertices, the third top ‘left’ vertex
cannot visit any ‘right’ vertex, and the bottom ‘left’ vertex can visit 2 ‘right’ vertices

The bruteforce solution for this problem is to run DFS from every ‘left’ vertex which gives us a running time
2vertex v is visitable from vertex u if there is a path from u to v

Jonathan Irvin GUNAWAN

 . Therefore, the whole solution takes 

graph requires at least k colours. By the four colour theorem, any planar graph can be coloured with at most four
colours. (Gonthier 2005). Since at most four colours are required to colour a planar graph, there does not exist
a clique with more than four vertices. Hence, we can solve the problem by checking whether there is a clique
with four vertices. If there is no clique with four vertices, we check whether there is a clique with three vertices.
Finding whether there is a clique with k vertices can be solved naively in O(V k). Therefore, the whole solution
takes O(V 4) time, which is polynomial. The solution can be improved to O(V 2). Instead of having four nested
loops to find four vertices independently, we can have two nested loops over the edges instead and test whether
the four vertices (which are the endpoint of the two edges) form a clique. This solution takes O(E2), which is the
same as O(V 2) in planar graph.

4.1.3 Problem example

We will use a past competitive programming problem to illustrate the importance of the properties in a planar
graph. The ‘Traffic’ problem from Central European Olympiad in Informatics (CEOI) 2011 illustrates this concept
well. In this problem, there is a directed graph with up to V = 300, 000 vertices given in a 2D plane. There are
two vertical lines denoted as ‘left’ and ‘right’. All vertices are contained within the ‘left’ and ‘right’ lines, with some
vertices possibly lying on these two lines. The problem requires the contestant to print the number of visitable2
vertices lying on the ‘right’ line from every vertex lying on the ‘left’ line (which we shall call ‘left’ vertices and
‘right’ vertices for simplicity). An instance for this problem can be seen on figure 5.

Figure 5: An instance of problem ‘Traffic‘. In this example, the expected output is {4, 4, 0, 2}, since the top ‘left’
vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 ‘right’ vertices, the third top ‘left’ vertex
cannot visit any ‘right’ vertex, and the bottom ‘left’ vertex can visit 2 ‘right’ vertices

The bruteforce solution for this problem is to run DFS from every ‘left’ vertex which gives us a running time
2vertex v is visitable from vertex u if there is a path from u to v

Jonathan Irvin GUNAWAN

  time, which is
polynomial. The solution can be improved to 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 . Instead of having four nested loops
to find four vertices independently, we can have two nested loops over the edges instead
and test whether the four vertices (which are the endpoint of the two edges) form a clique.
This solution takes 

graph requires at least k colours. By the four colour theorem, any planar graph can be coloured with at most four
colours. (Gonthier 2005). Since at most four colours are required to colour a planar graph, there does not exist
a clique with more than four vertices. Hence, we can solve the problem by checking whether there is a clique
with four vertices. If there is no clique with four vertices, we check whether there is a clique with three vertices.
Finding whether there is a clique with k vertices can be solved naively in O(V k). Therefore, the whole solution
takes O(V 4) time, which is polynomial. The solution can be improved to O(V 2). Instead of having four nested
loops to find four vertices independently, we can have two nested loops over the edges instead and test whether
the four vertices (which are the endpoint of the two edges) form a clique. This solution takes O(E2), which is the
same as O(V 2) in planar graph.

4.1.3 Problem example

We will use a past competitive programming problem to illustrate the importance of the properties in a planar
graph. The ‘Traffic’ problem from Central European Olympiad in Informatics (CEOI) 2011 illustrates this concept
well. In this problem, there is a directed graph with up to V = 300, 000 vertices given in a 2D plane. There are
two vertical lines denoted as ‘left’ and ‘right’. All vertices are contained within the ‘left’ and ‘right’ lines, with some
vertices possibly lying on these two lines. The problem requires the contestant to print the number of visitable2
vertices lying on the ‘right’ line from every vertex lying on the ‘left’ line (which we shall call ‘left’ vertices and
‘right’ vertices for simplicity). An instance for this problem can be seen on figure 5.

Figure 5: An instance of problem ‘Traffic‘. In this example, the expected output is {4, 4, 0, 2}, since the top ‘left’
vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 ‘right’ vertices, the third top ‘left’ vertex
cannot visit any ‘right’ vertex, and the bottom ‘left’ vertex can visit 2 ‘right’ vertices

The bruteforce solution for this problem is to run DFS from every ‘left’ vertex which gives us a running time
2vertex v is visitable from vertex u if there is a path from u to v

Jonathan Irvin GUNAWAN

 , which is the same as 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  in planar graph.

4.1.3. Problem Example
We will use a past competitive programming problem to illustrate the importance of the
properties in a planar graph. The ‘Traffic’ problem from Central European Olympiad in
Informatics (CEOI) 2011 illustrates this concept well. In this problem, there is a directed
graph with up to 

graph requires at least k colours. By the four colour theorem, any planar graph can be coloured with at most four
colours. (Gonthier 2005). Since at most four colours are required to colour a planar graph, there does not exist
a clique with more than four vertices. Hence, we can solve the problem by checking whether there is a clique
with four vertices. If there is no clique with four vertices, we check whether there is a clique with three vertices.
Finding whether there is a clique with k vertices can be solved naively in O(V k). Therefore, the whole solution
takes O(V 4) time, which is polynomial. The solution can be improved to O(V 2). Instead of having four nested
loops to find four vertices independently, we can have two nested loops over the edges instead and test whether
the four vertices (which are the endpoint of the two edges) form a clique. This solution takes O(E2), which is the
same as O(V 2) in planar graph.

4.1.3 Problem example

We will use a past competitive programming problem to illustrate the importance of the properties in a planar
graph. The ‘Traffic’ problem from Central European Olympiad in Informatics (CEOI) 2011 illustrates this concept
well. In this problem, there is a directed graph with up to V = 300, 000 vertices given in a 2D plane. There are
two vertical lines denoted as ‘left’ and ‘right’. All vertices are contained within the ‘left’ and ‘right’ lines, with some
vertices possibly lying on these two lines. The problem requires the contestant to print the number of visitable2
vertices lying on the ‘right’ line from every vertex lying on the ‘left’ line (which we shall call ‘left’ vertices and
‘right’ vertices for simplicity). An instance for this problem can be seen on figure 5.

Figure 5: An instance of problem ‘Traffic‘. In this example, the expected output is {4, 4, 0, 2}, since the top ‘left’
vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 ‘right’ vertices, the third top ‘left’ vertex
cannot visit any ‘right’ vertex, and the bottom ‘left’ vertex can visit 2 ‘right’ vertices

The bruteforce solution for this problem is to run DFS from every ‘left’ vertex which gives us a running time
2vertex v is visitable from vertex u if there is a path from u to v

Jonathan Irvin GUNAWAN

  vertices given in a 2D plane. There are two vertical lines
denoted as ‘left’ and ‘right’. All vertices are contained within the ‘left’ and ‘right’ lines,
with some vertices possibly lying on these two lines. The problem requires the contestant
to print the number of visitable2 vertices lying on the ‘right’ line from every vertex lying
on the ‘left’ line (which we shall call ‘left’ vertices and ‘right’ vertices for simplicity). An
instance for this problem can be seen on Fig. 5.

The brute force solution for this problem is to run DFS from every ‘left’ vertex which
gives us a running time of 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 . It is very difficult to find a solution (if any) faster than 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  for this problem. However, there is an important constraint on the problem. The
graph given in this problem is always a planar graph. We first relabel the ‘right’ vertices
in ascending order according to the y-coordinate. The planar properties ensures that for

2	 vertex v is visitable from vertex u if there is a path from u to v

Understanding Unsolvable Problem 95

every ‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is
a contiguous sequence, assuming that we have removed all ‘right’ vertices which are
not visitable from any ‘left’ vertex. With this property, there is a 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

  solution
(CEOI 2011 Solutions, n.d.).

4.2. Bipartite Graph

Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

  and 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

  such that all edges connect a vertex from 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

  and a vertex from 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

 . Some
problems have a bipartite graph as an input although the problem statement does not
explicitly state that the given input graph must be bipartite. The problem that we used
as an introduction for this paper, IOI 2014 Friend is a very good example. The construc-
tion of the graph in subtask 5 of this problem implicitly ensures that the final graph
will always be bipartite. There are several graph problems that are NP-hard for general
graph but solvable in polynomial time if the graph is bipartite. Since bipartite graph and
bipartite matching was recently included in IOI 2015 syllabus (Forišek, 2015), we can
expect that this type of problem may be conceived in the near future of IOI. We will
take a look at several examples.

4.2.1. Vertex Cover and Independent Set (and Maximum Matching)
As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-
INDEPENDENTSET problems are NP-hard. However, both of these problems are
solvable in polynomial time on bipartite graph. By Konig’s theorem, the size of the
minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy and Murty, 1976), and the size of the maximum independent set in

Fig. 5. An instance of problem ‘Traffic’. In this example, the expected output is {4, 4, 0, 2},
since the top ‘left’ vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4
‘right’ vertices, the third top ‘left’ vertex cannot visit any ‘right’ vertex, and the bottom ‘left’
vertex can visit 2 ‘right’ vertices.

J.I. Gunawan96

bipartite graph is equal to the number of the vertices minus the size of the maximum
bipartite matching. Therefore, both problems are equivalent to finding the size of the
maximum bipartite matching, which can be solved in 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

  time. Finding the size
of the maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maxi-
mum-Flow algorithm is much simpler to solve, as compared to using Edmonds Blos-
som algorithm on general graph. This is actually the solution of the 5th subtask of IOI
2014 Friend.

4.3. Directed Acyclic Graph

A directed acyclic graph is a directed graph that does not contain any cycle. Similar to
planar and bipartite graphs, there are several graph problems that are much easier to
solve if the graph is a directed acyclic graph.

4.3.1. Minimum Path Cover
MIN-PATH-COVER is a problem that requires us to find the minimum number of
vertex-disjoint paths needed to cover all of the vertices in a graph. By a simple re-
duction from Hamiltonian Path, this problem is NP-hard. A graph has a Hamiltonian
Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

 , we create a new graph 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

 , where 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

  and 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

 . Then it can be shown by Konig’s Theorem that 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

  has a matching of size 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

  if and only if there exist 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

  vertex-disjoint paths
that cover all of the vertices in 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

 .

4.4. Miscellaneous

4.4.1. Special Case of CNF-SAT Problem
We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example.
This problem requires the contestant to find a solution with the minimum number of
true variables that satisfy a CNF-SAT problem with up to 2,000 variables (Google
Code Jam 2008 Round 1A, ‘Milkshake’ problem, n.d.). The CNF-SAT is a satisfiability
problem given in a conjunctive normal form (i.e. conjunction of disjunction of literals)
which was proven to be NP-hard (Cook, 1971). Therefore, it is unlikely that there is an
algorithm to solve a CNF-SAT problem with 2,000 variables in less than 8 minutes3.
However, there is a special property in this problem, in which at most one unnegated
literal exists in each clause. Therefore, all clauses can be converted into Horn clauses.
With this property, a linear time algorithm exists. (Google Code Jam 2008 Round 1A,
‘Milkshake’ solution, n.d.).

3	 In Google Code Jam, contestants are given 8 minutes to produce the output upon downloading the input.

Understanding Unsolvable Problem 97

5. Conclusion

In conclusion, we can use a well-known reduction technique to prove that a problem that
we are currently attempting to solve is impossible (or at least it is very hard such that no
people has been able to solve it for more than 40 years). In competitive programming
(including IOI), understanding this technique is essential so that we will not be stuck at
trying to solve an impossible problem, thus prompting us to find another way to solve
the problem. To prove that a problem is NP-hard, it is good to know as many NP-hard
problems as possible, so that we can reduce from any one of the problems that we know
to the new problem. Some of the classic NP-hard problems include 3-SAT, Vertex Cover,
Independent Set, and Subset Sum. After realizing that the problem is NP-hard, we must
be able to find the special case that makes the problem solvable. We must be able to find
a special property that breaks the reduction proof. Having a lot of practice on these kind
of problems will help us to familiarize with the possibilities of a special case. Some of
the common special cases include planar, bipartite, and directed acyclic graph.

References

ACM ICPC World Finals 2010 Problem Statement (n.d.). Available via internet:
http://icpc.baylor.edu/download/worldfinals/problems/2010WorldFinalProblemSet.pdf

ACM ICPC World Finals 2010 Solutions (n.d.). Available via internet:
http://www.csc.kth.se/~austrin/icpc/finals2010solutions.pdf

Bondy, J.A., Murty, U. S. R. (1976). Graph Theory with Applications, Vol. 290, London: Macmillan.
CEOI 2011 Solutions (n.d.). Available via internet:

http://ceoi.inf.elte.hu/probarch/11/ceoi2011booklet.pdf

CEOI 2011. ‘Traffic’ Problem (n.d.), available via internet:
http://ceoi.inf.elte.hu/probarch/11/trazad.pdf

Cook, S.A. (1971). The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM
Symposium on Theory of Computing. ACM, 151–158.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.
Forišek, M. (2015). International olympiad in informatics 2015 syllabus. Available via internet:

https://people.ksp.sk/~misof/ioi-syllabus/ioi-syllabus.pdf

Gonthier, G. (2005). A computer-checked proof of the four colour theorem. Available via internet:
http://research.microsoft.com/en-us/people/gonthier/4colproof.pdf

Google Code Jam 2008 Round 1A, ‘Milkshake’ Problem (n.d.). Available via internet:
https://code.google.com/codejam/contest/32016/dashboard#s=p1

Google Code Jam 2008 Round 1A, ‘Milkshake’ solution (n.d.). Available via internet:
https://code.google.com/codejam/contest/32016/dashboard#s=a&a=1

Halim, S., Halim, F. (2013). Competitve Programming 3. lulu.com
IOI 2008, ‘Island’ Problem (n.d.). Available via internet:

http://www.ioinformatics.org/locations/ioi08/contest/day1/islands.pdf

IOI 2014, ‘Friend’ Problem (n.d.). Available via internet:
http://www.ioinformatics.org/locations/ioi14/contest/day2/friend/friend.pdf

West, D. B. et al. (2001). Introduction to Graph Theory, Vol. 2. Prentice hall Upper Saddle River.

J.I. Gunawan98

J.I. Gunawan is an undergraduate student studying Computer Science
in National University of Singapore. He participated a lot of program-
ming contests, including IOI 2012 and 2013 and ACM ICPC World
Finals 2014 and 2015. He is also the lead of the Scientific Committee
of Indonesian Computing Olympiad team (TOKI) training Indonesian
teams for IOI in 2015–2016.

Olympiads in Informatics, 2016, Vol. 10, 99–109
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.07

99

Homo Informaticus –
Why Computer Science Fundamentals are
an Unavoidable Part of Human Culture
and How to Teach Them

Juraj HROMKOVIČ
Department of Computer Science, ETH Zürich
e-mail: juraj.hromkovic@inf.ethz.ch

Abstract. The goal of this article is on one hand to introduce informatics as a scientific discipline
in the general context of science and to outline its relationships especially to mathematics and en-
gineering, and on the other hand to propose a way how to integrate computer science into school
education.

Keywords: teaching, computer science, mathematics.

1. Introduction

The development of human society is mainly determined by the ability to derive knowl-
edge and to find efficient ways of applying it. Let us explain this claim more carefully.
Human beings sample experiences by observations and experiments and use them to
generate knowledge by combining their experience with logical thinking. The derived
knowledge is used to develop procedures in order to reach concrete goals. A crucial point
in our considerations is that to use such procedures one usually does not need to fully
understand the knowledge used to obtain such procedures. To an even higher extent, one
does not need to understand the way in which this knowledge was derived and verified.
Let us illustrate this on a simple example.

The famous theorem of Pythagoras claims c2 = a2 + b2 in any right triangle, where
c is the length of the longest side (hypotenuse). This theorem was used to fix the right
angles when building houses and temples in the classical antiquity. The workers only
needed to build a triangle of sizes 5 units, 4 units, and 3 units in order to get a right
angle, and for sure they did not need to understand how the theorem of Pythago-

J. Hromkovič100

ras was discovered and how it was proven. Hence, to successfully apply the derived
knowledge, one did not need to master the high qualification of an investigator. In this
way, scientists changed and still change society and became a crucial factor in human
development.

Computer science was created as a natural step forward in the above described devel-
opment, when the following two conditions were satisfied:

Using the exact language of mathematics, one was able to discover and describe 1.	
procedures in such a way that no intellect was needed to apply them. Executing
them step by step, everything was unambiguous, and no educated or trained per-
son was needed to find the right interpretation of the particular instructions of the
procedure executed.
The technology enabling to execute the discovered procedures by machines was 2.	
developed, and languages providing the opportunity to “explain” universal ma-
chines what they have to do were designed.

In this context, we speak about automation. We let the machine execute not only
physical work, but also such human work considered as intellectual work in the past.
This is the reason why computer science is a mixture of mathematics and enginee-
ring.

On the one hand, one uses the concepts, methods, and the language of mathemat-
ics in order to understand the considered entities and their relations so exactly that
algorithms as unambiguously interpretable procedures can be developed in order to
solve a variety of problems everywhere in science, technology, and everyday life. Here,
mathematics is the instrument that has to be mastered together with the specific area in
which one tries to solve problems.

On the other hand, developing and improving the enabling technology is mostly
engineering. This is not only about hardware, but especially about software enabling
us to conveniently communicate with computers in high-level programming lan-
guages.

We see that computer science is a part of the natural development of science, and
it became a discipline that is crucial for the performance of the human society. This
contextual view is important when thinking about what computer science actual is, and
how to teach computer science in schools. We are asked not to teach specific isolated
facts, methods, and other final products of scientific work, but the way how they were
discovered, i. e., the paths from the motivation coming from the general context of sci-
ence to the final products of the research work and engineering. As in its fundamentals
computer science is very strongly related to mathematics as its basic research instru-
ment, we start with the question “What is mathematics and how to teach it?” in the
next section, and use the derived point of view in the final section to propose the way
of teaching computer science in schools. Before the final section, however, we discuss
engineering as a missing subject in schools in Section 3. Again, we use this discussion
in order to show in the final section how teaching computer science can contribute to
understanding some basic concepts of engineering and how it integrates them in the
school curriculum.

Homo Informaticus. Why Computer Science Fundamentals are an ... 101

2. Mathematics as the Language of Science and Consequences
of this View for Teaching It

What is mathematics? If you pose this question, you can get a lot of different answers;
frequently, even the response that this question is too hard to be answered satisfactorily.
A mathematician or a university student can tell you with high probability that she or
he proves theorems and thus investigates the structure and the properties of artificial
mathematical objects, which can be useful to model reality, or the relationships between
different such objects. A high-school student can tell you that mathematics consists of
calculations that can be used to solve some classes of mathematical tasks (also called
problems) such as solving quadratic equations or systems of linear equations or analyz-
ing the properties of a curve. Obviously, you can also get a response that mathematics
is something that is hard to understand, and that every “normal” human being can exist
and be successful without it. This is a frequent answer, and unfortunately it is more of a
rule than an exception.

Mathematics is the most powerful instrument humans ever have developed in order
to investigate the world around us. But it is taught in such a way that the students do
not realize this fact. Especially in high schools, they learn methods (algorithms) to solve
some given problems (for instance, to find a maximum of a function). This may be also
viewed positively as an intellectual challenge, because several methods are not easy to
manage. But the bad news is that they can learn to successfully apply methods for solv-
ing different problems without really understanding why these methods work properly.
High-school students often do not have a good intuition of what infinity or limits are
about, but they use these concepts in a fuzzy way in order to analyze artificial functions
without seeing any relation to reality. What are we doing wrong? A lot. We have to start
to think first about what mathematics is, and then to try to find a way how to teach math-
ematics in a proper way.

From my point of view, the best way to view mathematics is as a special language
developed for science, i. e., for knowledge generation. Going a few thousand years
back, people wanted to discover “objective” knowledge. The important word here is
the word objective. If you want to reach that, first of all you need a language in which
each statement has an unambiguous interpretation for everybody who mastered this
language. How to reach this? First of all, you need to give an absolutely exact meaning
to the words (notions) you use, because the words are semantically the corner stones of
each language. In this context, mathematicians speak about axioms. Many people have
the wrong impression that axioms are claims in whose truthfulness we believe, but of
which one is not able to prove that they are true. This is mostly not the case. Axioms
are the precise definitions of basic notions that describe our intuition about the mean-
ing of these notions. Probably the first concepts people tried to fix were notions such as
number, equality, infinity, point, line, distance, etc. What is very important to observe is
that people needed hundreds and in some cases thousands of years to come up with such
definitions that the community of philosophers and later mathematicians has accepted.
Why was all of this done? First of all, the language of mathematics is able to describe

J. Hromkovič102

objects, structures, properties, and relationships in an unambiguous way. In this context
we speak about the “descriptional” power of mathematics. Thus, people were able to
formulate exact claims this way, and so to express our knowledge unambiguously. But
this was only one side of the language of mathematics. The language of mathematics
was also used to derive new knowledge from the given knowledge, i. e., as a knowledge
generator. Leibniz formulated this role of mathematics in a very nice way. He wanted to
omit all political discussions and fighting in different committees by simply expressing
the real problems in the language of mathematics, and then using calculations and logi-
cal derivations to obtain the right solution. Interestingly, he called this “automation”
of the human work. By now we know that this dream of Leibniz cannot be achieved.
There are two reasons for that. First of all, because of its exactness, the language of
mathematics is restricted in its descriptional power, and so we cannot translate all real-
world problems into this language. Secondly, one of the most important discoveries of
the last century made by Gödel tells us that the argumentational power of the language
of mathematics is smaller than its descriptional power. This means that one can formu-
late claims in current mathematics for which there do not exist proofs of whether they
are true or not.

What do scientists learn from that? The development of the language of mathemat-
ics is similar to the development of natural languages. You need to create new words
and describe their meaning in order to increase its descriptional power, and to be able
to speak about things you were not able to speak about before. Moreover, you need new
concepts and words to be able to argue about matters you were not able to argue before,
i. e., in order to strengthen your capability of deriving new knowledge by thinking. A
very important point is that the process of developing the language of mathematics is
infinite. As long the number of basic, axiomatic words of the language of mathematics
is finite, one can always formulate claims that are not provable within this mathematical
language, and one has to introduce new words in order to be able to prove them and so
to make new discoveries.

A very nice example is the notion of infinity. Nobody saw anything infinite in the
real world, and even most physicists believe that the universe is finite. This means that
infinity is something artificial, simply an artificial product of mathematics. But without
this concept, most of the current science would not exist. Without the notion of infinity,
there would be no concept of limits and so we would not be able to exactly express no-
tions like actual speed or actual acceleration. Our science simply would be somewhere
before the discoveries of Newton. Hence, without the “artificial” concept of infinity,
one is strongly restricted in the ability to discover our finite, real world.

Another example of a crucial notion is the concept of probability. Most of the sci-
ences, even the non-exact ones such as didactics, psychology, medicine, and economy,
heavily use this concept to model and investigate reality, and if they would make predic-
tions without this concept, they would have serious trouble to convince society that their
results are trustable to some extent and not only expert opinions.

Why did we focus on the view of mathematics presented above? Because it is the
nature of mathematics that shows us which changes are necessary in order to improve

Homo Informaticus. Why Computer Science Fundamentals are an ... 103

the education in mathematics for everybody. Based on this, we recommend to adopt the
following concepts:

Focus more on the genesis of the fundamental notions (concepts) of mathematics. 1.	
To define them took centuries, to prove most of the theorems took a few years.
Each new concept enabled to investigate so many things that no single discovery
can compete with introducing a fundamental concept. The strengthening of math-
ematics as a research instrument is the main job of mathematics, and deriving
new concepts (not necessarily on the axiomatic level) in mathematics provides
the best, true picture of its nature. Without this, nobody can really understand its
role and usefulness. And only if one understands the genesis of mathematics as
the development of a language of science and as a research instrument, one can be
able to apply it regularly to all areas of our life. Teaching mathematics this way
can completely change the behaviour of the members of our society. Instead of
memorizing and sampling facts provided, one would start to verify the degree of
trustability of claims sold as knowledge and to understand to which extent and
under which conditions one is allowed to take them seriously.
Concrete examples first, abstraction as a final discovery. One first has to touch 2.	
concrete problem instances and objects in order to get some intuition about their
properties. Then, one can formalize her or his intuition into a formal concept.
One has to follow the natural way of discovering that usually goes from concrete
to abstract. To sell methods and theorems as final products is as poor as teaching
manuals for washing machines or Microsoft office instead of teaching discover-
ies of physics, mechanics, and computer science that enabled to develop these
products.
Teach algorithmics instead of training calculation methods. Pupils learn in schools 3.	
to multiply arbitrarily large integers in decimal representations, to solve quadratic
equations and systems of linear equations, or to analyze functions, etc. In all cas-
es, most pupils learn to apply given methods, but most of them do not understand
why they work. It is more of a challenging memorizing than a deep understanding
of the nature of the algorithms used. One has to start to introduce problems instead
of presenting methods solving them, and ask the pupils and students to solve con-
crete problem instances first and finally to discover an algorithm as a robust pro-
cedure that is able to solve any of the infinitely many concrete problem instances
of the given problem. Discovering algorithms as well-functioning calculation pro-
cedures offers another quality of education in mathematics than executing a given
calculation method, which any pocket calculator can do faster and more reliable.
Teach programming as the art of exactly describing the methods discovered in an
unambiguously interpretable way in the language of the machines, and strengthen
the ability of exact communication this way.
Teach the principles of correct argumentation. Teach the notions of implication 4.	
and quantifiers, and train direct and indirect proofs. Do not believe that the pupils
in high schools cannot learn to verify and to derive simple proofs. They did not
manage this in the past, because there was no effort made to teach proving claims,
or most effort in this direction was done in a wrong way.

J. Hromkovič104

Guarantee the opportunity to the pupils to deal with the subjects as many time as 5.	
needed at an individual speed. Mathematics is one of the sciences that needs a
large number of iterative touchings of particular topics until one is allowed to say
“Eureka,” and gets a reasonable understanding of what it is about. The trouble is
that no teacher can assure this by herself or himself for everybody in the class.
Another problem is that most textbooks of mathematics are good collections of
exercises, but explanations are written more for teachers than for pupils. One way
out is to change the style of the textbooks. The textbooks should be written in
such a way that pupils and students would be able to learn from them by their own
with a minimal support from outside. Partitioning the discoveries into a number
of small, natural steps written in the language mastered by the pupils at the cor-
responding age, and regularly giving the opportunity to verify whether one under-
stands the topic up to now properly are some of the basic principles used to create
good textbooks for mathematics.

Finally, one can ask how to reach the new teaching style for mathematics described
above. For sure, one cannot ask the high-school teachers to make this change without
showing them how to do this in detail. One also cannot ask educationalists, who do not
have a sufficiently deep contextual knowledge of mathematics to master these changes.
The movement has to start at the universities, where the teaching style has to change
first. In order to speed up this process in Switzerland, in our department at ETH Zürich
we develop new textbooks for teaching different topics of mathematics and computer
science for all school levels. Our experiments prove that mathematics can become one
of the most favorite subjects of pupils and students if taught in the way described
above. Students can successfully master topics that were considered to be too hard for
them before, and the marks in mathematics can be significantly higher than the average
marks over all topics.

For me, it is not a question of whether the proposed evolution of the education in
mathematics will come. It is only the question of the time at which particular countries
will need to adopt it. Since this is a service for the future generation, the earlier the
better.

3. Why Engineering is Not Allowed Not to Be a Part of Basic Education

As mentioned in the introduction, human society uses the knowledge discovered in order
to reach different goals more efficiently by developing various procedures or different
products. This is highly creative work that is beyond the pure learning of facts and mak-
ing calculations that can be completely automatized. The whole process of engineering
work starts with a description of the goals to be achieved. After that, one starts to com-
bine experience and fundamental knowledge of science in order to design a solution that
has to be implemented as a prototype. Next, one has to test this prototype, modify, and
improve it until an acceptable product is produced.

Homo Informaticus. Why Computer Science Fundamentals are an ... 105

In today’s schools, we find almost nothing about the concept of iterative specifying,
testing, modifying, and improving the product of our work, let alone about fundamental
constructive ways of creating original products. But this is fundamental to human ac-
tivities since the beginning of time. The current school systems ignore this fact to a high
extent and are more about teaching to memorize than teaching to work in a creative
way. One can explain this educational misconception by the fact that, in contrast to
basic scientific models of reality, the engineering work is heavily dependent on experi-
ence that is often hard to formalize and thus to teach. The creative work of engineers
as human experts cannot be described by an algorithm (a method). However, this must
not be a reason to remove engineering from education, because students also have to
learn to build their own experience over a longer period of time in order to become an
expert for a special area.

The crucial fact we want to point out is that computer science mastered to formalize
several basic concepts of engineering and made them available to our schools as a result.
Teaching computer science is a chance to introduce engineering as a highly creative,
constructive activity to our educational system.

Let us consider some concrete illustrations. Probably the most fundamental con-
cept of technical sciences is modularity. One builds some simple units with clear and
well verifiable functionalities and calls them modules. Then one uses these modules
as fundamental building blocks to construct more complex systems that are again
considered basic modules for constructing even more complex systems. There is no
upper bound on the growth of the complexity of systems built in such a way. Un-
believably many human activities can be described by this modular concept. This
includes learning. Ones learns some simple facts and methods and their applications
in a restricted framework. After that, one masters them perfectly in such a way that
one can use them as elementary operations in attacking more complex tasks. All spiral
curricula run in a well-designed modular way. Thinking in a modular way when try-
ing to reach given goals is the most fundamental instrument of creative human work.
And it does not matter whether you apply it top-down or bottom-up. If one applies a
top-down approach, then everything is clear and one designs only a transparent and
well-verifiable plan for constructive work. More typical is the bottom-up approach
where one builds more and more complex modules without knowing what the final
product will be about.

Programming is an excellent instrument to teach modularity. Writing programs to
automate solving different tasks provides modules for attacking much more complex
tasks. Children of age between 10 and 12 are able to put five loops into each other with-
out being disturbed by or even observing the complexity of their final product due to
modularity. One simple program containing a loop gets a name and so becomes a new
instruction. This instruction is used in the body of another loop that also becomes a new
instruction used in another loop, etc. Here, one can train both, the top-down approach as
well as bottom-up approaches devoted to open-end tasks. To practice the ability to bring
a clear structure into complex processes is at least as important as any of the fundamen-
tal concepts of sciences or humanities contained in the school curricula.

J. Hromkovič106

Another important concept is teaching to test or verify products of our work. Typi-
cally, children verify their own products by asking teachers or adults to tell them whether
their work resulted in what they were asked to reach. But this way, they cannot suffi-
ciently build their self-confidence because they need a strong dependency on their super-
visor. They have to learn to trust their solutions by being taught to verify the products of
their work by themselves. Programming is again a wonderful instrument for this purpose
using the platform or editor that fits the educational requirements. One can learn to test
the functionality of programs by running them on several data sets as well as by the veri-
fication approach based on a transparent structuring of the program into small modules
whose correct behavior can by easily verified.

In general, constructive engineering work within the educational system changes the
behavior of young people in an essential way. They move from the role of customers
searching for products with some desired property to the role of creative inventors for
designing and developing products with new, original functionalities. The never-ending
story of improving any human products with no limits on what can be approached in the
future would be the most important, great consequence of embedding the creative way
of thinking of engineers into school systems.

4. Teaching Computer Science as a Fundamental Step in the Evolution
of Our Educational Systems

In the two previous sections, we already outlined, with respect to improving teaching
of mathematics and introducing engineering, the principal contributions that could be
offered by teaching computer science in schools in a proper way. This word “proper” is
crucial for us, and thus we start by listing what we are not allowed to do if we want to
avoid a disaster when introducing computer science to schools. In what follows, we pres-
ent the most frequent mistakes that already caused frustrations in different countries.

To teach how to work with concrete software products and call it computer sci-1.	
ence. This activity destroyed the image of computer science as a scientific disci-
pline in the past.
To let computer science be taught as a part of “social media” by teachers educated 2.	
in human sciences only, and focusing on social, emotional and psychological as-
pects of communication by new technologies.
To choose the topic to be taught by committees of experts offering their favorite 3.	
topic without looking at the whole context of science as presented above in Sec-
tion 2.
To sell computer science as the ability to work with computers.4.	
To sell computer science as a special branch of mathematics.5.	
To sell computer science as a pure engineering discipline.6.	
To try to teach the newest achievements of computer science. Think about what 7.	
would happen if physics would try to do that instead of following the history, and
thus developing step by step our view of the physical world.

Homo Informaticus. Why Computer Science Fundamentals are an ... 107

To try to sell computer science as a joy much easier than mathematics and physics 8.	
by avoiding any depth and thus a spiral curriculum, and instead presenting one
simple application after the other.
Going too much into technical details about concrete programming languages, 9.	
software systems, or hardware.

While 1, 2, and 4 have been the main reasons for destroying the image of computer
science in the society in the past, currently the points 7 and 8 are the major danger for
establishing computer science as a school subject.

After listing what we are not allowed to do, it is now time to switch to positive
recommendations and conceptual work. We do not want to make a proposal for the
content of a computer science curriculum, because our goal is not to go too much into
detail, and because, for sure, there are various possibilities for good implementations of
the computer science subject in schools. What we try here is to recommend a strategy
and principles that are useful for designing a computer science curriculum that can be
accepted as a fundamental part of education in its generality for everybody, and that es-
sentially contributes to:

The understanding of our world (in this case with the focus on the artificial world 1.	
created by humans).
Developing our way of thinking in a dimension that cannot be compensated by 2.	
teaching other school subjects.
Providing knowledge that is useful and sometimes even expected as prior knowl-3.	
edge for the study of a variety of specialized scientific disciplines later (university
studies, etc.).

As a byproduct, we have to aim to improve teaching overall, especially by strength-
ening the subjects mathematics and natural sciences. We already presented the basic
strategy how to design a computer science curriculum in Section 2 about mathematics.
We have to follow the genesis of computer science and think about motivations and
fundamental concepts introduced and discovered by computer scientists from the point
of view of science as a whole. For sure, we have to think about or even discover which
concepts are available to which extent in which age, and to follow all the ideas for cre-
ating good teaching materials as presented in Section 2. Let us be more concrete and
present a few examples.

One can decide to introduce programming at the age between 8 and 14. The first
step is to deal with abstractions that enable us to unambiguously describe the problem
instances. Then we teach to sample experience by trying to find solutions to concrete,
special problem instances, whose size and complexity may grow with growing experi-
ence. After some time, one can develop a strategy that works successfully for a small
collection of problem instances that we subsequently call a problem. Having a solution
strategy, one has to learn to communicate it, i. e., to unambiguously describe it for any-
body else. After that, we are allowed to start teaching proper programming by describing
our strategy as a program in a suitable programming language. We are not allowed to
teach the list of all instructions (fundamental words) of a programming language. We
have to start with very few (10 to 15) fundamental instructions, and use modularity to

J. Hromkovič108

create new words (instructions) in order to make our communication with the computer
more convenient. After writing programs, we let them run in order to verify their cor-
rect functionality and learn to correct, improve, and modify our programs in order to get
a final product with which we are satisfied. Let us list some of the added values when
teaching the introduction to programming in the way described above:

Training and strengthening the abstraction in representing real situations by draw-1.	
ing graphs, writing lists or tables with different kinds of elements.
Contributing to teaching mathematics by searching for a solving strategy, instead 2.	
of simply learning a method as a given product of the work of others.
Strengthening the ability to express matters and procedures in an exact way, and 3.	
so to improve the way used to communicate.
Recognizing that a language is not a given final product of human work, but that 4.	
any language is continuously developed, and that in case of a programming lan-
guage one can develop the language on her or his own with respect to her or his
personal demand.
Defining new instructions by describing the meaning of the new words by sub-5.	
programs, one learns the principle of a modular design that is common and fun-
damental in engineering.
Introducing the concepts of testing, verifying, modifying, and improving is the 6.	
first contact with the creative, constructive work of engineers.

A really good teaching sequence for introductory programming can be created if one
focuses on the above listed added values and not on technical details of programming
languages and other software used or on a specific class of tasks.

Another nice example is teaching cryptography. Cryptography can be viewed as
the history of developing the notion “secure cryptosystem.” One can start with the
historical examples in order to introduce the basic terms decryption, encryption, key,
and cryptosystem with a lot of creative work by designing and breaking new, own
cryptosystems. After defining the concept of “security” by Kerckhoff, one can build
the bridge to probability theory. The concept of probability was used to design new
cryptosystems and later to break them. One can wonderfully understand the impor-
tance and the usefulness of the concept of probability studying the history of secret
communication in this way. Then one can introduce the formal mathematical defini-
tion of absolutely secure cryptosystems with respect to the concept of probability, and
recognize that such system cannot be built for practical purposes. Finally, the concept
of computational complexity offering public-key cryptosystems is the way out, leading
to the recent e-commerce.

What we try to repeatedly present as the key strategy is to follow the history of the
discoveries of particular concepts, methods, and ideas, and not to try to sell finalized
products of science. The creative work is the most (and may be even the only really)
exciting part of the study. Let us teach creativity by repeatedly discovering things that
were already discovered, up to the point where one is able to discover something com-
pletely new. Forget about teaching facts, teach how to verify the trustability of claims
made by others. We are lucky, because we are allowed to create a curriculum for a

Homo Informaticus. Why Computer Science Fundamentals are an ... 109

completely new subject. We can implement principles, which the other subjects still
did not recognize, and so contribute to the evolution of the system of education. For
those who would like to see detailed implementations of the design principles presented
above, we recommend to following textbooks from our production (Böckenhauer and
Hromkovič, 2013; Freiermuth et al., 2014; Hromkovič, 2011; Hromkovič, 2014) or
the book “Algorithmic Adventures – from Knowledge to Magic” (Hromkovič, 2008;
Hromkovič, 2009).

References

Böckenhauer, H.-J., Hromkovič, J. (2013). Formale Sprachen. Springer Vieweg.
Freiermuth, K., Hromkovič, J., Keller, L., Steffen, B. (2014). Einführung in die Kryptologie. 2nd Edition.

Springer Vieweg.
Hromkovič, J. (2011). Berechenbarkeit. Vieweg+Teubner.
Hromkovič, J. (2008). Sieben Wunder der Informatik – Eine Reise an die Grenze des Machbaren.

Vieweg+Teubner.
Hromkovič, J. (2009). Algorithmic Adventures – From Knowledge to Magic. Springer.
Hromkovič, J. (2014). Einführung in die Programmierung mit LOGO. 3rd Edition. Springer Vieweg.

J. Hromkovič is professor of informatics with a special added fo-
cus on computer science education at ETH Zurich. He is author of
about 15 books published in 6 languages (English, German, Russian,
Spanish, Japanese, and Slovak) and about 200 research articles. He is
member of Academia Europaea and the Slovak Academic Society.

Olympiads in Informatics, 2016, Vol. 10, 111–124
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.08

111

Examples of Algorithmic Thinking in
Programming Education

Juraj Hromkovič, Tobias Kohn, Dennis Komm, Giovanni Serafini
Department of Computer Science, ETH Zürich
Universitätstrasse 6, 8092 Zürich, Switzerland
e-mail: {juraj.hromkovic, tobias.kohn, dennis.komm, giovanni.serafini}@inf.ethz.ch

Abstract. Algorithmic thinking and problem solving strategies are essential principles of com-
puter science. Programming education should reflect this and emphasize different aspects of these
principles rather than syntactical details of a concrete programming language. In this paper, we
identify three major aspects of algorithmic thinking as objectives of our curricula: the notion of a
formal language to express algorithms, abstraction and automation to transfer proven strategies to
new instances, and the limits of practical computability.

The primary contribution of this paper are three examples that illustrate how general aspects
of algorithmic thinking can be incorporated into programming classes. The examples are taken
from our teaching materials for K-12 and university non-majors and have been extensively tested
in the field.

Keywords: algorithmic thinking, K-12, spiral curriculum, programming education, Logo, Python.

1. Introduction

Algorithmic thinking constitutes one of the core concepts of computer science. It has
proven a versatile and indispensable tool for problem solving and found applications far
beyond science. Hence, sustainable computer science education should be built upon
algorithmic thinking as its primary objective, thus unfolding benefits for a broad and
general education. However, how do we bring algorithmic thinking to computer science
education? In this paper, we identify a number of principles that we want to deliver to
students at different levels. As the main contribution, we describe concrete examples of
how to teach these paradigms, which have been proven successful in the past.

Our work is part of ubiquitous efforts towards establishing sustainable computer science
in K-12 education. Particularly noteworthy and inspiring are “CS unplugged” approaches
as proposed by Bell et al. or Gallenbacher, which do completely away with computers
and solely focus on the underlying algorithmic principles (Bell et al., 2012; Gallenbacher,
2008). By incorporating such ideas into programming education, we effectively combine
the strengths of the two approaches, resulting in a truly sustainable education.

J. Hromkovič et al.112

1.1. The Setting

The examples presented in this paper stem from teaching materials we have developed
for primary school, high school, and university, respectively (Gebauer et al., 2016;
Böckenhauer et al., 2015a; Böckenhauer et al., 2015b; Kohn, 2016). The goal of our
endeavours is to create a spiral curriculum that starts as early as fifth grade in primary
school with iterations throughout mandatory school, and including computer science
classes for non-majors at university level.

We use both Logo and Python in our classes and found that the simplicity of Logo
is especially well-suited for primary school and complete beginners. At high school
and university level, Python then allows us to discuss topics in more depth and to better
link our programming classes to mathematics and the sciences. We have also extended
our Python interpreter and included Logo’s repeat-loop into Python. This allows us
to introduce iteration at an early stage without the need for variables, getting the best
of both worlds.

Our curricula and examples make heavy use of turtle graphics, both in Logo as well
as in Python. Apart from the obvious benefits of direct visualization, the turtle is also a
source of powerful didactical metaphors. In particular, the examples as presented in this
paper all rely on turtle graphics to convey or visualize an algorithmic principle.

1.2. Objectives

Computer science is a vast field with algorithmic thinking at its core. Our curricula
hence focus on the study of algorithms and its various aspects. Our approach comprises
three major aspects of algorithmic thinking, as described in the following paragraphs:
the notion of the programming language as a formal language to express algorithms, abs-
traction and automation as central problem solving strategies, and the limits of practical
computability as a motivation for improving existing algorithms. More on the authors’
goals, motivation, and approaches can be found in a complementing paper (Hromkovič
et al., 2016).

Concept of a Formal Language. Students are introduced to programming as a means to
convey instructions to a machine – in our case the turtle. The initial set of instructions is
strongly limited and restricted to basic movements such as moving forward and turning.
Each instruction has a clearly defined syntax and semantics, avoiding any ambiguity.
At first, then, programming is the activity of writing sequences of such instructions, en-
coding graphical shapes. From our perspective, this is to say that students use a formal
language to combine words to sentences. Even though each valid sentence conveys the
information of a graphical shape, not every sentence makes sense in the context of the
interpretation of the resulting shape.

The initial vocabulary given to the students is not adequate to encode more complex
shapes in a human-accessible form. Students are early required to extend the vocabulary
by defining new words, i. e., by defining subroutines. In the context of the turtle, this can

Examples of Algorithmic Thinking in Programming Education 113

be beautifully explained as “teaching the turtle new words” (Papert, 1993). The seman-
tics of the new words is expressed algorithmically as a sentence over an already existing
vocabulary. Think, for instance, of a house consisting of a triangle and a square. Both
the triangle and the square themselves might be expressed as sequences of forward- and
turning-instructions.

Hence, our objective is to provide students with a simple yet expandable base of
instructions, the means to combine these instructions to sentences, and to define new
words with associated unambiguous semantics. This way, the students are exposed to
the concepts of modularization, formal languages, and expressing semantics in algo-
rithmic form.

Abstraction and Automation. Programming is, of course, much more than combining
instructions to form programs. Some of the most essential key concepts are abstraction
and automation. Modularization, for instance, only unfolds its full potential in combi-
nation with parameters. Having a dedicated instruction to draw a square, say, helps to
clarify the intent of a program. Allowing that very same instruction to draw squares of
various sizes makes it versatile and open to applications beyond its initial conception.
Further abstraction could even introduce a second parameter to pertain to the number
of vertices to draw, resulting in one instruction capable of drawing all regular polygons
(see Fig. 1).

Abstraction itself also requires the concept of automation. Even drawing a regular
polygon with a given number of vertices is a tedious task without the notion of a loop.
For the step to an abstract instruction encompassing all polygons, the loop becomes a ne-
cessity. Once this level of automation is mastered, students are introduced to loops with
variations, allowing for figures such as spirals where even the “parameter” automatically
varies (see Fig. 1).

Automation and abstraction are not just core concepts of programming but of com-
puter science and algorithmic thinking in a much wider sense. Expressed in the context
of problem solving, abstraction corresponds to the question “Can we adapt an already
known or universally available strategy to solve the problem at hand?” Once we know
how to solve a single instance, we then employ the concept of automation to apply our
solution to a large set of instances.

Fig. 1. By parametrizing programs, we gradually gain more versatile algorithms and proce-
dures. Drawing a square of fixed size is the first step towards drawing arbitrary polygons of
various sizes (above). Likewise, loops allow us to build ever more complex and larger prog-
rams out of simple and small parts (below).

J. Hromkovič et al.114

Limits of Practical Computability. Finding solutions automatically is not always
feasible. Indeed, the insight that there are problems that cannot be solved algorithmi-
cally (i. e., undecidable problems), shown in 1936 by Turing in his seminal paper “On
Computable Numbers, with an Application to the Entscheidungsproblem” (Turing,
1936), is one of the deepest results of mathematics and laid the foundation for com-
puter science itself. However, even computable problems can often only be solved
under certain restrictions, e. g., using an unacceptable amount of resources (time and
space), or without full precision due to numeric errors. This gives rise to numerous
interesting research questions and solutions, which can both be explained to non-
professionals.

For education, however, we need to make computability and its limitations visible
and tangible. A prime example to serve this objective, as taken from turtle graphics,
are circles. A computer cannot draw an exact circle, it must be drawn using an ap-
proximation such as a polygon (or Bézier curve). The cost of drawing an approximat-
ing polygon increases with the number of vertices, mainly due to the fact that the
turtle needs time to turn at the vertices. Students therefore must find a compromise
between more accurate representations and faster renderings, and eventually realize
that the limitations of screen resolution quickly nullify additional precision beyond a
certain point.

When seen in the light of modern applications, intractability is of particular impor-
tance to cryptography. In this regard, the inability to design efficient algorithms has
far-reaching implications beyond computer science and its inclusion into the curriculum
is well-warranted. At the same time, we found cryptography to be very motivating and
well-suited as a subject of its own (Freiermuth et al., 2010).

2. Modular Development: Building a Town Step by Step

Our group is actively involved in introducing young students to programming as soon
as at fifth grade. To this end, we developed teaching material, hold classes, and, most
importantly, introduce teachers to our didactic approach as well as to fundamental
concepts of computer science. These school projects are based on the German text-
book An introduction to programming in Logo (Hromkovič, 2014, German: Einfüh-
rung in die Programmierung mit Logo), and on a Logo booklet (Gebauer et al., 2016)
covering the contents of its first seven chapters. The following example is taken from
this booklet.

As already mentioned, one of the main objectives of our programming classes con-
sists in making the students confident with the modular development of programs and
teaching them how to systematically apply this problem solving strategy to complex
problems. To illustrate our approach and the achievements of the students, we present
a sequence of learning activities from the third (out of seven) unit of the courses.

At this point, the students already know how to move the turtle forward and back-
ward on a straight line, how to rotate it as well as how to iterate over a sequence of

Examples of Algorithmic Thinking in Programming Education 115

instructions for a predefined number of times. More precisely, the current vocabulary of
the turtle comprises the following instructions as well as their abbreviations: forward
(fd), back (bk), left (lt), right (rt), clearscreen (cs), penup (pu), pendown
(pd), and repeat. Furthermore, the students are already used to giving their programs
names and to reusing available programs as subprograms within main programs in an
elementary way. In subsequent activities, they learn how to develop a table that consists
of rows of identical squares in a proper modular way.

To reinforce the concept of modular development, the students are now challenged
to write a program for drawing a small town, which consists of streets with identical
houses. While the program for drawing a house is already available in the booklet, the
students are expected to consequently apply the approach they intensively practiced.
They are therefore expected to:

Identify the next shape or pattern they can systematically reuse.●●
Write a sequence of instructions for drawing it.●●
Give this subprogram a name.●●
Test and iteratively improve the code until the solution meets the assignment.●●

Afterwards, the students should reflect on how to adjust the position of the turtle in
order to draw the pattern by simply reusing the program they developed above, to test
and to iteratively improve their approach, and to finally integrate the two modules of
their solution. In a following step, this new main program can be reused as a subprog-
ram in other main programs of increased complexity. More specifically, the students are
given the program shown in Listing 1.1 accompanied by the following exercise, which
asks them to study the effects of each command in detail.

Exercise. Where does the turtle start drawing the house? Think about the path the
turtle follows when drawing the house using the program HOUSE. Where is the
turtle located at the end of the execution? Draw the image and describe the effect
of each command.

Next, they are told how to design a program HOUSEROW (Listing 1.2) that uses HOUSE
as a subprogram. Here, the most difficult task is to position the turtle in such a way that,
after each iteration, the new house is drawn at the correct coordinates.

Listing 1.1: Drawing a house using a simple repeat-loop.

to HOUSE
rt 90
repeat 4 [fd 50 rt 90]
lt 60 fd 50 rt 120 fd 50 lt 150

end

Listing 1.2: Drawing a row of houses.

to HOUSEROW
repeat 5 [HOUSE rt 90 pu fd 50 lt 90 pd]

end

J. Hromkovič et al.116

Finally, the students are asked to use the modular approach in order to draw the town
that consists of multiple streets. This way, the students learn how to extend the language
of the computer step by step with more complex programs. The crucial observation is
that the overall complexity is hidden in the smaller subprograms.

Exercise. At this point, we would like to extend the complex of buildings by
additional streets. Use the program HOUSEROW as a building block to draw the
image shown in Fig. 2.
Hint: After the completion of a row, the turtle has to be moved to the correct posi-
tion to build the next street.

Modular development offers a didactically appealing platform for creative tasks. In
the two following exercises, the students observe that even small changes such as adding
a window, a door, or a chimney to their houses may have a considerable impact on the
overall outcome of the streets and the town they are designing.

Exercise. We decide to order the roof for the houses from another vendor. That
is, we get two types of building blocks: One called ROOF and another one called
BASE. Write two programs to draw the two building blocks. Combine those pro-
grams to form a new program HOUSE1 that draws a house.

Exercise. The houses in Listing 1.1 are very simple. Try to be creative and come
up with a new design for a house. Use your house to build an entire complex of
buildings.

The students learn that modular development is a systematic and efficient problem
solving strategy. Moreover, they experience that subsequent changes in a basic module
of a properly developed complex program require no or very limited additional program-
ming effort.

Fig. 2: A small town that consists of 15 houses.

At this point, the students already know how to move the turtle forward and
backward on a straight line, how to rotate it as well as how to iterate over a
sequence of instructions for a predefined number of times. More precisely, the
current vocabulary of the turtle comprises the following instructions as well as
their abbreviation: forward (fd), back (bk), left (lt), right (rt), clearscreen
(cs), penup (pu), pendown (pd), and repeat. Furthermore, the students are
already used to giving their programs names and to reusing available programs
as subprograms within main programs in an elementary way. In subsequent
activities, they learn how to develop a table that consists of rows of identical
squares in a proper modular way.

To reinforce the concept of modular development, the students are now
challenged to write a program for drawing a small town, which consists of streets
with identical houses. While the program for drawing a house is already available
in the booklet, the students are expected to consequently apply the approach
they intensively practiced. They are therefore expected to:

– identify the next shape or pattern they can systematically reuse,
– write a sequence of instructions for drawing it,
– give this subprogram a name, and
– test and iteratively improve the code until the solution meets the assignment.

Afterwards, the students should reflect on how to adjust the position of the
turtle in order to draw the pattern by simply reusing the program they developed
above, to test and to iteratively improve their approach, and to finally integrate
the two modules of their solution. In a following step, this new main program
can be reused as a subprogram in other main programs of increased complexity.

More specifically, the students are given the program shown in Listing 1.1
accompanied by the following exercise, which asks them to study the effects of
each command in detail.

5

Fig. 2. A small town that consists of 15 houses.

Examples of Algorithmic Thinking in Programming Education 117

3. Making Approximation Errors Visible with the Pac-Man

The turtle draws a circle by approximation, actually drawing a polygon with, say, 36 ver-
tices (in practice, students often choose 360 vertices at first, building upon their knowl-
edge that 360○ stands for a complete circle). While the resulting figure is not discernible
from a true circle on the screen, the approximation requires a couple of corrections when
the circle is combined with other shapes. Most prominent is the question of finding the
circle’s center and the correct value of the radius. Both are slightly, but discernibly, off
compared to a true mathematical circle.

A particularly illuminating example is drawing a Pac-Man shape. Students are asked
to write a Python program that draws a Pac-Man and typically end up with a solution as
shown in Listing 1.3 (note that the repeat-loop shown here has been added to Python in
order to support our curriculum. A further discussion can be found in the aforementioned
complementing paper (Hromkovič et al., 2016)). However, their resulting pictures show
that the shape is not closed as seen in Fig. 3: there is a small gap at the center of the
shape. This discrepancy is subsequently discussed in a dedicated section and leads to a
precise drawing of a pie chart.

Why does this gap in the center occur and how can we correct it? In a circle, any ra-
dius meets the circumference perpendicularly. This fact has been used twice in the prog-
ram (Listing 1.3). For the approximation with a polygon, this does not hold anymore:
the angle between the radius leading to a vertex and the circumference requires a small
correction φ (Fig. 4). The correction φ is exactly half of the turtle’s turning angle at each
vertex. For our example with 36 vertices, this results in a 5○-correction (Listing 1.4). The
correction of the angle can also be taken into the loop, resulting in a more symmetrical
solution (Listing 1.5).

Listing 1.3: Drawing a Pac-Man.

from turtle import *
RADIUS = 100
right(45)
forward(RADIUS)
left(90)
repeat 27:

forward(RADIUS * 3.1416 * 2 / 36)
left(10)

left(90)
forward(RADIUS)

Listing 1.4: Correcting the angle (1).

left(90 + 5)
repeat 27:

forward(RADIUS * 3.1416 * 2 / 36)
left(10)

left(90 - 5)

J. Hromkovič et al.118

Finally, an alternative solution is to have the radius meet the circumference not at a
vertex but at the center point of an edge. In this case, the radius does meet the circumfer-
ence perpendicularly. The resulting code, again, has a very symmetrical form (Listing
1.6). Yet the ratio between radius and circumference now differs and requires to change
the used approximation of the value of π.

4. Runtime Analysis Backed up by a Little Math

One of the authors is currently part of the team responsible at ETH Zurich for teaching
computer science basics to non-computer science students (more specifically, students
of biology, pharmacology, environmental sciences, health sciences and technology, ag-
riculture, geology, and nutritional sciences).

We have been introducing students to Logo using the previously mentioned booklet
(Gebauer et al., 2016, see Section 2), whose main part is covered in roughly the first unit

Listing 1.5: Correcting the angle (2).

repeat 27:
left(5)
forward(RADIUS * 3.1416 * 2 / 36)
left(5)

Listing 1.6: Starting the circumference not at a vertex but at the center of an edge instead.

repeat 27:
forward(RADIUS * 3.15 / 36)
left(10)
forward(RADIUS * 3.15 / 36)

Fig. 4. As circles are approximated by polygons the radius does not
meet the circumference in a right angle but is off by an angle φ.

Fig. 3. An incomplete Pac-Man.

Examples of Algorithmic Thinking in Programming Education 119

of the lecture. After that, an advanced booklet is supplied that is specifically designed for
this class (Böckenhauer et al., 2015a). As part of this booklet, more involved concepts
such as variables, conditional execution, and while-loops are introduced. The students
are then given three projects, which consolidate what they have learned so far by design-
ing small programs to solve specific tasks (Böckenhauer et al., 2015b). The lecture is
accompanied by exercise classes in which the students are asked to present and explain
their solutions to a tutor.

As a first step towards the mathematical analysis of algorithms, we give the students
the following project. The examples are taken from the project booklet (Böckenhauer
et al., 2015b) and the corresponding lecture notes. The goal is to show the students the
idea of how to mathematically analyze how long a program will run depending on the
input size. A typical example that does not need anything beyond high school mathema-
tics is to test whether a given number is prime. Logo is especially suited to visualize the
distribution of (small) prime numbers without much overhead.

The first component is a program called QUAD (Listing 1.7) that draws a square, and
which essentially consists of a simple loop, which the students already know from previ-
ous lessons. The size of the square is determined by the value of the parameter :WIDTH.

Next, we can write a program that tests whether a given input is a prime number.
This is done in the most straightforward fashion, i. e., by testing whether there is smaller
number (except 1) that divides it. Depending on the result, either a red or black square is
drawn on the screen using the instruction setpencolor (setpc). Before that, the turtle
is hidden with the instruction hideturtle (ht). The corresponding algorithm PRIME
is shown in Listing 1.8.

The students can easily follow the steps and try out different inputs. As a next step,
we ask them to carefully check corner cases, and give them the following exercise.

Listing 1.7: A simple square.

to QUAD :WIDTH
repeat 4 [fd :WIDTH rt 90]

end

Listing 1.8: Testing whether a given number is prime.

to PRIME :NUM
ht
make "IT 2
make "ISPRIME 1
while [:IT<:NUM] [

make "RES mod :NUM :IT
if :RES=0 [make "ISPRIME 0] []
make "IT :IT+1

]
if :ISPRIME=1 [setpc 1 QUAD 8] [setpc 0 QUAD 8]

end

J. Hromkovič et al.120

Exercise. PRIME does not yet work correctly on all inputs as the value of :IT is
initially set to 2. However, we know that 1 is by definition not a prime number.
Thus, PRIME 1 creates an incorrect output. Extend the program such that a black
square is drawn when the input is 1. Moreover, an error message should be output
if 0 or a negative number is given.

Once the students familiarized themselves with the algorithm, we discuss its running
time. It is obvious that the time grows with larger inputs, and this seems to be unavoi-
dable on an intuitive level. Furthermore, it is easy to see that the running time directly
depends on how often the body of the while-loop has been executed. We therefore agree
on counting the number of these executions and neglect how many instructions are exe-
cuted with each iteration. The above trivial attempt needs roughly 2 iterations for inputs
of length  (hence,  is the number of bits used to represent the input number). Now we
show how to improve this running time using a little bit of math. The following exercise
is well-suited to be presented to the students as part of the lecture.

Exercise. We can now make our algorithm PRIME “faster” (more efficient) by
having it execute the while-loop less often. To this end, we make use of the
following idea.
Suppose the input  is not a prime number. Then, by the definition of a prime
number, there is a number , which is neither 1 nor , that divides  without
remainder. But from this it also follows that there is a second number , which
is also neither 1 nor , that also divides  without any remainder. An important
point is that one of these two numbers is not larger than the square root  of .
If, e. g.,  is larger than  , then  has to be smaller, since otherwise  ·  were
larger than .
We want to use this observation to improve PRIME. Write an algorithm PRIME2
which works exactly as PRIME, but in which the while-loop is modified such that
the variable :IT does not take the values of all numbers smaller than :NUM, but
only those that are smaller than or equal to :NUM .

The students are asked to verify the speedup by trying different inputs. Good can-
didate inputs to observe the increase in speed of course depend on the computer used.
Moreover, the students can try to make a simple running time analysis of PRIME2 them-
selves, which leads to the result that the loop is now executed at most (roughly) 1.41

times for inputs of length .
The above considerations give rise to another question, namely in which kind of ana-

lysis we are interested. To this end, the algorithm is modified such that the while-loop
is left as soon as a divisor of the input is found. The resulting algorithm obviously still
works correctly, but is it faster? Indeed, if the input is, say, an even number, the running
time of the new algorithm is a lot better. However, if the input is prime, both algorithms
take the same time. This is exactly the difference between a best case and a worst case
analysis of the algorithm’s running time.

Now we can follow the modular building of algorithms (see Section 2) and use PRI-
ME2 as a building block to visualize the distribution of small prime numbers. More
precisely, the algorithm PRIMES shown in Listing 1.9 uses PRIME2 as a subprogram to

Examples of Algorithmic Thinking in Programming Education 121

visualize the appearances of prime numbers among the first :MAX natural numbers.
The result of executing PRIMES 26 is shown in Fig. 5. Next, we can improve the

appearance by having the squares drawn in multiple rows (Listing 1.10). To this end, we
write a new algorithm PRIMES2 with an additional parameter :ROW. The turtle moves to
the next row whenever it drew a number of squares that is divisible by the value of :ROW.
With PRIMES2 104 26 we obtain an output as shown in Fig. 6.

An advanced exercise then deals with prime powers. The students should solve this
task at home, either alone or in small groups. The difficulty of this exercise is due to the
usage of a return statement, which is implemented by the output instruction in Logo.

Fig. 2: The distribution of prime numbers between 1 and 26. Instead of red and
black squares, we use filled and unfilled ones.

Fig. 3: The distribution of prime numbers between 1 and 104.

However, if the input is prime, both algorithms take the same time. This is exactly
the difference between a best case and a worst case analysis of the algorithm’s
running time.

Now we can follow the modular building of algorithms (see Section 2) and use
PRIME2 as a building block to visualize the distribution of small prime numbers.
More precisely, the algorithm PRIMES shown in Listing 1.9 uses PRIME2 as a
subprogram to visualize the appearances of prime numbers among the first :MAX
natural numbers.

Listing 1.9: Visualizing primes.
to PRIMES :MAX

pu lt 90 fd 300 rt 90 pd
make "TEST 1
repeat :MAX [

pu rt 90 fd 10 lt 90 pd
PRIME2 :TEST
make "TEST :TEST+1

]
end

The result of executing PRIMES 26 is shown in Figure 5. Next, we can improve
the appearance by having the squares drawn in multiple rows (Listing 1.10). To
this end, we write a new algorithm PRIMES2 with an additional parameter :ROW.
The turtle moves to the next row whenever it drew a number of squares that is
divisible by the value of :ROW. With PRIMES2 104 26 we obtain an output as
shown in Figure 6.

An advanced exercise then deals with prime powers. The students should
solve this task at home, either alone or in small groups. The difficulty of this
exercise is due to the usage of a return statement, which is implemented by the
output instruction in Logo.

11

Fig. 5. The distribution of prime numbers between 1 and 26. Instead of red and black
squares, we use filled and unfilled ones.Fig. 2: The distribution of prime numbers between 1 and 26. Instead of red and

black squares, we use filled and unfilled ones.

Fig. 3: The distribution of prime numbers between 1 and 104.

However, if the input is prime, both algorithms take the same time. This is exactly
the difference between a best case and a worst case analysis of the algorithm’s
running time.

Now we can follow the modular building of algorithms (see Section 2) and use
PRIME2 as a building block to visualize the distribution of small prime numbers.
More precisely, the algorithm PRIMES shown in Listing 1.9 uses PRIME2 as a
subprogram to visualize the appearances of prime numbers among the first :MAX
natural numbers.

Listing 1.9: Visualizing primes.
to PRIMES :MAX

pu lt 90 fd 300 rt 90 pd
make "TEST 1
repeat :MAX [

pu rt 90 fd 10 lt 90 pd
PRIME2 :TEST
make "TEST :TEST+1

]
end

The result of executing PRIMES 26 is shown in Figure 5. Next, we can improve
the appearance by having the squares drawn in multiple rows (Listing 1.10). To
this end, we write a new algorithm PRIMES2 with an additional parameter :ROW.
The turtle moves to the next row whenever it drew a number of squares that is
divisible by the value of :ROW. With PRIMES2 104 26 we obtain an output as
shown in Figure 6.

An advanced exercise then deals with prime powers. The students should
solve this task at home, either alone or in small groups. The difficulty of this
exercise is due to the usage of a return statement, which is implemented by the
output instruction in Logo.

11

Fig. 6. The distribution of prime numbers between 1 and 104.

Listing 1.9: Visualizing primes.

to PRIMES :MAX
pu lt 90 fd 300 rt 90 pd
make "TEST 1
repeat :MAX [

pu rt 90 fd 10 lt 90 pd
PRIME2 :TEST
make "TEST :TEST+1

]
end

Listing 1.10: Visualizing primes more nicely.

to PRIMES2 :MAX :ROW
pu lt 90 fd :ROW*10/2 rt 90 pd
make "TEST 1
repeat :MAX [

pu rt 90 fd 10 lt 90 pd
PRIME2 :TEST
make "REST mod :TEST :ROW
if :REST = 0 [

pu lt 90 fd :ROW*10 lt 90 fd 10 rt 180 pd
] []
make "TEST :TEST+1

]
end

J. Hromkovič et al.122

Exercise. A prime power is a natural number that has exactly one prime factor. For
instance, 27 is a prime power since it has the prime factorization

27 = 3 · 3 · 3 = 33.

Clearly, every prime number is thus also a prime power.
In this project, you design a program PRIMEPOW, which checks whether a given
number is a prime power. To this end, do the following steps:

 Rewrite the program 1.	 PRIME to obtain a program PRIMEOUT that uses the com-
mand output instead of drawing squares. If the value of :NUM is prime, the
value 1 should be returned, otherwise 0.
 2.	 PRIMEPOW has one parameter :TEST. We want to check whether the value as-
signed to :TEST is a prime power (possibly with the exponent being 1).
 First, the program checks using 3.	 PRIMEOUT whether :TEST is a prime num-
ber. If so, “Prime.” is printed on the screen and the execution is ended using
stopall.

make "ISPRIME PRIMEOUT :TEST
if :ISPRIME=1 [pr [Prime.] stopall] []

 Otherwise, all numbers smaller than the value of 4.	 :TEST are iterated, and again
using PRIMEOUT it is checked whether the current number is a prime. If so, it is
checked whether it divides the value of :TEST without remainder.
 If such a prime number is found, 5.	 PRIMEPOW takes note of this by setting the
value of a variable :FOUND to 1. :FOUND is initialized with 0. If a second such
prime number is found, this will be noted since the value of :FOUND is already
1. In this case, “More than one divisor.” is printed on the screen and the execu-
tion is again ended with stopall.
 Finally, if 6.	 :FOUND is still 1 after all numbers were tested, “Prime Power. Base:
” and the prime number that divides the value of :TEST without remainder are
printed on the screen.
 Check 7.	 PRIMEPOW using small input values.

This introduction using Logo proved to be very valuable for the students in the suc-
ceeding lessons, where we implement more complex projects using Python. More pre-
cisely, they were able to learn important paradigms without having to worry too much
about syntactical details.

5. Conclusion

Programming education is a great opportunity to teach important core concepts of com-
puter science on various levels and to establish algorithmic thinking as part of a broad
and general education. A necessary prerequisite is, of course, that we find ways to go
beyond teaching the specifics of a programming language and rather put emphasis on
those aspects of programming that lead to a deeper understanding of computer science.

Examples of Algorithmic Thinking in Programming Education 123

In this article, we have provided three examples of how programming education can
incorporate more general principles of algorithmic thinking. All three examples have
been taken from our well-tested teaching materials for primary school, high school, and
university level, respectively. Further details about our curricula are given in the comple-
menting paper (Hromkovič et al., 2016).

References

Bell, T., Rosamond, F., Casey, N. (2012). Computer science unplugged and related projects in math and computer
science popularization. The Multivariate Algorithmic Revolution and Beyond, Springer-Verlag, 398–456.

Böckenhauer, H.-J., Hromkovič, J., Komm, D. (2015). Programmieren mit LOGO – Projekte.
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/

logo_projekte.pdf

Böckenhauer, H.-J., Hromkovič, J., Komm, D. (2015). Programmieren mit LOGO für Fortgeschrittene.
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/

logo_heft_2_de.pdf

Freiermuth, K., Hromkovič, J., Keller, L., Steffen, B. (2010). Einführung in die Kryptologie. Springer.
Gallenbacher, J. (2008). Abenteuer Informatik. IT zum Anfassen – von Routenplaner bis Online-Banking.

Springer, 2 edition.
Gebauer, H., Hromkovič, J., Keller, L., Kosírová, I., Serafini, G., Steffen, B. (2016). Programmieren mit

LOGO.
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/

logo_heft_de.pdf

Hromkovič, J. (2014). Einführung in die Programmierung mit LOGO – Lehrbuch für Unterricht und Selbststu-
dium. Springer, 3 edition.

Hromkovič, J., Kohn, T., Komm, D., Serafini, G. (2016). Combining the Power of Python with the Simplicity of
Logo for a Sustainable Computer Science Education. Unpublished Manuscript.

Kohn, T. (2016). Python. Eine Einführung in die Computer-Programmierung.
http://jython.tobiaskohn.ch/PythonScript.pdf

Papert, S. (1993). Mindstorms. Basic Books, 2 edition.
Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings

of the London Mathematical Society, 42(2), 230–265.

J. Hromkovič et al.124

J. Hromkovič is professor of informatics with a special added fo-
cus on computer science education at ETH Zurich. He is author of
about 15 books published in 6 languages (English, German, Russian,
Spanish, Japanese, and Slovak) and about 200 research articles. He
is member of Academia Europaea and the Slovak Academic Society.

T. Kohn is writing his PhD thesis in computer science at ETH Zurich.
The focus of his research is programming education, particularly in
high schools. He holds an MSc in mathematics from ETH and has been
teaching mathematics and computer science for 10 years.

D. Komm is lecturer at ETH Zurich and an external lecturer at Uni-
versity of Zurich. He studied computer science at RWTH Aachen
University and Queensland University of Technology. He received
his PhD from ETH Zurich in 2012. His research interests focus on
algorithmics and advice complexity.

G. Serafini is lecturer in the Computer Science Teaching Diploma
Program at ETH Zurich. He holds a MSc in computer science and
a teaching diploma in computer science from ETH Zurich. His re-
search interests focus on the contribution of computational think-
ing to school education. He is a member of the board of the Swiss
Computer Science Teacher Association and a member of the Swiss
Olympiad in Informatics.

Olympiads in Informatics, 2016, Vol. 10, 125–159
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.09

125

Programming in Slovak Primary Schools

Martina KABÁTOVÁ1, Ivan KALAŠ1,2, Monika TOMCSÁNYIOVÁ1

1Department of Informatics Education, Comenius University
Mlynska dolina, 842 48 Bratislava, Slovak Republic
2UCL Knowledge Lab, Institute of Education
23-29 Emerald Street, WC1N 3QS London
e-mail: martina.kabatova@gmail.com, {kalas; tomcsanyiova}@fmph.uniba.sk

Abstract. In our paper, we want to present the conception of elementary programming in primary
Informatics education in Slovakia and the process of its integration into ordinary classrooms.
First, we will familiarize the reader with the tradition of so called ‘Informatics education’ in
Slovakia and with the various stages of the process of its integration. We will formulate the learn-
ing objectives of the elementary informatics as a school subject in Slovakia (referring to Blaho
and Salanci, 2011) and give reasons why we believe that it offers an important opportunity for
developing informatics knowledge, computational thinking and problem solving skills. We will
primarily focus on the presentation of our arguments why we consider programming (in the form
rigorously respecting the age of the primary pupils) to be appropriate and productive constituent
of learning already for this age group. Several recent research findings, presented by Ackermann
(2012) and others support our position here. In the next chapter, we will present in detail the
conception of elementary programming and how it is implemented in the continuing professional
development (CPD) of primary teachers in Slovakia. We will examine which programming en-
vironments are being used, what kind of pedagogies and which specific learning objectives our
teachers apply. We will list programming concepts and identify corresponding cognitive opera-
tions, which we find appropriate for primary pupils. Then we will present and analyse the CPD of
our in-service teachers (and the position of programming in this process) which we have recently
implemented in Slovakia. Another important element of our CPD strategy is the well-known
Bebras contest (in Slovakia it is called ‘iBobor’ or ‘Informatics Beaver’). In the next chapter of
our paper, we will apply qualitative educational inquiry methods to examine how our concep-
tion of elementary programming has really penetrated into primary classes in Slovakia. We are
also interested in how it is being received by the teachers and pupils. Through interviews with
the teachers we will identify different aspects of the whole process and main risk factors, which
may complicate or hinder the implementation. In the final chapter, we will study the tendency
to develop informatics and programming at the primary level in the context of various research
projects presented in the academic research literature. We will compare various key findings of
other research projects with our own experience.

Keywords: educational programming, primary education, computing, computational thinking.

M. Kabátová, I. Kalaš, M. Tomcsányiová126

1. Introduction

In recent years many educators, education policy makers and scientists call for integra-
tion of what they call computational thinking into primary education of all pupils. In in-
fluential documents like (The Royal Society, 2012) a need to distinguish computational
thinking (or computer science, informatics or computing education) from the ICT educa-
tion is declared. However, reasons for such reflections differ – computer scientists and
industry leaders feel that not enough young people (and only very few women) choose to
pursue a career in computer science and they believe that if pupils become familiar with
some informatics concepts (within their primary education already) they will favour it
later in their lives and careers. Others believe that computational thinking is equally
important and key skill as literacy and mathematical thinking and they call for a redefi-
nition of literacy and for integrating digital literacy development into primary education
for the sake of educating a fully developed citizens to live in the digital world.

While ICT oriented education is included in most national curricula, many countries
do not pay any special attention to including other (and in our opinion more interesting
and more important) informatics concepts. However, we can observe important new step
in the UK by establishing computing as a compulsory subject in every school year since
September 2014.

The situation in Slovakia is different from most of the countries. Informatics as a
separate mandatory subject was established many years ago and for many years we have
been systematically preparing teachers for teaching it. The authors of our national cur-
riculum took a great care to include topics from core informatics along with learning of
basic ICT skills.

Since Comenius University plays a key role in building National Informatics Cur-
riculum (2011, 2015) we have a lot of experience with integrating educational informat-
ics both into schools (primary, lower secondary and upper secondary) and into teachers’
professional development (PD). Some activities with digital technology were recently
nation-wide integrated into early childhood education (or children 3 to 6) as well: see
e.g. (Pekarova, 2008) and (Kalaš, 2010).

The whole conception of informatics is a broad and interesting topic to study, but for
the purpose of this paper we fully focus only on one of its topics, namely, on program-
ming at primary level in Slovakia. We will discuss its conception and the process of its
integration into ordinary classrooms. We will present and explain:

The reasons and short history of implementing primary informatics as a modern (a)	
core subject taught in Slovak primary schools.
Why we consider appropriate to have separate school subject focused on ICT and (b)	
informatics, while we also support integration of ICT across curriculum.
What role primary programming plays in our conception of informatics educa-(c)	
tion and what forms, methods and pedagogies we consider appropriate in this
context.
How we proceed with the implementation of these objectives through in-service (d)	
teacher development.

Programming in Slovak Primary Schools 127

What problems we have encountered, how this process actually evolves in our (e)	
schools, how the teachers read our objectives, which objectives and correspond-
ing skills they have mastered, how they interpret them and finally – which factors
of the implementation we and the teachers perceive as risky or unfulfilled.

Brief History of Informatics at Slovak Schools

First we will familiarize the reader with the tradition of informatics education in Slova-
kia and various stages of the process of its implementation. We will briefly describe how
the informatics education was established – from the period of experimental education
at upper secondary schools in late 60s and early 70s, to the current stage of informatics
as mandatory school subject for students from grade 2 (i.e. 7 to 8 year olds) up to the
mid-upper secondary stage (i.e. 16 to 17 year olds).

In early 70s some of the vocational technical schools began to prepare students for
operating industrial machinery via computers. In these schools some students learned
basics of programming in Fortran and Cobol. Students first designed their programs us-
ing flowcharts, then they prepared corresponding punch cards which were then taken to
the computer lab. Students never saw the computer themselves since it was usually lo-
cated in a different institution and it took up several rooms. In the late 70s some schools
built their own computer labs. In some industrial towns (where most of the vocational
technical schools were located) special central computer labs were established. At that
time new study programmes were launched at universities called informatics (at the
beginning called cybernetics).

In 80s most of the upper secondary schools opened special classes focused on infor-
matics. However, appropriately qualified teachers were absent. In school year 1982/83
Faculty of Mathematics and Physics of Comenius University opened a new study pro-
gramme focused on upper secondary informatics teachers’ pre-service education. Those
students had access to the university computer EC1010 where they could write and run
programs in Pascal. Soon after that several universities began to build computer labs
equipped with 8-bit computers (e.g., PMD-85, Didaktik Alfa, PP-01), often using a ver-
sion of Basic as a programming language

Many activities designed to attract young people to informatics emerged – in 1985
a P category of International Mathematical Olympiad started (later transformed into a
stand-alone International Olympiad in Informatics). A series of articles on program-
ming in environments like Karel and Logo were issued in the Zenit magazine targeted
at secondary school students. Since 1986 a school subject “Informatics and comput-
ers” became part of the National Curriculum. Special classes focused on algorithms
and programming were established at several grammar schools and vocational techni-
cal schools.

In early 90s most of the upper secondary schools taught informatics. A special com-
puter lab with several PCs was usually dedicated to this subject, mostly taught by special-
ized teachers. The educators inspired by success at upper secondary school developed
an experimental informatics curriculum also for lower secondary schools. For example,

M. Kabátová, I. Kalaš, M. Tomcsányiová128

Kosicka Str. Primary School in Bratislava opened a class focused on programming. Pu-
pils aged 11 to 15 wrote game-like programs in a visual programming environment
called Comenius Logo (Blaho et al., 1995) and (Tomcsanyiova and Tomcsanyi, 1997).
In the second half of 90s computers become more affordable and many businesses and
households acquired them. In order to train students to use computers effectively, in-
formatics in schools changed its orientation and became more user oriented – students
learned how to create electronic documents (in T602, a text editor of that time), use
spreadsheet editor, send and receive e-mails, navigate files and operating systems etc. In
late 90s the National Curriculum was revised to incorporate five main topics – Informa-
tion around us; Communication through ICT; Problem solving and algorithmic thinking;
Principles of ICT; and Information society.

In 2008 a new National Curriculum for primary and secondary schools prescribed to
teach informatics as a mandatory core subject from year 2 (7 to 8 year olds) to mid-upper
secondary stage (16 to 17 year olds). At all school years five main topics of informatics
remain the same and they cover basic digital literacy, ICT user skills, programming and
core concepts of informatics, hardware and other digital technology related concepts,
digital safety and other information society related concepts. At different school years
the topics are taught differently – first and foremost respecting the pupils, their age and
developmental stage.

There is an intense initiative in Slovakia to integrate digital technology into early
years (pre-primary) education as well. Through an EU funded project teachers in early
years education centres (kindergartens) are being educated to use digital technology ap-
propriately with their children. Programmable toy Bee-Bot have been introduced, see
(Pekarova, 2008) and (Kalaš, 2010).

According to our anecdotal information, programming at upper secondary level is
mostly done in Delphi or Lazarus environments, with more and more schools gradually
switching to Python. At lower secondary schools, Imagine Logo and Scratch are popular
programming languages. At primary schools most widespread environments are Thomas
the Clown, EasyLogo and several other microworlds that have been created in our de-
partment (we will present them in chapter 3).

2. Elementary Informatics, Computational Thinking and Programming

In accordance with the recent report of Informatics Europe and ACM Europe (2013)
we will use the term informatics when we are speaking about the broad scientific field
behind the digital technology. For us “informatics” is also an umbrella term that includes
computing, ICT, and digital literacy – basically all concepts that have anything to do
with digital technology, information or theory behind them.

An effort to distinguish various fields within school informatics is apparent in the
Royal Society report (2012). However, we use these terms in a slightly different way
from definitions provided there. By the term ICT we understand a set of user oriented
skills (e.g., using a text editor, spreadsheet editor, creating graphics, animation, working
with sounds …). Digital literacy in our context is understood as a set of basic skills that

Programming in Slovak Primary Schools 129

everyone should acquire during their education in order to use digital technology (not
only computers but all digital devices) effectively, safely and meaningfully to solve their
everyday problems and tasks.

To understand what exactly is covered by our informatics (as a school subject) let’s
have a closer look at the five main topics in next chapter of our paper.

2.1. Informatics as a School Subject in Slovakia

Slovak National Curriculum (2011) codifies the following core school subjects rooted in
informatics science (however, since 2015 both subjects are unified as Informatika):

“●● Informaticka vychova”, or Elementary Informatics in English, for school years
2 to 4 (pupils aged 7 to 10), while whole primary education consists of year 1 to 4
(i.e. pupils aged 6 to 10).
“●● Informatika”, which translates as Informatics, for school years 5 to 11 (pupils
aged 10 to 17) at so called lower secondary and upper secondary schools.

For each of these subjects there is about 1 lesson per week, usually in a computer
lab. Besides these dedicated subjects many ICT (and some informatics) elements are
integrated across subjects as well, but that aspect will not be discussed in this paper.

Informatics as a core school subject is designed for every pupil regardless of their
gender, future career or highest level of education they will reach. Great emphasis is on
the age appropriateness – the content and form should always respect developmental
stage of the pupils.

In all school years the five main topics of informatics remain the same, their content
is always designed to fit the specific age group. National curriculum of primary infor-
matics is presented in detail in Blaho and Salanci (2011). At primary schools the five
topics cover:

I●● nformation around us is the most comprehensive topic that includes working
with text, graphics and multimedia. At primary school, pupils explore data struc-
tures – simple tables, graphs, dictionaries and mind maps.
Communication via ICT●● – pupils work with websites relevant to their interests;
they learn to use a web browser, e-mail client and chat.
Methods, problem solving and algorithmic thinking●● – pupils learn to solve
various problems and write down solutions (using words, icons or specific com-
mands), they learn to control an agent directly and later by planning commands
in advance. They learn to understand the causal connection between the program
and behaviour of the agent. In this paper we will focus solely on this part of school
informatics – and specifically on the elementary programming.
Principles of ICT●● topic deals with hardware parts of the computer (keyboard,
mouse, display) and external devices. Pupils also learn to work with folders and
files.
Information society●● – pupils learn about risks involved in using digital technolo-
gy, about privacy and about the impact of information technology on the society.

M. Kabátová, I. Kalaš, M. Tomcsányiová130

We believe that these five topics cover the same concepts as three topics suggested in
the Royal Society report (2012): digital literacy, information technology and computer
science – which resulted into introducing a new compulsory subject computing in the
UK since 2014.

In some other countries there is a strong initiative to include computational think-
ing and informatics concepts into all school subjects, see (Barr and Stephenson, 2011),
instead of creating a separate dedicated subject. However, Slovak tradition of “infor-
matics” as a school subject is a long one (including corresponding pre-service and in-
service teacher development) and we believe that informatics is a distinct and important
scientific field that should have a similar position in the education as mathematics or
physics. Another contributing fact is that it seems to be unreasonable to demand from all
the teachers to learn informatics concepts or how to incorporate computational thinking
into their respective subjects – according to our experience they already struggle with
integrating basic ICT elements into their teaching.

2.2. Programming as a Component of School Informatics

The core topic in the National Curriculum (2011, 2015) of school informatics that is
most interconnected with informatics as a science is named Methods, problem solving,
and algorithmic thinking. In it we expect pupils to learn how to solve various types of
problems, externally represent a solution, and use such representation as an object to
think with about the problem. Carefully chosen problems and well thought out peda-
gogy can lead directly to computational thinking development and even rather deep into
elementary programming.

The term computational thinking was introduced and later developed by Wing,
who understands it as

“a thought process involved in formulating problems and their solu-
tions so that the solutions are represented in a form that can be effec-
tively carried out by an information-processing agent” (Wing, 2011).

Recently, an interesting study by Selby (2013) refines the definition of computa-
tional thinking as...

“a focused approach to problem solving, incorporating thought pro-
cess that utilizes abstraction, decomposition, algorithms, evaluation,
and generalization.”

Wing and several other authors call for incorporating computational thinking into
formative education of children (Wing 2008), (Lu and Fletcher, 2009), (Lee et al., 2011)
and (Hu, 2011). In some countries the focus is still on implementing informatics educa-
tion only into secondary school, see e.g. (Hubwieser, 2012) and (Settle et al., 2012).
Our main interest lies in developing computation thinking “from the bottom” – i.e. form
preschool and primary education. However, it is difficult to choose appropriate form

Programming in Slovak Primary Schools 131

and content when it comes to this target group. According to Piaget’s theory of cognitive
development (1993), in accordance with Hu (2011) and also according to our own expe-
rience, most children reach the ability to work with abstractions only around their tenth
year and some of them even later. It is agreed in the relevant literature that abstraction is
the very essence of computational thinking. And yet we believe that supporting the de-
velopment of computational thinking can productively start at the age of 5 or 6 by con-
ducting well thought introductory steps leading to what we call elementary informatics.

Our first steps begin with direct manipulation with objects without the need to ab-
stract or represent the process that is involved in their manipulation. While these activi-
ties may not resemble computational thinking at a first glance, we believe they are good
preparation for development of higher order cognitive skills.

By elementary programming we understand activities in which pupils perform
certain problem solving tasks of controlling an agent or planning its future behaviour
– in a digital environment (programmable toy, microworld, programming environ-
ment...). We strongly believe that elementary programming is an excellent means for
developing, implementing and verifying problem solving skills within the domain of
computational thinking. If initiated at the primary stage of education, we also call it
primary programming. An interesting study on connection of computational think-
ing and programming can be found in (Selby, 2012). There are many age-appropriate
tools and environments that allow us to design meaningful and engaging elementary
programming activities while respecting children’s developmental stage. We believe
we comply with the Blackwell’s definition of programming (2002):

“Programming involves loss of direct manipulation as a result of ab-
straction over time, entities or situations. Interaction with abstrac-
tions is mediated by some representational notation.”

However, several problems arise if we want to define elementary programming ac-
tivities. As we have already mentioned above – children in our target group have not
yet developed their abstract thinking, and so abstracting over time itself is a problem.
On the other hand, we believe that many valuable activities can be conducted before
any kind of abstraction is involved. Moreover, these activities often have other features
that are compatible with programming (e.g., some sort of representation is being used;
planning future behaviour is expected etc.). We believe that learning to think com-
putationally and to program one’s solutions can be done gradually by doing specific
activities that only slowly lead to a true abstraction, decomposition of problems and
generalization of solutions.

We are aware that some authors consider programming at such an early age to be at
least disputable, see (Lu and Fletcher, 2009), some regard programming as a significant
form of computing but mathematical in its foundation, see (Hu, 2011). In this context
we perceive elementary (or primary) programming as a tool for developing early com-
putational thinking skills. We believe that carefully chosen tools, activities and pedago-
gies are an excellent way of integrating both – elementary programming and computa-
tion thinking – into primary education of all pupils. We – in accordance with Resnick
(2012) – “believe in Papert’s dream of computational fluency for everyone”, that

M. Kabátová, I. Kalaš, M. Tomcsányiová132

“children should learn to program their own animations, games and
simulations – and in the process learn important problem-solving
skills and project-design strategies” and that it is necessary “to ex-
pand the conception of digital fluency to include designing and creat-
ing, not just browsing and interacting”.

However, we need to carefully build these skills gradually, always thinking about
age-appropriateness.

There are several educators that promote programming as a productive and engaging
activity even for very young children. They are looking for age-appropriate forms and
study how do children approach various programming situations.

Mogardo et al., (2006) deal with a pioneer experiment of Perlman who in 1970s de-
signed a programming tool for preschool (and preliterate) children. The TORTIS system
consisted of physical floor turtle that was controlled by logo-like commands depicted on
plastic cards. Cards were placed into slots and after pushing a button they were executed
by the floor turtle. Both the agent and the commands were tangible. Authors themselves
admit that in the time of the described experiment there was only a little understanding
of developmental psychology of a child and Perlman probably had not designed the tool
in accordance with what we now would consider appropriate for such young children
(the paper describes working with 3–5 year olds). However, some of her observations
(analysed in 2006 by Mogardo et al.) are valuable even now – e.g., that children didn’t
manage to associate the screen commands with the movements of the turtle and even
after adding the plastic cards (which were basically physical representations of screen
commands for the turtle) children failed to understand that each card represents a move-
ment of the turtle. We believe this problem is closely associated with a cognitive devel-
opmental stage of the children – at the age of 5 they definitely do not possess the ability
to understand the connection between the plastic cards picturing commands and move-
ments of the turtle on the floor. Our suggestion is to conduct different pre-programming
activities that do not involve external representations (e.g. playing with Bee-Bots or
even more trivial tools that involve “one command, one move” direct manipulations
of the agent at a time) – and leave the programming activities involving abstractions
and representations to later stages when pupils begin to develop the understanding of
abstraction and external representations.

Ackermann deals with young children and their programming adventures in (2012)
where she describes three aspects of programming as observed by the work with pre-
school children:

“1) making things do things (instruct them to follow and execute or-
ders); 2) animating things (endow them with a mind of their own,
teach them to look after themselves); 3) poking things (modulate how
things act and interact by tweaking some parameters in their environ-
ment).”

Ackermann admits that this is hardly a definition of programming per se and that
the concept of programming is difficult, ever-changing and bearing many meanings to
different people of different professions. However, she agrees that “programming, at

Programming in Slovak Primary Schools 133

its core, is about giving instructions – or commands – to be executed by a machine”.
She presents several “settings where youngsters are asked to give and execute orders,
take over control”. For example – ambient programming is a new promising style that
has a potential to attract many children, even those who in general do not incline to
more traditional programming activities. Another take on ambient programming is de-
scribed by Eisenberg (2009). On the other hand Ackermann refers to these activities
as “programming (in a weak sense)” and she puts the word programming into quota-
tion marks. In agreement with this approach we also distinguish our activities from
hard programming and we will refer to them as elementary programming or primary
programming. Another approach to programming, currently getting growing attention
and becoming more widespread in all stages of education is physical computing and
educational robotics programming, see e.g. (Przybylla, Romeike, 2014) or (Mayerova,
Veselovska, 2016).

An interesting attempt at programming with primary school children is reported also
by Gibson (2003). Probably the most successful initiative for programming for children
is the Scratch community. Programming environment is being developed by researchers
at the M.I.T. and it is continuously being improved and thoroughly studied, see Maloney
et al. (2009) and Brennan et al. (2012).

3. Slovak Conception of Primary Programming

In this chapter we will present the conception of programming in Slovak primary educa-
tion, based on current National Curriculum (2011, 2015) and materialised in the struc-
ture and content of the recent nation-wide professional development (PD) project for
700 primary teachers (see chapter 4). We will briefly characterise programming environ-
ments that have been used in the PD sessions and are currently being used in primary
schools, what kind of pedagogies teachers apply and what are their learning objectives.
We will analyse programming concepts and identify corresponding cognitive operations,
which we consider appropriate for primary pupils.

In the Slovak approach to primary programming we can identify three domains with
several sub-domains (with several overlaps and without any strictly predefined order
of implementation, although with numerous dependencies in developing programming
concepts and operations):

 1)	 Solving problems and handling solutions.
 2)	 Controlling an agent:

Direct control of an agent.●●
Indirect control (building and handling future behaviours).●●
Some advanced concepts of primary programming (e.g. parameters, loops and ●●
procedures).

 3)	 Tinkering with interactive environments:
Multiple agents and their properties.●●
Static scenarios.●●
Dynamic scenarios.●●

M. Kabátová, I. Kalaš, M. Tomcsányiová134

3.1. Solving Problems and Handling Solutions

One of the main learning goals of primary informatics is to learn how to solve problems,
and represent, evaluate, verify and reflect on their solutions. We consider concepts and
practices in this domain to be exceptionally productive and developmentally appropri-
ate. They can naturally contribute to all topics of primary informatics – including el-
ementary programming.

In informatics education we focus especially on the procedure of problem solving
which leads from the initial to the final state (the solution) while keeping given rules.
Pupils probably do not perceive the procedure as the most important part of solving
problems, but from the perspective of informatics education it is the core of the problem
solving – the product (drawing the house, cannibals and missionaries transported to the
opposite bank of the river, getting to the target square of the ‘snake-and-ladder’ game)
is only a means of motivation. Therefore we choose problems that have interesting solv-
ing procedure (method or steps). We should always focus on the procedure of finding
the solution and on its externalized representation (see Fig. 1). We should not neglect
to verify if pupils are able to execute, communicate, analyse, evaluate and modify the
discovered method of solution.

When designing lesson plans dealing with problem solving, it is important to choose
both appropriate problems and learning activities to be conducted during the lesson. For
some problems there exist supporting digital environments that enable pupils to solve
them through direct interaction and visualization. This hands-on approach to solving
problems supports experiments, iterative solutions, repeating solutions and trying out
different solutions.

For example: the well-known puzzle about transporting the wolf, the goat and a cab-
bage across the river using one boat is an ideal problem for implementing via a software
environment (Fig. 2 left). By clicking objects pupils experiment with transporting them.

Fig 1. The first image is the required outcome – a one stroke drawing. The second and the third images
(the third one being in fact a sequence of images) are possible notations of the procedure of
how to solve it. Both solutions demonstrate how a solving procedure can be noted.

Fig. 2. On the left the Wolf, Goat and Cabbage puzzle environment. Right: screenshot from a
similar puzzle with missionaries and cannibals, see http://game-game.sk/18394/.

Programming in Slovak Primary Schools 135

Usually they solve the puzzle by trial-and-error method. Though, when they are asked
how they have done it, they are motivated to reproduce and describe the solution and
some of them are easily prompted also to put down the sequence of steps for transporting
all items successfully.

If the environment is well designed it makes it easy to proceed from (1) solving the
problem, through (2) experimenting with the solution procedure to the (3) represent-
ing/recording the procedure for future repeated solving of the same problem (maybe
even without its immediate execution). These three steps in fact describe the advance-
ment from solving problems to programming.

These are computational cognitive operations that are involved while solving prob-
lems and handling their solutions:

Discuss and think about the core of a problem, about the relevant information ●●
provided by the problem assignment, about the conditions of solvability, about
an appropriate procedure that will find a solution, about the difficulty level of
the given problem, to look for similar problems that will help us to solve the
problem.
Use different strategies for finding the solution – like drawing a diagram, list-●●
ing all combinations, guess-and-confirm, divide problem into smaller parts, find a
similar problem, find a repeating pattern, look for the solution form the end etc.,
see Polya (1957).
Explain the solution to someone else, to teach a friend how to solve it (verbally, ●●
by non-verbal means, using a specific language).
Learn from someone else how to solve the problem (using verbal or non-verbal ●●
communication).
Write down the solution (by a picture, or series of pictures, using icons, text, video ●●
or audio).
Reason about the language and the form of notation of the solution in order to ●●
make it eligible for others.
Execute the solution and verify its validity, correct wrong steps of the solution.●●
Review certain properties of the solution (its eligibility, length, ‘price’…), assess ●●
and compare it with several different solutions.
Look for different solutions of the same problem.●●
Reason about the non-existence of the solution.●●

3.1.1. Activities and Examples
An interactive microworld inspired by a task from the Bebras contest (see e.g. Dagienė
and Stupurienė, 2016) enables pupils to experiment with sorting a group of children ac-
cording to their heights (Fig. 3). It is possible to switch two children by clicking on the
first one then the second one. This microworld also records the steps of the solution into
a text file. A teacher or a researcher can use it to find out what strategy pupils used – if
they all solved the problem similarly or if they applied different strategies – systematic
or more random.

M. Kabátová, I. Kalaš, M. Tomcsányiová136

3.1.2. Pedagogy – Observations and Recommendations
The specific organization of the lesson is up to the teacher – she is responsible for choos-
ing the problems and selecting the activities according to the learning goals of the topic.
Teacher can use many ready-to-use applications, microworlds and pre-made lesson plans.
Many problems can be solved without the computer. Many tasks from the Bebras contest
are suitable and they are available through the Bebras portal. The activities should be
built around a direct manipulation with physical objects; or if they are implemented via
some software application they should use appropriate pictures (dice, beads, building
blocks, animals, persons …). It is crucial to motivate the pupils to actively think about
the solution method and not to focus only on the end product – i.e. they should realize
the difference between the procedure of drawing a house by one stroke and the resulting
drawing where they can see no longer how it was done.

3.2. Controlling an Agent

Second domain of primary programming deals with two important and crucial concepts
of pre-programming activities – direct and non-direct control of an agent. The first one
is represented by a set of activities and suitable software applications that allow pupils
to command an agent (a toy, another child, an on-screen character or animal etc.) to do
something – mostly, to move to a given location. Each command is immediately ex-
ecuted and a result can be observed. Non-direct control of an agent gets pupils into real
programming – they are asked to construct a sequence of commands in advance, which
is then executed.

3.2.1. Direct Control of an Agent
Direct control of an agent can take place in a physical world where the teacher conducts
an activity during which pupils give other pupils certain pre-defined commands (e.g.
turn left, walk) to solve a given task (e.g. guide your friend from the desk to the door).
Sometimes the commanded child can be replaced by a toy that is moved by hand ac-
cording to the commands. There are also toys that can be controlled by a remote con-
trol, or digital toys with control buttons placed directly on them. Ambient programming

Fig. 3. Interactive application for a problem solving task.

Programming in Slovak Primary Schools 137

can also have similar characteristics, see (Eisenberg, 2009). In a software application a
pupil controls a virtual agent. It is crucial for such microworlds to maintain age-appro-
priateness – using child-friendly graphics, presenting an engaging agent that a child can
identify with or that can be perceived as a hero protagonist. In both cases (physical and
virtual) the agent can execute only small set of well-defined basic commands – make
a step, turn left, turn right, play a sound, take an object, pick a colour, set a pen size,
turn pen down etc. In many software applications the virtual agent can be controlled
directly but also by programming, i.e. without immediate execution of the command
(see the next chapter 3.2.2.).

The most basic task for an agent is to move from one place to another. This task is of-
ten motivating enough and pupils are willing to carry it out and think about the sequence
of commands to accomplish this goal. They gradually realise that:

Only a limited set of commands is available to use in the solution (in a physical ●●
environment the teacher determines them, in a microworld they are usually set by
the application itself).
The current state of the agent is always represented by its visible attributes: rota-●●
tion, position, pen colour etc.
The execution of each command has a very concrete, specific and unambiguous ●●
effect on the agent and/or on the whole scene where it acts.

We choose the agents so that pupils are familiar with them and the activities they
perform are more or less grounded in their reality (e.g. a bee flies to the flower, an ant
moves objects) or at least actions of the agent should be believable (e.g. a turtle moves
around and draws a line with its tail). Most agents therefore are animals, vehicles or
human characters.

Many cognitive tasks listed in part 3.1. can be practised using activities mentioned
in this chapter – by directly controlling the agent pupils can reason about the procedure
of finding the solution, they can explain their solution to a friend, they can review spe-
cific properties of a given solution and it’s correctness, or think about possible notation
of the solution.

Activities and examples
Each of the software applications that will be presented in this chapter has its own spe-
cific features. They use different agents and different control interface, some of them
record a sequence of commands. If the sequence of the steps can be recorded, we should
consider its level of abstraction – the commands could be e.g. coloured pieces of paths
(Thomas the Clown) or arrows that guide the agent (World of the Ant, Bee Tasks). An-
other significant difference in various microworlds and applications is whether the agent
moves in a rectangular grid (Ice Cubes, Bee Tasks, World of the Ant, EasyLogo, Baltie),
in a graph (Thomas the Clown) or with no visible constraints (Scratch). Rotation mode is
closely related to the movement and the grid type – the agent can rotate either relatively
or absolutely. Relative rotation means that the agent turns depends only on its previ-
ous heading; this is most common in open complex environments (Baltie, EasyLogo,
Scratch). Absolute rotation is common in simpler applications where the agent moves in
rectangular grid, usually only in four possible directions.

The agent in Thomas the Clown application is the clown on the bicycle. He moves in
the graph-like network of roads. The child controls him by clicking the blue, yellow
or red road piece in the right centre of the screen (see Fig. 4 left). The commands are
executed immediately but the sequence is also recorded at the bottom of the screen. The
task is to get Thomas from one place on the map to another.

In the Ice Cubes microworld the robot pushes the ice cubes (Fig. 4 right). It is controlled
by the keyboard keys and the task is to move all ice cubes to their designated places. The
sequence of moves is not recorded. Many similar microworlds are available on the web,
though they are often perceived as games without educational dimension. Both applica-
tions check if the solution is correct.

The World of the Ant application features an Ant as the agent (see Fig. 5 left). The goal
is to guide it through the maze to the door. Pink flower and blue star enable the Ant to
walk through colourful walls. The Ant is controlled by the keyboard keys. The sequence
is not recorded.

In the Bee Tasks the agent is a blue insect controlled by clicking the buttons with arrows
(see Fig. 5 right). The goal is to guide it to the flower. The sequence of the commands
is recorded on the bottom of the screen. Both microworlds verify whether the solution
is correct.

Fig. 5. On the left the World of the Ant application, on the right the Bee Tasks.

Fig. 4. On the left Thomas the Clown application, on the right an Ice Cubes microworld.

Programming in Slovak Primary Schools 139

EasyLogo is open environment in which it is possible to change the appearance of the
agent (in this case a frog). The agent is controlled by three buttons in the top right corner
(Fig. 6 left). Forward arrow moves it one step forward on the grid – the agent moves
along the grid lines, not from centre of the square to the next square. The left and right
arrows turn the agent relatively to its current position. The goal is to guide the frog to the
pond. This application does not check whether the solution is correct, nor does it record
the sequence of commands in the direct mode.

Baltie is another open environment (Fig. 6 right). The grid where the agent (a sorcerer
named Baltie) moves is not visible. Similarly to EasyLogo there are three buttons for
the movement – first turns the agent relatively to the left, second moves Baltie one step
forward and the third turns him relatively to the right. Baltie can conjure pictures – a
child can choose pictures form the huge pre-prepared set. The picture will appear in front
of Baltie and it is also possible to construct more complex images consisting of many
smaller pictures. There is no in-built control of the correctness and the application does
not record the sequence of commands in this mode.

Some of these applications allow creating and adding custom tasks for pupils –
World of the Ant and EasyLogo. In World of the Ant we cannot choose a different agent
or change the final goal of tasks, but we can design the maze and place object on differ-
ent positions. EasyLogo is more opened – it allows to change the agent to any picture,
set different backgrounds and completely rephrase the goal of the task (e.g. instead of
guiding a frog to the pond we can ask pupils to move the frog along a square shape). We
consider this an important feature – the teacher can design her own tasks which are bet-
ter suited for the pupils and their skills, or match the motivation for the specific lesson.
However, designing new tasks, creating custom pictures and related technical obstacles
put a lot of demands on the teacher.

Open programming environments, such as Baltie, Scratch or EasyLogo can be used
for the direct agent-controlling activities as well. However, a meaningful task has to be
designed (or programmed) by the teacher first. There is no in-built solution checking and
if the teacher needs such feature she has to virtually create the microworld to achieve
this. A pre-made and partially programmed activity e.g. in Scratch can simulate desired

Fig. 6. On the left is EasyLogo, on the right is Baltie.

M. Kabátová, I. Kalaš, M. Tomcsányiová140

features of direct agent control. A path for the agent is in the following example a part
of the backdrop (Fig. 7 right). The cat is controlled by keyboard arrows – this behaviour
was programmed by the teacher in advance. Teacher also included a script that checks
whether the cat is at the end of the path or whether it deviated from the path earlier.
Similar assignments can be added to EasyLogo (Fig. 7 left), but it is not possible to add
automatic solution checking.

Pedagogy – observations and recommendations
A teacher conducting these or similar activities must remember that the learning goal is
to build basic understanding of controlling an agent by specific commands. The pupils
should realize there is a causal connection between the commands and the behaviour
of the agent. Since the control is direct and each command is immediately carried out,
making this connection is possible for pupils before reaching formal operational stage
of their cognitive development. In each application we presented the behaviour of the
agent is visualized. This allows pupils to immediately see how they are progressing in
the solution. We recommend using activities or environments that automatically check
if the solution is correct. According to our experience, pupils are more motivated to
solve problems if they have immediate feedback on their success. In our approach we
always use direct control of an agent as an introductory activity to the very basics of
elementary programming.

3.2.2. Indirect Control of an Agent – Building and Handling Future Behaviours
In the previous chapter we described activities in which the agent immediately carried
out each command. Next step may naturally be focusing on planning the whole sequence
of commands which will be executed only once it is complete. We call this approach
an indirect control of an agent. Here again we can control either a physical agent (a
classmate, a toy, or special programmable digital toy such as a Bee-Bot that is designed
for that purpose) or a virtual one “living” in a software application on the screen. When
working with physical agents pupils can write down the sequence of their commands on
the paper, or draw it using pictures (an interesting activity by itself is to design the proper
notation and discuss what ‘proper’ means in this context). E.g. programmable Bee-Bot

Fig. 7. Similar assignments in EasyLogo and Scratch.

Programming in Slovak Primary Schools 141

does not display the sequence at all – it is entered by pressing the buttons atop the toy,
but the child has to remember it or observe it when the toy moves according to the com-
mands. When using software applications, notation is usually given by its designers –
some applications use icons with arrows, icons combined with text or different kind of
pictures (e.g. colour of the road in Thomas the Clown).

Indirect agent control assignments usually have the same goal as activities described
in the previous part – to guide the agent from one place to another. Again it is possible
to include also other actions e.g., picking and using items or avoiding obstacles. Since
the sequence of commands is explicitly recorded – and thus visualized and editable –
pupils can finish the sequence or add missing commands, or even correct the sequence,
i.e. work with the representation. We can classify the cognitive operations according to
what has to be done with the sequence of commands:

Construct the sequence that guides the agent from its initial position to a final re-●●
quired position according to the assignment.
Interpret a given sequence of commands (there are various ways of how to verify ●●
the interpretation, the most straightforward is when pupils move the agent accor-
ding to the given sequence e.g., by clicking on the grid squares).
Identify the final position of the agent after executing the commands.●●
Identify the correct sequence among several sequences (more advanced version is ●●
to identify an incorrect sequence among several correct ones).
Complete the sequence if the last step is missing, or two last steps are missing, or ●●
any step is missing.
Identify and correct an incorrect command within the sequence.●●
Find alternative solution, find a solution with specific properties (e.g. the path is ●●
the shortest possible, or on its path the agent will cross equal count of yellow and
blue squares etc.).

Activities and examples
While most activities described above are suitable for implementation in a virtual micro-
world, it would probably be unreasonable to include all possible types of assignments
into one environment, thus getting too complex or too much time consuming for primary
pupils. Therefore several different applications are being used in our primary schools
that focus on specific tasks or certain groups of tasks.

Indirect controlling of an agent in Thomas the Clown is implemented e.g. in the straw-
berry picking task (Fig. 8 left): the robot is waiting at the entrance to the garden, once
a player completes a sequence of commands for moving and picking the strawberries,
the robot will execute it. The goal is to pick all ripe red strawberries in the garden. Se-
quence is created by clicking the icons in the left part of the screen and it is recorded on
the panel above the stage. When the sequence is being executed the active command is
always highlighted. This microworld automatically generates different gardens of 2 by
3 grid squares.

In the World of the Ant (Fig. 8 right) we can also choose indirect control mode. At the
bottom of the stage there is a set of commands – four arrows are for absolute rotation

M. Kabátová, I. Kalaš, M. Tomcsányiová142

and icon with legs represents moving one step in to the direction set previously. The Ant
will carry out the sequence only after the child pushes the red button. The application is
open to design many different mazes.

The Bee Tasks microworld was designed to offer several possible types of tasks we
mentioned earlier. In its current version there are nine types – the first one was already
described in part 3.2.1. as it is a direct control of the agent. The others are: interpreting
a sequence of commands, constructing a sequence (the Bee has to get to the square with
the flower, see Fig. 9 left), placing the flower on the square where the Bee will end up
after completing the given sequence (again interpreting the sequence), adding a missing
command (last one, last two, any in the middle), constructing a sequence (the Bee has
to end in the square with the flower, but there are obstacles as well), and identifying a
right sequence among several given (Fig. 9 right). A sequence is constructed by click-
ing on the icons with arrows – based on the same principle as in Thomas the Clown
microworld.

Fig. 9. Two different assignments in the Bee Tasks microworld.

Fig. 8. On the left Thomas the Clown, on the right World of the Ant.

Programming in Slovak Primary Schools 143

EasyLogo offers a mode in which children plan and construct the sequence of com-
mands (Fig. 10 left). However, this application behaves rather differently – it executes
the commands immediately after they are dragged into the sequence – it doesn’t wait for
completing the sequence (commands are in the column at the right side of screen). In
this sense the agent is directly controlled. However, there is a button “Run again” which
re-executes the sequence after it is created.

If we want to use Scratch for this kind of activities, we first need to prepare a project –
create a suitable backdrop, create sprite(s) and build the scripts for all functions, includ-
ing script(s) to verify a solution (if we want to). An example below (Fig. 10 right) is an
activity in which the goal is to build a sequence of commands for the Beatle to move from
its green (start) square to another green (goal) square without even touching any other
non-white square. The backdrop is a grid of white and coloured squares. In the Beatle’s
scripts area there are four blocks prepared for the pupils – already with their inputs prop-
erly set (move to the centre of a neighbouring square and turn left or right 90). Pupils will
construct the whole solution (script) for that situation by duplicating and snapping the
blocks into one script. This task has many variants of different levels of difficulty.

In both of these examples the task could be to fill in one or more missing commands
into the incomplete sequence (solution). Some of the environments presented so far of-
fer an option for the pupils or for the teacher to add their own tasks of the same kind.
Scratch, World of the Ant and EasyLogo allow us to do so.

Similar tasks (where the goal is to guide the agent to a given goal) are used also in the
Bebras contest. Since 2010 primary pupils can be involved in the contest in a special
category specially designed for them. One task was inspired by Thomas the Clown (Fig.
11 left) – the farmer has to get to his cow, but on his way he needs to grab the bucket.
All possible paths are depicted as a graph with edges of different colours. Pupils are
prompted to select the track which meets the criteria.

Second example from the Bebras contest is quite difficult task that proved to be
problematic as only 20 % of pupils solved it correctly, 17 % didn’t answer at all. The
story is: “A mouse is roaming in the maze, until it eventually reaches the cheese. Philip
was observing the mouse and used small cards with arrows to record its movements.
Unfortunately he dropped the cards and only two of them stayed at their places (see the

Fig. 10. EasyLogo and Scratch.

M. Kabátová, I. Kalaš, M. Tomcsányiová144

upper row of squares). Place the remaining cards and restore Philip’s record.” The task
was interactive and pupils could drag the cards into empty slots using mouse.

The last described assignment illustrates that this kind of activity can be really diffi-
cult and can also be given to much older pupils. The variety of presented tasks show that
guiding the agent is very rich context with many possible activities and a lot of potential.
At the same time it is apparent that planning a sequence beforehand and executing it only
after it’s recorded is a programming-like activity that involves abstraction over time.
Also the specific notation and execution of the sequence by some automatic machine-
like agent is a feature of full-flagged programming activity. However, these tasks are still
set in a concrete situations and their solutions do not require pupils to design universal
solutions that involve this kind of abstraction.

Pedagogy – observations and recommendations
It proved to be crucial that the application itself verifies whether the solution is correct.
If the microworld offers several tasks or several levels of difficulty, pupils should not
be allowed to skip them freely. Most motivating environments have a game-like design
presenting a bit more difficult task in each level. The designers of the microworld should
always prepare a set of tasks to be solved by pupils. They should be ordered according
to their cognitive demands, they should be motivating and engaging, prompting pupils
to learn new concepts and challenging to engage more demanding (but still developmen-
tally appropriate) cognitive operations. It is useful if the designer prepares several sets of
tasks as they can be used for achieving different learning objectives, in different classes,
for pupils at various stages of the learning process. Interesting option is to allow teachers
to create their own tasks, however this approach has proven to be far too optimistic as
only a small fraction of teachers are ready to do so.

3.2.3. Classification of the Microworlds Used for Direct and Indirect Control
of a Virtual Agent
In part 3.2 we have presented several applications, microworlds and environments that
are suitable for solving problems and learning computational thinking via programming-
like activities. They are all suitable for primary school pupils as such or after certain
preparatory steps. We summarize their features in Table 1.

Fig. 11. Two Bebras tasks based on indirect control of an agent.

Programming in Slovak Primary Schools 145

3.2.4. Some Advanced Concepts of Elementary Programming
In the previous two parts we focused on basic concepts that are in our opinion and ac-
cording to our experience suitable and appropriate for all primary school pupils. Now
we will present several others – more advance concepts – which still could fit into upper
end of the primary programming, but probably not for the whole class and only with well
experienced teacher.

Parameters
In some applications parameters in existing commands are rather intuitive and easy to
use (e.g. in Scratch, Fig. 12 left). In this case there is no need to address this concept ex-

Table 1
Features of microworlds

Movement
commands

keyboard keys World of the Ant, Ice Cubes
icons with arrows Bee Tasks, EasyLogo
icons with agent image Baltie
icons with colours Thomas the Clown
cards with text Scratch

Agent rotation
style

without rotation Thomas the Clown
absolute rotation World of the Ant, Ice Cubes, Bee Tasks
relative rotation EasyLogo, Baltie, Scratch

Grid type graph Thomas the Clown
rectangles or squares Thomas the Clown, World of the Ant, Ice Cubes, Bee

Tasks, Baltie
rectangular – lines EasyLogo
free movement (coordinates) Scratch

Notation (in direct
control mode)

without notation World of the Ant, Ice Cubes, EasyLogo, Baltie, Scratch
automatic notation Thomas the Clown, Bee Tasks

Solution
verification

no verification EasyLogo, Baltie, Scratch
automatic verification Thomas the Clown, World of the Ant, Ice Cubes, Bee

Tasks

Agent actions only movement and/or rotation Thomas the Clown, World of the Ant, Bee Tasks,
EasyLogo, Baltie

collecting objects Thomas the Clown, World of the Ant
moving objects World of the Ant, Ice Cubes
using objects World of the Ant
other Baltie, Scratch

Goals arrive at destination Thomas the Clown, World of the Ant, Ice Cubes, Bee
Tasks, EasyLogo

other EasyLogo, Baltie, Scratch

Pre-made
activities

no in-built activities Baltie, Scratch
set of fixed inbuilt activities Thomas the Clown, Ice Cubes, Bee Tasks
set of activities provided,
custom ones may be added

World of the Ant, EasyLogo

M. Kabátová, I. Kalaš, M. Tomcsányiová146

plicitly – children will understand immediately how to use them. Rather intuitive way to
set the parameter is using a drop-down menu – in Scratch there are several – e.g. choos-
ing a sound which will play by the “play sound” command. In this case pupils cannot
make a mistake. Another child-friendly parameter is pen colour chosen from the palette
(see EasyLogo displayed on Fig. 12 right). Parameters are present also in some modes
of World of the Ant and in Baltie environment.

Loops
Several of described microworlds provide loops – Scratch, EasyLogo, Baltie. However,
they are usually present in more complex open programming environments. Led by our
department a small microworld focused on loop constructions was designed and devel-
oped (Fig. 13). In this application pupils control the Jumper who has to reach the door
by jumping over platforms. The microworld is designed as a game – there are 24 levels
in which the child solves more and more complex situations (it is also possible to design
and add custom levels). Eventually the space for the commands becomes limited and
pupils cannot solve the problem without using a repeat loop. This design proved to be
highly motivating and pupils are deeply keen on completing the “game”. On the other
hand, one of the teachers using this microworld reported that only about a half of pupils
aged 8 to 9 years were able to learn to use the loop themselves. Loops appear also in the
LEGO WeDo programming language that is designed for primary schools. In this case,

Fig. 13. A game-like microworld named Jumper is focused solely on loop constructions.

Fig. 12. Parameters used in Scratch and EasyLogo.

Programming in Slovak Primary Schools 147

however, some commands implicitly contain repeated behaviour – turning on the motor
means it will move until the program is stopped or some other action is assigned to it. As
our research team reported pupils use the loops block rather easily and they intuitively
understand their use in the programs they create for their robotic models.

Procedures
Some programming environments for primary pupils do not offer procedures (Scratch
1.4), others are designed to use them (EasyLogo, Scratch 2.0). According to our experi-
ence this concept is rather complex and is a good candidate to postpone to years 5 and
6. Here is an example of two procedures (Fig. 14 left) in EasyLogo. Pupils at first do not
design them, as these loops are already prepared in the activity; she is prompted to use
them in the program.

3.3. Tinkering with Interactive Environments

A programming environment named Living Pictures (influenced by Russian PervoLogo)
has been specifically designed in our department to teach pupils some object-oriented
concepts within elementary programming. In this environment pupils populate the virtual
world (represented by a background) with moving objects – characters, animals, vehicles,
plants or anything they choose from a pre-made set of pictures or draw them themselves.
From the perspective of primary informatics pupils learn to control one or more objects,
define their behaviours, clone them, set their properties and reactions to events.

Each object is at first depicted as a Logo turtle – the child should realise that this is
in fact an abstract object that can take any form. Each object has different properties, its
shape and position among them. Basic action of the object is its reaction to the onClick
event (e.g. it can move few steps forward). Other events are triggered when the project
is set to run and when objects collide, but we recommend to program these events later
– with lower secondary school students, or with only some high achievers at the end
of year 4. This programming environment is open – there are no pre-set activities. All

Fig. 14. EasyLogo procedures for drawing a yellow rectangle and red triangle are used to draw house.

M. Kabátová, I. Kalaš, M. Tomcsányiová148

assignments have to be designed and presented by the teacher. It is possible to add cus-
tom backgrounds and pictures. The teacher can adjust also the set of commands for the
objects so that the pupils see only a limited sub set (Fig. 15). We consider this high level
of customizability to be important especially if the application is designed for primary
pupils. Setting up the user environment so that it is as simple as possible is crucial for
the introductory lessons.

Another advantage of this application is that it is possible to export a project as an
executable file (EXE). Thus pupils can be motivated to create moving pictures for their
younger classmates (in accordance with Papert’s principles of constructionist learning).
Pupils can present the executable file to their friends or relatives.

In next parts we will illustrate several activities that can be done in this environ-
ment. We will focus on shape, position and rotation of the object, and we will use three
events – onClick, onRunProject and onCollision. We believe that the outlined sequence
of activities leads from designing a scene and setting the properties of objects to execut-
ing dynamic scenarios with multiple objects with different behaviour (which involves
abstraction over time and over situation as well, see Blackwell, 2002).

3.3.1. Multiple Agents and their Properties
In parts 3.1 and 3.2 pupils controlled only a single agent. Using Living Pictures (or
similar microworlds) it is possible to introduce multiple agents with different or identi-
cal properties. We prefer to tinker with properties that are visible – shapes, positions,
and rotations. First, pupils should encounter objects with shapes that enable to see its
rotation (character, animal …) later they will learn that for some shapes rotations are not
observable (snowflake, sun). A good metaphor for describing such activity is a theatre
– there are several actors on the stage, each of them has their own specific scenario and
eventually they interact. This description helps with distinguishing the preparation phase
(setting the properties, preparing sequences of commands) and the execution phase (the
objects carry out their instructions).

Activities and examples
A good introductory activity is populating the world – pupils choose the background
(green hills and sky) and place several objects on it, then change shapes of these objects

Fig. 15. Whole set of all commands (left) and limited set designed for a specific activity (right).

Programming in Slovak Primary Schools 149

so they look like sun, clouds and trees. We can ask pupils to shrink or grow the objects
according to their positions in the background so that an illusion of depth is created (Fig.
16 left). The features used here are: adding objects, changing their shapes, scaling down
and scaling up and cloning objects. This activity can be done in many different settings
– for example in the outer space (see Fig. 16 right). Rotation of the object can be also
used in static scenarios (the astronaut is looking towards the aliens).

3.3.2. Static Scenarios
Clicking on or touching objects in the screen is nowadays the most intuitive way of
interaction with the digital devices. This trend was set with the Windows interface and
now is reinforced with touch screen technology. Objects in Living Pictures have a pre-
set onClick even that is triggered if the object is clicked by a computer mouse. Pupils are
already familiar with this event and assigning a reaction to the object when it is triggered
is the next step.

Activities and examples
In Living Pictures each object has its own event window into which the commands
for the object are dragged from the command palette. When designing static scenarios
pupils will change the shape, size and rotation of the objects. The most straight forward
activity is changing costumes. First the background is chosen, then objects are placed.
For each object that is a piece of costume the pupils will set a behaviour – when it is
clicked its shape will change to the next one form the chosen set of shapes.

As an example let us select a winter background with a snowman. Objects that
will change their shapes with a mouse click are the hat, the broom, his face and but-
tons (Fig. 17 left). Similar projects are easily done in Scratch. The sprites have when
clicked event and a single next costume block rotates a set of prepared shapes for the
sprite. In our example (Fig. 17 right) three sprites can be clicked – clown’s hat, eyes
and mouth. Each object has the same and very simple script – switch the costume to
the next one.

The greatest disadvantage of Living Pictures is that pupils can not immediately test
the script and see what happens (they have to close the event window first and then run
the project) – in Scratch it is possible. In Living Pictures it is also not possible to see the

 Fig. 16. Two static scenarios done in Living Pictures.

M. Kabátová, I. Kalaš, M. Tomcsányiová150

set of shapes for the object or which one comes next. In both environments we should
encourage pupils to design the desired behaviour first for one object and only once it
is tested and it works properly they clone it. This is done in accordance with object-
oriented approach in programming where the programmer first designs the prototype
object and its methods. Only after that is it reasonable to create inherited classes and
objects with modified behaviour. Primary school pupils can learn to distinguish different
objects with different properties and behaviour, or to tell what objects have in common.
We believe this level of abstraction is appropriate for the primary pupils in the highest
years (10–11 year olds).

3.3.3. Dynamic Scenarios
Dynamic scenarios in Living Pictures environment involve assigning a motion to the
objects. Most common is setting an infinite loop for the motion, which is done by check-
ing one of the options in the script (note that loop is not provided here as a programming
structure). Throughout these activities pupils better understand the difference between
preparation of the scene and running a project.

Activities and examples
In the Pond project pupils are prompted to set a background that will represent the pond.
They place an object and change its shape so it looks like a fish. Then they set its direc-
tion – on our picture (Fig. 18 left) it will face right. In the event window they will com-
mand the fish to move forever forward. Default behaviour in Living Pictures is: if the
fish is on the right edge of the screen it does not stop to move but it reappears on the left
edge – objects do not bounce by default. This is a deliberate design choice that enables
us to have an object which is forever moving to the right on a finite screen. After testing
the fish’s behaviour pupils clone it. Now they can change direction for some of them, or
add some commands to onClick event (e.g. the fish disappears).

This is one possible set of activities in Living Pictures:
Setting properties (shape, position, scale, direction) and cloning objects.●●
One or more objects react to the ●● onClick event.

Fig. 17. Left: The “t1” window displays the onClick event with one command – change
shape to the next one – which looks like a filmstrip. On the right similar project built in
Scratch.

Programming in Slovak Primary Schools 151

One object moves and reacts to the keyboard arrows; navigating this object is ●●
similar to direct agent control activities described in 3.2.
Infinite movements of one or more objects; only one command is given to objects ●●
(usually move forward) and it is set to repeat forever.
Infinite random movement of one or more objects on the scene, e.g. a butterfly is ●●
flying on a meadow, or Thomas the Clown is cycling on the plaza.
Infinite (random) movement of one or more objects on the scene and their reaction ●●
to onClick event. This activity is on the edge of game design – pupils can prepare
a scene where objects move randomly, when they are clicked they disappear. Aim
of the game is to hit all the objects.
Infinite (random) movement of one or more objects on the scene and their reac-●●
tion to onCollision event. These kinds of activities are probably too complex for
primary pupils, but if they are familiar with all previously listed concepts, they
may be able to do them. An example: one object is a basket that reacts to the arrow
keys, other objects in the scene are apples that are falling down (they move for-
ever downwards), when the apple hits the basket it disappears. More complicated
scenarios can be devised, but we believe there is too much abstraction involved
and we do not consider this type of activity to be age-appropriate at Slovak pri-
mary level (consisting of only four years up to 10 years old pupils).

3.3.4. Pedagogy – Observations and Recommendations
We believe that tinkering objects, their properties and behaviours is an excellent oppor-
tunity for the primary pupils to learn the very basics of the object-oriented approach to
programming. Activities in Scratch or Living Pictures are very intuitive. Pupils learn to
change and set properties of objects, to distinguish the development phase form the run-
ning phase, to plan the future behaviour of objects, incorporate looping actions of objects
and even begin to tinker with random values. It is crucial that these environments contain
a large set of pre-made graphics and they should be opened to adding custom pictures.
We believe that properly designed environment for tinkering with objects should:

Allow to add object easily.●●
Make changes in object properties (like shape, size or position) immediately visible.●●

Fig. 18. The Pond project created in Living Pictures.

M. Kabátová, I. Kalaš, M. Tomcsányiová152

Enable the object to react to at least three events: ●● onClick, onRunProject, oOnCol-
lision.
Feature easy pupils-friendly manipulation with objects and their properties – by ●●
clicking and dragging.
Enable cloning objects together with their behaviours.●●

3.4. Implementation of Elementary Programming: Various Ways and Various Tools

It is apparent from activities described in parts 3.1, 3.2 and 3.3 that core of primary
programming can be learned using specialized software applications or microworlds
that are (a) specifically designed for primary pupils and (b) designed to address the
learning goals we have listed earlier. There are many similar applications being created
around the world: Scratch (and its newer version Scratch 2.0), Scratch Jr., Microworlds
JR, LEGO WeDo or Baltie. Several powerful microworlds have been developed in our
department and made available for teachers and their pupils through various portals,
websites, projects and PD sessions. Those include Thomas The Clown, World of the Ant,
EasyLogo, Living Pictures, Jumper and Bee Tasks. Ice Cubes microworld and many
similar ones originate from ‘Infovekacik’ – an older Slovak on-line magazine for pupils
created in cooperation with our department.

Another productive means to support implementation of primary programming into
formal education for all children is the international contest Bebras. In Slovakia we
initiated a special category for primary pupils and many contest tasks are deliberately
designed to incorporate problem solving and elementary programming concepts. The
national success and high number of contestants suggest that pupils and teachers are
interested in this form of informatics.

4. Programming in Primary Teachers’ Professional Development

All Slovak primary teachers have to get a master degree from a pedagogical faculty of
one of our universities. They are not specialists – they teach pupils of years 1 to 4 (6 to
10 years old children) all subjects (sometimes excluding foreign languages and/or infor-
matics). In 2008 a new compulsory school subject was introduced – primary informatics.
However, pedagogical faculties have failed to update their study programs to include
corresponding pre-service development for future teachers till today. Fortunately, a na-
tional project focused on professional development of in-service informatics teachers
was launched in 2008 (till 2011) and authors of this paper were involved – together with
the teams from five universities across the country – in developing its strategy and con-
tent and delivering it to 700 in-service teachers. The main goal of the project was to offer
a modern, up-to-date, high quality education necessary for teaching this new subject at
primary schools. Note that similar situation and PD strategy is being reported from the
Czech Republic by Vanicek (2013).

Programming in Slovak Primary Schools 153

Within the Slovak national project, 700 in-service primary teachers attended 18
study modules (each 6 hours long). Each module belonged to one of four tracks: Digi-
tal literacy; Informatics; Didactics of primary informatics; and Modern school. The
Informatics track included six modules: Computer and digital devices; Information
around us 1–3; and Problem solving and basics of programming 1–2. Teachers that
graduated from the PD should be able to use digital technologies both in their classes
and when preparing for them. They should perceive the elementary informatics as an
important part of pupils’ education and development, being able to meet the learn-
ing objectives of primary informatics as prescribed in the national curriculum. The
study materials and whole lecturing process was designed to prepare the teachers for
future development in digital technologies – for new microworlds and new operating
systems, and also for new devices that would be used in the classrooms in near future.
Authors of the study materials and lecturers took great care to introduce the teachers
to a variety of software applications and appropriate teaching strategies. Teachers were
learning how to evaluate appropriateness of software applications and microworlds
and how to use them in the classroom.

From the perspective of this paper we find most relevant the modules dealing with
problem solving, elementary programming and corresponding didactical materials.
These areas had not been treated until then in any literature in our country (and hardly
anywhere) and designing that content and delivering it to 700 in-service teachers was
a real challenge and important innovative step towards new primary informatics. For
the sake of the project, several new microworlds had been created, e.g. EasyLogo and
Living Pictures, and participants used many other already existing microworlds and pro-
gramming environments designed for primary pupils by experts in Slovakia.

One of the most successful new developments in the project was an idea and im-
plementation of the Cards Tool (Tomcsanyi 2012). It is an authoring application that
enables the teacher to design simple but vastly variable activities for any (primary)
school subject. Participants of the project enthusiastically used the tool and created
interesting activities that confirmed that primary teachers are creative and persistent
and can use digital technology in their teaching. Since then, several thousand differ-
ent activities created by the teachers themselves in the Cards Tool have been posted at
Slovak portal zborovna.sk.

Although we lost touch with most of the participants when the project finished, we
are interested in following how they manage to utilize new skills in their practice. There-
fore we sporadically address a small sample of the participants and ask them to reflect
about the project’s longer term benefits. From that (mostly anecdotal) data we may for-
mulate several interesting observations about the implementation of the problem solving
and programming activities at primary level:

Primary informatics lessons are usually run in a special computer lab, dedicated to ●●
primary key stage (older pupils usually use another computer lab).
In each year group (2, 3 and 4) around 5 to 8 lessons are allocated to ●● problem solv-
ing and programming. These are usually taught in a row, often towards the end of
the school year.

M. Kabátová, I. Kalaš, M. Tomcsányiová154

Teachers are using the study materials extensively and share them with other col-●●
leagues. They have altered their lesson plans to incorporate teaching methods ap-
plied in the project’s PD sessions.
Problem solving tasks (as presented earlier) are not highly popular among the ●●
teachers; many teachers simply skip them. They rarely realise that those tasks are
not puzzles nor riddles, nor that their goal is not to find the solution by trial-and-
error but systematically look for the solving method and reflect about the exter-
nally represented solution.
Teachers enthusiastically use some microworlds that were created for the project – ●●
most of all The Jumper, World of the Ant and The Living Pictures while EasyLogo
is less popular. Interestingly, each teacher has a strong preference for exactly one
of the microworlds.
Microworlds with the in-built sets of tasks of increasing difficulty and automatic ●●
verification of the solutions are used the most. Teachers often say they cannot pro-
vide immediate feedback for all pupils in the group and primary pupils are very
keen on learning if they are progressing in the assignments. The sets should be
designed to be solvable within one lesson (45 minutes). It should not be possible
to skip the tasks in the set – only after the task is solved correctly the child can
proceed to a harder one.
Open programming environments are difficult to use and the teacher has to be ●●
better prepared for designing her own meaningful assignments and tasks within
such environments (often it requires to attend extensive specialized training for
the chosen environment). Our primary teachers probably have not reached that
level of expertise yet.
Most of the teachers are familiar with, visit and use the ●● Infovekacik website – an
on-line magazine for children with dozens of game-like microworlds. It would
be probably useful to create a web portal with similar content and add lesson
plans and recommended teaching methods. Teachers need good resources for their
teaching that would inspire them to search for new suitable microworlds and soft-
ware applications.
Many teachers use The Cards Tool to design their own simple activities for ●●
other school subjects (mostly language and science, only rarely for primary
informatics).
All teachers are appreciative and see high value of the project’s PD and of the new ●●
subject.

In conclusion, we believe that the national project and its PD programs were well
designed and conducted. The participating teachers do incorporate learned skills and
knowledge into their teaching. However, some of our plans proved to be too optimistic –
most notably our inability to share with the primary teachers the importance and learning
potential of the problem solving tasks (as described earlier in 3.1). Another failed expec-
tation was to assume they would design their own sets of tasks for the pupils to support
their informatics learning objectives. Teachers prefer to use the activities we prepared
for them and their PD. Clearly it is vital to provide suitable series of activities with each
microworld or digital toy/tool.

Programming in Slovak Primary Schools 155

5. Discussion and Conclusion

Presented approach to primary programming has resulted from our previous experiences
with teaching programming and developing programming interventions for all stages of
schools, including university study programs for future teachers of informatics, for sev-
eral decades. Our professional roots lie in Logo culture, into which our Comenius group
has contributed by two internationally recognized versions of Logo: Comenius Logo and
Imagine Logo. From that background we inherited our endeavour to respect the needs of
students, together with other principles of Papert (1999) such as:

The Logo programming language is far from all there is to and in principle, we ●●
could imagine using a different language, but programming itself is a key element
of this culture.
So is the assumption that children can program at very young ages.●●
And the assumption that children can program implies something much larger: in ●●
this culture we believe (correction: we know) that children of all ages and from all
social backgrounds can do much more than they are believed capable of doing.
Just give them the tools and the opportunity.
Opportunity means more than just “access” to computers. It means an intellectual ●●
culture in which individual projects are encouraged and contact with powerful
ideas is facilitated.

We have also learned how important it is to integrate programming into pupils’ learn-
ing experience only if they themselves see the meaning in doing so and perceive pro-
gramming as a means to express themselves, to solve problems, to make things happen...
In the case of primary pupils, such programming should most probably restrict to build-
ing simple future behaviours in certain notational system and solving tasks, which arise
from handling such behaviours.

Although we consider elements of programming to be key constituent of informatics
in primary education, we do not develop it as a means to attract more students to later
Computer Science majors. We build it as a valued and legitimate core subject contrib-
uting to general education and complex development of every girl and every boy. Yet,
we hope, that it may consequently play that role as well – the skills, knowledge, and
attitudes, which pupils gain in elementary informatics may later help them build sound
understanding of Computer Science principles.

Programming, which we consider appropriate for primary pupils, can be naturally
divided into three domains (while first domain should proceed the other two, we believe
that the second and the third ones can be implemented in any order or even in parallel).
They are:

Solving problems and handling solutions.●●
Controlling an agent.●●
Tinkering with interactive environments.●●

For each domain we have presented its main learning goals, corresponding com-
putational concepts, computational practices, and essential cognitive operations to be
performed; selection of activities and examples, which in detail illustrate various types
of tasks and problems to be solved; several software applications that are being used;

M. Kabátová, I. Kalaš, M. Tomcsányiová156

and also several pedagogical observations and recommendations, which resulted from
our collaboration with the primary teachers.

Most of the programming environments, which are being used at Slovak primary
schools, are free applications, usually small microworlds focused on one of the domains
listed above, and one or several cognitive operations belonging to that domain. As partly
validated in chapter 4, teachers usually exploit environments which they find attractive
(although often not being able to verbalize which criteria they apply for judging this).
However, they clearly favour environments supplemented with teacher materials and
activities for pupils, and environments, which they may give away to their pupils for
their home work and play.

Our experience in implementing programming at the lower secondary stage ISCED 2
(although not based on systematic evidence yet) shows that three domains presented
in the paper for primary stage can seamlessly be picked up and further elaborated in
lower secondary years to cover further cognitive operations (like conditional steps in
programs, abstractions, i.e. procedures without or with parameters etc.). However, ex-
tensive research to help us better understand cognitive demands of such programming
and real values of educational programming for the complex development of primary
and secondary students is inevitable. We have already undertaken some initial steps in
this direction, see e.g. (Gujberova and Kalaš, 2013).

As we document in chapter 1, informatics in upper secondary education has con-
siderably long tradition in Slovakia. In recent years, it has been extended as a manda-
tory subject to lower secondary level (2005) and primary level (2008). In chapter 2, we
briefly characterized its curriculum and its learning goals and especially the key role of
programming within the subject.

We fully focused on educational primary programming in the paper. In chapter 3, we
presented in detail our approach to such programming together with corresponding com-
putational concepts, cognitive operations, and programming environments employed in
our classes. In chapter 4, we then described how the CPD for primary in-service teachers
has been implemented – with partial successes and numerous obstacles and challenges
that require permanent and intense support from the institutions responsible for educa-
tion. In spite of many obstacles and slow progression, there are many positive and stim-
ulating reactions from primary teachers who implement elementary informatics with
exceptionally positive involvement. They also report positive attitudes of their pupils.

The development of the subject of informatics in primary school is a long-term pro-
cess. In it, we must thoroughly respect the requirements of the developmental appropri-
ateness, carefully observe and analyse the needs of the pupils, respect all stages of their
learning processes, set correct priorities, and apply proper tools – so that we support the
development of such programming, which our pupils will clearly benefit from. In this
aspect, we deeply agree with Papert, Ackermann and other seminal authors when they
advise not to learn programming for the sake of programming. Instead, we should...

use the knowledge of programming to create contexts where other
playful learning can happen. Children will engage in programming
if they can get something out of it right now – not later when they’ll
grow up, (Ackermann, 2012).

Programming in Slovak Primary Schools 157

References

Ackermann, K.E. (2012). Programming for the Natives: What is it? What’s in it for the Kids? In: Kynigos, Ch.,
Clayson, J., Yiannoutsou, N. (Eds.), Proceedings of Constructionism, Athens, Greece August 2012. National
& Kapodiststrian University of Athens, Athens, 1–10. Updated version obtained via CRN Japan:
http://www.childresearch.net/papers/pdf/digital_2012_03_ACKERMANN.pdf

Barr, V., Stephenson, Ch. (2011). Bringing computational thinking to K-12: What is involved and what is the role of
the computer science education community? ACM Inroads, 2(1), 48–54. DOI: 10.1145/1929887.1929905
http://doi.acm.org/10.1145/1929887.1929905

Blackwell, A.F.(2002). What is Programming? In: Kuljis, J., Baldwin, L., Scoble, R. (Eds.), Proceedings of
14th Workshop of the Psychology of Programming Interest Group. Brunel University, 204–218.

Blaho, A., Kalaš, I., Tomcsanyiova, M. (1995). Experimental curriculum of informatics for 11 year old children.
In: WCCE´95 Liberating the Learner: Proceedings of the sixth IFIP World Conference on Computers in
Education. Chapman & Hall, London, 829–841.

Blaho, A., Salanci, L. (2011). Informatics in primary schools: visions, experiences, and long-term research pros-
pects. In: Kalaš, I., Mittermeir, R. (Eds.), Informatics in Schools: Contributing to 21st Century Education.
LNCS 7013, Springer, 129–142. ISBN 978-3-642-24721-7.

Brennan, K., Resnick, M. (2012). Using artefact-based interviews to study the development of computational
thinking in interactive media design. Paper presented at annual American Educational Research Association
meeting. Vancouver, BC, Canada.

Dagienė, V., Stupurienė G. (2016). Bebras – a sustainable community building model for the concept based
learning of informatics and computational thinking. Informatics in Education, 15(1), 25–44.

Eisenberg, M., Elumeze, N., MacFerrin, M., Buechley, L. (2009). Children’s programming, reconsidered: set-
tings, stuff, and surfaces. In: Proceedings of the 8th International Conference on Interaction Design and
Children (IDC ‘09). ACM, New York, NY, USA, 1–8. DOI:10.1145/1551788.1551790
http://doi.acm.org/10.1145/1551788.1551790

Gibson, J.P. (2003). A noughts and crosses Java applet to teach programming to primary school children. In:
Proceedings of the 2nd International Conference on Principles and Practice of Programming in Java (PPPJ
‘03). Computer Science Press, Inc., New York, NY, USA, 85–88.

Gujberova, M., Kalaš, I. (2013). Designing productive gradations of tasks in primary programming education.
In: Proceedings of the 8th Workshop in Primary and Secondary Computing Education WiPSCE ’13. ACM,
New York, NY, USA, 108–117. DOI: 10.1145/2532748.2532750
http://dl.acm.org/citation.cfm?id=2532750

Hu, Ch., (2011). Computational thinking: what it might mean and what we might do about it. In: Proceedings
of the 16th Annual Joint Conference on Innovation and Technology in Computer Science Education (IT-
iCSE ‘11). ACM, New York, NY, USA, 223–227. DOI:10.1145/1999747.1999811
http://doi.acm.org/10.1145/1999747.1999811.

Hubwieser, P. (2012). Computer science education in secondary schools – the introduction of a new compulsory
subject. ACM Transactions on Computing Education, 12(4), Article 16 (41 pages).
DOI:10.1145/2382564.2382568
http://doi.acm.org/10.1145/2382564.2382568

Informatics Europe and ACM Europe (2013). Informatics Education: Europe Cannot Afford to Miss the Boat.
Report of the joint Informatics Europe & ACM Europe Working Group on Informatics Education.
http://www.informatics-europe.org/images/documents/informatics-education-europe-

report.pdf.

Kalaš, I. (2010). Recognizing the Potential of ICT in Early Childhood Education: Analytical Survey. UNESCO
Institute for Information Technologies in Education, Moscow. ISBN 987-5-905175-03-9.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., Werner, L. (2011). Compu-
tational thinking for youth in practice. ACM Inroads, 2(1), 32–37. DOI:10.1145/1929887.1929902
http://doi.acm.org/10.1145/1929887.1929902.

Lu, J.J., Fletcher, G.H.L. (2009). Thinking about computational thinking. ACM SIGCSE Bulletin.
DOI:10.1145/1539024.1508959.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E. (2010). The scratch programming language
and environment. ACM Transactions on Computing Education, 10(4), Article 16 (15 pages).
DOI:10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363

M. Kabátová, I. Kalaš, M. Tomcsányiová158

Mayerova, K., Veselovska, M. (2016). How to teach with LEGO WeDo at primary school. In: Proceedings of
7th International Conference on Robotics in Education (RiE 2016), Vienna. To be published in the Springer
Series: Advances in Intelligent Systems and Computing.

Mogardo, L., Cruz, M., Kahn, K. (2006). Radia Perlman – a pioneer of young children computer programming.
In: Current Developments in Technology-Assisted Education, 1903–1908. CiteSeerX: 10.1.1.99.8166.
http://citeseerx.ist.psu.edu/viewdoc /summary?doi=10.1.1.99.8166

National Curriculum, Informatics for ISCED 1 (2011, 2015). (In Slovak).
http://www.statpedu.sk/sites/default/files/dokumenty/inovovany-statny-vzdelava-

ci-program/informatika_pv_2014.pdf

Papert, S. (1999). What is Logo and who needs it. In: Logo Philosophy and Implementation. Highgate Springs,
Vermont: Logo Computer Systems Inc. ISBN 2-89371-494-3.

Pekarova, J. (2008). Using a programmable toy at preschool age: Why and How? In: Workshop Proceedings of
SIMPAR 2008, International Conference. 112–121. ISBN 978-88-95872-01-8.

Piaget, J., Inhelder, B. (1993). La Psychologie de l’enfant. Paris: Presses Universitares de France.
Polya, G. (2004). How to Solve It. Princeton University Press.
Przybylla, M., Romeike, R. (2014). Physical computing and its scope – towards a constructionist computer sci-

ence curriculum with physical computing. Informatics in Education, 13(2), 241–254.
Resnick, M. (2012). Point of view: reviving papert’s dream. Educational Technology, 52(4), 42–64.
Selby, C.C. (2012). Promoting computational thinking with programming. In: Proceedings of the 7th Workshop

in Primary and Secondary Computing Education (WiPSCE ‘12). ACM, New York, NY, USA, 74–77.
Selby, C.C. (2013). Computational thinking: the developing definition. In: ITiCSE Conference 2013, University

of Kent, Canterbury, England (e-prints), 6 p.
Settle, M., Franke, B., Hansen, R., Spaltro, F., Jurisson, C., Rennert-May, C., Wildeman, B. (2012). Infusing

computational thinking into the middle- and high-school curriculum. In: Proceedings of the 17th ACM An-
nual Conference on Innovation and Technology in Computer Science Education (ITiCSE ‘12). ACM, New
York, NY, USA, 22–27.

Tomcsanyiova, M., Tomcsanyi, P. (1997). Experimental IT education for lower secondary school using Win-
dows and Comenius LOGO. In: Learning and Exploring with LOGO: Proceedings 6th European LOGO
Conference. Budapest, 263–272. ISBN 963-8431-91-1.
http://eurologo.web.elte.hu/lectures/tomcsa.htm

Tomcsanyi, P. (2012). Small interactive computer activities made by primary teachers. In: Information and
Communication Technology in Education 2012. Ostrava: University of Ostrava, 263–272.

Vanicek, J. (2013). Introducing Topics from Informatics into Primary School Curricula: how do teachers take
it? In: Diethelm, I., Arndt, J., Dunnebier, M., Syrbe, J. (Eds.), Informatics in Schools: Local Proceedings of
the 6th International Conference ISSEP 2013, Oldenburg, Germany – Selected Papers. Universitätsverlag
Potsdam, 41–51.

Wing, J.M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the
Royal Society A, 366, 3717–3725. DOI:10.1098/rsta.2008.0118

Wing, J.M. (2011). Research notebook: computational thinking – what and why? In: The Link. Pittsburgh, PA:
Carnegie Mellon University.

Links to Microworlds and Programming Environments

Baltie: http://www.sgpsys.com/en/whatisbaltie.asp
Bee Tasks: see (Gujberova and Kalaš 2013), for the microworld itself contact the authors
Cards Tool: http://edi.fmph.uniba.sk/~tomcsanyi/Karticky/
EasyLogo: http://www.salanci.sk/EasyLogo/index.html
LEGO WeDo: http://www.legoeducation.us/eng/product/lego_education_wedo_software_

v1_2_and_activity_pack/2239

Microworlds JR: http://www.microworlds.com/solutions/mwjunior.html
Scratch: http://scratch.mit.edu/
Thomas the Clown: http://www.r-e-m.co.uk/logo/?Titleno=7485

Programming in Slovak Primary Schools 159

M. Kabátová, was an assistant professor of informatics education at
Faculty of Mathematics, Physics and Informatics at Comenius Uni-
versity, Bratislava. Her research interests included elementary pro-
gramming, educational robotics and qualitative research methodol-
ogy applied to educational research in informatics education. She is
a co-author of several research papers and learning materials deal-
ing mostly with educational robotics. Since 2014 she runs an SME
distributing cochlear implants in Slovakia and provides services for
cochlear implants users. Currently she is planning to initiate a work-
shop providing a learning space for children with or without cochlear
implants where they could explore programming and building autono-
mous LEGO robots.

I. Kalaš is a professor of informatics education at Comenius University,
Bratislava. His professional interests include development of construc-
tionist educational interfaces for learning for children and research in
the field of the impact of digital technologies on learning. Ivan is a co-
author of several programming environments for children, including
SuperLogo, Imagine Logo, Thomas the Clown and RNA (Revelation
Natural Arts) adopted by thousands of schools, home and abroad. He is
also an author or co-author of several books and textbooks on children
programming and informatics, which have been published in several
languages and countries in Europe and beyond. He has also been active
in several national and international policy efforts and initiatives. Ivan
represents Slovakia in the IFIP Technical Committee for Education.
From 2008 to 2013, he was a member of the International Advisory
Board of the ‘Microsoft Partners in Learning’ initiative. From 2014 he
is a visiting professor at UCL Knowledge Lab, London.

M. Tomcsányiová is an assistant professor of informatics education at
Comenius University, Bratislava. She is a guarantor of a bachelor study
programme for future teachers of informatics. She reads the courses on
programming and educational aspects of programming and conducts
corresponding research in the field of educational programming in all
levels of education. Monika is a co-author of several textbooks and
methodical teacher materials. She is also involved in designing small
educational software environments supporting informatics education
in Slovak primary and lower secondary schools. She develops tasks
and organizes informatics challenges for primary and secondary stu-
dents, including Imagine Logo Cup, Scratch Cup and national Bebras.
Her area of research is didactics of programming for lower secondary
schools. She is a co-author of research papers in this area.

Olympiads in Informatics, 2016, Vol. 10, 161–176
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.10

161

Collecting, Processing and Maintaining
IOI Statistics

Eduard KALINICENKO, Mārtiņš OPMANIS1

1Institute of Mathematics and Computer Science, University of Latvia
29 Raina Boulevard, Riga, LV-1459, Latvia
e-mail: eduardische@gmail.com, martins.opmanis@lumii.lv

Abstract. In this paper, we describe the whole process of creation, launching and maintaining
the IOI Statistics website project. Special attention is paid to the data acquisition and correctness
problems. Our experience may be useful for other International Science Olympiads still not having
their statistics portals.

Keywords. IOI, statistics, data collection, data maintaining.

1. Introduction

International Olympiad in Informatics (IOI, IOI-WEB) is the annual International Sci-
ence Olympiad for high school students. Since the first IOI held in 1989, a certain
amount of data involving the competition is accumulated. However, due to a quite dif-
ferent quality of data for different years as well for different aspects of IOI, the data on
its own is not useful.

Usually, we need the data to answer specific questions, like the following ones:
What are the results of the competition for the given year?Question 1.	
In what years did the given country participate?Question 2.	
How many medals overall has a certain country achieved?Question 3.	
What results did the particular person achieve?Question 4.	

As far as International Science Olympiads are concerned, Question 1 is answerable
as publishing the results usually takes place. Sadly, however, publishing data about the
event often ends here. About further questions, to the best of our knowledge, before the
work on this project began, only International Olympiad in Mathematics (IMO, IMO-
WEB) had a centralized system that could answer all these Questions. Most of the other
efforts in collecting and maintaining the statistics were not made by the organizers. Most
notably, Waldemar Gorzkowski and Ádám Tichy-Rács compiled the list of winners for
International Physics Olympiad (IPhO), but it was done in a separate PDF file, which is
not very customizable and exportable and included only medalists.

E. Kalinicenko, M. Opmanis162

For International Olympiad in Informatics, the situation was even grimmer. Official
IOI website (IOI-WEB) only collected individual IOI results, and often only for the
medalists – the issue we will cover more in-depth in Chapter 4. There also existed two
parallel projects – the one by Tom Verhoeff (TUE-NL) and another one by Stanislaw
Waligorski (EDU-PL). Efforts to bring the results under similar format and process it
to display results per country (EDU-PL) were made, but both projects were out-of-date
and abandoned. Even the official website (IOI-WEB), despite several renovation at-
tempts, often relied on official individual IOI websites, which have a tendency to go
offline in some cases.

The best resource at the time was SnarkNews project managed by Oleg Hristenko
(SnarkNews). However, despite being able to answer Questions 3 and 4 (on medalists
only), for old IOIs it only had a list of names and countries of all medalists in that year,
which was far from ideal. Furthermore, to the best of our knowledge, it did not appear to
solve the problems about data aggregation we will touch upon in Chapter 2.

With this in mind, the goal of the project was to collect as many data as possible and
aggregate them in a unified format. Further, the goal was extended to create and imple-
ment an IMO-like system to be able to explore the data collected. This paper tells the
story of this project from its inception to becoming part of the IOI infrastructure. We
hope that the lessons we learned could be useful to other International and Regional Sci-
ence Olympiads looking how to overcome the same problems we tackled.

2. Data Collection

The work on this project began soon after IOI 2011. There was an interest in seeing the
cutoffs for past IOIs to observe how they have changed percentile over the years. It was
discovered that collecting the scores necessary for each kind of medal was not a trivial
task, but after some time the necessary data was gathered (IOI-EDU).

At this time, the scale of the problem IOI had with statistics was observed, as
some of the required data was only contained in one of the above-mentioned proj-
ects (EDU-PL), which in 2011 was already offline and was only available through the
Wayback Machine (Archive). Despite the initial goal to collect only cutoff scores, it
was quickly realized that in fact we have collected names, countries and at least total
scores of every single IOI medalist. This meant that at least for some sense (in this
case, IOI medalists) we can have some basic information, which led to the inception
of this project. However, to illustrate the incompleteness of the data available, we can
look at Fig. 1 and see that currently only 61% of IOIs have full per-task scores of all
contestants available.

Again, limiting ourselves to IOI medalists only, it is trivial to process the raw data
in such a way which could help us easily answer Questions 2 and 3. The biggest chal-
lenge with aggregating data, perhaps surprisingly, lies in Question 4. It has a couple of
problems in its core and none of the resources available at the time appeared to have
tackled it. First, the mapping function from a person to a name is not injective. So we
cannot identify a person only by the name. Even more, as was discovered during the

Collecting, Processing and Maintaining IOI Statistics 163

collection of the data, even a tuple of name and a country is not enough to identify a
person – there are two different people named Chen Zheng from China having partici-
pated in IOI.

Even bigger problem is the fact that the function mentioned above is not even a func-
tion. Putting aside the issue of a person changing a name (which in fact had occurred
before – Jeppe Hallgren was known as Jeppe Petersen during IOI 2010), there is a seri-
ous issue of using a different spelling for the same person across different years. Most
notably, Gennady Korotkevich was sometimes spelled as Henadzi Karatkevich. This
whole issue is easily avoided with the help and understanding of the problem by the
organizers – for example, the current IOI registration system asks leaders to pick specifi-
cally whether any delegation member is already in the registration database. However,
until this support was added, this crucial part of information was lost, and so the biggest
challenge in the whole data collection process was to recover this information.

In general, it was found that the same person is likely to represent the same coun-
try, although of course some exceptions are occurring like Fieke Dekkers (full name:
Sophia Antonia Janna Dekkers), who was a member of a delegation from both Neth-
erlands and the United Kingdom or Rob Kolstad representing the USA and the United
Kingdom. Even limiting ourselves to contestants, which we are at this stage, Tomasz
Czajka has won two gold medals – one for Poland and one for the United Kingdom.
Furthermore, it is reasonable to expect that if it is the same person, then he has com-
peted in close to consecutive IOIs – even if not strictly consecutive, a maximum gap
of two IOIs is expected. Again, this does not hold if we are considering all delegation
members, especially because it is common for former contestants to appear as a delega-
tion member after some gap. However, at this stage, these two assumptions turned out
to be a good basis for determining whether two differently spelled or written names are
in fact the same person.

It was decided that it is not realistic to expect that decision can be made automati-
cally without human input. However, it is certainly possible to provide a good set of

Fig. 1. Availability of contestants’ scores for IOI 1989–2016.

E. Kalinicenko, M. Opmanis164

candidates for a human to look at in an attempt to minimize the human effort required.
For the spelling differences mentioned above (which usually were a lot smaller than in
the case of Gennady Korotkevich), Levenshtein distance (Levenshtein) between strings
was quite a good indicator – if it were below a certain threshold, we would need to look
at the pair to determine whether they are in fact the same person. However, it did not
help to identify the second common case – if a person has several middle names, then
often one set of middle names appeared in one year and a different one in another. In
an attempt to tackle this issue, Levenshtein distance algorithm was run between all pos-
sible subsets (with the size at least 2) of individual words from the original strings. If
any of those distances were small enough, the pair got triggered. In retrospective, while
this did not catch all the cases, we feel that it generated a good enough accuracy in the
original data set released.

Instead of unifying everything to a single format, as much data as we could find was
released as a single Excel file (IOI-EDU). This included some tricky bits which were not
documented well. For example, at IOI, the host can participate with the additional teams.
At present, these teams are not competing officially, and so their representatives simply
appear in the overall results at the proper position by the score but without any rank or
medal. However, nothing of a sort was mentioned in the regulations earlier on. This
led to a couple of precedents. Overall IOI 1989 winner, Teodor Tonchev, represented a
second Bulgarian team. However, the official IOI 1989 printed booklet ranks him and
declares a winner, so this interpretation was kept for that year. Secondly, in 1996 the
second Hungarian team won four bronze medals. They were ranked in all the data we
have seen and as per our inquiries, they appear to have received physical medals, so they
were kept ranked as well.

To conclude, in this Chapter, we have discussed the challenges encountered regard-
ing collecting and processing the data. The most important issue we have identified here
is to avoid having a person’s name and surname as the unique identifier. Even without a
centralized system organizers should make efforts to record and keep information that
can be used to tackle this problem in future.

3. Website Planning

At this point, there were no immediate plans to carry on. The data has been collected,
and it has even received sets of corrections, in particular by Ilham Kurnia and Mojca
Miklavec. However, creating a convenient interface to host the data collected was the
end goal – while the created resource (IOI-EDU) was still much more useful than any-
thing available was at the time, it felt that there would be a huge potential wasted if it
did not evolve further. To the best of our knowledge, while some efforts to create an
IMO-like website based on the data collected were stated to us, they did not transform
into anything concrete. That is the reason why in the spring of 2012 it was decided that
the matter should be put in our hands and as such the plans for devising the website
began to form.

Collecting, Processing and Maintaining IOI Statistics 165

The most crucial thing to get right was the database design. It is tempting to incorpo-
rate a lot of redundant information in the tables so that obtaining the data necessary is as
easy as possible. However, that could lead to huge problems with maintaining the tables.
As such, the effort was spent into carefully designing the database format to minimize
the amount of redundant data kept.

However, there are some notable exceptions to that in the database design. For
example, the rank and the medal contestant earned is kept in the competition record.
Technically this information is redundant since it can be obtained by analyzing others
results. Such decision was taken, firstly, to speed up the computation, as it eliminates
the need to query all that olympiad’s results if we are just interested in a single person;
and secondly, to ease the handling of unranked teams, as now we can explicitly set
a contestant to be unranked regardless of his position. The other example would be
keeping the score of a contestant in his records directly. This is not always a redundant
information since we do not always have full results (including the per-task scores).
However, even if we had, the could have been some additional problems – at IOI 2000
to avoid zeroes at the end of the competition extra 50 points were awarded per day for
simply turning up, so in that case even if we had full results, the contestant’s total score
would not simply be the sum.

The next big decision is about the cooperation between the database and the web
server. It was thought that the database design was much less likely to change over time
than the web server, and as such it was decided to write complicated queries which take
care of everything, including composing and sorting the tables requested. This means
that it is incredibly simple to write a website, as shown in Fig. 2, which queries the data-

Fig. 2. Simple website to query the contestants’ results from the database.

E. Kalinicenko, M. Opmanis166

base, once the queries are known. The website itself looks quite different nowadays, but
this table is remarkably similar to the one used today.

Initially, there was a third goal conceived, which was to unite all International Sci-
ence Olympiads to be able to view a person’s results across all competitions. Due to lack
of workforce, we decided to focus specifically on IOI instead. However, the database
was designed with more than one science olympiad in mind and as such the database
was split into two schemes – the one with IOI-specific data, like competition records,
and the one with the common information (like information about people and countries).
As a result, it would be easy for some other olympiad to use the information from the
common information scheme, allowing people and countries to share information across
olympiads.

The website itself was coded in PHP, however as mentioned previously, most of it
is just the code for displaying the information in a pretty way on the website. The big-
gest part of the website devoted to this part is request processing, where we need to
combine all information obtained from forms to a single SQL query, resize photos, etc.
However, it would not take a ridiculous amount of effort to replace the web server with
another implementation of it. As for the actual design and structure of the website, it was
deliberately designed similarly to IMO’s statistics. However, certain aspects were im-
proved. For example, the country delegation page with photos is only easily accessible
while IMO has not finished yet, and we made sure that the accessibility of that page is
improved in the IOI statistics.

Finally, what is important to consider but easy to miss is the URL lifetime. Ideally,
you would like to make sure that the link created a long time ago would still work in the
future and would not become dead. This means that it is desirable to create a good set of
URLs at launch so that they are as human-friendly as possible. For example, compare
http://www.imo-official.org/country_individual_r.aspx?code=LVA and
http://stats.ioinformatics.org/results/LVA, where both of these links lead
to the same type of page. The major changes are also mostly backward compatible. For
example, the link which could have been made in 2012 (IOI-GDR) still works, despite
the server move and a country code change to comply with ISO standards. The only dead
links resulted after merging the entries of two persons (usually, after an e-mail that two
entries which we treat as different people are in fact the same person), and then using
the old link would not redirect to the new one, however this will get fixed it if we can
reconstruct with confidence which entries were merged from backups.

In retrospective, there were also a couple of bad design decisions. One of such is the
“Login” button. Its sole purpose is to allow the moderator to login into the system to
view and act upon submitted requests. However, it sometimes creates confusion when
users think that they are required to have an account to submit a change, while in fact
“Edit” or “Add” interfaces are available to anyone. Secondly, in the “Edit” interface,
there is a “Submit” button after every section (Basic Information, Contact Information,
Participation Information and Photographs). The reasoning behind this was a separa-
tion of requests by category with the idea that if additional verification is needed for
confirming an IOI role, we could accept the changes of contact information separately.
It turned out to be a bad decision, as on several occasions people had missed multiple

Collecting, Processing and Maintaining IOI Statistics 167

“Submit” buttons and were pressing the last one, which resulted in the loss of data when
users thought they submitted a change while only the photo was submitted. Finally, after
submitting a request, one receives a password to revoke it if needed. Sometimes people
seem to believe that this is the CAPTCHA-like process for the request and accidently
cancel them instead. Perhaps, revoking requests in a suggested way is not usual, and ad-
ditional warnings are required to prevent misunderstanding.

To conclude, in this Chapter, we have discussed the challenges encountered while
designing a website. We feel that it is crucial to spend a considerable amount of time on
planning the back-end, which can be easily overlooked in favor of the front-end. We feel
that without a reasonable back-end, maintenance becomes unmanageable, which often
leads to project abandonment.

4. Acquiring Data

The biggest challenge was obtaining the perfect (correct and complete) data. We cur-
rently have data about 5775 people in the database. However, a lot of data is still miss-
ing. Beginning from the first Olympiad at 1989 hosts usually produced a full list of the
current IOI participants. Since 2000, this duty is stated in IOI Regulations (IOI-REG ver.
2014 S5.10(4)). Nowadays, publishing such a list is straightforward since all the data
is in the IOI Registration system and it is given to the host for organizational purposes.
However, now, we have no such official source of information for years 1990, 1993,
1995, 1998, 2002. Of course, now we can just point to the fact that these essential parts
of IOI history are not kept in an appropriate manner.

During the initial project (IOI-EDU), only information about contestants was col-
lected. Now, we were suddenly interested in obtaining information on team leaders
and other delegation members. We limit ourselves just to “international part” of IOI
participants. In the IOI statistics, you cannot find information about representatives of
the host country (management, technicians, guides, volunteers, etc.) who help to orga-
nize the whole event. Also, from the historical perspective, IOI roles are changing. For
example, during the first IOIs team leaders comprised an International Jury not existing
anymore as a body. In 1993, there were such positions as “President of the Interna-
tional Olympic Committee” and “President of the Technical Committee”. According to
Regulations for that period, a president was nominated by the host country and today
seems to correspond to the role of Chairman rather to the position of the President of
IOI elected for a three-year term. Taking into account that it is almost impossible to
solve all these semantic clashes of the past, we defined the following twelve roles of
IOI participants: Contestant, Leader, Deputy Leader, Guest, Invited Guest, Observer,
President, Executive Director, Chairman, International Committee (IC) Member, Inter-
national Scientific Committee (ISC) Member, and International Technical Committee
(ITC) Member.

However, even keeping names of roles as close to the current Regulations as pos-
sible, there appear unexpected problems. For example, according to the Regulations

E. Kalinicenko, M. Opmanis168

current host country has one representative in the IC. But how to proceed if the host is
represented by different people in the in-between meeting of IC and at the IOI itself? Are
there two representatives of the host or one person (which one?) must be forgotten? Also,
in an attempt to avoid expanding the list of roles too much, by “Invited Guests” there are
marked different categories of people – task authors invited by the Scientific Committee,
invited members of international organizations and associations and others.

We also provided functionality for the user to add some personal information to his
profile like Codeforces/TopCoder handles, homepage, e-mail and social network pro-
files. This was implemented partially due to the anticipation that the website might be
used for direct contacts and recruiting purposes by some parties and as such the ability
to add contact information was desirable.

While the situation for contestants was not perfect, but still reasonable, the situation
for other members of the delegations was close to appalling – even national websites
listing all IOI teams for a specific country often omitted team leaders. However, it was
anticipated that national delegations at large still have access to that information, so the
natural choice would be to allow delegation leaders to provide and correct simply their
data in the system. However, that did not quite solve the problem of contact information,
and as well as that, it heavily relies on all delegation leaders being responsive to the
cause. So it was decided that the editing access would not be limited to a single person
for every country.

Instead, we decided to make the editing publicly available without any registration.
Compared to the denied approach, we realized that there would also be bad and mali-
cious edits. However, our estimations said that this way we would receive more data;
and if we can filter the good requests from the bad ones, we would obtain more infor-
mation this way, and since this was our primary goal, we decided to go with that. On
the downside, every change submitted to the system has to be approved by modera-
tors, which created an additional effort on our side of things. In retrospect, there were
12818 non-spam requests (including rejected malicious ones) at the time of writing out
of 1295397 requests received overall, meaning that 99% of the requests we receive is
spam. However the vast majority of them never reach our eyes, so despite that, we feel
that it was the correct decision.

Furthermore, sometimes it benefited to go through a central point of moderation. For
example, some confusion was created with Sweden and IOI 1989. The national website
for Swedish Olympiads in Informatics lists IOI team for 1989 (SOI). Similarly, we have
received requests to add this team to the system. However, we were in possession of the
physical copy of the first IOI booklet having no records about a team from Sweden. After
some conversations with Pär Söderhjelm, former Swedish team leader, it was learned
that in 1989 there were two similar IOI-like initiatives. The Swedish team picked the
“wrong” one (we would be interested get more information about this event!), so they
did not participate in IOI 1989, and only joined IOI in 1990.

There were rare cases in the IOI history when teams mentioned in the official book-
lets did not participate in the competition due to visa issues or other, mostly political,
reasons. Such cases of disagreement with official documents were resolved using direct
communication with country representatives.

Collecting, Processing and Maintaining IOI Statistics 169

The biggest issue regarding missing data was generated by the rule that IOI had from
2000 – for non-medalists their names and represented countries should not be published
(IOI-REG ver. 2014 S5.10(3)) in the results and as a consequence usually are lost from
freely available sources of information. We believe that not mentioning names of non-
medalists is contrary to Olympic spirit formulated by Pierre de Coubertin “The most
important thing in the Olympic Games is not winning but taking part; the essential thing
in life is not conquering but fighting well” (Coubertin). Contestants qualified to IOI as
a rule passed many national and regional events and are good even if they do not obtain
any medal at IOI. Furthermore, it creates a huge gap between the last bronze medal and
the first person without the medal. Despite these two people being right next to each
other in the standings, this rule made impossible for the second one to highlight his
achievement easily. But for this project, it was decided that we would not allow indi-
viduals to de-anonymize their results if they desire as this was deemed to be impossible
to verify. This concern turned out to be largely irrelevant, as we did not receive any such
requests.

In an attempt to at least not to lose these names for the history, in the IOI Regulations
since 2014 is stated that current IOI host is obliqued to “Produce a full result list con-
taining the final scores of all contestants, which is made available to the OED and ISC,
along with the data required to generate those scores;” (IOI-REG ver. 2014 S5.10(4)).
On the public side of things, this rule began being pointless from IOI 2010, when the live
scoreboard during the contest was introduced. As such, other projects like SnarkNews
(SnarkNews) have full results available and so it became a pointless exercise to remove
the non-medalists’ names as the full results were already made available previously. In a
hilarious display, IOI 2010 website still hosts both versions of results – anonymized and
de-anonymized. As such, we have taken a strict stance on maintaining the full results of
IOIs from 2010 onwards. Since then the risk of losing essential contest information is
diminished.

However, we fully respect this rule while no live scoreboard was available. Most no-
tably, during the data collection stage, we have managed to discover the cached full re-
sults of IOI 2004, which presumably were published by organizers by mistake and were
taken down soon afterward. Including these data in the Excel file resulted in two e-mails
from IOI 2004 contestants asking to remove their name from the results. Their wishes
were respected, and this was also the main reason for the decision of not publishing the
de-anonymized results of IOI 2004’s non-medalists at all on the present website.

The biggest issue with that rule, however, is the fact that it made it easy for IOI orga-
nizers to neglect the data. Since 2000 in IOI Regulations it was specified that three lists
should be published after the IOI:

The final scores of the medal winning contestants.1.	
A list of all participants.2.	
A list of all scores which contains no name/country information (IOI-REG, ver. 3.	
2014 S5.10(3)).

This rule does not oblique host to keep full scores for all contestants in any form.
Moreover, often only the first list (as the most important list of the whole event) was
published, meaning that non-medalists scores and all participants’ names were lost even-

E. Kalinicenko, M. Opmanis170

tually. We believe this is the main reason why the data we have today is so incomplete,
which we believe was not anticipated at the time this rule was passed. Closing discussion
about the availability of full results, it should be added that also rare cases of disquali-
fications are not clearly marked in results. Usually, such contestants appear as the last
ones in the full results of the particular IOI together with contestants having no single
submission into grading system.

Despite the fact that IOI is an individual competition there are also some cumulative
statistics available regarding country participation in IOI: the total number of medals,
the total number of participated contestants, years of participation (counting only the
years when there were contestants on the team), etc. However, it is important to note
that we still keep records of all years even when there was only a single observer in a
delegation. Following the spirit of individual competition, countries are never explicitly
ranked; there are different ways to sort data, but you will never find rank next to the
name of a particular country.

To conclude, in this Chapter, we have discussed the challenges encountered while
attempting to collect additional data to obtain the complete picture and why this was
necessary in the first place. The takeaway message from this would be to make sure that
hosts publish all required information, and then make sure that the information is dupli-
cated in some centralized location – sometimes the last step would be forgotten, and the
information would be lost after the host website would go offline. While Web Archive
might save this information, it is not a good idea to rely on this.

5. Moderation

After reading the written above, a reader may have an impression that work is already
completed and new data may appear only after the current IOI, and there will be no up-
dates in-between IOIs. Concerning IOI statistics, this is far from the reality. There is still
plenty of work to perform outside of IOI period. In this Chapter, we list several examples
of such work in the decreasing order of importance.

First, the main effort goes into the attempts to fill in gaps in the history by trying to
contact persons probably having missing documents. We are confident that it is impos-
sible to get official data from hosts for five IOIs mentioned above. The most realistic
way is to contact former team leaders and try to fill gaps on “delegation by delega-
tion” basis. The main obstacle here is that during early IOIs generations are changed
and without proper local archives it is almost impossible to restore information. As
well, different countries are differently interested in completing information regarding
their country. At the moment of writing paper statistics for 44 countries (from 101 or
43.56%) are completed.

Next, we have to deal with major requests concerning the website. These requests
usually affect the whole website, so they have to be dealt with carefully. To give an ex-
ample, in the last season, two of such requests stood out.

For the first one, a former contestant argued that his name must be removed due to
“right to be forgotten”. We insist that IOI Statistics is the source of strictly statistical and

Collecting, Processing and Maintaining IOI Statistics 171

historical information, and we do our best to keep it correct and complete as possible.
Removing any essential piece of correct IOI information is against our efforts to com-
plete the whole picture of the IOI history. Also described “right to be forgotten” cases
influenced just search engines (how easy is to find a particular piece of information) not
the availability of information itself.

For the second example, S. Maggiolo suggested adding gender information to con-
testants’ data on the official IOI statistics website (Maggiolo). Since we rely on authori-
tative sources of information and no gender information was kept until the creation of
the IOI Registration system, we do not believe it’s feasible to collect and verify the
gender of individuals. Furthermore, addressing contestants according to their gender
itself might be questionable – we are not attaching other personal information like
race, religion, food preferences or disabilities; and we believe that some people might
object to releasing information on their gender as well. We understand that these sta-
tistics might be considered useful to answer some research questions, like whether
vegetarians tend to be better programmers, but we are not convinced at this point that
the official IOI website is the right place for that. This matter was recently raised with
International Committee.

Moving on, we have to deal with processing the usual requests. Commonly, these
are about changing/adding photos or updating contact information. If there is a request
to change contact information, requests are verified by checking a proposed link and
its relevance to the addressee. In unclear cases if contact information is known, before
approving, subject to the proposed changes or country representative is contacted. How-
ever, we periodically receive requests by e-mail (because these types of requests are not
supported by the system). Most commonly, the request is to merge two of the profiles
together because in reality it is the same person, which is usually quite easily verified.

Of course, not every request is legitimate and as such we have to struggle with hoax-
es and improper requests. Relatively often, there are requests to change information in
an appropriate manner. For example, a request to add “contestant of team X” for the year
where we are confident that we have complete data (even more if suggested name is
like “Anonymous”). Or request to remove all contact information for some participant,
which appears to be fake after consultation with the addressed person. Or adding an im-
proper photo like well-known Borat dressed in the green outfit (see Fig. 3). In general,
almost all such requests seem to be malicious than just joyful. Finally, there is also an
issue of dealing with spam. However, most of the work here is done automatically, and
just most sophisticated cases pass through the spam filter.

For readers, it may be interesting to know how the moderation of requests submitted
through the system looks from the inside. An example screenshot is shown in Fig. 3.

In the section “Administration” there is a possibility to clear spam, approve or reject
a batch of requests according to submitter’s IP address. Note that we can also change
the availability of the data for certain IOIs. This comes useful during the IOIs when the
results can be entered in the database long before they become official (and they will
not “leak” to the public), and we can then publish them with one click as soon as they
become official. Section “Country Data” offers a possibility to change color code for the
specified country in the main table of countries describing information completeness:

E. Kalinicenko, M. Opmanis172

green – information complete, yellow – information almost complete (usually completed
regarding contestants), red – essential part of the information is missed.

All requests must be approved (button “Grant”), rejected (“Reject” or “Spam”) or
have the processing postponed (“Hold”). In the given example, both requests are real.
The first one would like to add a Twitter profile to person’s requisites and, therefore, will
be approved. The second one is obviously non-legitimate so that it would be rejected. It
is worth noting that even if the photograph were of the person in question, it would still
get rejected as we aim to have more passport-like photographs on the website (although
this desire is not expressed clearly), where the head occupies a significant percentage of
photo’s vertical space.

To conclude, in this Chapter, we have discussed the challenges encountered while
maintaining the website. We feel that the most important issue is not to take accept-
ing any edit requests lightly. While it is understandable that occasionally some false
information provided by the community might slip through, if this information is false,
one would lose the reputation which is crucial if you want to be a source of credible
information.

6. Launch and Steps to Becoming Official

The statistics website was launched during IOI 2012 after a presentation during the
IOI Conference. The results of IOI 2012 itself were added about a week after it was
finished. The website accumulated an average of 140 unique daily IP visits during first
two months after launch. The appeal to obtain more information was also fruitful. In the
period until the next IOI we have granted 1233 requests, whether they were submitted

Fig. 3. Moderator interface screenshot (IP addresses are obfuscated).

Collecting, Processing and Maintaining IOI Statistics 173

by the community entirely, or we have committed them ourselves based on the raw data
submitted by the community.

Meanwhile, in the same period, we have received access to the official IOI website
(IOI), which at the time was quite outdated. This meant that we could start to plan on
how to move this project under the official domain. Initially, the idea was to incorporate
essential information about IOI on the project and replace the original IOI website com-
pletely. However, this was later abandoned for cleaning up and maintaining the original
website and hosting the statistics portal as a separate subdomain.

During IOI 2013, it was voted by the General Assembly (GA) to sponsor main-
tenance of the original IOI website and the development of this project from the IOI
budget (IOI-2013-GA-MIN). This allowed us to fulfill the goal mentioned above and in
April 2014 the website was moved to the place where it currently resides (IOI-STATS).
While we were still supplementary to the official results published by the organizers, for
IOI 2015 (IOI-2015) they did not do so and instead simply linked to our project, which
we consider being a final step in becoming official.

One of the other aspects of becoming official outside of recognition is the ability to
access parts of official data. This is best showcased by the process of releasing the list of
participants before the IOI occurred. Usually, every year well in advance of IOI there ap-
pears a popular thread on Codeforces and TopCoder, where the community would share
its knowledge on the upcoming IOI contestants, and that would be summarized, creating
an unofficial IOI contestant list. The ability to display participant list was first added to
the website for IOI 2013. At that stage, we did not have any access to the official data in
the registration system (IOI-RS) and as such, we simply mirrored the thread on Code-
forces for that year. After the organizers had released the official list, the website’s data
was modified to reflect that.

For IOI 2014, we decided to keep it official and did not take any data from the com-
munity, as some talks on accessing official data began already. Unfortunately, it did
not reach the conclusion in time, and as such we have waited until the official data was
released. Strangely enough, initially it got released exclusively on the mobile app for
Android. Still, it was mirrored to the database and for some time, it was the only conve-
nient way to view contestant list if you do not have an Android device. Subsequently, we
received the necessary data (name, surname, role, and country – note that we always re-
ceive information on per-need basis and do not receive unrelated and personal informa-
tion to the cause, like passport details, for obvious reasons, including the one of privacy)
from the official IOI registration system, so we could add some additional delegation
members (like guests, who were not displayed in an app). Also, we discovered a discrep-
ancy between the registration data and the data published by the organizers, which was
then addressed and fixed.

In the meantime, this issue was discussed within IC to ensure that we could receive
the data from the IOI registration system sooner. Additionally, the check mark was added
to the system to allow us to publish the participants’ photographs as well. Because of
these, for IOI 2015 we were able to publish the participant list soon after the registration
deadline was over and we were the first resource to do so. We were able to publish 228
photos, where we were given permission to do so. Extra effort was made to avoid ac-

cidental leaks of personal information, where some people uploaded a full passport copy
instead of a photo. Even despite the fact the we shrink the photographs to 180 pixels in
height, and it would be very unlikely that there would have been any leaks because of
that, we still manually cropped those photographs.

Finally, the process of becoming official means that you receive a lot more cred-
ibility over time and as a result people start relying on and linking to your information.
At the moment of writing this paper, there are over 9000 links to “stats.ioinformatics.
org” according to Google search. Some of them are not only simply linking to results or
individual statistics, but also refer to actual statistics. For example, the post on Quora
(Quora) was attempting to answer the question of the hardest IOI problem based on the
average score per contestant available on the website. Of course, not all of the links are
of the same level of importance. Moreover, there are incorrect ones. For example, link
in the article (UG-RU, 2016) claims that there will be problems from the corresponding
IOI where there is currently just statistical information about tasks.

Investigating pages with links, we found one, which may be the example why we
cannot take any responsibility for the way how provided statistical information is used.
For example, in the forum post (Apricity) photos from the IOI Statistics regarding Chil-
ean contestants are extracted and an attempt to evaluate demographics based on ethnicity
was made, which is not something that we approve or imagined that would happen based
on the data we released.

To conclude, in this Chapter, we have discussed the process the website took to ob-
tain an official status. Furthermore, some benefits of the official status were provided.

7. Future Work

One of the evergreen tasks is encouraging people to fill in missing parts of informa-
tion. Just as a reminder for potential submitters – information can be submitted in a
few simple steps. First, consult the “People” page of the particular country to find the
particular person whose information you would like to update. If such a person already
exists there, follow the link under that person’s name and push “Edit” in the top-right
corner of the page. After adding/changing appropriate information, click the “Submit”
right after changed section. Be aware – there are four sections having separate “Sub-
mit” buttons, so if you want to edit information in multiple sections, you would need
to submit multiple requests to the system! Only if you cannot find the person in the list
of already known people, push “Add” and provide all known information about the
particular person. In this case, “Submit” must be pushed just once at the very end. As a
backup scenario, there is always a possibility to send all relevant information to us – we
will add it by ourselves. The main principle – do not keep valuable information about
former IOIs a secret!

As far as the further development of the website is concerned, the current plan is to
refactor the web server code completely. When it was created, not many efforts were
put into making it maintainable and as the result the code became quite unreadable over
time, and it is now quite challenging to add new features without accidentally break-

Collecting, Processing and Maintaining IOI Statistics 175

ing something. After that, it would become feasible to considering open-sourcing this
project so that other olympiads, like Regional ones, could use this platform to host their
results. As well as that, perhaps some additional functionality could be contributed by
the community then, as is currently happening with CMS (CMS), which is the competi-
tion system currently used at IOI.

8. Conclusions

In this paper, we have touched upon various aspects and challenges we have encountered
in creating and maintaining a centralized place for collecting official IOI data. While it
is not a small project and some International and Regional Science Olympiads might not
have the resources to tackle this at the moment, we feel that it is still important to con-
sider our experience. While the project itself is hard work, many challenges that made it
hard are solvable easily if they would have been considered at the time. So we hope that
after reading our experience some Olympiads might pay a bigger attention to the issues
discussed here and make it a lot easier to execute the project of this scale.

Acknowledgements

We would like to thank Oleg Oshmyan for all the technical help received during the
creation of this project and maintenance of the servers. We also extend our gratitude to
Sergey Melnik and Vyacheslavs Kashcheyevs for supporting this project and giving us
fresh ideas. We would also like to thank Ilham Kurnia and Mojca Miklavec for providing
a massive amount of data in the early stages of this project. Finally, we thank IOI com-
munity for providing the financial support for this project.

References

Apricity. The Apricity. Why do people still think that Chile doesn’t have a mestizo majority?
http://www.theapricity.com/forum/showthread.php?184231-Why-do-people-still-

think-that-Chile-doesn-t-have-a-mestizo-majority

Archive. Internet Archive: Wayback Machine. https://archive.org/web/
CMS. Contest Management System. https://cms-dev.github.io/
Coubertin, P. Quotes. http://www.brainyquote.com/quotes/authors/p/pierre_de_coubertin.html
EDU-PL. Results of International Olympiads in Informatics, formerly at:

http://www.oi.edu.pl/ioires/

Levenshtein, V. I. (1965). Binary codes capable of correcting deletions, insertions, and reversals. Doklady Aka-
demii Nauk SSSR, 163(4), 845–848.

IMO-WEB. International Mathematics Olympiad. http://www.imo-official.org/
IOI-2013-GA-MIN. Minutes of the General Assembly of the 25th International Olympiad in Informatics.

http://ioinformatics.org/a_d_m/ga/ioi13/GA-minutes-jul2013.pdf

IOI-2015. The 27th International Olympiad in Informatics. http://ioi2015.kz/
IOI-EDU. International Olympiad in Informatics: The Results. http://www.eduardische.com/ioi/main

E. Kalinicenko, M. Opmanis176

IOI-GDR. Information regarding the former German Democratic Republic in the statistics of the International
Olympiad in Informatics. http://ioi.eduardische.com/countries/GDR

IOI-REG. Official Regulations of the International Olympiad in Informatics.
http://ioinformatics.org/rules/index.shtml

IOI-RS. Registration System of the International Olympiad in Informatics.
https://ioiregistration.org/

IOI-STATS. Statistics of the International Olympiad in Informatics.
http://stats.ioinformatics.org

IOI-WEB. International Olympiad in Informatics. http://ioinformatics.org/
IPhO. International Physics Olympiad statistics. http://ipho.org/statictics.pdf
Maggiolo S. (2015). An Update on the Female Presence at the IOI. Olympiads in Informatics, 9, 127–137.

http://ioinformatics.org/oi/pdf/v9_2015_127_137.pdf

Quora. Thread “Specific Problems in International Olympiad in Informatics”
https://www.quora.com/What-are-the-hardest-problems-from-past-IOIs

SnarkNews. SnarkNews on IOI. http://ioi.snarknews.info/
SOI. Swedish Olympiads in Informatics. http://www.progolymp.se/1989
TUE-NL. Former website of the International Olympiad in Informatics.

http://olympiads.win.tue.nl/ioi/

UG-RU (2016). Information about the 28th International Olympiad in Informatics. Uchitelskaya Gazeta, Num-
ber 4. (In Russian. Учительская газета). http://www.ug.ru/archive/63529

E. Kalinicenko is in his final year of studies at the University of Cam-
bridge towards BA/MEng in Computer Science. He obtained four med-
als at IOIs, including a gold medal at the IOI 2011 and had obtained
an honorable mention at IMO 2010. Participated in two ACM Inter-
national Collegiate Programming Competition World Finals – one as
a contestant from University of Latvia and one as an on-site coach of
University of Cambridge team. He is a member of the Latvian jury for
high school programming competitions and has been a deputy leader
of Latvian delegation at IOI 2013.

M. Opmanis is a researcher at the Institute of Mathematics and
Computer Science of the University of Latvia. He is one of the main
organizers of Latvian Olympiad in Informatics, was deputy or team
leader of Latvian IOI and Baltic OI teams. M.Opmanis was head of
jury of Baltic Olympiad in Informatics at BOI 1996, 1999, 2004 and
2012. From 2012 till 2015 he was a member of IOI International
Committee.

Olympiads in Informatics, 2016, Vol. 10, 177–194
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.11

177

Distributed Tasks: Introducing Distributed
Computing to Programming Competitions

Adam KARCZMARZ1, Jakub ŁĄCKI2, Adam POLAK3
Jakub RADOSZEWSKI1,4, Jakub O. WOJTASZCZYK5

1Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland
2Department of Computer, Control, and Management Engineering Antonio
Ruberti at Sapienza University of Rome
via Ariosto 25, 00185 Roma, Italy
3Department of Theoretical Computer Science, Faculty of Mathematics and
Computer Science, Jagiellonian University
ul. Łojasiewicza 6, 30-348 Kraków, Poland
4King’s College London
Strand, London WC2R 2LS
5Google Warsaw
Emilii Plater 53, 00-113 Warsaw, Poland
e-mail: a.karczmarz@mimuw.edu.pl, j.lacki@mimuw.edu.pl, polak@tcs.uj.edu.pl,
jrad@mimuw.edu.pl, onufry@google.com

Abstract. In this paper we present distributed tasks, a new task type that can be used at pro-
gramming competitions. In such tasks, a contestant is supposed to write a program which is then
simultaneously executed on multiple computing nodes (machines). The instances of the program
may communicate and use the joint computing power to solve the task presented to the contes-
tant. We show a framework for running a contest with distributed tasks, that we believe to be ac-
cessible to contestants with no previous experience in distributed computing. Moreover, we give
examples of distributed tasks that have been used in the last two editions of a Polish programming
contest, Algorithmic Engagements, together with their intended solutions. Finally, we discuss the
challenges of grading and preparing distributed tasks.

Keywords: programming contests, distributed tasks.

1. Introduction

When looking at major programming competitions, it is easy to notice that a large num-
ber of them are very similar in design. To name a few, the IOI, the ACM ICPC, Google
Code Jam, TopCoder’s algorithmic track, Facebook Hacker Cup, the CodeForces com-
petitions and many more, are all focused on small, self-contained tasks, with automated

A. Karczmarz et al.178

judging based on testing a program on a judge-provided set of testcases and mostly
algorithmic in nature.

This model seems attractive both to the organizers and the participants. The organiz-
ers appreciate the very clear, non-subjective mechanism of judging and the automation
of judging, which means the competition can scale out easily to a larger number of
competitors. The participants also appreciate the automated judging (which means fast
results) and the objective judgment criteria (which makes the competition more fair); ad-
ditionally the entry barrier to such contests is pretty low, as the introductory-level tasks
can be very simple.

If we consider programming competitions a way of educating future computer sci-
entists and professional programmers, the model has its strengths, but also weaknesses.
Some of these weaknesses come from the very nature of the small, self-contained tasks
(which are a large part of the model’s attractiveness): the participants do not learn about
code maintainability and extensibility, they also do not learn anything about larger-scale
system design. These weaknesses seem to be intrinsic to the model itself; and competi-
tions that abandon the model moving to larger or less clear-cut tasks are frequently less
successful (for example, TopCoder’s Marathon Match track has over 10 times less reg-
istered participants than the Algorithm track).

However, there are also areas of programming expertise that the existing competi-
tions do not teach, which are less intrinsically tied to the model of these competitions. In
particular, the focus on algorithmic problems is not crucial to the model of the competi-
tion itself. Indeed, multiple authors already explored extending this classical model of
competitions to other fields of computer science, for example visualization and precom-
putation (Kulczyński et al., 2011), online algorithms (Komm, 2011), computer graphics
and cryptography (Forišek, 2013).

1.1. Distributed Programming

Distributed (and cloud) computing has gained importance quickly in the recent years.
The computing giants of today – Google, Amazon, Facebook and others – do not operate
on the enormous mainframes that dominated computing in the past, but on networked
farms of smaller servers. This is a model of computing that is not inherently in conflict
with the algorithmic programming contest model, but is not taught by the dominant
competitions of today; students that gained most of their programming skills through
programming competitions will be totally unfamiliar with even the basic paradigms of
distributed computing like the MapReduce framework (Dean and Ghemawat, 2008) or
the CAP theorem (Fox and Brewer, 1999).

In this article we present a framework for running a contest focusing on distributed
algorithms, developed by engineers in Google’s Warsaw office in collaboration with
the University of Warsaw, and show sample problems used in the Algorithmic Engage-
ments (Potyczki Algorytmiczne in Polish) contest ran by the University of Warsaw. The
same framework is used at the recently introduced Google’s Distributed Code Jam
competition.

Distributed Tasks: Introducing Distributed Computing to ... 179

1.2. Designing a Distributed Programming Contest

The primary focus of our design was simplicity from the contestant’s point of view. The
introduction of a new programming paradigm, likely unfamiliar to most participants, is
clearly a challenge for the contestants, and we aimed at making the transition as smooth
as possible.

Thus, the basic interface is similar to a programming contest like IOI. The participant
submits a single program, which is compiled and executed by the framework. The same
program is run on every node (computer) available to the participant.

Obviously, the nodes need to be able to communicate in order to collaborate in com-
puting. We decided on a protocol based on simple message-passing (“send this array of
bytes to this node”). The message passing methods are available to the program through
a library that is common for all problems, and provided by the framework.

We also considered using an RPC-style interface. This, however, is more complex on
an API level. A standard approach to RPC is that the programmer has to declare an inter-
face (which will contain the remotely-callable methods). The server will just implement
the methods of this interface. On the client side, the infrastructure needs to provide a way
to generate a “stub” connected to some particular server; this stub will automagically have
the method calls autogenerated. The language would have to provide some way to anno-
tate that the interface is to be treated as a “remote” interface, increasing the complexity of
the infrastructure implementation, and meaning more “magic” happening under the hood,
which – in our perception – decreases the comprehensibility of the system. For instance,
the “stub implementation” would need to make a choice of deep versus shallow copying
of the arguments, each choice potentially leading to confusion for the participants.

Let us now present the functions of our library, together with their declarations in
C++.

First, the library provides a function that returns the number of nodes  on which
the solution is running, and the index (in the range [0  − 1]) of the node on which
the calling process is running.

int NumberOfNodes();

int MyNodeId();

The library maintains in each node a message buffer for each of the  nodes, which
represents messages that are to be sent to this node. Messages are added to the buffer
through the Put-methods.

// Append “value” to the message that is being prepared for
// the node with id “target”. The “Int” in PutInt is
// interpreted as 32 bits, regardless of whether the actual
// int type will be 32 or 64 bits.
void PutChar(int target, char value);

void PutInt(int target, int value);

void PutLL(int target, long long value);

A. Karczmarz et al.180

There is also a method that sends the message that was accumulated in the buffer for
a given node and clears this buffer. This method is non-blocking, that is, it does not wait
for the receiver to call Receive, but returns immediately after sending the message.

void Send(int target);

The following function is used for receiving messages.

int Receive(int source);

The library has a receiving buffer for each remote node. When you call Receive
and retrieve a message from a remote node, the buffer tied to this remote node is over-
written. You can then retrieve individual parts of the message through the Get-meth-
ods. This method is blocking – if there is no message to receive, it will wait for the
message to arrive.

You can call Receive(-1) to retrieve a message from any source, or set source
to a number from [0  − 1] to retrieve a message from a particular source. Receive
returns the number of the node which sent the message, which is equal to source, unless
source is -1.

Finally, for reading the buffer of incoming messages, the following three methods
are provided.

// The “Int” in GetInt is interpreted as 32 bits, regardless
// of whether the actual int type is 32 or 64 bits.
char GetChar(int source);

int GetInt(int source);

long long GetLL(int source);

Each of these methods returns and consumes one item from the buffer of the ap-
propriate node. You must call these methods in the order in which the elements were
appended to the message (so, for instance, if the message was created with PutChar,
PutChar, PutLL, you must call GetChar, GetChar, GetLL in this order). If you call
them in a different order, or you call a Get-method after consuming all the contents of
the buffer, the behaviour is undefined.

The serialization we decided to use is very basic, compared to models like Java’s
serialization mechanisms, Python’s “pickle” or even Google’s protocol buffer language.
Again, we preferred to err on the side of simplicity, to minimize the entry barrier – this
simple language turns out to be easy enough for the simple concurrency required to solve
our problems, and is more straightforward to understand, both in terms of “how big will
be the serialized message”, and “what is actually serialized” (this, again, is the deep vs
shallow copy question).

For correctness of execution, we chose what seemed the most natural model. The
backend guarantees failure-less execution on all nodes, and requires all the instances of
the program to execute correctly, within the specified time and memory limits. Note that
the time used by the program is measured from the moment when the instances start until

Distributed Tasks: Introducing Distributed Computing to ... 181

all instances have finished execution. This assumption is justified with the following ex-
ample involving two machines. The first one spends second of CPU time and then sends
a message to the second one. The second machine first waits for a message from the first
machine and then uses one second of CPU time. The total time used by the solution is
then roughly two seconds, although each instance used only one second of CPU time.

In most of programming competitions, the programs access the input data by read-
ing from standard input. (TopCoder’s Algorithm contest breaks out of this by providing
the input as an argument to the function the contestant is supposed to write.) How-
ever, a large fraction of the interesting distributed problems admit a solution that runs in
() time, where  is the size of the input, and  is the number of nodes available
to the contestant. This implies, in particular, that no node can afford to read the whole
input (since that alone would take () time). Standard input is only accessible in a
linear fashion, so it is not feasible for providing very large input data.

The approach we chose is what is typically done for interactive tasks on competi-
tions like IOI (see, e.g., Chávez, 2015) – each problem with large inputs defines a set of
input-access methods that are available to the program, similarly to the message-passing
interface. These methods are guaranteed to return the same values on all nodes (so, each
node has access to the same view of the input). Additionally, we provide upper bounds
on the execution time of a single call to the input-providing methods.

Output is much simpler to handle (as it is often much smaller), so we went with the
standard programming contest practice of expecting the output to be provided via stan-
dard output. We expect exactly one node to produce the output, while the others should
not produce anything. This is a somewhat arbitrary decision (we could equally well
have all the nodes output the exact same data to the standard output), however, as many
solutions in practice have some sort of a “master” node that aggregates the work of the
other nodes, it is convenient to the contestant to have one node output the result of the
computation, and for the infrastructure not to prescribe which of the nodes it is.

As for the number of nodes we run the contestants’ solutions on, we chose  = 100.
This is large enough that a speedup by a factor of  is big enough to offset the extra time
needed for inter-node communication, and yet small enough that providing that many
nodes for judging is actually feasible.

The final issue that needs to be considered is the amount of data sent during the
communication between the nodes, both in terms of the number of individual messages
sent, and the size of those messages. Obviously, the limits here will be dependent on the
infrastructure we run the contest on. Benchmarks on our framework show that a single
message will take roughly 3–5ms (split between the processing time in the sender, the
actual network latency and the processing time on the receiver). This number will be
constant for messages from negligible to tens of kilobytes, and start growing linearly
when the message size goes into hundreds of kilobytes.

While in the end, to fine-tune a solution the contestant will need to understand these
patterns (for this purpose we provided the results of a few benchmarks to the contes-
tants), we wanted the basic usecase not to require dealing with the calculations. To this
end, we introduced an upper limit on the total number (around 1000) and size (a few
megabytes) of messages a single node can send within the time limit, which roughly

A. Karczmarz et al.182

corresponds to the total throughput it could achieve if it spent all its time on communica-
tion. This is a clear and concise way of informing the participants that if their solution
stays well within those bounds, its performance should not be significantly affected by
the communication overhead.

1.3. Distributed Contest Judging Infrastructure

From a research perspective, the most interesting challenge in preparing such a distribut-
ed programming contest is defining the exact programming model from the contestants’
point of view. However, when doing it in practice, there is also a considerable amount of
engineering effort involved in providing the infrastructure to run such a contest.

In the process of preparing problems the most interesting new challenge is writing a
library that provides the input data. While in a standard programming contest the input
is just a text file, and can be generated offline in an arbitrary fashion and almost arbi-
trary time, in the distributed contests the requirements are much more strict. The input-
providing library needs to satisfy the following requirements:

Access to an arbitrary element.●●
Consistency across nodes, and across accesses.●●
Access times on the order of 100ns.●●
Ability to serve data with total size on the order of 10GB or more.●●

The requirements stem from the input model we chose. In particular, if we want to
allow  ()-time solutions, with runtimes on the order of 1–5 seconds, we need the
input read by one node to be on the order of at least 107 items (which means 109 items
in total – if each item is, say, two 64-bit integers, we get a total of 16GB), and we need
the node to be able to read these 107 items within 1 second (so that the input reading does
not dominate the computation).

The access times coupled with the data size mean it is infeasible to pregenerate all
the input data – 10GB is too much to conveniently store in memory, while disk ac-
cess (and even SSD access) is too slow. Thus, the input data is generated on the fly.
This requires using pseudo-random generators that generate a sequence of numbers, and
provide consistent and fast access to each element of the sequence (e.g., the CityHash
family of functions).

In the judging system, the challenge is the scale. Judging a single testcase for a single
solution requires, typically, 100 virtual machines. So, as an example, a deployment of
900 virtual machines on Google Compute Engine were used as the backend for the
Online Round of Google’s Distributed Code Jam. We think it is interesting that cloud
computing, which is making distributed computing important as a topic of programming
competitions, is also making distributed programming competitions much easier to or-
ganize: instead of buying physical hardware to support such a competition, it is easy to
rent virtual machines and pay by the minute.

However, the real challenge in setting up a new competition type is in finding attrac-
tive problems: ones that challenge the contestants’ creativity and problem-solving skill,

Distributed Tasks: Introducing Distributed Computing to ... 183

without requiring significant domain knowledge (in this case – knowledge of distributed
programming paradigms), and that are fun, but not tedious, to implement, once you have
the correct set of ideas. In the rest of this paper, we provide examples of problems that –
in our opinion – satisfy these requirements.

We start with a simple task which lets us demonstrate the basics of the framework
from the contestant’s point of view. The remaining tasks were presented during the Al-
gorithmic Engagements contest; their authors are: Jakub Łącki, Jakub Wojtaszczyk (task
“Workshop”); Jakub Łącki (task “Assistant”); Adam Karczmarz (task “Sabotage”).

2. Sample Task “Divisors”

In this task we are to count the number of divisors of a given positive integer  ≤ 1018.

Input
In this task the input data is provided via the standard input. The only line of the standard
input contains .

Output
Your program should print exactly one line to the standard output containing one integer:
the number of divisors of .

2.1. Solution

The easiest (sequential) solution that we can come up with is to check all candidates for a
divisor  up to  and their counterparts of the form 


. A sample C++ code follows.

int main() {

  long long n;

  int divisors_num = 0;

  cin >> n;

  for (long long d = 1; d * d <= n; ++d) {

   if (n % d == 0) {

    ++divisors_num;

    if (n / d != d)

     ++divisors_num;

   }

  }

  cout << divisors_num << endl;

}

Probably this is not the fastest sequential solution for this problem. We will, however,
focus on how to speed it up by performing the computations using  nodes (machines).

A. Karczmarz et al.184

A natural idea is to partition the set of possible divisors and let each of the machines look
through each of the parts.

One way of performing this partition is as follows: machine 0 gets to check the
candidates 1 1 +  1 + 2     machine 1 gets to check the candidates 2 2 + 

2 + 2     etc. To make it work, it suffices to change the for-loop from the above
code to:

for (long long d = 1 + MyNodeId(); d * d <= n; d +=

  NumberOfNodes()) {

In the end we need to aggregate the partial results. Let us select any of the machines
(say, machine 0) as an aggregator. We just need to add code to be executed on each of
the machines that sends the partial results from machines with positive numbers to the
machine number 0.

  if (MyNodeId() > 0) {

   PutInt(0, divisors_num);

   Send(0);

  } else { // MyNodeId == 0
   for (int node = 1; node < NumberOfNodes(); ++node) {

    Receive(node);

    divisors_num += GetInt(node);

   }

   cout << divisors_num << endl;

  }

}

The final solution works in  ( ) time, i.e., this is the maximum of the time
complexities of the instances running on each of the machines.

3. Task “Workshop” (2014)

During an algorithmic workshop students are sitting in a circle and solving problems.
Whenever someone comes up with a solution to a problem, he or she shares the idea with
his or her two neighbours (which takes exactly one minute), and then they pass it to their
neighbours (which also takes exactly one minute), and so on.

If Johny comes up with a brilliant solution at quarter to twelve, what time will Chris
hear about it? How many minutes does it take for a solution to reach from Kate to Tom?
That is the kind of queries your program has to answer.

Input
The input data is provided by an interactive library. Your program can call six functions
from the library:

Distributed Tasks: Introducing Distributed Computing to ... 185

int ●● NumberOfStudents(): returns the number  of students participating in
the workshop (3 ≤  ≤ 109). The students are numbered with consecutive integers
from 1 to .
int ●● FirstNeighbour(int i): returns the number of the first neighbour of the
-th student (1 ≤  ≤ ). The students have a hard time distinguishing left from
right, therefore they prefer to call their neighbours in the order of their numbers.
That is, the first neighbour of a given student always has a number smaller than his
of her second neighbour.
int ●● SecondNeighbour(int i): returns the number of the second neighbour of
the -th student (1 ≤  ≤ ).
int ●● NumberOfQueries(): returns the number  of queries your program has to
answer (0 ≤  ≤ 200). The queries are numbered with consecutive integers from
1 to .
int ●● QueryFrom(int i): for the -th query (1 ≤  ≤ ), returns the number of the
student who came up with a solution.
int ●● QueryTo(int i): for the -th query (1 ≤  ≤ ), returns the number of the
student willing to know when he or she is going to hear the solution.

Output
Your program should print exactly  lines to the standard output. The -th line should
contain the answer to the -th query, i.e., the number of minutes it takes for a solution to
reach from one student to the other.

3.1. Solution

In the problem a cycle is specified using an oracle which for a given vertex returns its
two neighbours. The neighbours are returned in an order that is not necessarily con-
sistent with the order of the vertices on the cycle. A number of queries are given, each
consisting of two vertices, and the task is to compute for each query the length of the
shortest path between the two vertices.

The first step of the model solution is to select a subset of vertices, which we call
checkpoints. The checkpoints include all the vertices which are part of any query and ad-
ditionally some number of randomly selected vertices. Later we discuss how to choose
this number. After the checkpoints have been selected, each checkpoint is randomly as-
signed to some machine (node). All the random choices are made with a deterministic
pseudorandom number generator so that all machines select the same checkpoints with-
out needing to communicate.

In the second step each machine processes the checkpoints assigned to it. Starting
from a checkpoint the process running on the machine traverses the cycle in both direc-
tions until it reaches (at both ends) any other checkpoints (they might be assigned to a
different machine). While traversing the cycle, the process counts the number of visited
vertices. Finally, it sends to the first machine a list of statements of the following form:
the distance between the checkpoints  and  equals  and there is no other checkpoint
between them.

A. Karczmarz et al.186

The third step is run only on the first machine. First, it receives messages from all the
other machines. Using information from the messages, the machine computes the order
of checkpoints on the cycle and the distance between each two neighboring checkpoints.
After linear-time processing of this information, it is easy to answer each query in con-
stant time.

We are left with the problem of choosing the number of checkpoints. Recall that 

denotes the number of machines. Each machine processes a random fraction of 1
 of the

checkpoints which makes the expected running time of each machine  (


). However,
from a theoretical point of view, this kind of a statement is worthless. Consider an imagi-
nary situation in which we need to perform computations that take £() total time, and
we pick a random machine to perform all of it. Then each machine spends £() time
with probability 1

 , which gives exactly  £() expected time for each machine,
just like in the case of our solution. At the same time, we are interested in the running
time of the slowest machine, which is clearly still £() .

For this reason, we study the performance of our solution experimentally. Luck-
ily, the running time depends mostly on the size of the input data, not on its structure.
Our simulations show that with  randomly selected checkpoints, the longest running
machine uses  (lg 


) time, compared to  (

) expected time, which is consistent
with a theoretical analysis in (David and Nagaraja, 2003, p. 135). It is possible to reduce
the variation between machines by increasing the number of checkpoints. In practice,
our solution which always selects 10 000 checkpoints is about 15–2 times faster than
the one that selects  checkpoints.

3.2. Tests

It seems that virtually any nontrivial test is sufficient to distinguish solutions based on
an incorrect algorithm. However, a bit more care is required to distinguish solutions
that are correct but may be too slow – e.g. a variant of the model solution that selects
as the checkpoints only the queries endpoints and the vertices 1 2      instead of
randomly selected vertices. To make such solutions exceed the time limit we need to pay
attention to keep large contiguous fragments of the cycle without any query vertex and
leave a large fragment of the initial 1 2      cycle around the vertex 1 unaltered.
The remaining part of the cycle is permuted either by performing a circular shift on the
binary representations of vertex numbers or by xor-ing them with some fixed number.
This method allows  (1)-time calculation of vertex neighbours and produces a cycle
looking sufficiently random to make it difficult to come up with a clever incorrect solu-
tion exploiting this particular structure of the test.

4. Task “Assistant” (2014)

The life of an assistant is not easy. Not only did the professor order him to write a terribly
long review, she also requested some corrections today.

Distributed Tasks: Introducing Distributed Computing to ... 187

Pushing keys of a keyboard is very tiring, so the primary goal of the assistant is to
push keys as few times as possible, while correcting the review. The keyboard that he is
using with a single click allows him to delete a character in the review, change a charac-
ter to a different one or insert one character anywhere in the review.

To make things worse, the assistant has a very peculiar sense of esthetics. He likes
letters from the beginning of the alphabet (like a, b or c), but is disgusted by the let-
ters from the end of the alphabet (in particular, y and z). Each time he presses a key
and changes a letter that comes earlier in the alphabet to a letter that comes later (for
example, m to p), he suffers an esthetic shock, which is devastating for him. Because of
that, the secondary goal of the assistant is to minimize the number of such changes.

Input
The first line of the standard input contains two integers  and  (1 ≤   ≤ 100 000),
that specify the lengths of the first and the second version of the review. The following
two lines contain the two versions themselves. Each review consists only of lowercase
letters.

Output
Your program should output a single line containing the minimal number of keyboard
presses that the assistant has to perform in order to correct the review, followed by the
minimal number of esthetic shocks that he will suffer.

4.1. Solution

The problem considered in this task is a variant of the well-known edit distance problem.
Our solution will refer to the classical dynamic programming approach to this problem,
which has been described in a number of textbooks (see, e.g., Cormen et al., 2009). The
solution that we obtain can be easily extended with minimizing the number of esthetic
shocks. In short words, it suffices to, instead of storing only the edit distances, store inte-
ger pairs that describe the edit distance and the number of esthetic shocks, and compare
them lexicographically.

Denote by 1      the characters in the first version of the review and by
1      the characters in the second version. Our goal is to compute a two dimen-
sional  £  matrix , where  ( ) contains the minimum number of changes that
the assistant has to perform in order to change 1      into 1      . Just like
in the edit distance problem, the values  (1 ·) and  (· 1) can be computed in a
straightforward way, whereas for 2 ≤  ≤  and 2 ≤  ≤ ,  ( ) can be computed in
constant time, given  ( − 1 ),  (  − 1) and  ( − 1  − 1).

Assume that the topmost row of matrix  contains elements  (1 ·) and the left-
most column contains  (· 1). Partition the matrix into  stripes consisting of 

consecutive columns (for simplicity, we assume that  is divisible by ), where  is the
number of machines available. Each machine is responsible for filling in the entries of
 in one stripe. Let the -th machine (for  2 f1     g) be responsible for the -th
stripe from the left. See Fig. 1 for illustration.

A. Karczmarz et al.188

The first machine fills in the first (leftmost) stripe, starting from the topmost row.
Consider the rightmost column in the first stripe. Observe that the contents of this col-
umn is everything the second machine needs to know, in order to fill in its stripe. The en-
tries in the rightmost column of the first stripe are filled in by the first machine from top
to bottom, and as they are being computed, the first machine sends them to the second
machine. The second machine then fills in its stripe and sends the contents of the cells in
the rightmost column of its stripe to the third machine, and so on.

The correctness of this approach should be clear. However, we need to improve it a
little bit, in order to make it efficient. Clearly, each machine requires  () time to
fill in its cells. However, all machines (except for the last one) send  messages, each
containing a single number. This may be very inefficient, but can be fixed easily, as a
machine may send the contents of cells in batches, each containing  numbers, thus
reducing the number of messages to de. This obviously does not impact the running
time of each machine.

However, there is one more efficiency aspect that we should take care of. Namely,
we need to assure that the machines do not wait long for the numbers they need to have
in order to perform computation. If each machine sends the contents of the rightmost
column after filling in its entire stripe (i.e. sends batches of  =  messages), then our
solution becomes essentially sequential. On the other hand, we know that  = 1 is also
not a good choice, for performance reasons.

Let us analyze how to pick a good value of . For the analysis, assume that all the
machines are perfectly synchronized, that is, in each time unit a machine can fill in ex-
actly one cell of its stripe (or wait for the data it needs to continue working). Consider
now a phase of exactly  time units. Since each stripe has width , the first ma-
chine sends the first message to the second machine exactly after the first phase. In the
second phase, the second machine starts working (fills in the first  rows of its stripe)
while the first one keeps on working on the following rows. From the second phase, the
second machine no longer needs to wait, as it receives the necessary data exactly the
moment when it needs it. In general, the -th machine starts to work in the -th phase
after ( − 1)  =  () time units. Thus, the -th machine starts after  ()

time units and then works for  () time units. Hence, all the machines finish
within  ( + ) time units and send  () messages each.

Assume that the topmost row of matrix D contains elements D(1, ·) and the
leftmost column contains D(·, 1). Partition the matrix into M stripes consisting
of l/M consecutive columns (for simplicity, we assume that l is divisible by M),
where M is the number of machines available. Each machine is responsible for
filling in the entries of D in one stripe. Let the i-th machine (for i ∈ {1, . . . ,M})
be responsible for the i-th stripe from the left. See Fig. ?? for illustration.

Figure 1: The process of computing the matrix D. Stripes assigned to different
machines have been marked with different shades of gray. The numbers inside
the matrix specify the phase number, when the respective part of the matrix is
computed (see below).

The first machine fills in the first (leftmost) stripe, starting from the topmost
row. Consider the rightmost column in the first stripe. Observe that the con-
tents of this column is everything the second machine needs to know, in order to
fill in its stripe. The entries in the rightmost column of the first stripe are filled
in by the first machine from top to bottom, and as they are being computed,
the first machine sends them to the second machine. The second machine then
fills in its stripe and sends the contents of the cells in the rightmost column of
its stripe to the third machine, and so on.

The correctness of this approach should be clear. However, we need to
improve it a little bit, in order to make it efficient. Clearly, each machine
requires O(kl/M) time to fill in its cells. However, all machines (except for the
last one) send k messages, each containing a single number. This may be very
inefficient, but can be fixed easily, as a machine may send the contents of cells
in batches, each containing b numbers, thus reducing the number of messages
to k/b. This obviously does not impact the running time of each machine.

However, there is one more efficiency aspect that we should take care of.
Namely, we need to assure that the machines do not wait long for the numbers
they need to have in order to perform computation. If each machine sends

12

Fig. 1. The process of computing the matrix . Stripes assigned to different machines have
been marked with different shades of gray. The numbers inside the matrix specify the phase
number, when the respective part of the matrix is computed (see below).

Distributed Tasks: Introducing Distributed Computing to ... 189

By setting  = bc we assure that the waiting time is dominated by the computing
time, which means that our solution parallelizes the single-machine solution in a perfect
way. At the same time, the total number of messages sent is moderate ( ( 2)).

5. Task “Sabotage” (2015)

The city of Megabyteopolis was built upon a large lake and consists of a number of isles
connected with bridges. The bridges may run above other bridges.

A group of saboteurs wants the current president Byteasar not to be reelected. They
plan to impact the public opinion by exposing Byteasar’s administration’s helplessness
in the case of a major emergency. Specifically, they decided to blow up one of the bridg-
es (they cannot afford blowing up more). The sabotage could be considered successful
only if there was no other way between the isles previously connected by the destroyed
bridge. Your task is to find the number of bridges that the saboteurs should consider
when working out the details.

Input
int ●● NumberOfIsles(): returns  (1 ≤  ≤ 200 000) – the number of isles consti-
tuting the city of Megabyteopolis. The isles are numbered 0 through  − 1.
int ●● NumberOfBridges(): returns  (1 ≤  ≤ 108 ) – the number of bridges in
the city. The bridges are numbered 0 through  − 1.
int ●● BridgeIntA(int i): returns the first isle connected by the bridge .
int ●● BridgeIntB(int i): returns the second isle connected by the bridge .

Output
The output should contain a single integer – the number of bridges whose blowup could
result in the sabotage being considered successful.

5.1. Solution

In this task we are asked to solve a basic graph problem: for a given undirected graph
 = ( ) we need to compute the number of bridges. A bridge is defined here as an
edge of  whose removal results in an increase of the number of connected components
of . Denote by  () the set of bridges of . A textbook algorithm (e.g., Sedgewick,
2002) for computing  () is based on an extension of the depth-first search (DFS) al-
gorithm and runs in  ( + ) time. The number of vertices in our graph is quite small,
i.e., the bound on the order of 105 is typical for graph tasks even in the traditional, non-
distributed setting. The number of edges  in our case can be, however, much larger.

Unfortunately, DFS is not an algorithm that can be parallelized easily. Nevertheless,
we do not need to entirely abandon the idea of using DFS: our strategy is to use the mul-
tiple machines to reduce our problem instance to an instance with only  () edges. In
such a reduced instance, we use DFS to find the bridges.

A. Karczmarz et al.190

Definition 1. Consider a graph  = ( ). We define a bridge certificate of  to be a
set  ⊆  such that for any  ⊆  ×  ,  ((  [)) =  ((  [)).

As a result, replacing a subset of edges of  with its bridge certificate does not affect
the set of bridges of . We are going to use the bridge certificates to detect and remove
edges of . The following lemma describes a construction of a bridge certificate. For
completeness we give its proof in the Appendix.

Lemma 1. Let  = ( ) and  = j j,  = jj. Then there exists a bridge certificate
 of  such that jj ≤ 2 which can be computed in  (+) time.

By Lemma 1, we can take any subset  0 of edges of , find a bridge certificate  of
(  0) and replace  0 in  with  ⊆  0 in  (+j 0j) time. We call this step a reduc-
tion with respect to  0.

It turns out that we can easily perform the reductions in a parallel fashion. For sim-
plicity, first assume that we have only two machines, i.e.,  = 2. We partition the
edge set  into two sets 0 1 of roughly equal size. The machine , for  = 0 1,
performs the reduction step on the set , obtaining a certificate  of size at most 2,
in  (+jj) time. Next, machine 1 sends the set 1 to machine 0. In the last step,
machine 0 runs DFS to find the set  (( 0 [1)). This, however, takes only  ()

time, as j0 [1j ≤ 4. By the definition of a certificate,

 () =  (( 0 [1)) =  (( 0 [1)) =  (( 0 [1))

This concludes that indeed this approach finds all the bridges of .
In order to develop a distributed algorithm using   2 machines, we perform

multiple reduction phases. In the first phase, the set of edges is partitioned among the
 machines, and each machine computes a certificate of the edges assigned to it. In
the following phases the certificates are merged in pairs: two certificates produced in
the previous phase are sent to a machine that takes their union and computes the cer-
tificate of the resulting graph.

Let us describe this process formally. Assuming that the machines are numbered 0

through  − 1, we split the input edge set  arbitrarily into  parts 0      − 1, each
of size  (). Our distributed algorithm runs in  = dlog2 e + 1 phases numbered
0 through  − 1. In the -th phase ( = 0      − 1) only the machines with identifiers
 divisible by 2 are active and actually do perform some work. With each active machine
 we associate two sets  ,  ( 

 ⊆ ) whose contents depend on the phase number
. Before the -th phase:

●●  is a bridge certificate of the graph

 = (  [+1 [   [+2 − 1)

In the above we set + = ; if  +  ≥ .
If ●●  = 0 then  =  . Otherwise, j j ≤ 4.

After the -th phase the set  is a bridge certificate of  and j j ≤ 2. Note that
it follows that after the phase  − 1, 0 is a bridge certificate of  and j0j =  ().

Distributed Tasks: Introducing Distributed Computing to ... 191

At that point the machine 0 runs DFS on ( 0) to compute the set of bridges of  in
 () time.

It remains to show how to implement the phases so that the invariants imposed on the
sets   are satisfied. Before the first phase we set  =  . Assume that the phase 
− 1 has been completed. We perform a reduction of Lemma 1 on the set  in order to
obtain the set  . This takes  ( + j j) time, which is  () for   0 and  ( +

) if  = 0. The last step is to initialize the sets  before the next, ( + 1)-th phase.
To do that, for each  divisible by 2+1, we set  =  [+2 if  + 2   and
 =  otherwise. As for all , jj ≤ 2, clearly we now have j j ≤ 4. To implement
this step, the machine  + 2 sends the entire set +2 to the machine . This requires a
single message of () bytes. Fig. 2 depicts the phases of our distributed algorithm.

In each phase every machine remains idle or sends  () bytes, or receives  ()

bytes. Consequently, the first phase takes  ( + ) time on each machine and
each of the  − 1 remaining phases runs in  () time on each machine. Thus, the time
complexity of this solution is  ( +  log).

5.2. Tests

The library providing the test data had to be robust enough to serve graphs with large
edge sets and nontrivial 2-edge-connected components (i.e., connected components of
 formed after removing all the bridges), given limited time and space. It seems that a
hard test case is a graph with a maximum number of edges and possibly large number
of bridges. In such a case at least some of the 2-edge-connected components should be
very dense.

Ph. 0

Ph. 1

Ph. 2

Ph. 3

E0

X0

E1

X1

E2

X2

E3

X3

E4

X4

E5

X5

E6

X6

Y0

X0

Y2

X2

Y4

X4

Y6

X6

Y0

X0

Y4

X4

Y0

X0

Figure 2: The phases of the distributed algorithm when M = 7. In this case
K = 4 phases are performed. The blue arrows illustrate the communication
between the machines in the corresponding phases.

components of G formed after removing all the bridges), given limited time and
space. It seems that a hard test case is a graph with a maximum number of
edges and possibly large number of bridges. In such a case at least some of the
2-edge-connected components should be very dense.

The infrastructure for generating test graphs provided a general graph in-
terface along with a few specialized implementations (a vertex, a path, a cycle,
a clique, a pseudorandom graph, a set of loops) that could serve the edges in
O(1) time with constant space consumption, regardless of the graph size. As
an example, a cycle on n vertices numbered 0 through n− 1 can be represented
with a single integer n: when asked for the cycle’s i-th edge, we just return
(i, (i+ 1) mod n).

Such graphs could be then combined into larger and more sophisticated
graphs by unions and direct sums and also extended by adding specified edges,
which were typically used to ensure the desired structural properties of the
served graph. For example, this allowed to easily generate a tree of size 100
with each vertex replaced with a random 2-edge-connected graph with 1000
vertices and between 100 000 and 500 000 edges. Such a graph had on the order
of 107 edges in total, 99 bridges and could be represented with the number
of bytes on the order of 102. At the highest level, the vertices were assigned
random identifiers, whereas the list of edges was randomly permuted.

The size of the in-memory representation of each test cases was O(n) per
machine and the sophistication level of the served graphs was limited only by

16

Fig. 2. The phases of the distributed algorithm when  = 7. In this case  = 4 phases are
performed. The blue arrows illustrate the communication between the machines in the cor-
responding phases.

A. Karczmarz et al.192

The infrastructure for generating test graphs provided a general graph interface along
with a few specialized implementations (a vertex, a path, a cycle, a clique, a pseudo-
random graph, a set of loops) that could serve the edges in  (1) time with constant
space consumption, regardless of the graph size. As an example, a cycle on  vertices
numbered 0 through  − 1 can be represented with a single integer : when asked for the
cycle’s -th edge, we just return ( ( + 1) mod ).

Such graphs could be then combined into larger and more sophisticated graphs by
unions and direct sums and also extended by adding specified edges, which were typi-
cally used to ensure the desired structural properties of the served graph. For example,
this allowed to easily generate a tree of size 100 with each vertex replaced with a random
2-edge-connected graph with 1000 vertices and between 100 000 and 500 000 edges.
Such a graph had on the order of 107 edges in total, 99 bridges and could be represented
with the number of bytes on the order of 102. At the highest level, the vertices were as-
signed random identifiers, whereas the list of edges was randomly permuted.

The size of the in-memory representation of each test cases was  () per machine
and the sophistication level of the served graphs was limited only by the need to return
the requested edge in time on the order of 100ns.

6. Conclusions

We described a novel format of programming competitions, aimed at familiarizing stu-
dents with an increasingly important area of computer science – design of distributed
algorithms. While there is a considerable engineering effort involved in preparing the
backend for such a competition, we hope that an increasing number of competitions
(maybe including IOI in the future) will feature tracks or problems of a distributed na-
ture, to reflect the industry’s shift toward cloud-based and distributed computing.

References

Chávez, L.H. (2015). libinteractive: a better way to write interactive tasks. Olympiads in Informatics, 9, 3–14.
Cormen, T.H., Leiserson, C.E., Rivest, R.L. Stein, C. (2009), Introduction to Algorithms. MIT Press.
David, H.A. Nagaraja, H.N. (2003). Order Statistics (3rd Edition). Wiley.
Dean, J. Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters. Communications of the

ACM – 50th anniversary issue: 1958–2008, 51(1), 107–113.
Forišek M. (2013). Pushing the boundary of programming contests. Olympiads in Informatics, 7, 23–35.
Fox, A. and Brewer E. (1999). Harvest, yield and scalable tolerant systems. In: Proc. 7th Workshop Hot Topics

in Operating Systems (HotOS 99). IEEE CS, 174–178.
Komm D. (2011). Teaching the concept of online algorithms. Olympiads in Informatics, 5, 58–70.
Kulczyński, T., Łącki, J., Radoszewski, J. (2011). Stimulating students’ creativity with tasks solved using pre-

computation and visualization. Olympiads in Informatics, 5, 71–81.
Sedgewick, R. (2002). Algorithms in C++, Part 5: Graph Algorithms. Addison-Wesley Longman Publishing

Co., Inc., Boston.

Distributed Tasks: Introducing Distributed Computing to ... 193

A. Karczmarz (1990), PhD student at Faculty of Mathematics, Infor-
matics and Mechanics, University of Warsaw, Poland, jury member of
multiple programming contests organized by University of Warsaw,
coorganizer of Algorithmic Engagements 2015. In his research he fo-
cuses on algorithms and data structures.

J. Łącki (1986), postdoctoral researcher at Sapienza University of
Rome, Italy, IOI Scientific Committee elected member, appointed
chair for 2016, responsible for task selection at Algorithmic Engage-
ments for many years, former head organizer of Polish Training Camp.
In his research he focuses on graph algorithms.

A. Polak (1991), PhD student at Department of Theoretical Computer
Science, Faculty of Mathematics and Computer Science, Jagiellonian
University, Kraków, Poland, judge at the ACM Central Europe Re-
gional Contest in 2012, 2013, and 2014. His research interests lie in
algorithms, complexity theory, and computer vision.

J. Radoszewski (1984), assistant professor at Faculty of Mathemat-
ics, Informatics and Mechanics, University of Warsaw, Poland, and
Newton International Fellow at King’s College London, UK, chair of
the jury of Polish Olympiad in Informatics, co–chair of the Scientific
Committee of CEOI’2011 in Gdynia, former member of Host Scien-
tific Committees of IOI’2005, CEOI’2004, BOI’2008, and BOI’2015.
His research interests focus on text algorithms and combinatorics.

J.O. Wojtaszczyk (1980), Staff Software Engineer at Google, Warsaw,
judge at the ACM ICPC World Finals in 2011, 2012, 2013, 2015 and
2016, coorganizer of the Google Code Jam since 2012, main organizer
of the Distributed Code Jam. The primary focus of his engineering
work is around cluster management.

A. Karczmarz et al.194

Appendix: Proof of Lemma 1

Lemma 1. Let  = ( ) and  = j j,  = jj. Then there exists a bridge certificate
 of  such that jj ≤ 2 which can be computed in  (+) time.

Proof. We compute the set  in the following way. First, compute some spanning forest
 (we identify it with a set of its edges) of  using any graph search algorithm. This
takes  ( +) time. Then, compute some spanning forest  0 of  0 = (  n ). Fi-
nally, set  =  [ 0. Clearly, jj ≤ 2 and  ⊆ .

We now prove that  is indeed a bridge certificate of . Let  ⊆  ×  . First, let
us show that the graphs 1 = (  [) and 2 = (  [) have the same con-
nected components. Clearly, if there exists a path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 in 2 then a path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 exists
in 1, as 2 is a subgraph of 1. Conversely, if  and  are connected in 1 by a path
, then any edge ( ) 2  n  such that ( ) 2  n  can be replaced by a path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 contained entirely in  (recall that  is a spanning forest of ).
For a graph , define  −  as  with the edge  removed. Now assume that ( )

is a bridge in 1, i.e., ( ) 2  (1). Then, there is no path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 in 1 − ( ). As
2 − ( ) is a subgraph of 1 − ( ), there is also no path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 in 2 − ( ).
Moreover, 1 and 2 have the same connected components and thus ( ) 2  [ .
Thus, ( ) 2  (2) and consequently  (1) ⊆  (2).

Finally, suppose that ( ) 2  (2). Then,  and  are connected in 2, but no
path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 exists in 2 − ( ). As 2 is a subgraph of 1, ( ) 2  [ . Let us
show that no path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪ Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 exists in 1 − ( ). Assume the contrary and let  be such a
path. If  ⊆  [ , then  would be a 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 path in 2 − ( ), which is not pos-
sible. Hence, there exists some edge ( ) 2  such that ( ) 2  n  n f( )g.
As ( ) 2  and ( ) 2  0, there exist paths  and  0 from  to  in both spanning
forests  and  0, correspondingly. At least one of these paths, say , does not contain
( ). We may replace the edge ( ) with the path  ⊆ . By replacing all such
edges ( ) with paths contained in , we obtain a path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 in 2 − ( ), a con-
tradiction. Thus, ( ) 2  (1) and, consequently,  (2) ⊆  (1).

Olympiads in Informatics, 2016, Vol. 10, 195–205
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.12

195

Reshaping Indonesian Students Training for IOI

M. M. Inggriani LIEM
Knowledge and Software Engineering Research Group
School of Electrical Engineering and Informatics, Institut Teknologi Bandung,
Jalan Ganesha 10, Bandung, Indonesia
e-mail: inge@informatika.org

Abstract. Indonesia has been participating at IOI (International Olympiad in Informatics) since
1995. This paper presents a result of qualitative study of Indonesian IOI participants. The sup-
porting data are obtained from a questionnaire distributed to the IOI 2006 – IOI 2015 partici-
pants, interviews, training database, journals, and reports from the national training program.
Main objective of the study is to investigate the suitability of our training program to IOI ex-
pectations. From 35 distributed questionnaires, we obtained 24 respondents. Without having
prior knowledge in Computer Science, solid mathematical foundation, and algorithmic problem
solving in formal education, the national training curriculum can only give the participants a
foundation for general problem solving which is not enough for IOI due to increase of creativ-
ity, complexity and difficulty of IOI tasks. That is why Indonesia achievement is stabilized in
bronze. Almost all of Indonesian IOI alumni are working or studying in the domain of infor-
matics and still participating programming competitions after IOI. Most of all Indonesian IOI
participants are studying in top universities and some of them are working in the worldwide
prestigious IT companies.

Keywords: Indonesian IOI training program, qualitative research, IOI tasks.

1. Background

Amongst its objectives, IOI has two main objectives for the contestants: to give recogni-
tion to young people who are exceptionally talented in the fields of informatics, and to
foster international relationships among them.

The first participation of Indonesia at IOI was in 1995, by the initiative of young
lecturers of UI (Universitas Indonesia) who were studying in US. The training and se-
lection of Indonesian participants was informal and voluntary, it then found its shape as
an organization in 2004, two years after the first Indonesian National Science Olympiad
(OSN). The support and sponsorship from the Indonesian Ministry of Education for
IOI and other International Olympiad is important. But the policy of the government
that aims to catch the potential candidates from all provinces of Indonesia becomes a
problem. Indonesia has more than 4 million high school students spread into more than
17,000 islands, from remote area to big cities. The quality of education in remote area is

M.M.I. Liem196

less in big cities like Java due to infrastructure gap. Students in big cities are more ad-
vantageous in education. Also, getting medals in OSN is considered prestigious and give
good impact to the winners as well as to the school. Therefore, some schools in big cities
(Jakarta, the capital, and some others province capitals) recognize the importance of the
National Science Olympiad for their reputation, so that they are trying to get teachers
or trainers. Most students who are interested in computer games became interested in
programming, and by the support of their parents, they got private trainers for program-
ming. This situation causes a broader gap.

The national selection process should keep a balance between “potential candi-
dates” from remote areas and “ready to compete” candidates from the big cities. Up
until now, Indonesia cannot be classified as a top performing country in the IOI. None-
theless, its performance is improving and become more stable in bronze medals (Yugo
et al., 2014). The summary of Indonesian team achievement in IOI from 2006 to 2015
is figured in Table 1.

This study was conducted with aim to reshape Indonesian national training program
so that improvement can be achieved by being stable in silver medals. We gathered
information from the past Indonesian IOI participants by giving a questionnaire. We
investigate what Indonesian IOI participants are doing after their experience in IOI. It is
important for the IOI community to know about their alumni after 9–10 years.

2. Related Works

Our work was inspired by the usage of qualitative research in computer science educa-
tion. Formerly, the qualitative research has been applied to social research. Applying it
to science and technology is quite rare. Recently, this method became widely used for
informatics in education. M. Knobelsdorf (2008) presented a research using qualita-
tive method in teaching of programming. A. Theodoraki and S. Xinogalos (2014) pre-
sented a qualitative study on student’s attitudes towards learning programming through

Table 1
Indonesian Participant Medal Achievement at IOI 2006 – IOI 2015

Year Gold Silver Bronze

2006 0 1 0
2007 0 0 4
2008 1 0 3
2009 0 2 1
2010 0 2 1
2011 0 0 2
2012 0 1 2
2013 0 2 2
2014 0 0 4
2015 0 2 1

Reshaping Indonesian Students Training for IOI 197

games. Hazzan et al. (2006) wrote about qualitative research in computer education. He
also wrote about teaching and learning qualitative research by conducting qualitative
research (Hazzan, 2014). In our case, this method is applied to the training and selection
program of Indonesian Olympiad participants.

A survey done and reported by Nedkov et al. (2012) concerning the selection, prepa-
ration and participation of IOI teams of Bulgaria, Croatia, Latvia, Poland, and Slovakia.
Those countries are the leading countries in the IOI. According to this survey, factors
contributed to the successful participation are traditions, strong emphasis on mathemat-
ics in national education, targeted extra-curricular activities, early start and gaining
experience by participating in competitions, systematics management and dedicated
people, motivation and rewards.

3. Objectives

This study is conducted in order to obtain findings related to:
Factors that help the participants to get medal in IOI.a.	
Fitness of Indonesian training topics to IOI tasks.b.	
The influence of IOI to the career of IOI participants.c.	

The first questions are the most important since one of the main targets of IOI
participation is to win the competition that is getting medals, and the Indonesian edu-
cation system has had bad results in mathematics in the PISA 2012 test. The Program
for International Student Assessment (PISA) is a worldwide study by the Organization
for Economic Cooperation and Development (OECD) in member and non-member na-
tions of 15-year-old school pupil’s scholastic performance on mathematics, science,
and reading1. For winning a competition, a supporting curriculum is needed. The third
question is trying to track the career of the Indonesian IOI participant, since life is go-
ing on after IOI.

4. Design Experiment

This paper analyse the data obtained from Indonesian IOI participants from 2006 to
2015. During these last ten years, Indonesia has sent 40 participants (IOI alumni), 5 of
them have been participated twice. Therefore, we had 35 persons in the IOI during that
period. From the 35 Indonesian IOI alumni, we obtained 24 responses in two weeks by
contacting 3 alumni and asked them to contact the others. It makes over 70%. This is a
proof that there is a close relation between the coaches and the alumni, as well as be-
tween alumni. Three years after IOI, they are still active in programming competition, as
contestants in international competitions, Scientific Committee or Technical Committee
on Indonesian National Training program and competition.

1	 http://www.oecd.org/pisa/keyfindings/pisa-2012-results.htm

M.M.I. Liem198

The data are obtained from the following sources:
Indonesian National Training Program database, which are the participants, and a.	
also the training program archives (journal, schedule, report).
Questionnaires, via Google questionnaires as well as via email.b.	
Literature reviews for getting information about IOI tasks and solutions. c.	

5. Findings and Discussions

Based on the questionnaire, we identify some findings, which are described in the fol-
lowing sections.

5.1. Effectiveness of the National Training Program

In the beginning, Indonesia did not have a systematics training program. Talented high
school students surround university faculty members were trained only a few weeks
before the IOI. Since 2002, the Ministry of Education of Indonesia has initiated the Na-
tional Science Olympiad (OSN), where programming is one of the competition subjects
amongst 6 others (mathematics, physics, chemistry, economy, geology and astronomy).
In OSN, 80 to 100 high school students that have passed the successive selection at the
level of school, region, and then provinces are invited to come for a national competition
held in one of the city in Indonesia. Each year, the scientific committee must run two
concurrent programs: one for national selection (from school to OSN), while the other is
a program for trainings and selections for the next IOI.

One cycle of trainings and selections of IOI participants takes one year consists of
four phases (I, II, III, IV) training camps. Between two successive camps, candidates
must join on-line mentoring and challenge, and also participate in other informatics con-
tests. Thirty candidates of OSN winners enter the phase I. After three weeks of training,
the scientific committee selects 16 top scorers to enter phase II. At the end of phase II,
eight participants are selected for phase III. Finally, only four participants undergo phase
IV becoming the official Indonesian IOI participants.

The organization of the training is getting better by having more IOI alumni and
their involvement. Most of the alumni are graduated in informatics and then they work
in worldwide prestigious information technology and software companies. Their ex-
perience both in competition, education as well as in their professional works helps to
improve the training and selection programs. Some of the IOI alumni participate volun-
tarily in the scientific committee as well as the technical committee for the two concur-
rent programs. They become mentors and problem setters in both programs. They also
set up an alumni organization (IA-TOKI) and have a close relationship with the scientific
committee, though they are scattered all over the world. They are developing a contest
management system which is used for on-line training program and some other regional/
local programming competitions nowadays. The contribution of IA-TOKI to the na-
tional training program is significant.

Reshaping Indonesian Students Training for IOI 199

Almost all of the respondents answer that the on-site training camps are very impor-
tant and more effective than the on-line training:

They learn more from the mentors and from the peers during on-site training. Di-1.	
rect discussions are more effective than on-line learning.
They can focus more during the on-site training, compared to on-line training. The 2.	
students in an on-site training are relieved from school so that they can fully con-
centrate on the IOI preparation. On the other hand, students must prioritize their
school and daily tasks during on-line training.
They have a competitive environment during on-site training, especially in simu-3.	
lation sessions. Simulation trains the students how to manage their stresses, and
builds a competitive sense by the presence of other students.
Being together with peers during on-site training for weeks made the students know 4.	
each other better where they built a team spirit, and becomes friends.
They have a better internet connection.5.	

There is one exception. One respondent stated that he prefer on-line training and
self-studying, and learning from worldwide existing on-line competitions, books and
on-line programming competition websites. It is then identified that his level is higher
compared to his peers, so that he became bored during the on-site training, though he at-
tended and completed the whole on-site training programs. He was the one that achieved
a gold medal in IOI 2008.

5.2. Other Contributing Factors

Other factors that contribute the medal achievement are self-exercise, reading books,
on-line resources, and other competitions that made them regularly connect to the world
of competition.

When they are not in a training camp, 54% of the respondents were exercising them-
selves more than 10 hours per week, 17% only between 5 to 10 hours per week, 17% at
least 3 hours per week, and 13 % exercise irregularly.

They also try to solve past IOI tasks, but not so much. 46% solve more than 10 tasks,
17 % between 5 to 10 tasks, 25% less than 5 tasks, and 8% does not try to solve in past
IOI tasks, and 4% did not comment. Trying past IOI tasks seems not so interesting be-
cause they know that IOI tasks are very creative.

The following two figures (Fig. 1 and Fig. 2) illustrate those findings.
Other learning resources (Fig. 3) are websites and competition sites. 75% of the

respondents state that learning from the websites such as Topcoder, Usaco and SPOJ
are useful. 71% of them state that participation in competition is useful as preparation
for IOI.

Learning from textbooks seems to be least favourite option for this young genera-
tion. Only 33% of the respondents were learning from textbooks. Only two textbooks
are mentioned explicitly: Introduction to Algorithms (by Thomas H. Cormen, Charles E.
And Leiserson), and Competitive Programming (by Steven Halim).

M.M.I. Liem200

Besides the national training program, all of the respondents participate regularly
in the worldwide competitions, not only in the period of national training, but also few
years after participating IOI. Competition becomes their hobbies, and they are getting
more and more experience in that domain so that they become the national scientific
members and trainers in a national training program or task contributors in prestigious
international programming competitions. Their favourite competition websites are Top-
Coder, Codeforces, Usaco, APIO, COCI, CEOI, Joint, BEOI, Google Code Jam, ACM
ICPC, and local competitions.

One of the alumni mentioned that the following ingredients are important for being
successful in IOI: grit/ perseverance, time management and prioritization, attention to
detail, creative thinking, the ability to recognize pattern on problems, experience with
common tricks and avoiding common pitfalls, experience with a breadth of topics.

IOI 2016 Paper – Page 5 of 10

Figure 1. Hours Spent by Indonesian IOI Participant for self-
preparation

Figure 2. Number of IOI Tasks exercised by Indonesian IOI
Participant

Other learning resources are websites and competition sites. 75% of the respondents state that learning
from the websites such as Topcoder, Usaco and SPOJ are useful. 71% of them state that participation in
competition is useful as preparation for IOI.

Figure 4. Various Ways of Learning for IOI preparation

Learning from textbooks seems to be least favourite option for this young generation. Only 33% of the
respondents were learning from textbooks. Only two textbooks are mentioned explicitly: Introduction to
Algorithms (by Thomas H. Cormen, Charles E. And Leiserson), and Competitive Programming (by Steven
Halim).

Besides the national training program, all of the respondents participate regularly in the worldwide
competitions, not only in the period of national training, but also few years after participating IOI.
Competition becomes their hobbies, and they are getting more and more experience in that domain so that
they become the national scientific members and trainers in a national training program or task contributors
in prestigious international programming competitions. Their favourite competition websites are TopCoder,
Codeforces, Usaco, APIO, COCI, CEOI, Joint, BEOI, Google Code Jam, ACM ICPC, and local competitions.

0
2
4
6
8

10
12

More
than 10

tasks

Between
5 to 10
tasks

Less than
5 tasks

No Blank
0

10

20

30

1 2 3 4 5

0

5

10

15

20

25

30

Formal on-site
national
Training

Online pre-
national
training

Learning from
websites

Learning from
the books

Participating in
other

competitions

Fig. 1. Hours Spent by Indonesian IOI Participant for self-preparation.

IOI 2016 Paper – Page 5 of 10

Figure 1. Hours Spent by Indonesian IOI Participant for self-
preparation

Figure 2. Number of IOI Tasks exercised by Indonesian IOI
Participant

Other learning resources are websites and competition sites. 75% of the respondents state that learning
from the websites such as Topcoder, Usaco and SPOJ are useful. 71% of them state that participation in
competition is useful as preparation for IOI.

Figure 4. Various Ways of Learning for IOI preparation

Learning from textbooks seems to be least favourite option for this young generation. Only 33% of the
respondents were learning from textbooks. Only two textbooks are mentioned explicitly: Introduction to
Algorithms (by Thomas H. Cormen, Charles E. And Leiserson), and Competitive Programming (by Steven
Halim).

Besides the national training program, all of the respondents participate regularly in the worldwide
competitions, not only in the period of national training, but also few years after participating IOI.
Competition becomes their hobbies, and they are getting more and more experience in that domain so that
they become the national scientific members and trainers in a national training program or task contributors
in prestigious international programming competitions. Their favourite competition websites are TopCoder,
Codeforces, Usaco, APIO, COCI, CEOI, Joint, BEOI, Google Code Jam, ACM ICPC, and local competitions.

0
2
4
6
8

10
12

More
than 10

tasks

Between
5 to 10
tasks

Less than
5 tasks

No Blank
0

10

20

30

1 2 3 4 5

0

5

10

15

20

25

30

Formal on-site
national
Training

Online pre-
national
training

Learning from
websites

Learning from
the books

Participating in
other

competitions

Fig. 2. Number of IOI Tasks exercised by Indonesian IOI Participant.

IOI 2016 Paper – Page 5 of 10

Figure 1. Hours Spent by Indonesian IOI Participant for self-
preparation

Figure 2. Number of IOI Tasks exercised by Indonesian IOI
Participant

Other learning resources are websites and competition sites. 75% of the respondents state that learning
from the websites such as Topcoder, Usaco and SPOJ are useful. 71% of them state that participation in
competition is useful as preparation for IOI.

Figure 4. Various Ways of Learning for IOI preparation

Learning from textbooks seems to be least favourite option for this young generation. Only 33% of the
respondents were learning from textbooks. Only two textbooks are mentioned explicitly: Introduction to
Algorithms (by Thomas H. Cormen, Charles E. And Leiserson), and Competitive Programming (by Steven
Halim).

Besides the national training program, all of the respondents participate regularly in the worldwide
competitions, not only in the period of national training, but also few years after participating IOI.
Competition becomes their hobbies, and they are getting more and more experience in that domain so that
they become the national scientific members and trainers in a national training program or task contributors
in prestigious international programming competitions. Their favourite competition websites are TopCoder,
Codeforces, Usaco, APIO, COCI, CEOI, Joint, BEOI, Google Code Jam, ACM ICPC, and local competitions.

0
2
4
6
8

10
12

More
than 10

tasks

Between
5 to 10
tasks

Less than
5 tasks

No Blank
0

10

20

30

1 2 3 4 5

0

5

10

15

20

25

30

Formal on-site
national
Training

Online pre-
national
training

Learning from
websites

Learning from
the books

Participating in
other

competitions

Fig. 3. Various Ways of Learning for IOI preparation.

Reshaping Indonesian Students Training for IOI 201

5.3. Fitness of Training Topics to IOI Tasks

A curriculum of the training program is progressing continuously since 2006, in three
periods. During the first period (2006–2010), most of the trainers are the university
faculty members. IOI alumni participation in the second period (2011–2013) and the
third period (2014–2015) brings new colour to the program. The ambiance of pro-
gramming competition becomes stronger. More than that, the creative problem solving
exercises is introduced in addition to the classical training subject. The scientific com-
mittee is working together with IOI alumni closely for the training program subjects
and tasks.

In the beginning, the phase I of training is dedicated to assure the basic foundation
of CS (programming, advanced topics, while phase III is dedicated to simulation and
the selection of four IOI participants. Phase IV is the final preparation before going to
the IOI.

From one year to another, IOI tasks become more creative, unpredictable and dif-
ficult (Halim, 2013). All countries’ training program must anticipate these changes and
shifted accordingly. As a consequence, Indonesia decides to shift the basic skill gradu-
ally from on-site to on-line training by providing on-line course material in Indonesian
contest management systems. The students should develop their self-learning capabil-
ity. This solution works well for students living in big cities with good infrastructure
as well as good internet reliability and availability, and good teachers are available. In
addition to the shifting of basic skills in CS, exercise and simulations are designed to
be harder and more challenging. Table 2 illustrates the different strategies of the three
periods.

As illustrated above in Table 1, the achievement of Indonesian team is stabilized in
Bronze medals. The year 2008 is a special year with one gold medal obtained by a prodi-
gious student. The year 2011 is also exceptional with only one bronze obtained because
of two reasons: a transition of the training method and too much given exercises that are
not in the IOI style.

Table 2
Overview of Training Program Curriculum from 2006 to 2015

IOI year Training Phase I Training Phase II Training Phase III Training Phase IV

2006–2010 Basic programming
Basic Exercises
Simple simulation

CS topics, strategic prob-
lem solving
Simulation

Advance Topics and
Simulation

Final IOI preparation

2011–2013 Basic programming
CS Topics, strategic
problem solving,
simulation

Advanced Topics and ad-
vanced problem
Simulation

Advanced Topics and
simulation

Final IOI preparation

2014–2015 CS Topics and
Advanced Topics &
strategic problem
solving, simulation

Special advanced topics
More Simulation

More Simulation,
more ad-hocs problem

Final IOI preparation

M.M.I. Liem202

This part is a deeper look to the subjects covered during the training programs, con-
tains the analysis among the topics covered in the Indonesian training and IOI tasks.

As mentioned above, the Indonesian high school curriculum does not cover com-
puter science as a compulsory subject, compared to other countries where the computer
science concepts has been introduced since the earlier age, from 10–14 years (Dagienė
and Futschek, 2010, Nedkov, 2012). Three phases of training, each lasts for 3 weeks
can cover all the required topics suggested by IOI curriculum. However, topics such as
strategic problem solving and thinking take time to be mastered. Many exercises are also
needed in order to construct the pattern of problems as well as the pattern of solutions.
These patterns are important for solving the creative IOI task.

The national training program topics covered the last version of the IOI syllabus,
obtained from the website2. National Training topics exclude basic computer science
and mathematics listed in the IOI syllabus and respondents made remarks regarding the
importance of those topics (Fig. 4) for IOI.

In a questionnaire after IOI 2015, a list of topics is given. The country leaders were
asked to rate the importance of them. In this study, we also try to explore the opinions
of respondents regarding these topics, and we got the following results: Maximum flow,
flow/cut duality theorem (67%); Strongly connected components, bridges and articula-
tion points (54%); Heavy-light decomposition and separator structures for static trees
(25%); Data structures for dynamically changing trees and their use in graph algorithms
(54%); Topics in number theory (33 %); String algorithms (54%).

Additionally, IOI tasks and solutions from IOI 2006 to IOI 2015 were analysed.
The respondents are asked to mention the most interesting, the most difficult, and the
most memorable IOI tasks. From these, we obtained 74 tasks. These tasks are then cross
checked to the topics listed.

2	 http://ksp.sk/~misof/ioi-syllabus/

IOI 2016 Paper – Page 7 of 10

This part is a deeper look to the subjects covered during the training programs, contains the analysis among
the topics covered in the Indonesian training and IOI tasks.

Figure 5. Importance of Training Topics.

As mentioned above, the Indonesian high school curriculum does not cover computer science as a
compulsory subject, compared to other countries where the computer science concepts has been introduced
since the earlier age, from 10-14 years (Dagiene & Futschek, 2010, Nedkov, 2012). Three phases of training,
each lasts for 3 weeks can cover all the required topics suggested by IOI curriculum. However, topics such as
strategic problem solving and thinking take time to be mastered. Many exercises are also needed in order to
construct the pattern of problems as well as the pattern of solutions. These patterns are important for
solving the creative IOI task.

The national training program topics covered the last version of the IOI syllabus, obtained from the website2.
National Training topics exclude basic computer science and mathematics listed in the IOI syllabus and
respondents made remarks regarding the importance of those topics (Fig. 5) for IOI.

In a questionnaire after IOI 2015, a list of topics is given. The country leaders were asked to rate the
importance of them. In this study, we also try to explore the opinions of respondents regarding these topics,
and we got the following results: Maximum flow, flow/cut duality theorem (67%); Strongly connected
components, bridges and articulation points (54%); Heavy-light decomposition and separator structures for
static trees (25%); Data structures for dynamically changing trees and their use in graph algorithms (54%);
Topics in number theory (33 %); String algorithms (54%).

Additionally, IOI tasks and solutions from IOI 2006 to IOI 2015 were analysed. The respondents are asked to
mention the most interesting, the most difficult, and the most memorable IOI tasks. From these, we
obtained 74 tasks. These tasks are then cross checked to the topics listed.

2 http://ksp.sk/~misof/ioi-syllabus/

0

5

10

15

20

25

Fig. 4. Importance of Training Topics.

Reshaping Indonesian Students Training for IOI 203

The summary of this cross check and analysis illustrate the applicability of our train-
ing topics for solving IOI tasks:

The importance of the topics ranked in figure Fig. 4 has high correlations with the ●●
technics needs to solve the IOI tasks.
Graph, DP, Greedy, sort and search are very important, but they alone are not ●●
enough, since the variation and specific condition of the graph can improve the
algorithm.
Algorithm complexity is important for measuring the performance of algorithm in ●●
order to solve more difficult subtasks.

5.4. Influence of IOI to Participants Careers

IOI influences strongly to the Indonesian participants careers. By winning medals in IOI,
they can enter easily to top Indonesian universities in Informatics, even entering the top
universities in the world. All of the participants are studying in the fields of informatics
as shown by the following graphics in Fig. 5.

Most of the Indonesian alumni of IOI 2006–2008 have graduated from bachelor
degree and now working or studying PhD level. Some of them are founders or CTO
at top start-up Indonesian companies in the domain of software, offers internship and
employees their juniors. Some medallists are working for prestigious companies in the
US and UK as software developers. The younger alumni are now studying in bachelor
or master program in informatics. Only 2 of 24 participants are studying in other do-
mains: one is studying in medical faculty, and another is studying in the first common
year (he is intended studying in informatics). This finding shows that IOI is a starting
point for their study and then their career in informatics. The IOI gave them motivation
for studying and working abroad. IOI medal is a free ticket to enter top universities and
obtaining scholarships.

IOI 2016 Paper – Page 8 of 10

The summary of this cross check and analysis illustrate the applicability of our training topics for solving IOI
tasks:

- The importance of the topics ranked in Figure 5 has high correlations with the technics needs to
solve the IOI tasks.

- Graph, DP, Greedy, sort and search are very important, but they alone are not enough, since the
variation and specific condition of the graph can improve the algorithm.

- Algorithm complexity is important for measuring the performance of algorithm in order to solve
more difficult subtasks.

5.4 Influence of IOI to Participants Careers
IOI influences strongly to the Indonesian participants careers. By winning medals in IOI, they can enter easily
to top Indonesian universities in Informatics, even entering the top universities in the world. All of the
participants are studying in the fields of informatics as shown by the following graphics in Figure 6.

Figure 6. Indonesian IOI Alumni Tracking.

Most of the Indonesian alumni of IOI 2006-2008 have graduated from bachelor degree and now working or
studying PhD level. Some of them are founders or CTO at top start-up Indonesian companies in the domain
of software, offers internship and employees their juniors. Some medallists are working for prestigious
companies in the US and UK as software developers. The younger alumni are now studying in bachelor or
master program in informatics. Only 2 of 24 participants are studying in other domains: one is studying in
medical faculty, and another is studying in the first common year (he is intended studying in informatics).
This finding shows that IOI is a starting point for their study and then their career in informatics. The IOI gave
them motivation for studying and working abroad. IOI medal is a free ticket to enter top universities and
obtaining scholarships.

6 Conclusions
This paper presents a study of Indonesian IOI participants from 2006 to 2015, where the data come from
questionnaire distributed to them, interviews, national training database, journal of national training
program, and from training reports. The study aimed to identify the appropriateness of our national training
program to IOI participation, since we have only 1 gold in 2008, and in the last 4 years our achievement is
stabilized in bronze. With the limitation of respondents, the findings from the pass IOI in this study will be
used to reshape our strategy in the coming year, for moving at least to silver. We must also consider that IOI
task is getting more unpredictable, difficult, and creative (Halim, 2013).

0

5

10

15

Studying abroad Studying
Bachelor in
Indonesia

Master & PhD

Fig. 5. Indonesian IOI Alumni Tracking.

M.M.I. Liem204

6. Conclusions

This paper presents a study of Indonesian IOI participants from 2006 to 2015, where
the data come from questionnaire distributed to them, interviews, national training da-
tabase, journal of national training program, and from training reports. The study aimed
to identify the appropriateness of our national training program to IOI participation,
since we have only 1 gold in 2008, and in the last 4 years our achievement is stabilized
in bronze. With the limitation of respondents, the findings from the pass IOI in this
study will be used to reshape our strategy in the coming year, for moving at least to
silver. We must also consider that IOI task is getting more unpredictable, difficult, and
creative (Halim, 2013).

Without having computer science, solid mathematical foundation, and algorithmic
problem solving in their formal education, three phases of training each last for three
weeks on-site plus three weeks extra for final preparation are not enough for prepar-
ing IOI gold medallist, unless we can find a prodigious student. Bebras challenge3 is a
potential way to bridge the gap in computational thinking since an early age. Indonesia
will join Bebras (Dagienė & Stupurienė, 2014) during the coming year. Indonesia will
remain participate actively in IOI since the outcome of the participation and achieve-
ment in IOI also improves the spirit of competition amongst Indonesian senior high
school students which in turn also means improvement in quality of high school educa-
tion in Indonesia.

Last but not least, this paper highlights the difference of Computer Science, math-
ematics education in elementary, middle and high school of IOI countries. Formal ed-
ucation in Computer Science, mathematics and problem solving from an earlier age
contributes to the success of the participants in IOI. One year, or more precisely four
training camps three weeks each, is not enough to well prepare IOI participants unless
we are lucky to find an extraordinary student.

Acknowledgment

I would like to thanks Adi Mulyanto who help me connecting to the Indonesian IOI
alumni for getting the data, and also to the 24 respondents for their quick responses to
the questionnaires. I would also like to show my special gratitude to Prof. Valentina
Dagienė, who introduced to me about qualitative research, inspired and encouraged me
for writing this paper.

3	 http://bebras.org/

Reshaping Indonesian Students Training for IOI 205

References

Dagienė, V., Futcheck, G. (2010). Introducing informatics concepts through a contest. Presented in: IFIP Work-
shop New Developments in ICT and Education held at Université de Picardie Jules Verne, Amiens, France
28–30 June.

Dagienė, V., Stupurienė, G. (2014). Informatics education based on solving attractive tasks through a contest.
Commentarii informaticae didacticae, 7, 97–115.

Halim, S. (2013). Expecting the Unexpected. Olympiad in Informatics, 7, 36–41.
Hazzan, O., Dubinsky, Y. et al. (2006). Qualitative research in computer science education. In: SIGCSE ‘06

Proceedings of the 37th SIGCSE Technical Symposium on Computer Science Education. 408–412.
Hazzan, O., Nutov, L. (2014). Teaching and Learning Qualitative Research ~ Conducting Qualitative Research,

The Qualitative Report 2014, vol 19, Teaching & Learning Article 1, 1–29.
Knobelsdorf, M. (2008). A typology of CS preconditions for learning. In: Koli ‘08 Proceedings of the 8th Inter-

national Conference on Computing Education Research. 62–71.
Nedkov, P. (2012). Young Talent in informatics: preliminary findings of an IOI survey launched by AICA in

cooperation with IT STAR. Olympiad in Informatics, 6, 192–198.
Theodoraki, A., Xinogalos, S. (2014). Studying students’ attitudes on using examples of game source code for

learning programming. Informatics in Education, 13(2), 265–277.

M. M. I. Liem is a member of Knowledge and Software Engineer-
ing Research Group, School of Electrical and Engineering, Institut
Teknologi Bandung (ITB). She has been teaching programming in ITB
since 1977 and obtained her doctoral degree in University of Joseph
Fourier Grenoble France in 1989, with teaching programming as major
topics of her dissertation. From 2004, she is involved as a team mem-
ber in national recruitment, training and IOI preparation for Indonesian
team.

Olympiads in Informatics, 2016, Vol. 10, 207–222
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.13

207

oii-web: an Interactive Online Programming
Contest Training System

Olympiads in Informatics, 2016, Vol. 10, –
© 2016 Vilnius University
DOI:

1

oii-web: an Interactive Online Programming
Contest Training System*

William Di LUIGI1, Gabriele FARINA1, Luigi LAURA1,2,3, Umberto NANNI2,3, Marco
TEMPERINI2,3, Luca VERSARI1

1Italian Association for Informatics and Automatic Calculus (AICA)
2Department of Computer, Control, and Management Engineering
“Sapienza” University of Roma, Italy
3Research Center for Distance Education and
Technology Enhanced Learning (DETEL) – Unitelma University
e-mail: {fgabrfarina,williamdiluigi,veluca93}g@gmail.com
{laura,nanni,marte}@dis.uniroma1.it

Abstract. In this paper we report our experience, related to the online training for the Italian
and International Olympiads in Informatics. We developed an interactive online system, based on
the Contest management System (CMS), the grading system used in several major programming
contests including the International Olympiads in Informatics (IOI), and used it in three distinct
context: training students for the Italian Olympiads in Informatics (OII), training teachers in order
to be able to assist students for the OII, and training the Italian team for the IOI. The system, that
is freely available, proved to be a game changer for the whole Italian Olympiads in informatics
ecosystem: in one year, we almost doubled the participation to OII, from 13k to 21k secondary
school students.

Being developed in CMS (http://cms-dev.github.io/), the system is highly available to
extensions supporting, for instance, the production of feedback on problems solutions submitted
by trainees. It is also freely available, with the idea of allowing for support to alternative necessi-
ties and developments.

Keywords: programming contest, Olympiads in informatics, programming training, problem rec-
ommendation model.

* A preliminary version of this paper appeared as W. Di Luigi, G. Farina, L. Laura, U. Nanni, M. Temperini,
and L. Versari. Three Uses of the Online Social Programming Training System: On Nature and Purpose
of Spreading Algorithmic Problem Solving. Proceedings of the 8th International Workshop on Social and
Personal Computing for Web-Supported Learning Communities, (SPEL 2015), State of the art and Future
Directions in Smart Learning, 369–379, 2016.

William Di LUIGI1, Gabriele FARINA1, Luigi LAURA1,2,3
Umberto NANNI2,3, Marco TEMPERINI2,3, Luca VERSARI1

1Italian Association for Informatics and Automatic Calculus (AICA)
2Department of Computer, Control, and Management Engineering
“Sapienza” University of Roma, Italy
3Research Center for Distance Education and
Technology Enhanced Learning (DETEL) – Unitelma University
e-mail: {gabr.farina,williamdiluigi,veluca93}@gmail.com
{laura,nanni,marte}@dis.uniroma1.it

Abstract. In this paper we report our experience, related to the online training for the Italian and
International Olympiads in Informatics. We developed an interactive online system, based on the
Contest management System (CMS), the grading system used in several major programming con-
tests including the International Olympiads in Informatics (IOI), and used it in three distinct context:
training students for the Italian Olympiads in Informatics (OII), training teachers in order to be able
to assist students for the OII, and training the Italian team for the IOI. The system, that is freely avail-
able, proved to be a game changer for the whole Italian Olympiads in informatics ecosystem: in one
year, we almost doubled the participation to OII, from 13k to 21k secondary school students.

Being developed in CMS (http://cms-dev.github.io/), the system is highly available to
extensions supporting, for instance, the production of feedback on problems solutions submitted
by trainees. It is also freely available, with the idea of allowing for support to alternative necessi-
ties and developments.

Keywords: programming contest, Olympiads in informatics, programming training, problem rec-
ommendation model.

1. Introduction

The International Olympiads in Informatics (IOI) are an annual programming competi-
tion for secondary school students patronised by UNESCO. First IOI has been in Bul-

Olympiads in Informatics, 2016, Vol. 10, –
© 2016 Vilnius University
DOI:

1

oii-web: an Interactive Online Programming
Contest Training System*

William Di LUIGI1, Gabriele FARINA1, Luigi LAURA1,2,3, Umberto NANNI2,3, Marco
TEMPERINI2,3, Luca VERSARI1

1Italian Association for Informatics and Automatic Calculus (AICA)
2Department of Computer, Control, and Management Engineering
“Sapienza” University of Roma, Italy
3Research Center for Distance Education and
Technology Enhanced Learning (DETEL) – Unitelma University
e-mail: {fgabrfarina,williamdiluigi,veluca93}g@gmail.com
{laura,nanni,marte}@dis.uniroma1.it

Abstract. In this paper we report our experience, related to the online training for the Italian
and International Olympiads in Informatics. We developed an interactive online system, based on
the Contest management System (CMS), the grading system used in several major programming
contests including the International Olympiads in Informatics (IOI), and used it in three distinct
context: training students for the Italian Olympiads in Informatics (OII), training teachers in order
to be able to assist students for the OII, and training the Italian team for the IOI. The system, that
is freely available, proved to be a game changer for the whole Italian Olympiads in informatics
ecosystem: in one year, we almost doubled the participation to OII, from 13k to 21k secondary
school students.

Being developed in CMS (http://cms-dev.github.io/), the system is highly available to
extensions supporting, for instance, the production of feedback on problems solutions submitted
by trainees. It is also freely available, with the idea of allowing for support to alternative necessi-
ties and developments.

Keywords: programming contest, Olympiads in informatics, programming training, problem rec-
ommendation model.

* A preliminary version of this paper appeared as W. Di Luigi, G. Farina, L. Laura, U. Nanni, M. Temperini,
and L. Versari. Three Uses of the Online Social Programming Training System: On Nature and Purpose
of Spreading Algorithmic Problem Solving. Proceedings of the 8th International Workshop on Social and
Personal Computing for Web-Supported Learning Communities, (SPEL 2015), State of the art and Future
Directions in Smart Learning, 369–379, 2016.

W. Di Luigi et al.208

garia in 1989. The 2015 IOI, held in Almaty, Kazakhstan, saw participation by 83 coun-
tries and 322 contestants (each country can have up to four contestants). Participants are
usually the winners of national competitions.

Here we first introduce oii-web, an interactive online training platform, based on
the Contest Management System (CMS, http://cms-dev.github.io/ (Maggiolo
and Mascellani, 2012; Maggiolo et al., 2014)), that is the grading system used in several
programming competitions, including IOI. We built, around oii-web, three distinct, in
both target audience and functionalities, web based platforms: one dedicated to students
preparing for the Italian Olympiads in Informatics (OII), one for the teachers, with a
complete course on programming and several resources available, and the third to sup-
port the selection and the training of the Italian team for the IOI. We believe that our
online training system fills a gap, since there are several open source grading systems
and several online training platform, but to the best of our knowledge there is no open
source solution if one wants to host his own training platform.

We report on our experience with the three platforms, designed around the common
core, oii-web, that allows to navigate through problems, propose solutions, and get
feedback about it.

The overall system is already apt to be fruitfully used, with educational aims, as a
tool for competitive programming. Yet we are pursuing its enrichment with aspects of
personalization to trainees characteristics and needs, aiming to better help them enhance
their abilities to deal with contest problems: this would be novel, to our knowledge. So,
in the last part of the paper we discuss the requirements of such extension showing an
initial modeling schema for problems, solutions, and ultimately trainees.

2. Related Work

Here we deal with various topics connected to programming competitions and, more
generally, computer programming learning for secondary school students: a web training
platform, the organization of national Olympiads in informatics, and our experience in
broadening the participation to it.

On these topics a crucial information source is the Olympiads in Informatics journal,
founded in 2007, providing “an international forum for presenting research and devel-
opments in the specific scope of teaching and learning informatics through Olympiads
and other competitions”. Books such as (Skiena and Revilla, 2003) and (Halim and
Halim, 2013) provide also essential material about algorithms, data structures, and heu-
ristics needed in programming contests.

The importance and the effectiveness of programming contests in learning program-
ming and, more generally, computer science has been observed and emphasized greatly
in the literature: we mention the works of Dagienė (Dagienė, 2010) and Garcia-Mateos
and Fernandez-Aleman (Garcia-Mateos and Fernandez-Aleman, 2009).

Various kinds of automated support to programming education are met in research since
decades. The widest area of investigation seems to be related to introductory programming
courses, where students learn to write programs, according to a programming language

oii-web: an Interactive Online Programming Contest Training System 209

syntax and semantics, and to solve problems. In this way students are trained on both ba-
sic algorithms and their coding. Programming errors are spotted basically in two phases:
syntactic and static semantics errors are pointed out by the compiler, while logic/dynamic
semantics erros are spotted by testing. So, program assessment is usually based on:

Static Analysis●● , that gathers information about the program and produce feed-
back without execution. In this family fall approaches based on compiler error
detection and explanation (Hristova et al., 2003; Watson et al., 2012), structured
similarity between marked and unmarked programs (Naudé et al., 2010), and also
nonstructural analysis, keyword search and plagiarism detection (Khirulnizam
and Md, 2007).
Dynamic Analysis●● , that tests the program on accurately chosen input datasets and
compares actual and expected output. One important application of this program
analyses is in competitive learning tools, used to manage programming contests,
such as (Leal and Silva, 2003).

In Wang et al. (2011) combine the two approaches: first the program undergoes static
analysis, for compilation errors and to check similarity with “model programs”. Then
a dynamic testing is performed, and possibly the program adds in a set of model pro-
grams.

Grading systems such as CMS are mainly based on dynamic testing, and are many:
amongst them are those used in ACM International Collegiate Programming Contest
(ICPC), i.e. the proprietary Kattis1, and the open source PC2, available at http://pc2.
ecs.csus.edu/. Other open source grading systems are Open Judge System2 and
DOMjudge3.

If we focus on online training platforms, amongst several high quality ones are UVa
Online Judge4 and the more recent Sphere Online Judge5 (SPOJ). Besides these train-
ing platform, there are several well-known programming contests platforms, including
Codeforces, USACO, COCI, TopCoder, Codechef, and Hackerearth, that run contests
with different periodicity. There are also events based on programming contests, like
the Google Code Jam and the Facebook Hacker Cup. A detailed survey of programming
contests is in (Combéfis and Wautelet, 2014).

3. Italian Olympiads in Informatics

The International Olympiads in Informatics started in Bulgaria in 1989, patronised by
Unesco. They are considered one of the most important programming competition in the
world. Each country can have four contestants, and the competition is divided in two
competition days. On each day contestants will be given three tasks to complete in five
hours. Each task is worth 100 points and, since IOI 2010, it is divided into subtasks, each

1	https://kth.kattis.com/
2	https://github.com/NikolayIT/OpenJudgeSystem
3	http://www.domjudge.org/
4	https://uva.onlinejudge.org/
5	http://www.spoj.com/

W. Di Luigi et al.210

worth a portion of the total points. There are time and memory limits for each subtask,
and points are awarded only when all the tests in subtask yield correct results within the
limits. There are also interactive tasks, like games, in which the contestant code alter-
nates moves against an adversary.

In Fig. 1 we can see a graphical representation of a task, taken from OII 2014 final.
The task, taglialegna (lumberjack), can be summarized in the following way: there
is a line of trees, with one meter of space between each of them. Each tree has a known
height, in meters, and you can cut it aiming it toward its right or left. When an  meter
tree falls, like in a domino game it forces the falling of its  − 1 close trees, and this in
turn can force other tree to fall. You can decide which tree to cut, and for each of them
you can choose in which direction it will fall. What is the minimum number of trees to cut
in order to remove all the trees in the line? For this task, the subtasks were designed to
distinguish algorithms of different computational costs: if we denote with  the number
of trees in the line, all the points were awarded to a (definitely not trivial)  () solution,
achieved by only one contestant, and decreasing points were assigned, respectively, to
 ( log ),  (2), and  (3) solutions.

Italy participated in IOI for the first time in 2000, and since 2001 it started a national
competition, promoted by a joint effort of the Italian Ministry of Education, University
and Research (MIUR) and the Italian Association for Informatics and Automatic Calcu-
lus (AICA, a non-profit organization). The Italian Olympiads in Informatics (OII) are
divided into three phases:

1

2

3

4

2 3 2 1 4 2 1

a

OII 2014 – Finale nazionale
Fisciano, 19 settembre 2014 taglialegna • IT

– Al termine della chiamata a Pianifica non tutti gli alberi sono caduti.
– Viene fatta una chiamata ad Abbatti con un indice o una direzione non validi.
– Viene fatta una chiamata ad Abbatti con l’indice di un albero già caduto, direttamente ad

opera degli operai o indirettamente a seguito dell’urto con un altro albero.

Esempi di input/output
input.txt output.txt

7

2 3 2 1 4 2 1

4 0

5 1

6

3 1 4 1 2 1

0 1

Spiegazione
Nel primo caso d’esempio è possibile abbattere tutti gli alberi segando il quinto albero (alto 4 deca-
metri) facendolo cadere a sinistra, e il sesto albero (alto 2 decametri) facendolo cadere a destra. Il primo
albero tagliato innesca un effetto domino che abbatte tutti gli alberi alla sua sinistra, mentre il secondo
abbatte l’ultimo albero nella caduta.

1

2

3

4

2 3 2 1 4 2 1

1

2

3

4

2 3 2 1 4 2 1

←

1

2

3

4

2 3 2 1 4 2 1

1

2

3

4

2 3 2 1 4 2 1

→
1

2

3

4

2 3 2 1 4 2 1

1

2

3

4

2 3 2 1 4 2 1

Nel secondo caso d’esempio tagliando il primo albero in modo che cada verso destra vengono abbattuti
anche tutti gli alberi rimanenti.

1

2

3

4

3 1 4 1 2 1

1

2

3

4

3 1 4 1 2 1

→

1

2

3

4

3 1 4 1 2 1

1

2

3

4

3 1 4 1 2 1

taglialegna Pagina 19 di 24

b

Fig. 1. The graphical representation of the task taglialegna (lumberjack), from OII 2014
final: an input instance (a) and a possible solution that uses two cuts (b).

oii-web: an Interactive Online Programming Contest Training System 211

 1.	 First Selection (Schools, November): in this phase, in their own schools, ap-
proximately 20k students compete to solve, on paper, a test that involves math,
logic, and programming abilities; in particular, there are some fragments of code
(C/C++ or Pascal), and the students are asked to understand the behavior of the
fragments.
 2.	 Second Selection (Regions, April): in this phase there are approximately 40
venues, where approximately 1200 students, selected from the previous phase,
compete by solving three programming tasks on the computer. In this phase
points are awarded for solving the tasks, independently from the complexity of
the solution.
 3.	 Third Selection (National Final, September): approximately 100 students are
asked to solve efficiently three programming tasks on the computer. They compete
for 5 gold, 10 silver and 20 bronze medals.

From the above description it should be clear how the required programming abili-
ties are varying through the different steps: we first ask students to be able to read code,
then to write code, and finally efficiently write code. A more detailed picture of the OII
organization is described in (Casadei et al., 2007).

The selection process does not end with the national final: the gold and silver medal
winners, together with at most five bronze medal winners, selected by (young) age, form
the group of IOI-candidates, and four of them will represent Italy in the next IOI (usu-
ally held in July or August). Thus, there is almost one year to train and select them, and
this process is mainly done in four stages held nearby Volterra6. In each of the stages
there are theoretical lessons, ranging from traditional algorithms and data structures to
competitive programming tips and tricks, as well as programming contests. Besides the
stages, there is a continuous on-line support for selfimprovement: the IOI-candidates are
assisted by tutors (former IOI contestants) for assistance and guidance, and several train-
ing contest are organized, some of which focused on specific topics.

4. The Online Training System: oii-web

Our online training platform, oii-web, is based on the Contest Management System
(CMS) (Maggiolo and Mascellani, 2012; Maggiolo et al., 2014), the grading system
used in several programming competitions, including IOI. CMS was designed and coded
almost exclusively by three developers involved in the Italian Olympiads in Informatics:
Italy hosted IOI 2012 and therefore, since 2010, it started the development of CMS, that
was used/tested in the OII finals 2011 and, few month later, was the grading system of
IOI 2012. CMS version 1.0 was released in March 2013, and since then has been used
in both IOI 2013 and 2014, together with several other programming competitions in the
world (Maggiolo et al., 2014).

6	 The small city of Volterra in Tuscany is nowadays world-wide popular due to the fact that in the novels and
movies of the Twilight vampire saga it is the origin place of Volturi, “the largest and most powerful coven of
vampires”.

W. Di Luigi et al.212

We began the development of oii-web during the preparation of the IOI-candidates
for IOI 2012: why did we need an online training platform? The short answer is: in a pro-
gramming competition there are very few (usually from 3 to 7) problems, to be solved
in a short frame of time; in order to train the IOI-candidates we needed a system that
allowed us to give them more problems they can solve whenever they want, so the first
version of oii-web was simply an instance of CMS with one competition running, with
several problems and unlimited time. For training the IOI-candidates and, later, the two7
Italian teams competing in IOI 2012.

Later, we started using it consistently, and our feature list was growing almost daily,
both for the front-end and for the back-end of the system:

It would be nice to provide some information about each problem, so the student 1.	
can choose it without reading the whole description.
It would be nice to have a way to exchange messages, so students and tutors can 2.	
chat about the problems.
It would be nice to be have a way to show/hide problems, so we can use some of 3.	
them in contests to rank the students.
It would be nice to have stats about each problem, and who was able to solve it (in 4.	
a grading system there are these stats but not visible to contestants).

Thus, we decide to include all these above mentioned features, together with others,
and build an online grading system, oii-web. We integrated the open source Discourse8
to provide forum functionalities. The source code of the system is freely available9 in
github and it is released under the GNU Affero General Public License10. Furthermore,
it is also available11 as a “dockerized” app for docker12, an open platform to build, ship,
and run distributed applications.

5. The Three Platforms

In this section we briefly describes the three platforms, based on oii-web, we devel-
oped, and their differences.

OII-training is the platform devoted to the students that are interested in OII. We can
see a screenshot of the home page in Fig. 2 (a). In this platform there are approximately
180 problems spanning several techniques and difficulties, ranging from regional con-
tests to IOI level. Furthermore, there are also the tests, from the first selection of OII
(schools selection), available as interactive online forms. So far we did not advertise
this platform in the schools, since we consider it in a beta testing phase. We allowed

 7	The nation that hosts IOI can have two teams of four elements, but only one team is eligible for medals.
 8	 www.discourse.com
 9	 https://github.com/veluca93/oii-web/
10	 http://www.gnu.org/licenses/agpl
11	 https://registry.hub.docker.com/u/veluca93/oii-web/
12	 www.docker.com

oii-web: an Interactive Online Programming Contest Training System 213

students to register freely, and so far we have approximately 1.500 users despite the lack
of promotion.

DIGIT is the platform dedicated to teachers: we realized this platform in a project spon-
sored by the MIUR, where the aim was to build a self-paced online course of computer
programming, focused on the Olympiads in informatics. The idea was to train the teach-

a

b
Fig. 2. The home pages of two of the platforms based on oii-web: the one for the teachers

(a) and the one for the students (b).

W. Di Luigi et al.214

ers so they would be able to train their students. Thus, this platform is currently the rich-
est of the three, in terms of contents and functionalities. We can see a screenshot of the
home page in Fig. 2 (b). There are video lectures on C/C++ and Pascal programming,
Algorithms and Data structures, and some basic video tutorial as well including how
to use the platform to submit a solution. There are also some lecture notes, and all the
material can be distributed to students as well; the video lectures are also available on
the OII channel on YouTube. The MIUR used this platform, since October 2013, in five
distinct courses, with a sixth one scheduled to start in September 2016. So far approxi-
mately 3.000 teachers followed this course, and the effects on the OII were impressive:
the participation of students in OII preliminary stages raised from 13k to 21k.

IOI-candidates is the last platform, and the only one not publicly available, since it is
devoted to the IOI-candidates. This platform, as we mentioned before, has been the origi-
nal motivation to develop the whole oii-websystem. This platform has all the problems
available to the other two platform, together with a reserved set of problems that we use
in the contests to rank the students. The students are asked not to discuss these problems
in public forum or social network, since we usually reuse them after few years.

6. Our Experience

The advantages of a training system are clear: without it, we need to give students, be-
sides the text of the problem: the input cases, the rules for counting the points, and, in
some cases13, a code to check the correctness of the produced output. And the student
has to: run its code against every input, run the checker against each input and matching
output, check the time and memory limits, that can be a cumbersome operation for a be-
ginner. Furthermore, even if we automatize this task, for example by a script given to the
student, there is still the problem of measuring the running times in different machines:
students can have very different hardware and it is meaningless to state time limits with-
out knowing their hardware.

Our path began, as we mentioned before, with the needs of a training system able to
assist us with the preparation of Italian IOI-candidates. We soon realized the advantages
of such a system, as opposed to the use of an online platform like UVa Online Judge:
we simply had more control, and this leads to a more effective teaching experience. We
almost immediately decided to develop an online platform for the OII students as well,
and we enriched our basic system with more features, in order to be able to deal with a
much larger number of (averagely) less motivated students. In the beginning of 2013, the
OII-training platform went online, in the form of a publicly available beta, as we were
planning to add more features to make it more appealing for a larger audience. Almost
concurrently, the MIUR asked us to design an online course for teachers, and we im-

13	To check the correctness of some problems is enough to check that the output produced by the student is the
same as the output produced by the correct solution; in other cases, usually when there is more than a unique
solution for a problem, like finding a path in a graph under some constraint, it is necessary to write a checker
code that verifies the solution proposed for the given input.

oii-web: an Interactive Online Programming Contest Training System 215

mediately decided to build it around our platform. So, in the next months, we adapted
the system for the DIGIT platform, and realized the video lectures; in October 2013 we
launched the first course: the MIUR opened a call for 250 teachers to be freely allowed
to follow the course. The call was supposed to stay open for ten days, but we reached
250 teachers in the first day, and we decided to admit more. In subsequent courses, since
we observed that the server was working fine, we raised the number of teachers per
course to 700. At the end of each course there is a programming contest, and the ones
that perform above a threshold (solving three problems out of seven) are awarded with a
certification. Note that once a teacher has access to the platform, (s)he is allowed to use
it also after the end of the course. Many teachers reported us that they had fun using the
platform, and that they plan to keep on using it.

Our experience shows that the engagement in having or not a training system is
completely different: we witnessed this at all the learners’ levels; beginners were more
involved, and advanced learners often joined the developers community (mostly made
of tutors and former IOI contestants) to either contribute the system development or to
propose new problems. The teachers were incredibly active in the forum, exchanging tips
and solution strategies as well as mutual support. The IOI-candidates are literally eager to
contribute to the system or in the design of new problems, maybe because they see the tu-
tors as a model, or simply because they enjoy it so much that they want to be part of it.

We also asked the IOI-candidates to “adopt a past IOI problem”: our goal is to have,
in the system, all the problems from past IOIs, and therefore there is a (shrinking) list of
the problems that need to be produced: in all the cases the text of the problem is available
on the web, usually together with some solution, but we need to write input generators
and fine-tune the time and space limits. Currently we have almost all the problems of
the last ten IOIs.

7. Validation of the System: A Descriptive Analysis

In this section we discuss the results of a validation of the system; we performed our
study by means of a survey technique, with a questionnaire as a tool. We focused on the
users of the OII-training platform, and we report some stats in Table 1. With active user
we denote a user that submitted at least one solution of a problem; with problem solved
we denote the number of submission that completely solved a problem.

We sent the users of the platform the link of the questionnaire in May 2016; we
had 171 users that answered, and this means almost half of the current active users. In
Table 2 we report the questions and the statistics of the answers provided.

The experimental setup is based on the collection of general information about the
respondents, and on scales aiming at Satisfaction, Usability, Effectiveness, Active lear-
ning, Fun.

Where possible we used a Likert scale, with five grades: two highest, two lowest, and
an intermediate one. This allowed to separate clearly mainly positive judgements from
mainly negative ones. Exceptions (questions Q6 and Q12) are motivated by their, less
progressive nature.

W. Di Luigi et al.216

About the general satisfaction of the learners, we considered important the learner’s
feeling about the actual “learning results”. In this respect it is quite satisfactory for us
that 65% of the respondents selected mainly positive (the highest two) grades, while the
mainly negative (lowest two grades) were chosen by a 65%.

Usability of the system was marked mainly positively by a 70%, with mainly nega-
tive scores below 4%.

Of course we were mainly interested in the effectiveness shown by the system, as
witnessed by the higher number of questions dedicated to that topic. One main issue, in
that respect, is the number of problems (meaning exercises) that the learner undertook/
solved. A second issue regards the perception of the learner about having fruitful and not
tiresome sessions of use of the system.

The first above issue is met by questions Q3 and Q4. As it was expectable, there are
more exercises “tried” than “solved”: the system is not a panacea. On the other hand,
while only 1% of the respondents tried some exercises (probably between 1 and 5) with
no success, data show that 56% of the students was able to give a try between 11 and 20
problems (one third of this share) or more than 20 (two thirds of them), succeeding in
quite a respectable 47% of the whole sample. In this respect we notice that 3 learners out
of 4 that tried more than 20 exercises, succeeded in more than 20 exercises.

The second issue above (regarding fruitful and not tiresome sessions of work in the
system), is cared by questions Q5 through Q8: to some extent Q7 helps focusing the re-
sult of Q5, while Q8 does the same for Q6. From Q5 and Q7 we clearly see that (at least
the learner’s perception of) fruitfulness is high, with mainly negative results below 6%
and 10%, respectively for Q5 and Q7. Q7 was indeed useful in pointing out one crucial
aspect of fruitfulness (comprehension): its results sport a quite rewarding 61% of mainly
positive marks. Finally, Q6 and Q8 tell us that there is scarce perception of a session of
work in the system being tiresome or slow.

The approach to learning sought by the system is coherent with the concept of active
learning, so we thought it would be interesting to probe the perception of learners in
that respect. Question Q9 is quite direct in that respect: the results show mainly positive
response (73%, equidistributed between the two highest marks). Questions Q10 and Q11
took a less direct route to the learner’s attitude toward the system: the former question
wanted to reveal the induced engagement, and scores almost 64% of mainly positive
answers, while the mainly negative feedback is limited to 8%.

Table 1
Some statistics about the OII-training platform

Number of registered users 1413
Number of active users in the period Jan. 2015 – May 2016 812
Number of active users Jan. 2016 – May 2016 399
Problems in the system 253
Problems solved by users in the period Jan. 2015 – May 2016 9754
Problems solved by users in the period Jan. 2016 – May 2016 6192
Average number of problems solved per user in the period Jan. 2015 – May 2016 ≈12
Average number of problems solved per user in the period Jan. 2016 – May 2016 ≈15,5

oii-web: an Interactive Online Programming Contest Training System 217

Question Q11 tried to connect the work in the system with the perceived gain in
terms of problem solving skills. In this case we have still more than half the sample
showing mainly positive response (56%), with 11% mainly negative and a third of the
sample set on the intermediate grade.

Since the use of systems like ours is not usual in the Italian School, we liked the idea
to fetch some reactions in relation to the “fun” factor. Such an investigation would be

Table 2
List of the questions we used in the evaluation of the system.

Satisfaction
Q1. Did you find the system useful to fulfill your learning goals?
A1. Very Much: 25.1%, Quite So: 39.8%, Enough: 28.7%, A few: 4.7%, Not at all: 1.8%

Usability
Q2. Is the system simple to use?
A2. Very Much: 24%, Quite So: 46.2%, Enough: 26.3%, A few: 1.8%, Not at all: 1.8%

Effectiveness
Q3. How many problems did you tackle in the system?
A3. 0: 1.8%, From 1 to 5: 18.1%, From 6 to 10: 24%, From 11 to 20: 18.7%, More than 20: 37.4%
Q4. How many problems were you able to solve satisfactorily in the system?
A4. 0: 2.9%, From 1 to 5: 29.2%, From 6 to 10: 21.1%, From 11 to 20: 18.1%, More than 20: 28.7%
Q5. According to your perception, your sessions using the system were fruitful?
A5. Very Much: 15.2%, Quite So: 42.1%, Enough: 36.8%, A few: 4.7%, Not at all: 1.2%
Q6. According to your perception, your sessions using the system were long enough (to be fruitful), but not too
long (to be tiring)?
A6. Too long (tiring): 8.8%, Not so long (not tiring): 81.3%, Short (not tiring): 9.9%
Q7. By solving a problem, did you improve your comprehension of the algorithm or the technique involved?
A7. Very Much: 24%, Quite So: 36.8%, Enough: 29.8%, A few: 7.6%, Not at all: 1.8%
Q8. Is the system quick enough in providing response?
A8. Very Much: 25.7%, Quite So: 35.1%, Enough: 29.2%, A few: 6.4%, Not at all: 3.5%

Active Learning
Q9. I felt active in approaching the problems with the aid of the system
A9. Very Much: 35.7%, Quite So: 37.4%, Enough: 17%, A few: 8.2%, Not at all: 1.8%
Q10. The study of algorithms and related techniques is more interesting with this approach
A10. Very Much: 33.9%, Quite So: 29.8%, Enough: 28.1%, A few: 4.7%, Not at all: 3.5%
Q11. Due to the interaction with the system I have identified and trained upon central issues in the problem
solving activity, and important concepts in the solution of problems
A11. Very Much: 17.5%, Quite So: 38%, Enough: 33.3%, A few: 9.4%, Not at all: 1.8%

Fun
Q12. Using the system I felt mainly: i) Motivated, ii) Happy iii) Curious, iv) Relaxed, v) Other
A12. Happy: 15.2%, Motivated: 52.6%, Relaxed: 4.1%, Curious: 24%, Other: 4.1%

General questions
Q13. Which institution are you currently enrolled?
A13. High School: 69%, University: 9.9%, Work: 17%, Other: 4.1%

Suggestions
Q14. What would you improve in the platform?
A14. See the text
Q15. Other ideas or suggestions
A15. See the text

W. Di Luigi et al.218

more proper in game based, or gamified, systems; however, since we actually plan to
add gamified aspects (namely a badge feature), it seemed good to add a question whose
response would be more useful in future comparisons.

With respect to the present state of the system, the results are surely quite good, with
feelings of motivation (53%) and curiosity (24%) encompassing more than three quar-
ters of the sample’s feedback.

We conclude this section by discussing the suggestions we received in questions Q14
and Q15. Question Q14 was What would you improve in the platform?, and users were
allowed to choose one or more of the proposed answer, that are the directions we are
working on. We report below the results (that were not mutually exclusive, as the other
questions), in order of the expressed preferences:

77.2%  I would add a wiki with documentation about algorithms and related tech-
niques.

57.3%  I would add a system to help the user to choose the next problem to solve.
36.3%  I would add a badge system, to show achievements using distinct badges.
12.3%  I would add more problems involving Mojito, the JackRussell mascotte of

OII.
From the first of the above results we gather the obvious: of course a repository of

centralized information, about algorithms and techniques needed in the solution of the
exercises, is highly attractive. Such a development is actually in our plans, needing basi-
cally quite a lot of wear and tear in order to structure and feed the wiki, and not much
more in terms or research. Being it a wiki, however, we are planning to make it available
to contributions coming from all the members, so to make of it another opportunity for
social collaboration, and social-collaborative learning.

On the contrary, the second preferred choice (recommending system for the next
problem to solve, that would be based on the student model) is a topic for further re-
search, met preliminary in the next section.

8. Further Developments

A work of Wang et al. (Wang et al., 2011) states the following requirements for a com-
prehensive program assessment system:

 1)	Sufficiently extended testing, so to cover the various cases of computation.
 2)	Checking on the program structure, to see that the problem specification is met,
and no cunning shortcuts bring to the correct output.
 3)	Accepting and reasonably assessing programs with static errors.
 4)	Providing immediate and correcting feedback.

We think that the developments in the oii-web system should ultimately fulfill
these requirements, while the present directions should deal closely with the present
purposes of the system, that is to allow non novice students to train for the contests. So
here we try and define a model to support:

oii-web: an Interactive Online Programming Contest Training System 219

A static analysis stage where solution strategies (algorithm, data structure and their ●●
mutual feasibility) rather than syntactic/semantics errors, are considered.
An interactive communication between system and student, to help:●●

Developing one’s capability to select solution strategies, by giving feedback ●●
on the actual choice.
Planning a path of growth of one’s skills, by suggestions about next suitable ●●
problems to undertake.

(And dynamic testing in the usual form, as it is already done).●●
Problems (the exercises proposed in the various contests, yearly), Solutions (the pro-

grams proposed by the students), and ultimately the Students are modeled basing on a
tagging mechanism. Tags are the names of problems (P), the algorithms (A) and data
structures (DS) usable and/or used in the solutions (S) of problems, the contests (C), and
levels of confidence (L) in the use of combinations of As and DSs.

Teachers in charge of the organization of a contest are named gurus; students that
came out to be “exemplary” in a contest, and so “whose choices can count” when a
solution to a problem is to be assessed, are called Exemplary Peers (EPs). EPs can be
promoted as guru.

A problem is modeled as a family of strategy choices (A and DS), suitable for its
solution. Differences in that suitability can be pointed out by a weight. The weight is
computed basing on the frequency by which A/DS were chosen, and on the reputation of
who performed that choice in the related contest. Notice that the reputation of the gurus
and EPs is contextualized to the contest.

 = f   g

A solution submitted by a student is modeled by the strategy chosen for it:

 = f    g

where  is either a contest name or “training” (off contest).
This metadata is provided by the student, in order to allow for a timely feedback

from the dynamic analysis. On the other hand that metadata might be inaccurate, so it is
subject to scrutiny: when a check points out that the data was wrong, it is changed ac-
cordingly, or (in the extreme case) the solution is removed altogether.

This check is done by gurus. A more social kind of scrutiny has been devised, yet it
can’t be applied, as the students solutions submitted to the system are not to be shown in
public, at least for the time being.

A submitted solution is statically checked by comparing its specification S with that
of the problem P. A feedback can be then given, about the appropriateness of the choice,
its present weight, and possible better weighted alternatives.

The lightweight student model we can define in this framework define the skills
shown by the student while solving problems in the system; it is a collection of “acquire-

W. Di Luigi et al.220

ments” each one expressing the fact that a given problem has been solved, how, how
well and in what 

() = f    g

where level is a discrete variable in [1    5] associated to the outcome of the dynamic
analysis of the solution submitted by the student on the problem.

The above modeling framework can be used during a contest, in order to collect
problems models and data on students (for instance to compute students reputation and
define the set of EPs for that contest).

However here we are also interested in the possible use of this framework in a social
webbased settings, to foster training in view of a next contest. The CMS would be the
place for such training, organized by the following protocol.

A 1.	 Target Skills is given. This is a set of triples designating the aim of the the train-
ing (at this stage for all the system):  = f  g.
The trainee can access the set of problems available from previous contest, her/his 2.	
student model, and the TS.
While the trainee is entitled to select any problem and submit the related solu-3.	
tion, the system can provide a list of suggestions, for “best next problems to
undertake” in order to enhance SM(trainee) towards coverage of TS. This list is
done by:

defining the set of elements in TS that are close to be covered by tuples in SM (a)	
(Proximal Coverage – PC);
defining a set of problems, whose undertaking can bring to add elements in PC (b)	
to the student model.

Upon submission of a solution, the trainee provides its initial modeling (4.	 

).
The dynamic analysis of the solution establishes the 5.	 level value for the t-uple

    

going to join the student model.
Notice that the trainee specification of the solution can be subject only to late

evaluation (by guru), in order to allow for a timely feedback coming from the dy-
namic analysis. So the new element in the SM is sub-judice and it could be modi-
fied or, in the extreme cases, deleted.

9. Conclusions

In this paper we introduced oii-web, an online training system for programming con-
tests. The system is based on CMS, the grading system used currently in IOI competi-
tions and other programming contests as well. We developed three distinct platforms,

oii-web: an Interactive Online Programming Contest Training System 221

based on oii-web, aimed at three distinct user sets: students enrolled in OII, their teach-
ers, and IOI-candidates, i.e. the small set of students amongst which will be selected the
four to represent Italy at IOI. We discussed briefly our experience, together with some
current developments. We believe that, as happened in our case, the use of such a system
can contribute to spread the algorithmic problem solving skills needed in programming
contests.

We also believe that this tool can scale up toward being an educational support to
refining students skills in “algorithm mastery”, and we have presented lines of develop-
ment in that direction.

Acknowledgements

We dedicate this work to Marta Genovie De Vita.

References

Casadei, G., Fadini, B., Vita, M. (2007). Italian olympiads in informatics. Olympiads in Informatics, 1, 24–30.
Combéfis, S., Wautelet, J. (2014). Programming trainings and informatics teaching through online contests.

Olympiads in Informatics, p. 21.
Dagienė, V. (2010). Sustaining informatics education by contests. In: Teaching Fundamentals Concepts of In-

formatics. Springer, 1–12.
Garcia-Mateos, G., Fernandez-Aleman, J.L. (2009). Make learning fun with programming contests. In: Trans-

actions on Edutainment II. Springer, 246–257.
Halim, S., Halim, F. (2013). Competitive Programming, Third Edition. Lulu.com.
Hristova, M., Misra, A., Rutter, M., Mercuri, R. (2003). Identifying and correcting java programming errors

for introductory computer science students. In: Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ‘03). ACM, New York, NY, USA, 153–156.

Khirulnizam, A., Md, J. (2007). A review on the static analysis approach in the automated programming assess-
ment systems. In: Proc. Nat. Conf. on Software Engineering and Computer Systems. Pahang, Malaysia.

Leal, J., Silva, F. (2003). Mooshak: a web-based multi-site programming contest system. Software: Practice
and Experience, 33, 567–581.

Maggiolo, S., Mascellani, G. (2012). Introducing cms: a contest management system. Olympiads in Informa-
tics, 6, 86–99.

Maggiolo, S., Mascellani, G., Wehrstedt, L. (2014). Cms: a growing grading system. Olympiads in Informatics,
8, 123–131.

Naudé, K., Greyling, J., Vogts, D. (2010). Marking student programs using graph similarity. Computers and
Education, 54, 545–561.

Skiena, S.S., Revilla, M.A. (2003). Programming Challenges: The Programming Contest Training Manual.
Springer Science & Business Media.

Wang, T., Su, P., Ma, X., Wang, Y., Wang, K. (2011). Ability-training-oriented automated assessment in intro-
ductory programming course. Computers and Education, 56, 220–226.

Watson, C., Li, F., Godwin, J. (2012). Bluefix: Using crowd-sourced feedback to support programming students
in error diagnosis and repair. In: Proc. Int. Conf. on Web-based Learning, ICWL 2012, LNCS (vol. 7558).
Springer Verlag, 228–239.

W. Di Luigi et al.222

W. Di Luigi holds a Bachelor of Science with Honours in Computer
Science and Engineering from the University of Bologna, and he’s now
attending a Master’s degree in Computer Engineering at Politecnico di
Milano. He has been involved in the training of the Italian IOI team for
the last four years, and helped organizing three Italian Olympiads in
Informatics. He is one of the core developers of oii-web.

G. Farina participated in IOI 2012 and IOI 2013. He is attending a
Bachelor degree in Control Engineering at Politecnico di Milano. He
has been actively involved in the training of high school students and
of the Italian IOI team for the past four years. He helped organizing
several Italian competitions in Informatics, including the Italian Olym-
piads in Informatics.

L. Laura is involved in the training of the italian team for IOI since
2007, and since 2012 he is in the organizing committee of the Ital-
ian Olympiads in Informatics. He got a Ph.D. in Computer Science
in “Sapienza”, and currently teaches “Web-based Systems Design” in
Tor Vergata university of Rome and “Information Systems” in LUISS
university of Rome.

U. Nanni is professor of Enterprise Information System in “Sapienza
University”, President of the Information Engineering bachelor degree
in Latina location, Director of the Research Center for Distance Edu-
cation and Technology Enhanced Learning in “Unitelma Sapienza”.
His research interests include: graph algorithms and their applications,
elearning models and technologies, data- text- and business- intelli-
gence. He was PI of the LLP project eLF-eLearning Fitness.

M. Temperini is an associate professor of Engineering in Computer
Science at “Sapienza” University. He teaches programming techniques
and programming languages for the Web. He got a Ph.D. in Computer
Science at “Sapienza”. His research activity is on Web-based distance
learning, adaptive e-learning, social and collaborative learning, and
Web-based participatory planning. He has been workpackage leader and/
or national research unit coordinator in several international projects.

L. Versari participated in IOI 2012, winning a silver medal. He is at-
tending a Masters degree in Informatics at the University of Pisa and
he is a student at the Scuola Normale Superiore. He has been involved
in the training of the Italian IOI team for the last four years, helped or-
ganizing three Italian Olympiads in Informatics. He is one of the core
developers of oii-web.

Olympiads in Informatics, 2016, Vol. 10, 223–230
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.14

223

Bridging the Gap Between Bebras and Olympiad:
Experiences from the Netherlands

Willem van der VEGT
Dutch Olympiad in Informatics
Windesheim University for Applied Sciences
PO Box 10090, 8000 GB Zwolle, The Netherlands
e-mail: w.van.der.vegt@windesheim.nl

Abstract. While the number of contestants in the Dutch Olympiad in Informatics was declin-
ing, the number of participants in the Bebras contest grew rapidly. In order to reach these Bebras
participants for joining the Olympiad, several steps were taken. We analyzed the differences be-
tween the contests. We offered Bebras contestants an introductory course in programming. And we
changed he contest format of the first round of the Olympiad, introducing two new types of tasks.
As a result, the number of contestants increased and girls returned to the Olympiad.

Key words: Bebras contest, Olympiad in Informatics.

1. Introduction

The Dutch Olympiad in Informatics was initiated in 1991 as a contest for selecting
participants for the International Olympiad in Informatics. In the early years of its ex-
istence, the number of participants grew to just below 200. Since 2000 the number of
contestants in the first round of the contest has varied, but it is proven to be hard to attract
more pupils in high school for the Olympiad.

In 2005 the Netherlands was among the first countries to join Lithuania in the Bebras
Challenge. Over the last 10 years the number of participants has grown rapidly to over
21000. A lot of contestants of the Olympiad also participated in the Bebras contest. We
started looking into how we could persuade other Bebras-contestants into joining the
Olympiad as well.

Naturally, there are large differences between the Olympiad and the Bebras contest.
It is a bit like comparing the contestants in a marathon run that are aiming for a national
championship with the grand total of recreational runners; the participation of contes-
tants serves different goals. However, there are also similarities; both of our contests are
about algorithmic and computational thinking, and they aim to challenge the participants
to show what they are capable of.

In section 2 we will give a short history of the Olympiad and Bebras in the Nether-
lands and elaborate on the similarities and differences between the two contests. In sec-

W. van der Vegt224

tion 3 we will show the measures we took to bridge the gap between these contests. In
section 4 a sample problem in our new approach will be shown. In section 5 we will pres-
ent the first results of the new contest format and section 6 presents some discussion.

2. Olympiad and Bebras in the Netherlands

From 1999 till 2014 the Dutch Olympiad in Informatics (2016) had a fixed format with
three stages.

Three or four programming tasks for the first round are published on our website
in September; the final task is to design a program that can enter a tournament. Con-
testants can register themselves and they are able to submit their solutions till January
15th. Pupils are allowed, even encouraged, to co-operate. Our submission system is able
to handle over 10 different programming languages; evaluation is also done by this
system. However, all submissions that failed the test are inspected manually, and if the
jury is able to fix a small bug, like an IO-format, the program is re-evaluated and a small
amount of points will be subtracted (like 3 out of 100 for every fixed error). Contestants
that score at least 50% of the maximum score are allowed to join the second round. All
contestants that proceed to the second round get a certificate, and there are special prizes
for early submitters and the winner of the game tournament (Codecup, 2016).

This second round is in March at a university; two or three problems with subtasks
(van der Vegt, 2009) have to be solved and sometimes there are one or two more theo-
retical questions (van der Vegt, 2012). All languages that our system can handle are al-
lowed. Only in very rare cases the results of the automated evaluation are overruled. The
best performing contestants are invited for a trainings course in April on algorithms and
problem solving. They will need to switch to C++ or Pascal for the training course and
to prepare themselves for the IOI. Finally, the third round in May or June with a limited
number of contestants is used to determine the team for the next IOI.

Like in many countries, organizing the Bebras contest is done by the organizers of
the Dutch Olympiad in Informatics. The Bebras Challenge was first held in Lithuania
(Dagienė, 2006). The Netherlands started with a test contest in 2005. The contest grew
rapidly, in 2015 over 1.3 million pupils from more than forty countries participated in
their national Bebras. The questions used in these contests are chosen from an interna-
tional task pool. The contest is about computer science, algorithms, structures, infor-
mation processing and applications. No prior knowledge is required. Criteria for good
Bebras tasks are formulated by Dagienė and Futchek (2008). Dagienė and Stupurienė
(2016) give an overview of current research on Bebras.

Contestants compete in their own age division. In the Netherlands contestants have
40 minutes to complete 15 tasks. These can be multiple choice questions, questions
where an answer has to be given in the form of an integer or a short string, or interactive
questions. The contest runs for a week; the best performing contestants for every age
division are invited at a university for a second round (Beverwedstrijd, 2016).

All contestants in the second round get a certificate. In the IOI-style, 1/12 of them
get a gold certificate, 1/6 a silver one and 1/4 bronze. The overall winner in each age
category wins a gadget with a text inscription showing he or she was the winner of this
year’s Bebras contest in a specific agegroup.

Bridging the Gap Between Bebras and Olympiad; Experiences from the Netherlands 225

Performing in the Olympiad takes a reasonable amount of time; our research sug-
gests that a typical contestant can use 20 to 80 hours to write the programs for the first
round, tough experienced pupils can easily, within a few hours, create solutions that
score well enough to proceed to the second round. A contestant in the Bebras contest
does one round in 40 minutes.

The questions differ accordingly. Most of the tasks in the Olympiad require wri-
ting either a batch or a reactive program. So knowledge of a programming language is
required. For Bebras, no prior knowledge is needed. The tasks however tend to test the
perception of concepts of computer science and computational thinking. Barendsen et al.
(2015) showed that it is possible to use Bebras tasks to assess the understanding of these
concepts; in their research they focused especially on algorithms.

Another difference was the participation of girls. Until 2004 the Dutch delegation
for the IOI used to be a mixed team (Maggiolo, 2015). In later years there was no pos-
sibility to create such a team, because the girls almost completely disappeared out of the
contest. In Bebras we reached many girls, around 40% of the contestants every year. In
the highest age group this is around 20%.

3. Bridging the Gap

We decided to work on different changes to try to get more Bebras contestants in the
Olympiad. Now we are connected with the contestants in Bebras, we can invite them as
talented pupils to try the tasks of the Olympiad. But since most of them will not be able to
write a program, we now offer a programming course for interested pupils. We give con-
testants a link to the Dutch translation of the Canadian Computer Science Circles (2016).
This is an interactive website designed for student to learn programming in Python.

To give these newcomers a challenge, we had to add a series of tasks on a lower dif-
ficulty level. We call these tasks the A-tasks.

We also introduced a new kind of tasks in the first round of the Olympiad, tasks that
have the look and feel of a Bebras task, but with a problem that we think will not be
solved within a few minutes. You can solve the task without using a computer, but it
could also be possible to write a computer program to help solving the problem for you.
These tasks are called the B-tasks.

The three tasks of the type we used to offer in the Olympiad are now the C- and D-
tasks. An overview is given in Table 1. So we still offer a few hard programming tasks,

Table 1
Tasks in the first round of the Dutch Olympiad in Informatics

Task type Description Number of tasks Points per task Points per group

A Introductory programming tasks 5 40 200
B Theoretical, Bebras-like tasks 4 50 200
C Advanced programming tasks 2 100 200
D Game programming task 1 100 100

W. van der Vegt226

but we want to attract new contestants in two ways: as starting programmers, after tak-
ing the course, solving A-tasks and getting curious about the other tasks we are offer-
ing, or as experienced Bebras-contestant, with a few challenging, more time consuming
puzzles. We hope that this entices the pupils to try a few programming tasks.

When we started this approach in 2014, we had no clue how many contestants we
would be able to attract. We stated in our contest description that the top 100 contestants
with a certificate would be invited to the second round, tough the last year we had over
100 contestants in the Olympiad was 2003.

We decided to combine the certification system of Olympiad and Bebras, but we set
boundaries in advance, so a contestant will know where to aim. We give every contestant
that solved all A-tasks or all B-tasks bronze certificate. Performing well for both types is
enough for silver. The boundaries are stated in Table 2.

4. Output only Problems: an Example

The Bebras-like theoretical tasks are like the output only tasks at the IOI. On the Wiki
of the International Olympiad in Informatics (2016) this definition is given. “A task is
of type ‘output only’ if the contestant is provided with the input files, and must only
submit the corresponding output files. The contestant can solve each test case by hand
or by writing one or more programs in the language of his choice, and doesn’t need
to submit these programs.” In our contest we will not use input and output files; the
contestant has to download the problem description and to submit the answer in our
contest system.

For the first tasks we used exercises that were based on the tasks Dungeon, Pal-
indromes and Cities from Burton (2010) and Coins from Kubica and Radoszewski
(2010). Since there is a large period in time that these tasks can be solved in the first
round, we could not simple use one instance of these tasks. So we decided to make
these tasks personalized. The contest ID of a contestant was used as a random seed to
create a problem instance.

Two other restrictions were made:
For a full score (50 points) a submission had to be made within a week after the 1.	
problem statement was generated by the contest system. Each day of delay gives a
penalty of 1 point.
To discourage guessing, submitting a wrong answer gives a penalty of 10 points. A 2.	
new submission is only allowed after 24 hours.

Table 2
Boundaries for certificates

Type of certificate Total score

Bronze 200–399
Silver 400–599
Gold 600–700

Bridging the Gap Between Bebras and Olympiad; Experiences from the Netherlands 227

The header of a downloaded problem instance is shown in figure Fig. 1. It shows the
date and time of production, as well as the username of the contestant.

For task B4: “Woorden leggen”, Crosswords, a contestant had to place six give
words on a 10 by 10 grid, each letter in a different cell, in the way a crossword puzzle
or a Scrabble board is filled. All words had to be connected and no unintended short
words should appear. The number of cells in the smallest enclosing rectangle had to be
submitted.

Four of the six given words were the same for all contestants. The other two were
selected out of a dictionary; the total length of the two words was 13 and each of the
words had at least a length of 5. If our program discovered that this problem instance had
no valid solution, another one was created.

This is of course a tricky problem. There are many suboptimal solutions, so a con-
testant has to be really convinced before submitting. The average score for this task was
much below that of other B-tasks, as shown in Table 3.

In our second round, we take one of the B-tasks of the first round and we extend it
to a programming task with several subtasks. This way contestants are already familiar
with the problem behind the task. In the second round in 2016 we had a programming
task Crosswords with 6 subtasks. Input were a diagram with a filled in crossword and a
dictionary file with allowed words.

Count the empty cells.A.	
Count the number of different letters used.B.	
Count the number of different words used.C.	
Make a list of all words, in a specific order.D.	

Table 3
Scores for B-tasks

ID Title No solution Incorrect <=20% <=50% <=100% 100% Average

2014–2015 B1 Maze 26 45 0 4 24 83 78,94%
2014–2015 B2 Palindromes 36 14 1 2 42 87 72,52%
2014–2015 B3 Cities 39 8 0 1 24 110 74,99%
2014–2015 B4 Coins 43 8 0 1 23 107 72,37%
2015–2016 B1 Radio mast 29 26 1 1 56 107 78,41%
2015–2016 B2 Connections 42 15 6 3 37 117 72,43%
2015–2016 B3 Subsequence 47 17 0 5 30 121 73,97%
2015–2016 B4 Crossword 63 53 8 3 56 37 53,11%

Fig. 1. Header of a problem instance.

W. van der Vegt228

Make a list of all words in the dictionary that can be added in the diagram.E.	
Try to fill the diagram, minimizing the number of empty cells.F.	

A seventh subtask was output only: Produce a 10 by 10 diagram with only valid
words, and minimize the number of empty cells.

5. Results

After applying these changes in the Olympiad, the number of participants grew rapidly.
Fig. 2 shows the number of contestants that earned points with their submissions.

The boundaries we used for giving certificates proved their value. A part of the par-
ticipants with a bronze certificate was invited to the second round. Table 4 provides an
overview of certificates and participation.

In 2015 only 76 out of the 100 invitees competed in the second round, in 2016 we
invited 124 pupils and 84 of them joined the contest.

The introductory course in programming was a success. Between 2011 and 2014 the
average number of submissions using Python was 18%. In the last two contests it was
45%. So a lot of the new participants use the language that they were trained in. Other
contestants kept using the languages they knew already; we had submissions in C++, C#,
Java, Pascal, PHP, Visual Basic and Haskell.

It was nice to see how some teachers use the A-tasks as part of their assessment for
computer science education. We had at least three classes that submitted some of these
tasks, with unique solutions for the participants. This is a form of collaboration that
we encourage; we think that especially the A- and B-tasks should find their way to the
classroom.

Some of the contestants started with the B-tasks. About 10 % of the contestants re-
stricted themselves to these tasks. Since the cut-off for the second round was 240 points

Four of the six given words were the same for all contestants. The other two were selected out of a dictionary; the
total length of the two words was 13 and each of the words had at least a length of 5. If our program discovered that
this problem instance had no valid solution, another one was created.
This is of course a tricky problem. There are many suboptimal solutions, so a contestant has to be really convinced
before submitting. The average score for this task was much below that of other B-tasks, as shown in Table 3.

Table 3. Scores for B-tasks

ID Title No solution Incorrect <=20% <=50% <=100% 100% Average
2014-2015 B1 Maze 26 45 0 4 24 83 78,94%
2014-2015 B2 Palindromes 36 14 1 2 42 87 72,52%
2014-2015 B3 Cities 39 8 0 1 24 110 74,99%
2014-2015 B4 Coins 43 8 0 1 23 107 72,37%
2015-2016 B1 Radio mast 29 26 1 1 56 107 78,41%
2015-2016 B2 Connections 42 15 6 3 37 117 72,43%
2015-2016 B3 Subsequence 47 17 0 5 30 121 73,97%
2015-2016 B4 Crossword 63 53 8 3 56 37 53,11%

In our second round, we take one of the B-tasks of the first round and we extend it to a programming task with
several subtasks. This way contestants are already familiar with the problem behind the task. In the second round in
2016 we had a programming task Crosswords with 6 subtasks. Input were a diagram with a filled in crossword and a
dictionary file with allowed words.

A. Count the empty cells
B. Count the number of different letters used
C. Count the number of different words used
D. Make a list of all words, in a specific order
E. Make a list of all words in the dictionary that can be added in the diagram
F. Try to fill the diagram, minimizing the number of empty cells

A seventh subtask was output only: Produce a 10 by 10 diagram with only valid words, and minimize the number of
empty cells.

5. Results

After applying these changes in the Olympiad, the number of participants grew rapidly. Fig. 2 shows the number of
contestants that earned points with their submissions.

Fig. 2. Participation in the Olympiad before and after the new format

The boundaries we used for giving certificates proved their value. A part of the participants with a bronze certificate
was invited to the second round. Table 4 provides an overview of certificates and participation.

Fig. 2. Participation in the Olympiad before and after the new format.

Bridging the Gap Between Bebras and Olympiad; Experiences from the Netherlands 229

in 2015 or 297 point in 2016, competing only with A- or with B-tasks could not get you
an invitation for the second round.

And the girls returned to the Olympiad! Between 2005 and 2014 we had only three
girls in our contests. None of them performed well enough that we could consider to let
them advance to the final round. Table 4 shows that we reach a reasonable number of
girls in this contest, about 12% of the participants. Alas, last year only 2 of the girls actu-
ally joined the second round. One of them scored very reasonable, the other one is still
young and has a lot of years ahead to improve.

6. Discussion

We changed the contest format for the Olympiad in order to attract more Bebras-con-
testants to the Olympiad. This turned out well. The number of participants was at least
tripled, the girls returned to the Olympiad and we welcomed many newcomers in pro-
gramming, due to the introductory course. The certification method worked out well.

Which challenges remain?
We want to attract still more contestants. Given the discussions on the role of pro-1.	
gramming in education and the emphasis on computational thinking, both Bebras
and the Olympiad offer possibilities to discuss tasks and backgrounds in a class-
room. In Bebras we have a good working relation with many teachers. Getting the
computer science teachers involved in the Olympiad, using for instance A-tasks as
part of the assessment, can attract more participants.
New forms of tasks will be needed in the near future. Informatics as a subject is 2.	
changing and developing all the time, for instance by introducing physical comput-
ing (Przybylla and Romeike, 2014) and the use of constructivists learning envi-
ronments (Weigend, 2014). The contest format of the Olympiad gives a focus on
algorithms. Other topics need to find a place. So we need to keep experimenting
with new question types.

Table 4
Results of the first round of the Olympiad

Results first round 2014–2015 2015–2016
Total Girls Total Girls

Gold 13 0 23 0
Silver 35 0 65 1
Bronze, proceed 54 9 36 9
Bronze, not proceed 9 2 25 6
No certificate 71 12 71 9

Total with score 182 23 220 25
No score 47 12 94 16

Total users 229 35 314 41

W. van der Vegt230

The Olympiad is still mostly a man’s world. Finding partners, like focus groups 3.	
on girls and technology, is a condition to improve the participation of girls in the
Olympiad.

The tasks we introduced in our new contest were based on the work of colleagues in
the international community. We found ready-to-use ideas, that we only had to fit into
our new approach.

Exchanging experiences within this community is and will be an important base for
further improvements.

References

Barendsen, E., Manilla, L., Demo, B., Grgurina, N., Izu, C., Mirolo, C., Sentence, S., Settle, A. Stupurienė, G.
(2015). Concepts in K-9 computer science education. In: Dagienė, V. (Ed.), ITICSE’15: Proceedings of the
2015 ACM Conference on Innovation and Technology in Computer Science Education. ACM, New York,
NY, USA, 85–116. DOI: http://dx.doi.org/10.1145/2858796.2858800

Bebras website (2016). http://bebras.org/
Beverwedstrijd (2016). (In Dutch). http://www.beverwedstrijd.nl/
Burton, B. (2010). Encouraging algorithmic thinking without a computer. Olympiads in Informatics, 4, 3–14.
Codecup (2016). (In Dutch). www.codecup.nl or nio3.codecup.nl
Computer Science Circles (2016). http://cscircles.cemc.uwaterloo.ca/
Dagienė, V. (2006). Information technology contests – introduction to computer science in an attractive way.

Informatics in Education, 5(1), 37–46.
Dagienė, V., Futschek, G. (2008). Bebras international contest on informatics and computer literacy: criteria

for good tasks. In: R.T. Mittermeier, M.M. Syslo (Eds.), ISSEP 2008, LNCS 5090. Springer-Verlag Berlin
Heidelberg, 19–30.

Dagienė, V., Stupurienė, G. (2016). Bebras – a sustainable community building model for the concept based
learning of informatics and computational thinking. Informatics in Education, 15(1), 25–44.

Dutch Olympiad in Informatics (2016). (In Dutch). http://www.informaticaolympiade.nl
International Olympiad in Informatics (2016). Output only.

http://wiki.ioinformatics.org/wiki/Output_only

Kubica, M., Radoszewski, J. (2010). More algorithms without programming. Olympiads in Informatics, 4,
157–168.

Maggiolo, S. (2015). An update on the female presence at the IOI. Olympiads in Informatics, 9, 127–137.
Przybylla, M., Romeike, R. (2014). Physical computing and its scope – towards a constructionist computer sci-

ence curriculum with physical computing. Informatics in Education, 13(2), 241–254.
van der Vegt, W. (2009). Using subtasks. Olympiads in Informatics, 3, 44–48.
van der Vegt, W. (2012). Theoretical tasks on algorithms; two small examples. Olympiads in Informatics, 6,

212–217.
Weigend, M. (2014). The digital woodlouse – scaffolding in science-related Scratch projects. Informatics in

Education, 13(2), 293–305.

W. van der Vegt is teacher’s trainer in mathematics and computer sci-
ence at Windesheim University for Applied Sciences in Zwolle, the
Netherlands. He is one of the organizers of the Dutch Olympiad in
Informatics and he joined the International Olympiad in Informatics
since 1992. He was involved in the IOI-workshops on tasks in Dagstuhl
(2006, 2010) and Enschede (2008). He also is one of the task designers
for the Bebras contest.

Olympiads in Informatics, 2016, Vol. 10, 231–235
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.15

231

Problem Solving, Presenting, and Programming:
A Matter of Giving and Taking

Tom VERHOEFF
Dept. of Math. and CS, Eindhoven University of Technology
Eindhoven, The Netherlands
e-mail: t.verhoeff@tue.nl

Abstract. Nim is a well-known two-person game, where players alternate taking items from one
of multiple piles. Finding a winning strategy for such games is a nice exercise in problem solv-
ing. Typically, the winning strategy for classical nim is explained in terms of nim sums, involving
binary notation of numbers. I explain how to understand and play a winning strategy without prior
knowledge of binary notation, which is useful when presenting this strategy in primary school.
Programming that strategy is also an interesting challenge. This can be done elegantly in a func-
tional language that supports patterns, such as the Wolfram Language. I conclude by giving you a
variant of nim to work out yourself.

Keywords: impartial games, nim, functional programming.

1. Introduction of Problems to Solve

I teach enrichment classes in a primary school. The focus is on problem solving. One
of the themes is puzzles and games that allow a mathematical analysis. Sometimes we
work on ‘exotic’ (less known) puzzles and games, such as ‘the princess on a graph’,
Perfect (2011), and others, Dore et al. (2010). But of course it is also important to ad-
dress the classics.

One of these all-time classics is the following two-person game, known as misère
nim1, played as follows:

Start with several piles of items (go stones, pennies, toothpicks, etc.).●●
Players alternate turns.●●
At each turn, a player takes one or more items from one pile.●●
The player taking the last item loses.●●

Nim is an impartial game, in the sense that the set of available moves depends only on
that state of the piles, and not on whose turn it is. The problem is to find a winning strategy:
decide which positions are a win for the first player, and how to play in such positions.

1	https://en.wikipedia.org/wiki/Nim

T. Verhoeff232

This can be formulated as a programming problem, where you need design and im-
plement a function to select a move for a given game position. It can also be offered as
a reactive task, Verhoeff (2009).
However, the problem that I first want to address is how to present a winning strategy
that does not require prior knowledge of binary notation, so that it can be explained to
pupils in primary school.

2. Presenting a Simple Solution

Impartial games are mathematically well understood via the Sprague-Grundy Theo-
rem2, especially for normal play, where the player who cannot move loses. But in this
article we use the misère rule: the player who cannot move wins, making it a bit more
interesting.

When only piles of size 1 remain, it is easy to see how the game proceeds. When
the number of size-1 piles is even, the player to move wins, and loses when it is odd.
Therefore, when all piles except one have size 1, the player to move can win, viz. by
taking away from the larger pile such that an odd number of piles of size 1 remain, i.e.,
by taking away all or all-but-one items from the larger pile.

What remains to analyze are game positions with at least two piles whose size is
larger than 1. It turns out (some explanation will follow) that in this case we need to
break each pile into distinct groups whose size is a power of  2. Traditionally, this is ac-
complished by writing the pile size in binary notation.

However, I felt that too complicated to explain in primary school. And then it struck
me that there is an easy way to avoid binary notation. For each pile, we are going to form
groups as follows:

Break the pile down into groups of size 1.1.	
Repeatedly combine two groups of equal size into one group.2.	
This terminates when all group sizes are different.3.	

Observe that it is an invariant of this process that the group sizes are powers
of 2: Initially, in Step 1, the group sizes are  1 = 20, and in Step 2 the group size
doubles:  2  ×  2 = 2+1. The number of groups is a suitable variant function, which
decreases in each iteration of Step 2, proving loop termination. Note that this is a
non-deterministic algorithm.

Once all piles have been broken down into such groups, proceed as follows:
For each group size, determine how often such groups occur.1.	
Consider the largest group size 2.	   that occurs an odd number of times.
If no such group exists, the position is lost; otherwise, proceed with Step 4.3.	
Start by removing already 1 item from a pile 4.	  that has a size- group.
Regroup the remaining items of that group as explained above.5.	
For all group sizes 6.	     in pile  , do the following:

2	https://en.wikipedia.org/wiki/Sprague?Grundy_theorem

Problem Solving, Presenting, and Programming: A Matter of Giving and Taking 233

size- groups
in  in total Remove from 

0 ... does not happen
1 even 0 size- groups
1 odd 1 size- group
2 even 2 size- groups
2 odd 1 size- group

After this move, all group sizes occur an 7.	 even number of times. Hence, it leaves a
lost position.

Breaking down the group of size   − 1 = 2 − 1  in Step 5, you obtain    groups of
all sizes  2  with    . Therefore, in Step 6 every group size      occurs at least
once.

By the way, this also explains why these groups sizes, being powers of  2, are use-
ful. But do note that there is no need to know about powers of  2  to carry out these
algorithms.

3. Programming the Simple Solution

In a functional programming language that supports patterns, the first algorithm, which
splits a pile into groups, can be elegantly expressed. Here it is using the Wolfram Lan-
guage, Wolfram (2016):

(* Create groups of 1, given the pile size n *)

singletons[n_Integer] := Table[{1}, n];

(* Combine two equal groups, using a pattern *)

combine[{x___, a_, y___, a_, z___}] := {x, Join[a, a], y, z};

(* Do nothing if no equal groups are present *)

combine[list_List] := list;

(* Repeatedly combine equal groups until no more change *)

combineStar[list_List] := FixedPoint[combine, list];

(* Split a pile of size n *)

split[n_Integer] := combineStar @ singletons @ n;

(* Split all piles in a position *)

split[position_List] := Map[split, position];

Some examples:

singletons[5]

{{1}, {1}, {1}, {1}, {1}}

combine[{{1}, {1}, {1}, {1}, {1}}]

{{1, 1}, {1}, {1}, {1}}

T. Verhoeff234

split[5]

{{1, 1, 1, 1}, {1}}

split[{3, 4, 5}]

{{{1, 1}, {1}}, {{1, 1, 1, 1}}, {{1, 1, 1, 1}, {1}}}

The second algorithm, which determines whether a position is won and how to move
is equally elegant.

(* Reduce by removing a pair of equal groups *)

reduce[{x___, a_, y___, a_, z___}] := {x, y, z};

(* Do nothing if no equal groups are present *)

reduce[list_List] := list;

(* Repatedly reduce a list until no more change *)

reduceStar[list_List] := FixedPoint[reduce, list];

(* Determine the nimsum of a list *)

nimsum[list_List] := reduceStar @ Catenate @ list;

(* Determine whether a position is won *)

won[position_List] := nimsum @ split @ position != {};

(* Move to make, if position is won and

has at least two groups of size > 1 *)

move2[position_] :=

Block[{s, ns, mx, i},

s = split @ position;

ns = nimsum @ s;

(* Determine largest group in ns *)

mx = First @ MaximalBy[ns, Length];

(* Determine index of pile with group mx *)

i = First @ FirstPosition[s, mx];

(* Replace pile i with nimsum of that pile and ns *)

ReplacePart[position, i -> Total[nimsum @ {ns, s[[i]]}, 2]]

];

An example

nimsum @ split @ {3, 4, 5}]

{{1, 1}}

won[{3,4,5}]

True

move2[{3,4,5}]

{1, 4, 5}

Programming move1 that moves optimally when at most one group has a size greater
than 1 is left as an exercise.

I admit that it takes some time to get acquainted with functional programming. But
once you do, it does pay off.

Problem Solving, Presenting, and Programming: A Matter of Giving and Taking 235

4. Conclusion

Finding a simple way for presenting a solution to a problem can in itself benefit from
problem solving. I have applied this to presenting an optimal strategy for classical nim,
a well-known taking game. Finally, I have shown how this strategy can be expressed in
the Wolfram Language using functional programming.

Let me finish by giving you a new challenge. In classical nim, a player must take one
or more items from exactly one pile. Here is a less well-known variant: at each turn, the
player must take one or more items from one or two piles. Find the winning positions for
the first player and how to determine a winning move.

While you are at it, the game Chomp3, is still unsolved, in the sense, that we do not
know how to determine a winning move for the first player (although it has been proven
that the first player can win).

References

Dore, R. et al. (2010). “Math puzzles for dinner”. MathOverow, 24 Jun. 2010. (Accessed 19 Jun. 2016)
http://mathoverflow.net/questions/29323/math-puzzles-for-dinner/

Perfect, C. (2011). Solving the “princess on a graph” puzzle. Blog, 15 Dec. 2011. (Accessed 19 Jun. 2016)
http://checkmyworking.com/2011/12/solving-the-princess-on-a-graph-puz

Verhoeff, T. (2009) 20 Years of IOI competition tasks. Olympiads in Informatics, 3, 149–166.
Wolfram (2016). Wolfram Language. (Accessed 20 Jun. 2016) http://www.wolfram.com/language

T. Verhoeff is Assistant Professor in Computer Science at Eindhoven
University of Technology, where he works in the group Software Engi-
neering & Technology. His research interests are support tools for veri-
fied software development and model driven engineering. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb, Croatia,
in particular for his role in setting up and maintaining a web archive of
IOI-related material and facilities for communication in the IOI com-
munity, and in establishing, developing, chairing, and contributing to
the IOI Scientific Committee from 1999 until 2007.

3	https://en.wikipedia.org/wiki/Chomp

Olympiads in Informatics, 2016, Vol. 10, 237–247
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.16

237

REPORTS

Gomel Training School for Olympiads
in Informatics

Michael DOLINSKY
Department of Mathematics, Gomel State University “Fr. Skaryna”
Sovetskaya str., 104, Gomel, 246019, Republic of Belarus
e-mail: dolinsky@gsu.by

Abstract. The article describes technology used to teach programming and preparing for olympi-
ads in informatics. Remarkable feature is a balanced education of four age ranges (preschoolers,
grades 1–4, grades 5–8, grades 9–11) in four directions – thinking, mathematics, programming,
algorithmization – and permanent Internet competitions to improve motivation. Distance learning
system DL.GSU.BY is the effective technical base of the teaching.

Keywords: programming teaching, olympiad in informatics, distance learning tools.

1. Introduction

The author has been training pupils of different ages for the in programming and prepa-
ring them for olympiads in informatics in Gomel School 27 since September of 1996 and
with help of the Distance Learning system DL.GSU.BY (further DL) since September
of 1999.

The primary goals and objectives of this process are as follows:
To develop in each child such properties as willingness to learn, analytical skills, ●●
self-dependence, and creativity.
To give each child the base computer literacy.●●

M. Dolinsky238

To help each child to understand what is “programming” and to decide whether his/●●
her professional future will be with computer programming or without it.
To prepare everybody who invests sufficient time to reach medals of national and ●●
international olympiads in informatics.

The results of this work during 1996–2015 are reflected in the following achieve-
ments of pupils of Gomel and Gomel region (Performance Statistics, 2015):

More than one hundred pupils chosen programming as profession.●●
Dozens of pupils entered universities without exams.●●
189 diplomas and 32 honorable mentions from national Olympiad in Informatics ●●
of Belarus.
37 diplomas of international collegiate programming contests (Sankt-Petersburg, ●●
Russia).
8 gold, 11 silver and 8 bronze medal of International Olympiad in Informatics ●●
(IOI).

Table 1 below lists the medal results from IOI 1997–2015 of the teams of different
regions of Belarus as well as Minsk team and team of the Lyceum of Belarus State Uni-
versity separately represented on national Olympiad in Informatics of Belarus.

Important hallmark of the Gomel training school for olympiads in informatics is the
start of learning as early as possible. It provides earlier (grade 10 or earlier) successes in
the olympiads including IOI (all from city of Gomel unless noted otherwise):

Aliaksei Danchanka (grade 9): 1998 – participation, 1999 – silver, 2000 – silver.●●
Mikhail Svarycheuvski (10): 2000 – silver, 2001 – bronze.●●
Raman Dzvinkouski (9): 2002 – bronze.●●
Uladzimir Miniailau (9): 2005 – silver, 2006 – gold, 2007 – silver.●●
Henadzi Karatkevich (5): 2006 – silver, 2007–2012 – gold.●●
Uladzislau Padtsiolkin (9): 2011 – silver, 2012 – silver, 2013 – bronze.●●
Siarhei Kulik (9, from Mozyr●● 1): 2001 – silver, 2012 – bronze, 2013 – gold.

1	 Mozyr – town in Gomel Region.

Table 1
Medals from the national olympiad

Region Total Gold Silver Bronze

Gomel region 28 9 11 8
Minsk region 11 1 5 5
Lyceum of BSU 9 1 3 5
Vitebsk region 7 0 3 4
Minsk 5 0 3 2
Grodno region 4 0 2 2
Brest region 1 0 0 1
Mogilev region 0 0 0 0

Total 65 11 27 27

Gomel Training School for Olympiads in Informatics 239

Adam Bardashevich (10, Mozyr): 2001 – silver, 2012 – gold.●●
Fedar Karabeinikau (8): 2014 – participation, the first under bronze cutoff.●●

Unconditionally, their success is based on their own hard work as well as their pa-
rents’ efforts on education and the creation of conditions for rapid growth. In addition,
the success of Mozyr pupils is strongly connected to Alexey Borunov, Mozyr coach for
programming contests. Nevertheless, the author believes that the education environment
described in this paper essentially helped everybody mentioned above and many other
medalists of national and international olympiads in informatics to achieve such remark-
able results.

The remainder of the paper is structured as follows: Chapter 2 represents the author’s
educational principles; Chapter 3 describes the elaborated education courses, exercise
packages and permanent Internet competitions; Chapter 4 contains the author’s educa-
tional strategy; Chapter 5 represents Gomel Regional Olympiad in Informatics; Chapter
6 is devoted to newly elaborated “Accelerated Learning” approach to teaching; finally
Chapter 7 contains conclusions.

2. The Author’s Educational Principles

This chapter describes the principles used by author to organize the teaching process.
Constancy. Lessons are held in informatics cabinet of Gomel School 27 every

Wednesday and every Sunday, even on holidays (including summer). When the author is
absent from Gomel, he gets somebody to fill in for him. The site DL.GSU.BY supports
the education process around the clock, so everyone can study anytime and anyplace at
their own convenience.

Inclusiveness. The author does not deny anyone who comes to learn. Now the les-
sons are organized in such a way that one can begin studying not only from the first
grade of school but also from preschool ages – as young as 4 years (Dolinsky, 2013).

Efficiency. The main criteria of efficiency of lessons is the ratio of the study time
to total usage time. The author tries to organize the study so that each pupil works
hard each minute of each lesson, either learning something new or consolidating their
skills.

Individuality. The author has for many years believed that efficiency in the sense
described above can be achieved only through individual and differentiated instruction.
That is, each pupil moves on at their own rate and accordingly at any given time all pu-
pils can be at different points of the learning process.

Self-dependence. Obviously such individuality can be achieved only though inde-
pendence of learning, since a teacher physically can’t immediately teach (to explain, to
listen, etc.) all pupils simultaneously, particularly if the pupils work with different ma-
terials. Furthermore, the self-dependence is an important objective of the education. By
and large, the author’s view is that teaching independence is even more important than
teaching any specific knowledge. It is especially true in the area of programming where
one needs to learn and relearn all professional life.

M. Dolinsky240

Optimality (of material selection). The author tries to select the most useful mate-
rial and construct the process of studying it in the most effective system. The author
can’t claim to have achieved perfection, but it is true that he does try to teach today better
than yesterday and tomorrow better than today.

Demands (to comply with the rules). Unfortunately, the list of rules is ever expan-
ding, complicating the compliance: keep silence in the audience; know where the classes
are held; bring the notebook and pen; come to class before lesson starts, leave when the
lesson is over; do exercises himself, (don’t cheat); etc.

Using the site DL.GSU.BY. Since 1999, the author has headed the development
of this project and actively used it for teaching. This approach has the following ad-
vantages:

Fast verification of solutions (from a few seconds to a few minutes) and as a result ●●
– multiplying the intensity of the teaching process.
Variety of task types – differentiating the study and keeping interest of students ●●
with different levels of preparing and motivation.
Automatic presentation of tasks and differential study (Dolinsky, 2012) – the tech-●●
nical basis for customized education.

Teacher activity. The author tries to organize the studying process in such a way that
each student works independently as much as possible.

3. Educational Courses, Exercise Packages, and Permanent Competitions

The teaching process is based on using the distance learning system DL and includes the
following learning and training courses: “Programming-professionals (individual)”, “Pro-
gramming-professionals (collegiate)”, “Programming-beginners”, “Programming-pro-
fessionals (individual) work on errors (W/E)”, “Programming-professionals (collegiate)
W/E”, “Programming-beginners W/E”, “Preparing for IOI”, “Methods of algorithmiza-
tion”, “Basic programming”, “Start to program”, “Informatics”, and “Mathematics”.

The course “Programming-professionals (individual)” is open from beginning
of December to middle of July/August – until IOI. It contains weekly Sunday 5-hour
(9:00–14:00 GMT+3) individual contests – tasks from past olympiads of regional level
until the first decade of January (when Gomel regional olympiad in informatics is held),
then from olympiads of national level until end of March (when national olympiad in in-
formatics of Belarus is held), and from olympiads of international level until the close.

The course “Programming-professionals (collegiate)” is open from the middle of
July/August (after IOI is finished) until the end of November, when Collegiate Program-
ming Contest in Sankt-Petersburg is held. It has weekly Sunday 5-hour (9:00–14:00
GMT+3) contest with tasks from past collegiate contests.

So, the whole year (including holidays) every Sunday there is 5-hour individual or
collegiate open on-line contest for all comers. Immediately after the olympiad is finished
the tasks become available for practice in courses “Programming-professionals (in-
dividual) (W/E)” and “Programming-professionals (collegiate) W/E”, respectively.

Gomel Training School for Olympiads in Informatics 241

For participants in informatics cabinet of Gomel School 27, there is additionally interac-
tive discussion of solutions.

Tasks are classified by themes and copied into appropriate branches of the course
“Methods of algorithmization”. Thus, the latter is adjusted to the trends in the develop-
ment of competitions and provides targeted preparation for olympiads. In addition, the
tasks that were not solved are copied to the course “Preparing for IOI”.

To activate self-study and practice in the courses “Methods of algorithmization” and
“Preparing for IOI” we hold the permanent Internet competitions: Autumn Cup, Winter
Cup, Spring Cup, Summer Cup, and Whole Year Prize. In the Cups we award the three
the best pupils who solve most tasks for the season (autumn, winter, spring, summer).
In the “Whole Year Prize” we awarded the one pupil who solves the most tasks for the
whole year (autumn-winter-spring-summer). In the course “Preparing for IOI” it is in-
sufficient to solve one task, but in addition one needs to describe their solution in the DL
forum corresponding to the subject of the task.

The courses “Programming-professionals (individual) (W/E)”, “Programming-pro-
fessionals (collegiate) W/E”, “Methods of algorithmization”, “Preparing for IOI”, fea-
ture “Tests grants”. That is, a pupil can get the test data (input data, model answer, and
program-checker) on which their solution failed. There’s a special FAQ and a dedicated
DL forum to support pupils in the situation “I got the right answer on my computer, but
my solution was rejected”.

For individual contests (after their end) as well as for all the courses, there are perma-
nent result tables with links to solutions of all participants (as images to prevent copying
and resubmitting).

The DL forums have links to authors’ systematic descriptions of solution as well as
to descriptions by pupils of Gomel and university students.

The author elaborated a set of tutorials, two from them have been published as books
in Sankt-Petersburg (Dolinsky, 2005, 2006).

Another important aspect is the joint participation of pupils and university students
in the weekly Sunday olympiads where students are training for ACM ICPC (only for
quarter-finals and semi-finals so far).

The weekly Sunday olympiads as well as practice in other weekdays is targeted
towards medalists of national olympiad in informatics preparing for International Col-
legiate Programming Contests and IOI, as a rule pupils of grades 9–11.

For pupils of grades 5–8 preparing for regional olympiads is the course “Basic pro-
gramming” with possibilities of automatic task presentation and differential study. The
exercise system has tree-like structure. Correct solution provides transition to the next
exercise. Wrong solution or pressing the button “I don’t know” transitions the student
into subtree teaching to solve the problem. Own teaching subtrees may be settled for any
such teaching tasks. This way we provide individual differential teaching that adapts not
only to the level of preparation of a pupil but also to their current emotional and physi-
cal state. Pupils who know more and are in better shape branch less and thus advance
faster. The course “Basic programming” has exercise packages with differential tea-
ching on the following topics: introduction to programming, one-dimensional arrays,
two-dimensional arrays, geometry, strings, sorting, queues. To increase the motivation

M. Dolinsky242

of beginners, there are weekly Sunday olympiads in the course “Programming-begin-
ners” from 7:00 to 20:00 (GMT+3). One can solve the same tasks for practice in the
course “Programming-beginners W/E”.

For pupils in grades 1–4 there is the learning course “Start to program” that largely
contains the same tasks as “Basic Programming”, but in essentially linear form. Most
of teaching trees are reorganized into sequences of tasks for simpler learning. There are
permanent Internet-competitions “Season Cups” and “Whole Year Prize” for learning
courses “Basic Programming” and “Start to program”. Note that in the competitions the
tasks from the learning subtrees are not counted. In the course “Start to Program” only
pupils of grades 1–4 and in the course “Basic Programming” only pupils of grades 1–8
are awarded.

The training course “Informatics” was created for pupils of grades 1–4 of Gomel
School 27. Originally there was only one package of exercises: “Learning to think”
(Dolinsky, 2013). But soon we started to copy exercises from “Start to Program” to
for more advanced pupils in “Informatics”. Moreover, we re-open “Informatics” every
academic year, which gives more possibilities to change it. So, now the course “Infor-
matics” has practically the same material as the course “Start to Program” has, but in
a better methodological form. The course “Informatics” also has permanent Internet-
competitions “Season Cups” and “Whole Year Prize” where pupils of grades 1–4 are
awarded.

The “Basic Programming”, “Start to program”, and “Informatics” courses are based
on the Pascal programming language.

Finally, the course “Mathematics” contains different tasks in mathematics, inclu-
ding such exercise packages as flash tasks on mathematics of grades 1–5, tasks from the
international mathematics contest “Kangaroo” (2001–2015, all grades), Canadian Math
Contests (1998–2015, grades 7–11), “Math from informatics”. In the latter, the tasks
are from the course “Programming-beginners”, but reformatted so that the pupil needs
to manually enter the answer for given input data. The answers can be computed manu-
ally or using an appropriate program. For the course “Mathematics” there also are also
permanent Internet-competitions “Season Cups” and “Whole Year Prize” where pupils
of grades 1–8 are awarded.

Tables 2 and 3 represent participation statistics from 2008 to 2014.

Table 2

2008/09 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15

Mathematics – – – – 146 175 214
Informatics – – – 249 301 179 212
Start to program 22 182 142 118 174 189 300
Basic programming 10 263 205 159 290 309 468
Methods of algorithmization 205 269 340 332 491 425 441
Preparing for IOI 31 25 8 7 12 17 3

Total 237 739 695 820 1424 1294 1638

Gomel Training School for Olympiads in Informatics 243

Table 3

2008/09 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15

Programming-prof. (ind.) 98 116 128 165 157 141 133
Programming-prof. (col.) 51 59 73 101 55 113 71
Programming-beginners 77 67 59 89 108 69 211

4. The Educational Strategy

Currently we are providing education for four age ranges: preschoolers (from 4 years),
junior school (grades 1–4), middle school (grades 5–8), and high school (grades 9–11),
in four directions: thinking, mathematics, programming, algorithmization:

Thinking.●● The author believes that development of thinking needs to be first
to provide higher learning efficiency. For preschoolers and juniors the training
course “Informatics” has special packages of exercises “Learning to think”, “Dif-
ferences”, “Analogy”, “Learning to Count”, and “Tangram”. The courses “Start to
Program” and “Basic Programming” have embedded exercises for development
of thinking.
Mathematics. ●● It is clear that knowledge of mathematics is important in itself,
but it is more important that development of abilities to solve mathematical
problems automatically develops effective thinking skills. On one hand, there
is training course “Mathematics” containing different mathematical tasks for
pupils from grade 1 to grade 11. On the other hand, training courses “Infor-
matics”, “Start to Program”, “Basic programming” have special packages of
exercises where mathematics and programming are integrated. For example,
the course “Informatics” has packages “Math (programs)” for grades 1–5. Each
of them contains tasks from appropriate mathematics textbook, converted to
programming tasks by parameterization. To solve the task, one need to solve
it mathematically and then write the corresponding program. The course “Ba-
sic Programming” contains packages “Kangaroo grades 3–4” (2001–2008) and
“Kangaroo grades 5–6” (2001–2009) where appropriate mathematics tasks are
converted into programming tasks.
Programming. ●● We are using the Pascal programming language to teach pupils in
grades 1–8. But the language is a means, not a goal. Special attention is given to
debugging technology as well as structuring of program sources to improve their
readability and understandability.
Algorithmization. ●● Best of all we are trying to develop skills for algorithm elabo-
ration. The second direction is study of standard algorithms. Both directions are
supported by weekly olympiad solving as well as the following practice on un-
solved tasks and studying the needed theory. In addition, the course “Methods of
algorithmization” is strongly structured around themes and subthemes and contains
information about task sources (year, country, etc.).

M. Dolinsky244

5. Regional Olympiads in Informatics

Since 2010 the tasks for the Gomel regional olympiad that qualifies 15 best participants
to the national olympiad are created by the national Scientific Committee. But in Gomel
region we have at least five olympiads whose tasks we prepare ourselves: in autumn two
olympiads (school and city level) for grades 1–11 and in spring three olympiads (school,
city, and regional level) for grades 1–9. For those five olympiads we introduce three age
divisions: in autumn grades 1–4, grades 5–8, grades 9–11; and in spring grades 1–4,
grades 5–7, grades 8–9. We use the tasks of olympiads for:

Targeted training for higher level olympiads.a.	
More accurate indication to students and teachers of what and how to learn.b.	

Tasks for grades 9–11 (in spring grades 8–9) include three groups of increasing
complexity (note that each pupil needs to try solve all tasks from all groups):

First group (5 tasks)●● – tasks on topics from the course “Basic Programming” (one-
dimensional arrays, two-dimensional arrays, geometry, strings, greedy (simple al-
gorithm based on sorting)).
Second group (5 tasks)●● – tasks based on the course “Methods of algorithmiza-
tion”: queues, recursion, dynamic programming, graphs, and brute force.
Third group (2 tasks)●● – tasks from the course “Preparing for IOI”, as a rule on the
following topics (or their combinations): research, complex dynamic program-
ming, complex data structures, and complex problems on graphs.

This approach allows participation “with interest” for pupils who only began to study
programming (first group of tasks). At the same time we can determine the preparation
level of those who spent more time (second group of tasks) and point everyone to the
topics that need more detailed work. Finally the third group of tasks provides engage-
ment for all 5-hours for the most prepared students, the strategic goal for whom is pre-
paring for international olympiad in informatics.

Tasks for grades 5–8 (in spring grades 5–7) also include three groups of increasing
complexity:

First group (5 tasks)●● – tasks on topics from course “Basic Programming”: intro-
duction to programming, one-dimensional arrays, two-dimensional arrays, geo-
metry, sorting.
Second group (3 tasks)●● – strings, story problem, research task.
Third group (2 tasks)●● – implementation task from a real olympiad, queues.

For the first group the simplest tasks from each topic are chosen. It is a way to check
whether a pupil has studied the topic at all, because the task has a minimum of text and
is standard for the topic.

The second group of tasks is to differentiate pupils (who have the preparation level
to solve tasks from the first group) on the skills needed to solve the olympiad tasks.
The first important such skill is development and debugging of own algorithms. The
string processing task is one where the problem formulation is very simple and easy
to understand. The main difficulty is to formulate the solution process (algorithm) in a

Gomel Training School for Olympiads in Informatics 245

programming language. The second important skill for solving is the ability to read and
understand the task text, to differentiate the important, minor, and insignificant things, to
reformulate the problem in mathematical and programming terms. So our story problem
is the task with detailed (or even cumbersome) formulation but with very simple solu-
tion. We use simplified versions of tasks from national olympiads. The third important
skill is ability to research the solution space. The task statement may be very brief so
that it is clear what needs to be done. The main problem is to invent a way to get the
result. To get such tasks, we reformulate in programming terms tasks from international
mathematics contest “Kangaroo” (grades 5–6).

Finally, the third group of tasks checks students’ readiness to solve original problems
from real olympiads. First task is on implementation details from one the following to-
pics: one-dimensional arrays, two-dimensional arrays, geometry, strings. The second is
an original task on queues.

Tasks for grades 1–4 also include three groups of increasing complexity:
First group (10 tasks)●● includes tasks from “Introduction to programming” (three
tasks on integers, one task on each of characters, strings, length of strings, num-
ber of characters in string) and three tasks on using Pascal standard subroutines
DELETE, COPY, POS to delete and copy strings and to find position one string
within another.
Second group (5 tasks)●● includes tasks on one-dimensional arrays: sum of all ele-
ments, number of elements with some feature, minimal/maximal elements, search
for the first element with some feature.
Third group (5 tasks)●● is to differentiate more prepared students and includes the
tasks on the following topics: two-dimensional arrays, geometry, strings, research
(base on “Kangaroo” tasks for grades 2–3), and a story problem.

Systematic and purposeful development of tasks for regional olympiads is an impor-
tant means of improving the student and teacher preparation in the region.

Note that all five regional olympiads in all three age divisions are on-line events, so
usually students from all over Belarus participate in them.

6. Accelerated Learning

To improve the teaching results, recently a few new packages of tasks and exercises
were introduced:

“Accelerated course – 2013”●● includes the following topics: introduction to pro-
gramming, one-dimensional arrays, two-dimensional arrays, geometry, sorting,
strings, story problem, research task. Each topic includes three parts: theoretical
minimum, tasks from Gomel olympiad for grades 1–4, tasks from Gomel olym-
piads for grades 5–8. Such approach allows the most capable pupils to move with
maximal speed. At the same time pupils who encounter difficulties in this course
can use the standard learning approach.

M. Dolinsky246

“Olympiads grades 5–8 by topic” ●● includes tasks from corresponding Gomel
olympiads, grouped by topics. It allows to see potential rating of each student and
it definitely shows to him and to his teacher the areas for further work.
“Olympiads grades 9–11 by topic” ●● is similar to the above in composition and
purpose. It includes additional topics such as recursion, dynamic programming,
graphs, brute force, and more complex tasks (with complexity level corresponding
to national and international olympiads).
“Belarus olympiads” ●● includes tasks from national olympiads of Belarus (qualifi-
cation and final stages) grouped by topic and in the order of increasing complexity.
Note that we include in that course a special set of tasks with incomplete solutions.
To get the full solution of such task one needs to know special theory as well as
have good skills of developing and debugging complex algorithms. At the same
time the olympiads up to IOI don’t demand full solutions for all tasks because win-
ners are defined by sum of points. So it is important to develop skills for solving
tasks partially. We gather such tasks into special theme “Incomplete solutions” and
remove the tests cases that can’t be solved by partial solutions. Despite the simpli-
city, such solution can get from 20 to 80 points and can essentially improve the
final result of a contestant in an olympiad. Moreover such simplified solutions may
be useful to verify full solution.

We believe that development of these courses is essential not only for preparing to
olympiads but also to identify “flaws” in the education system with a view to their even-
tual elimination.

Note that the author has written and documented the solutions for all tasks (for medal
minimum points) from the course “Belarus olympiad” and also for more complex tasks
for courses “Olympiads grades 9–11 by topics” and “Olympiads grades 5–8 by topic”.
So, if a pupil can’t solve some task there are two options: ask for help from somebody
who already solved it or read the description of the author’s solution.

The shortest way for a pupil from grades 5–8 to reach the medal level of national
olympiad in informatics of Belarus is: “Accelerated course”, “Olympiads 9–11”, “Be-
larus Olympiads”.

7. Conclusion

We represented the current state of the system for preparing students of Gomel and
Gomel region for olympiads in informatics as well as strategic development direc-
tions.

Note that the system is also used by pupils outside of Gomel region. A remarkable
feature is permanent monitoring of preparation state for all pupils as well as a balanced
education of four age ranges (preschoolers, grades 1–4, grades 5–8, grades 9–11) in four
directions: thinking, mathematics, programming, algorithmization.

To improve motivation for ongoing education, we organize the permanent Internet
competitions (Autumn-Winter-Spring-Summer, Whole Year).

Gomel Training School for Olympiads in Informatics 247

References

Dolinsky M. (2013). An approach to teach introductory-level computer programming. Olympiads in Informa-
tics, 7, 14–22.

Dolinsky M. (2014). Technology for the development of thinking of preschool children and primary school
children. Olympiads in Informatics, 8, 63–68.

Dolinsky M. (2005). Algorithmization and Programming with TURBO PASCAL: From Simple to Olympiad
Problems: Tutorial. Sankt-Petersburg “Piter”. (In Russian).

Dolinsky M. (2006). Solving of Sophisticated Olympiad Programming Problems: Tutorial. Sankt-Petersburg
“Piter”. (In Russian).

Performance Statistics of Gomel Pupils in International and National Olympiads in Informatics from 1997 to
2015. (In Russian).
http://dl.gsu.by/olymp/result.asp

M. Dolinsky is a lecturer in Gomel State University “Fr. Skaryna”
from 1993. Since 1999 he is leading developer of the educational site
of the University dl.gsu.by. Since 1997 he is heading preparation of
the pupils in Gomel to participate in programming contests and olym-
piads in informatics. He was the deputy leader of the team of Belarus
for IOI’2006, IOI’2007, IOI’2008 and IOI’2009. His PhD is devoted to
the tools for digital system design. His current research is in teaching
Computer Science and Mathematics from early age.

Olympiads in Informatics, 2016, Vol. 10, 249–254
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.17

249

Armenia: IOI Participation and National
Olympiads in Informatics

Vahram DUMANYAN, Armen ANDREASYAN
Department of Informatics and Applied Mathematics, Yerevan State University
1 Alex Manoogian, Yerevan, 0025, Armenia
e-mail: duman@ysu.am, andreas@ysu.am

Abstract. The article describes technology used to teach programming and preparing for Olympi-
ads in Informatics in Armenia. It describes the current model of organizing the competition: steps,
target groups, methodologies of development, evaluation, and the preparation of participants for
the different stages of the competition.
Keywords: IOI, olympiad in informatics, teaching programming.

1. IOI Participation

Armenia started participating in the IOI in 1996 in Hungary. Next year Armenian del-
egation could not go to the South Africa. Our students won first medal (bronze) in 2002.
Since then they returned from an IOI with at least one medal. For us especially signifi-
cant are IOI’2005 when Vahe Musoyan won gold medal, and IOI’2014 when all four
students won medals (2 silver and 2 bronze). Since now Armenia has 1 gold , 4 silver and
20 bronze medals. You can find all details in the Statistics page (International Olympiad
in Informatics – Statistics).

Medalists of an international olympiads may enter appropriate departments of uni-
versities of the country without exams and study for free.

In the first years, team leaders found sponsors for the trip expenses. For the last 15
years, these costs are covered by the Ministry of Education.

Armenian students participate in International Zhautykov Olympiad (Iglikov et. al.,
2013) – 3 silver and 7 bronze medals, and APIO – 3 bronze medals.

2. National Olympiad Procedure

The National Olympiads among school student are held by the Ministry of Education
and Science. Every year the schedule of Olympiads is made. The assignments and the

V. Dumanyan, A. Andreasyan250

results of all the school Olympiads held in Armenia are placed in (School Olympiads)
and in (Armenian Educational Portal) websites.

YSU Faculty of Informatics and Applied Mathematics is responsible for the National
Olympiad of Informatics.

National Olympiad is held in three stages. There are no divisions according to the
grade and age. The majority of the participants are students of grades 10–12, but there
are also lower grade students. The first phase is the school stage and is held at schools
in February. Until 2014–2015 school year, the schools conducted that stage indepen-
dently and chose their best students. Schoolteachers made the assignments themselves
and held the competitions. Sometimes the content and form of their assignments did not
correspond to the assignments of next rounds. There are no statistics on the number of
participants of those years.

The second stage is regional and is held in early March. Armenia is divided into 10
provinces. On this stage, the capital Yerevan is considered as a separate entity. The stu-
dents of the provinces gather on the same day and the same time. They solve the problems
compiles by the Commission. Before 2014–2015 school year, the juries of every province
checked the results according to the provided tests and chose the best students themselves.
The biggest turnout was in Yerevan. Yerevan municipality and regional administrations
reward the winners of their regions with diplomas. Each province and the capital have
their quotas for the participation on the next stage. Yerevan has 20–25 seats and each of the
provinces has 4–6 seats. However, some regions sent fewer students or did not send at all.

The third stage is the National. It is held in late March or early April in the computer
center of YSU. In the last 10 years, the competition is held for 2 days. As a result, best
students get rewards from the Ministry (diplomas, certificates). The Committee decides
the number of diplomas. The students that got diplomas, form the selection group.

3. New Format of Providing National Olympiads

In 2014, one of the participants of IOI’2013 made new contest management system. It is
qualitatively higher than the previous system. The new system makes it possible to hold
online contests, to put interactive problems and IOI – format (with subtasks) problems. It
was decided to hold the competition of all three stages of the Olympiad with this system,
and to hold the first two stages online. Any student mastering programming languages C,
C++, Pascal can take part in the first stage, informing the school administration before-
hand. The list of the participants is published in the olymp.am according to the school
information.

The second stage of Olympiad is held in certain places given by the regional admin-
istrations (in Yerevan the Municipality decides the place). The students with best results
from the first stage take part in the second stage. According to the decision of the Orga-
nizing Committee, the school of the student is not taken into consideration.

The organizing committee also determines the list of participants of the third stage,
based on the results of the second one. The quotas of the provinces have been eliminated.
As a result, the number of students from Yerevan has been significantly increased.

Armenia: IOI Participation and National Olympiads in Informatics 251

4. Selection Competitions and the Preparation for the IOI

The selection group is formed according to the results of the national stage of Olym-
piad. Theoretical and practical classes are held for the group. Then, according to three
competitions, four students who will represent Armenia in IOI are determined. For the
preparation for the IOI 1–2 week summer camp is held. Last years, not only the mem-
bers of IOI group take part in Summer Camp, but also the students of selection group,
that still study at school. Not only the group leaders held the lessons but also previous
years’ IOI medalists and participants. The Summer Camp is held at Camp “Ughetsir” of
Quantum College, located in the mountain resort of Aghavnadzor, as well as in the YSU
Rest House, Tsakhkadzor.

5. The Role of Online Competitions and the Online Judges

Under current conditions, it is impossible to succeed without systematic long-term stud-
ies. We think that online competitions held for the students are very useful.

Armenian National Olympiad problems can be solved in am.spoj.com. We are grate-
ful to Spoj team for this opportunity. During our training, we use other archives too. Ini-
tially, we use Michael Dolinski’s website (DOLINSKY, 2013). We would like to single
out St. Petersburg cycle of online Olympiads (Olympiads in Informatics: St. Petersburg,
Russia), USACO online contests (USA Computing Olympiad), Croatia online contests
(Croatian Open Competition in Informatics). Thanks to the organizers for giving the
Armenian translations of the competition assignments in their websites. Codeforces’
competitions (Codeforces) are useful, too. It also contains numerous resources (descrip-
tions of algorithms, virtual competitions), which are suitable for trainings.

6. Specifics of National Olympiads

Programming is a small part of School program of informatics. It is included in 11th
grade program, and it has quite superficial presentation. Informatics is not among the
examination subjects. Applicants for admission to university programming departments
have to pass mathematics and physics or English. Only a few schools have Olympic
circles of informatics.

In Armenia everything is concentrated in Yerevan: economy, science, culture, educa-
tion. One can say that Yerevan dominates the provinces. The population of the provinces
is almost twice more than in Yerevan.

For last two years, it has become possible to get information about participation in
first two stages due to the online competition of regional stage. We have the following
statistics: Fig. 1, Fig. 2, Fig. 3.

The number of the participants from provinces has decreased especially in 3rd stage.

V. Dumanyan, A. Andreasyan252

In the capital city there is majority of two schools. In the following chart you can see
representations of schools in the republic stage of National Olympiads in 2016: Fig. 4.

5. 5. The Role of Online Competitions and the Onlinejudges

Under current conditions, it is impossible to succeed without systematic long-term studies. We think that
online competitions held for the students are very useful.

Armenian National Olympiad problems can be solved in am.spoj.com. We are grateful to spot team for
this opportunity. During our training, we use other archives too. Initially, we use Michael Dolinski’s
website (DOLINSKY, 2013). We would like to single out St. Petersburg cycle of online Olympiads
(Olympiads in Informatics: St. Petersburg, Russia), USACO online contests (USA Computing Olympiad),
Croatia online contests (Croatian Open Competition in Informatics). Thanks to the organizers for giving
the Armenian translations of the competition assignments in their websites. Codeforces’ competitions
(Codeforces) are useful, too. It also contains numerous resources (descriptions of algorithms, virtual
competitions), which are suitable for trainings.

6. 6. Specifics of National Olympiads

Programming is a small part of School program of informatics. It is included in 11th grade program, and it
has quite superficial presentation. Informatics is not among the examination subjects. Applicants for
admission to university programming departments have to pass mathematics and physics or English. Only
a few schools have Olympic circles of informatics.

In Armenia everything is concentrated in Yerevan: economy, science, culture, education. One can say that
Yerevan dominates the provinces. The population of the provinces is almost twice more than in Yerevan.

For last two years, it has become possible to get information about participation in first two stages due to
the online competition of regional stage. We have the following statistics: Fig. 1, Fig. 2, Fig. 3.

Fig. 1. Number of participants at the 1st stage.

0

20

40

60

80

100

120

140

160

2015 2016

Yerevan

Provinces

Fig. 1. Number of participants at the 1st stage.

Fig. 2. Number of participants at the 2nd stage.

The number of the participants from provinces has decreased especially in 3rd stage.

Fig. 3. Number of participants at the 3rd stage.

In the capital city there is majority of two schools. In the following chart you can see representations of
schools in the republic stage of National Olympiads in 2016: Fig. 4.

0
10
20
30
40
50
60
70
80
90

100

2015 2016

Yerevan

Provinces

0

5

10

15

20

25

30

35

2014 2015 2016

Yerevan

Provinces

Fig. 2. Number of participants at the 2nd stage.

Fig. 2. Number of participants at the 2nd stage.

The number of the participants from provinces has decreased especially in 3rd stage.

Fig. 3. Number of participants at the 3rd stage.

In the capital city there is majority of two schools. In the following chart you can see representations of
schools in the republic stage of National Olympiads in 2016: Fig. 4.

0
10
20
30
40
50
60
70
80
90

100

2015 2016

Yerevan

Provinces

0

5

10

15

20

25

30

35

2014 2015 2016

Yerevan

Provinces

Fig. 3. Number of participants at the 3rd stage.

Armenia: IOI Participation and National Olympiads in Informatics 253

Physics and Mathematics Specialized School is founded in 1965 by academic Artash-
es Shahinyan. Every year students of the school represent Armenia in the international
Olympiads on Informatics, Mathematics, Physics, Chemistry, Biology, Astronomy. In
2015 students of the Phys-Math school got 14 medals from these International Olympi-
ads. Quantum Collage is the first private school and founded in 1991. This school also
has good Olympic history and traditions. Until 2014, only 12 participants from each of
these two schools were allowed to take part in the second Stage of Olympiads. Now this
restriction is removed. The students representing Armenia in the IOI are mostly from
those schools. 13 of Armenian 25 medals are of Quantum College and 8 of Physic-Math-
ematical School. 24 students from 52 participants from 2003 to 2015 were of Quantum
College, and 20 students of Physic-Mathematical School. This is explained by the fact
that both schools have Olympic groups that work throughout the school year.

However, we are sure that there are talented students in provinces, too, as there are
exclusive precedents. School student from the second city of Armenia, Gyumri, won the
first medal. In 2012, a student from the southern mountainous part of Armenia, Syunik,
was involved in the group and won bronze medal in IOI. He gained his basic knowledge
himself through the Internet.

Now we think to take measures to increase the interest and the participation of prov-
ince students, organize in these two strong schools some kind of distance lessons, online
materials accessible for all students in the country. Also we consider switch to the two
level contests opening second division for students up to 9-th grade like in Lithuania
(Dagienė, Skupienė, 2007), Serbia (Ilić, 2012).

7. Conclusion

Armenia has been participating in IOI since 1995 and has achievements. In recent years,
great work for the improvement of the quality of National Olympiads has been done.
There are some problems with the promotion of the Olympiads. Measures should be
taken to spread the necessary knowledge of Informatics and to involve more students
and schools in the National Olympiads.

Fig. 4. Participants of 3rd stage of National Olympiads in 2016.

Physics and Mathematics Specialized School is founded in 1965 by academic Artashes Shahinyan. Every
year students of the school represent Armenia in the international Olympiads on Informatics,
Mathematics, Physics, Chemistry, Biology, Astronomy. In 2015 students of the Phys-Math school got 14
medals from these International Olympiads. Quantum Collage is the first private school and founded in
1991. This school also has good Olympic history and traditions. Until 2014, only 12 participants from
each of these two schools were allowed to take part in the second Stage of Olympiads. Now this
restriction is removed. The students representing Armenia in the IOI are mostly from those schools. 13 of
Armenian 25 medals are of Quantum College and 8 of Physic-Mathematical School. 24 students from 52
participants from 2003 to 2015 were of Quantum College, and 20 students of Physic-Mathematical
School. This is explained by the fact that both schools have Olympic groups that work throughout the
school year.

However, we are sure that there are talented students in provinces, too, as there are exclusive precedents.
School student from the second city of Armenia, Gyumri, won the first medal. In 2012, a student from the
southern mountainous part of Armenia, Syunik, was involved in the group and won bronze medal in IOI.
He gained his basic knowledge himself through the Internet.

Now we think to take measures to increase the interest and the participation of province students,
organize in these two strong schools some kind of distance lessons, online materials accessible for all
students in the country. Also we consider switch to the two level contests opening second division for
students up to 9-th grade like in Lithuania (Dagienė, Skupienė, 2007), Serbia (Ilić, 2012).

7. 7. Conclusion

Armenia has been participating in IOI since 1995 and has achievements. In recent years, great work for
the improvement of the quality of National Olympiads has been done. There are some problems with the
promotion of the Olympiads. Measures should be taken to spread the necessary knowledge of Informatics
and to involve more students and schools in the National Olympiads.

21

9

3

Phys-Math School

Qauntum Collage

Other School

Fig. 4. Participants of 3rd stage of National Olympiads in 2016.

V. Dumanyan, A. Andreasyan254

References

Armenian Educational Portal. http://armedu.am
Codeforces. http://codeforces.com
Croatian Open Competition in Informatics. http://hsin.hr/coci
Dagienė, V., Skupienė, J. (2007). Contests in programming: quarter century of Lithuanian experience. Olympiad

in Informatics, 1, 37–49.
Dolinsky, M. (2013). An approach to teaching introductory-level computer programming. Olympiads in Infor-

matics, 7, 14–22.
Iglikov, A., Gamezardashvili, Z., Matkarimov, B. (2013). International Olympiads in Informatics in Kazakh-

stan. Olympiads in Informatics, 7, 153–162.
Ilić, A., Ilić, A. (2012). IOI trainings and Serbian competitions in informatics. Olympiad in Informatics, 6,

158–169.
International Olympiad in Informatics – Statistics. http://stats.ioinformatics.org
Olympiads in Informatics: St. Petersburg, Russia.

http://neerc.ifmo.ru/school/io/index.html

School Olympiads (in Armenian). http://olymp.am
USA Computing Olympiad. http://usaco.org

V. Dumanyan, Doctor of Sciences (Mathematics), Yerevan State
University; Dean of the Faculty of Informatics and Applied Mathe-
matics.
Organizer of National Olympiads in Informatics (since 2013).
Leader of national team on International Olympiad in Informatics
(2007, 2010, 2013–2015).
Director of Armenia Subregion in the ACM ICPC Olympiads (since
2004).

A. Andreasyan, MSc in computer science from Moscow State Univer-
sity. Assistant professor at the Department of Programming and Infor-
mation Technologies of Faculty of Informatics and Applied Mathemat-
ics of the Yerevan State University.
Organizer of the summer camps for preparing the Olympic teams. Or-
ganizer of National Olympiads in Informatics. Leader of national team
on International Olympiad in Informatics (since 2003). Coach of Yere-
van State University teams in the ACM ICPC (since 2003).

Olympiads in Informatics, 2016, Vol. 10, 255–262
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.18

255

Olympiads in Informatics in Republic of Moldova

Anatol GREMALSCHI1, Angela PRISACARU2, Sergiu CORLAT3

1Institute for Public Policy, Chisinau, Republic of Moldova
2Department of Pre-University Education, Ministry of Education, Republic of Moldova
3Department of Informatics and Information Technologies, Tiraspol State University,
Chisinau, Republic of Moldova
e-mail: anatol_gremalschi@ipp.md, aprisacaru@gmail.com, sergiu.corlat@math.md

Abstract. This article presents the retrospective of organizing the Republican Olympiad in Infor-
matics from the first editions. It describes the current model of organizing the competition: steps,
target groups, methodologies of development, evaluation, and the preparation of participants for
the different stages of the competition.

Keywords: informatics curricula, IOI, olympiad in informatics, teaching programming.

1. The History

Informatics was introduced into the undergraduate studies in 1985. From the beginning, the
curriculum was oriented to systematic studying the basic computing concepts: the struc-
ture of information and the basic principles of programming. This allowed the placement
of informatics in the science field. Consequently, the discipline has benefited from lots of
opportunities of organizing school contests at various levels, as well as other sciences.

1.1. Year 1987

The first Olympiad at the national level was organized in 1987. At that time, the pre-
university educational institutions had practically no computers; first editions of the
Olympiad were held based on theoretical examinations, as well as mathematical com-
petitions. Competition topics derived from various areas of applied mathematics, theo-
retical computer science, logic. From edition to edition, algorithmic component became
more pronounced, the subjects were moving towards practical component – to identify
computer models for problem solving in various fields.

The advent of computers in schools set the beginning of a qualitatively new stage
in informatics competitions. It became possible to implement the theoretical solutions
in a programming language and to test these solutions. The first automated evaluation
systems appeared practically immediately.

A. Gremalschi, A. Prisacaru, S. Corlat256

1.2. Year 1996

Since 1996, students from Moldova have participated in the International Olympiad in
Informatics. This also imposed adjustments to the organizational model for the Republi-
can Olympiad in Informatics. The IOI is the reference point from which the development
of all structural components of the national Olympiad flows: scientific component (com-
petition tasks, evaluation), organizational (cultural, communication, scientific sessions),
technical (computer network).

During the same period, schools were implementing individual model of using com-
puters in labs (one student – one computer). This resulted in increase of the number of
pupils fond of informatics and of programming in particular. The motivation of par-
ticipants at the Olympiad increased at both national and local level. The winners of
the Olympiad got national testing facilities, preferential admission to universities in the
country, various awards; and a chance to compete for participation in international com-
petitions.

1.3. Year 2000+

The organizational principles and scientific assessment were finalized, supported by
rules and other normative acts of the Ministry of Education. The Olympiad “matured”
and continued to develop in line with the national curriculum of the computer science
and the Olympic principles promoted by the Organizing Committee of the IOI. In 2004
Moldova became a member of the community of the Balkan Olympiad in Informatics
and in 2007 hosted it for the first time.

In recent years the Republican Olympiad in Informatics has generated a number of
local competitions organized by various educational institutions: individual and team
programming competitions; online contests; ICT usage competitions; robotics competi-
tions, etc. So, the number of students fond of various fields of Computing is growing.

2. Moldavian Republican Olympiad in Informatics

2.1. The Organizational Model

The Olympiad is held annually during the academic year: from September to May. The
National Olympic Committee, the composition of which is approved annually by the
Minister of Education, organizes the Olympiad. The competition is conducted in three
stages: local, regional, and national (Fig. 1).

On the local and regional stage, each grade is considered a separate age group. There
are two age groups on the national stage: middle school (up to 9th grade) and high school
(grades 10–12).

Olympiads in Informatics in Republic of Moldova 257

Local Stage. There is a preparation period from September to December and internal
competitions in educational institutions take place in January (p. 1.a and 1.b on Fig. 1).

Regional Stage. It is organized separately in each administrative unit. Teams of the edu-
cational institutions selected at the local stage participate on the regional level. Teams
for the national stage are formed based on the results. To ensure more rigorous selection
of the teams, the contest can take place in two rounds (p. 2.a and 2.b on Fig. 1).

National Stage. The participants are the teams selected in the previous stage and Na-
tional Olympiad winners from the previous year. The total number of contestants varies
between 130 and 160. Traditionally a stage lasts four days, two of which are reserved
for competition. Competition sessions last between 4 and 5 hours, depending on the age
group (middle school, high school) and the difficulty of the problems. After finishing
the contest session, the participants can attend a self-assessment session, where they
check their own solutions. Any disputes that may appear are presented to the Scientific
Committee of the Olympiad. After the completion of the competition tests and resolu-
tion of disputes, the official solutions are presented. In parallel with the contest, training
sessions, book launches, meetings with representatives of software companies and other
activities are organized for team leaders (Fig. 1).

Winners of the national stage form the Extended National Team from which the Na-
tional Team that participates in international competitions is selected (Fig. 1).

Local Stage (each school)

Preparation Phase. Traning sessions, simulations and internal contests, on-line
contests, seminars, etc.

Contest Phase. School contests, teams selection, team trainings.

Regional Stage (each region)

Preparation Phase (for selected regional team). Traning sessions.

Contest Phase. Regional contest (one or two days), team selection

 National Stage

Contest Phase.
National contest

IOI extended team

Contest Phase. Team selection contests

Regional International Contests (seleted teams)
Summer School (all members)

IOI

National team

2.a

1.a

1.b

2.b

3.a

3.b

Fig.1. Stages of Republican Olympiad in Informatics.

A. Gremalschi, A. Prisacaru, S. Corlat258

2.2. Target Group

According to the curriculum, the study of software modules begins only in the 9th grade.
However, taking into account the students’ interest in programming and the capacity of
self-learning of the gifted and highly gifted pupils, also younger children are accepted in
the competition. The youngest participant in the history of the National Olympiad was a
6th grade pupil (13 years old)1.

Informatics teachers of junior grades try to identify the pupils with skills in com-
puter science through a variety of methods and techniques. In many cases the selection
is performed by the teacher of Mathematics, in the 6th–7th grades. A study conducted by
the authors in 20112 established a high degree of correlation between the performance in
Mathematics and in Computer Science among the participants of the National Olympiad.
Also, pupils who have good results in Physics (the study of this discipline begins in the 6th
grade) show increased interest towards programming elements. Statistics compiled over
the last 12 years (Fig. 2) indicate relative stabilization in the numbers of participants in the
national stage in both categories: Senior (110 on average) and Juniors (40 on average).

2.3. Competition Topics

Competition topics are selected according to the National Curriculum in Computer
Science. The problems for Local and Regional stages are prepared separately for each
grade. The problems sets for the national stage are prepared separately for the two age
groups. Usually 3–4 problems are proposed in each stage, to be solved by developing
programs in Pascal, C, or C++. Six problems are proposed on the national stage, in two
days of competition.

1	 Municipal Olympiad in Informatics, 2013
2	 Didactica Pro, Nr. 4 (68), September, 2011, p.46–49

Fig. 2. Number of participants at National Stage, 2004–2015, by age categories.

Olympiads in Informatics in Republic of Moldova 259

Task topics include data structures, combinatorics, programming techniques, elements
of analysis and design of algorithms, complexity, algorithms on graphs, elementary al-
gorithms of computational geometry, mathematical modeling, heuristics, etc. The degree
of difficulty and statements match the contestants’ age.

Fig. 5. Distribution of tasks by domains (last 15 years, Seniors).

Fig. 4. Distribution of tasks by domains (last 15 years, Juniors).

Fig. 3. The extension model of tasks domains, based on competition stages.

A. Gremalschi, A. Prisacaru, S. Corlat260

Content of tasks is developed by complexity categories, to separate competitors accor-
ding to the efficiency of their solutions. The number of test cases per task ranges from
5 (local and regional stages) to 10–20 (national stage). The tests check the accuracy
and efficiency of the solutions by testing special cases and enforcing time limits. The
proposed model of the problem selection allows reducing the share of participants who
receive zero scores. Thus, after statistical analysis of the results of the past 10 years, a
quantitative distribution of the problems depending on the complexity was established
(Fig. 6, 7).

Evaluation: automatic, based on a local server. Participants are identified in the system
based on user accounts, generated by the system. Human intervention in the evaluation
process is excluded.

Fig. 7. Distribution of tasks by difficulty levels (last 10 years, Seniors).

Fig. 6. Distribution of tasks by difficulty levels (last 10 years, Juniors).

Olympiads in Informatics in Republic of Moldova 261

3. Conclusions

The organizational model of the National Olympiad provides the opportunity to ●●
participate in the initial stage to all pupils who are interested in computer science,
regardless of gender, locality, type of school, nationality.
Distributions of the competition stages allow teams time to prepare between com-●●
petitions.
The automatic evaluation is scalable in both directions. It was used to assess the ●●
results of international competitions and is used regionally for training and regional
competitions3;
The organization of the post Olympiad activities provides qualitative preparation ●●
of National Team, as demonstrated by the results achieved by Moldova during the
participation in IOI (22 bronze medals, 2 silver medals).

References:

Chistruga, Gh., Lupu, I., Gremalschi, A. (2015). Didactic digital supports for preparation in informatics. In:
Proceedings of The National Scientific Conference “85 Years of Higher Education in Moldova”, Chisinau,
24–25 September, 2015. 117–122.

Gremalschi, A. (2001, 2002, 2003, 2004, …, 2013). Republican Olympiad in Informatics. Tasks and solutions.
2001 (2002, 2003, 2004, …, 2013). Chisinau, ASEM.

Prisacaru, A., Besliu, V., Bolun, I., et. al. (2014). Republican Olympiad in Informatics. Tasks and solutions.
Chisinau.

Prisacaru, A., Besliu, V., Bolun, I. et al. (2015). Republican Olympiad in Informatics. Tasks and solutions.
Chisinau.

Gremalschi, A., Corlat, S. (2011). The role of interdisciplinary in mathematics-informatics in preparing students
performance. Didactica Pro, 4(68), 46–49.

Informatics. Curriculum for Secondary Education, High School. (2010). Chisinau, Stiinta.
Informatics. Curriculum for Secondary Education, Gymnasium. (2010). Chisinau, Lyceum.

3	 Proceedings of the national scientific conference “85 years of higher education in Moldova”, Chisinau,
24–25 September, 2015.

A. Gremalschi, A. Prisacaru, S. Corlat262

A. Gremalschi, PhD, professor, Technical University of Moldova;
Director, Institute for Public Policy.
Author of textbooks in Computer Science.
Coordinator of educational projects.
Organizer of National Olympiads in Informatics (since 1997).
Leader of national team on Balkan Olympiad in Informatics, Interna-
tional Olympiad in Informatics (since 1996).

A. Prisacaru, consultant, Department of Pre-University Education,
Ministry of Education of the Republic of Moldova.
Professor of Informatics, MSc in Informatics.
Organizer of the summer camps for preparing the Olympic teams.
Organizer of National Olympiads in Informatics (since 2013).
Leader of national team on Balkan Olympiad in Informatics (2014),
International Olympiad in Informatics (2015).

S. Corlat, MSc in Exact Sciences. Lecturer at Tiraspol State Univer-
sity. Research areas: computational geometry, graph theory, computer
graphics. Also involved in institutional, national and international
projects for e-Learning. Trainer of Informatics team of ”Orizont”
Lyceum. Leader of national team on Balkan Olympiad in Informa-
tics (2003, 2004, 2006, 2009), International Olympiad in Informatics
(2014, 2015).

Olympiads in Informatics, 2016, Vol. 10, 263–278
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.19

263

IOI 2015 Report

Artem IGLIKOV, Mansur KUTYBAYEV, Bakhyt MATKARIMOV
Nazarbayev University
53 Kabanbay batyr ave., Astana 010000, Kazakhstan
e-mail: {artem.iglikov, mansur165, bakhyt.matkarimov}@gmail.com

Abstract. The International Olympiad in Informatics (IOI) is an annual international informatics
competition for individual students at schools for secondary education from various invited coun-
tries, accompanied by social and cultural programmes. We present a report on the 27th Interna-
tional Olympiad in Informatics, July 26 – August 2, 2015, Almaty, Kazakhstan (IOI’15), organized
by the Ministry of Education and Science of the Republic of Kazakhstan, Republican Scientific
and Practical center “Daryn”, al-Farabi Kazakh National University and supported by Mayor of
Almaty and Mayor of Almaty region. IOI’15 established a new IOI record with 322 contestants
from 83 countries, participated in IOI’15 and awarded by 161 medals (27 gold, 55 silver and 79
bronze), Jeehak Yoon from the Republic of Korea is absolute winner of IOI’15. At IOI’15 Java
was first time introduced as IOI official programming language. In this report we pointed attention
on issues happen as well as things that done well.

Keywords: IOI, programming contest, International event organization and management.

1. Introduction

IOI is one of the world’s top level Olympiads for secondary schools students, among
International Mathematical (since 1959) / Physics (since 1967) / Chemistry (since 1968)
/ Biology (since 1990) Olympiads. Initiated by UNESCO and starting from 1989 in
Pravetz, Bulgaria, IOI constantly develops, especially in the level of scientific and tech-
nical solutions. The IOI’s official site is http://ioinformatics.org, for general in-
formation on IOI we refer readers to the website and the following IOI documents: IOI
Regulation1, IOI syllabus2 and the ITC/ITWG guidelines3.

The President of the Republic of Kazakhstan, Dr. Nursultan Nazarbayev, made or-
der in 1996 on governmental support and development of secondary schools for gifted
students, and in 1998 the Government of the Republic of Kazakhstan established a new
state enterprise, Republican Scientific and Practical center “Daryn” with primary goal to
discover, encourage and give recognition to gifted students by developing and supporting

1	http://ioinformatics.org/rules/index.shtml
2	http://www.ioinformatics.org/a_d_m/isc/iscdocuments/ioi-syllabus.pdf
3	http://wiki.ioinformatics.org/wiki/HostingAnIOI

A.V. Iglikov, M.U. Kutybayev, B.T. Matkarimov264

special educational programs and activities. Kazakhstan hosted 36th International Mende-
leev Chemistry Olympiad in 2002, Almaty city. Kazakhstan subregion of the Northeastern
European Regional Contest of the ACM International Collegiate Programming Contest
was created in 2003. From 2004 in Almaty city was organized annual International Zhau-
tykov Olympiad on Mathematics, Physics and Computer Science (IZhO, n.d.), hosted by
the Zautykov Republican Specialized Physics-Mathematics Secondary Boarding School
for Gifted Students. Kazakhstan hosted 7th Asian Physics Olympiad in 2006, Almaty, and
51st International Mathematical Olympiad in 2010, Almaty-Kokshetau-Astana. Based on
these achievements, Kazakhstan applied to IOI Executive Director as IOI potential host in
2010. At IOI’10 in Waterloo, Canada, Republic of Kazakhstan was selected by IOI Inter-
national Committee as IOI’15 future host. Before IOI’15 Kazakhstan hosted 46th Inter-
national Mendeleev Chemistry Olympiad in 2012, Astana city, http://mendeleev.kz/
and 45th International Physics Olympiad in 2014, Astana city http://ipho2014.kz/.

2. IOI Host Committees

Steering Committee: Aslan Sarinzhipov, Minister of Education and Science, Chair-
man; Yessengazy Imangaliyev, Vice-Minister of Education and Science, Vice-Chairman;
Galymkair Mutanov, Rector of the Al-Farabi Kazakh National University; Sholpan Kira-
bayeva, Director of the Republican Scientific and Practical center” Daryn”, Secretary;
Akhmetzhan Yessimov, Mayor of Almaty city; Yerbolat Dossayev, Minister of National
Economy; Tamara Duissenova, Minister of Health Care; Kalmukhanbet Kassymov,
Minister of Internal Affairs; Asset Issekeshev, Minister of Investment and Development;
Bakhyt Sultanov, Minister of Finance; Erlan Idrissov, Minister of Foreign Affairs.

Host Scientific and Technical Committee: Bakhyt Matkarimov, Adilet Zhaksybai, Ser-
gazy Kalmyrzayev, Ulugbek Adilbekov, Myrzakerei Miras – Nazarbayev University;
Darkhan Akhmed-Zaki, Zhanl Mamykova, Natalya Surina, Erbolat Kalaman, Shyngyz
Rabat, Pavel Chekanov, Askar Akshabayev – Al-Farabi Kazakh National University;
Artem Iglikov, Azizkhan Almakhan, Madyar Aitbayev, Nurlan Zhussupov, Askar Ait-
zhan, Yesskendir Sultanov, Bektur Suleimenov – Kazakh-British Technical University;
Mansur Kutybaev – International Information Technologies University; Fuad Hajiyev
– ADA University, Azerbaijan; Georgiy Korneev, Nikolay Vedernikov, Gennady Ko-
rotkevich – ITMO University, Russia; Egor Kulikov, Elena Andreeva – Moscow State
University, Russian Federation; Michael Mirzayanov – Saratov State University, Russia;
Alexander Klenin – Far-Eastern State University, Russia; Ali-Amir Aldan – Massachu-
setts Institute of Technology, USA.

50+ staff specialists from involved organizations works full time during IOI’15
week. 150+ volunteers selected from active members of the host University volunteers
club (team guides, organization staff) and from former participants of IOI and other
Olympiads (HSTC volunteers).

IOI’15 was fully supported by the Government of the Republic of Kazakhstan. About
2000K was reserved/allocated for IOI’15 from the Ministry of Education and Science of
the Republic of Kazakhstan, $1556K was spent for the main event, including purchase

IOI 2015 Report 265

of facilities $652K and $97K for IT Infrastructure works/HSTC/Technical staff. In total,
guest fee was $93K.

3. Preparatory and IOI Present Host Actions

IOI’15 website created in 2011 and general information with photos about Kazakhstan
was first time distributed at IOI’11, Pattaya, Thailand. Initially IOI’15 was planned in
the capital Astana, in 2014 Almaty city and al-Farabi Kazakh National University were
announced as the host of IOI’15. Programming contest for 300+ onsite contestants and
10000+ submits for evaluation with full feedback is a hard task, and IOI’15 was a first
case in Kazakhstan. Previous to IOI Kazakhstan experience in programming contests
organization was reported in (Iglikov et al., 2013). The following preparatory actions
was crucial: 1) using IOI CMS (Mares and Blackham, 2012; Maggiolo et al., 2014) at
national and international programming contests in Kazakhstan, Artem Iglikov recog-
nized as IOI CMS developer; 2) organization of Asian-Pacific Informatics Olympiad
APIO’14, hosted by Kazakh-British Technical University, Almaty (APIO’14, 2014); 3)
hosting all-Russia team Olympiad in programming for secondary schools in Almaty at
K.Satpayev Kazakh National Technical University4. Programming language Java ac-
cepted as official programming language in various programming contests, including
ACM ICPC. Martin Mares, ISC/ITWG, evaluated Java solutions for IOI’13 tasks, cre-
ated by Egor Kulikov, Pavel Mavrin and others, and reported to ISC at IOI’14, Taipei,
Taiwan. ISC recommended Java as official IOI’15 programming language. In 2014
Egor Kulikov accepted IOI’15 HSTC member invitation. In 2014–2015 IOI CMS de-
velopment team added full support for Java.

Communications with IOI countries representatives was by e-mail and private
Google group “IOI 2015 Team Leaders”. List of country contact emails extracted from
the IOI Registration system, managed by Eljakim Schrijvers https://ioiregistra-
tion.org/. All foreign participants, including IOI committees and Host scientific and
technical committee (HSTC), were registered in IOI Registration system. IOI’15 invita-
tion letters was generated through IOI registration system, as well as various reports, e.g.
list of participants with relevant information, including email, meals preferences, travel
data, etc. For visa support procedures Host created forms and instructions, published on
website and distributed by email two month before IOI, visa support procedures takes
up to 30 days. Free of charge landing visa at Almaty International airport was organized
for all teams who completed required procedures.

Call for tasks was made in December 2014 with submission deadline at January 31,
2015. Contestants machines specifications and operation system image was published
in June 2015. Significant changes in IOI’15 competition rules from previous IOI was
Java as official programming language, allowing multi-threaded programs at the con-
test time, and limits on competition print job size. 3 practice session tasks published 2
weeks before IOI’15. IOI’15 and 9th IOI conference programmes was published at the
host website in July.

4	http://neerc.ifmo.ru/school/russia-team/index.html

A.V. Iglikov, M.U. Kutybayev, B.T. Matkarimov266

4. IOI Committees Meeting

IOI IC/ISC committees meeting organized in Almaty at February 26 – March 2, 2015.
All IC/ISC members participated this event, for newly created ITC committee Host de-
cided to organize meeting few days before IOI. IC inspected IOI’15 venue, making many
objective suggestions with short checklist. IC minutes was published at IOI official web
site. 43 unique tasks submitted for IOI’15, including 6 submissions from HSTC. HSTC
rejected 11 submissions, due to various reasons, and 25 tasks shortlisted for selection
by ISC. Finally, ISC selects 9 tasks for IOI’15, including 3 backup tasks: Scales, Eryk
Kopczyński, Poland; Teams, Adam Karczmarz, Poland; Boxes with souvenirs, Monika
Steinova, Slovakia; Towns, Bang Ye Wu, Taiwan (IOI’14 backup task); Sorting, Weidong
Hu, China; Horses, Mansur Kutybayev, Kazakhstan; Liar, Ulugbek Adilbekov and Ser-
gazy Kalmurzayev, Kazakhstan (IOI‘15 backup task, opened at IZhO’16 (IZhO, n.d.)).
Cultural programme of IOI committees meeting includes opera presentation Tosca and
visit of Shymbulak mountain area.

5. IOI Organization

IOI’15 venue formed by nearly located al-Farabi Kazakh National University campus
with newly built Student hotel (contestants), Atakent Park Hotel (team leaders) and Ritz-
Carlton Hotel (IOI committees, tasks authors, invited guests). Walking time between
team leaders and contestant’s hotels is about 25 minutes. Student hotel was opened free
of charge without meals for early arrived teams contestants from July 23. For IOI’15
needs host University allocated al-Farabi library building, Director Kalima Tuenbayeva.
Team’s registration was at al-Farabi library. Opening/Closing ceremonies performed in
the U.Dzholdasbekov Palace of Students. Most of activities organized in Atakent Park
Hotel for team leaders, and in host University campus for contestants. IOI Doctor (medi-
cal) room allocated in al-Farabi library and Student hotel, as well as host University
medical center was ready to serve for IOI. At IOI’15 3 medical treatment cases reg-
istered. 10 air conditioning and climate control facilities was installed in competition
hall (6) and Student hotel (4). We reserved at least two rooms/halls for any IOI activity,
except single competition hall. IOI committees rooms, IOI office, translation session
hall, GA meeting hall was allocated both in Atakent Park Hotel and al-Farabi library.
Rooms in Student hotel was not identical, e.g. for 2 or 4 persons, mirrors was only on 1st
floor, etc. Rooms for girls was allocated on the 1st floor, mixing contestants from differ-
ent countries, also we allocated contestants rooms starting from 1st floor based on IOI
total medals rank of countries. In hotels for adult participants most of rooms was single,
and we sorted participants by age to allocate rooms. Student cafeteria at host University
campus was allocated for contestants and team guides. For leaders breakfast was on a
residence, lunch and dinner was at Atakent Park Hotel. Lunches at contest days was
organized for all participants at host University campus. Farewell party was at Atakent
Park Hotel. Transportation was organized within IOI venue and for all excursions, for
guest excursions two big busses was allocated. There was a shortage of minibuses, and

IOI 2015 Report 267

planned hourly shuttle at IOI venue was not implemented. Life stream translation was
not at IOI’15, daily video distributed with YouTube by Azhar Rakhletova, easily found
by search “IOI 2015”, also video/photo materials published at IOI’15 website. IOI’15
schedule was traditional 8 days for IOI.

6. Cultural Programme

IOI’15 cultural programme includes two whole day excursions for all participants, two
whole day and 3 Almaty city excursions for guests, various sport/entertainment events
and invited lectures. Whole day guest excursions were to the Big Alma-Arasan gorge
with Nursery “Sunkar”, and Kazakh aul “Huns”. Almaty city excursions were to the
Central State Museum of Kazakhstan, «Kok Tobe» mountain park with panoramic view
of Almaty city, Park of 28 Guardians of Panfilov’s division, Saint Ascension Cathedral,
Ykhylas Museum of Folk Musical Instruments. Day 4 excursion was to the high-moun-
tain sports complex “Medeu”, including visit of Shymbulak glacier at 3000+ m above
the sea level; and Kazakh State Circus 45 years anniversary presentation. Unfortunately,
day 6 Turgen gorge mountains area excursion was canceled due to official emergency
notification on flood flow, not happen actually, and excursion was limited to acquain-
tance with National customs and traditions. 	

IOI’15 Host organizing committee thanks to Chris Peterson from Massachusetts In-
stitute of Technology for lecture “How to apply to MIT (and other USA colleges)” at
July 30 with various presents, e.g. books signed by MIT professors, including “Introduc-
tion to Algorithms” by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and
Clifford Stein. Kazakhstan governmental program Bolashak supports education abroad
and our students are very interested in presentations of this kind. We did not consider
this presentation as a promotion of MIT, in fact we also invited lecturers from few other
Universities and ICPC community, and only Chris Peterson comes to IOI’15. It would
be better to make open announcement before IOI for similar activities.

7. 9th IOI Conference

IOI conference traditionally organized in two days during contest time in parallel with
Question/ Answers sessions at July 28–30, 2015. IOI conference program published at
host website and includes 15 presentations with workshop on IOI CMS contest man-
agement system, moderated by Stefano Maggiolo, ITS member. Special session of IOI
conference was organized for Kazakhstan teachers.

8. Quarantine

During Quarantine time contestants allowed to enter Student hotel garden and IOI vol-
unteers organized Dance club / Entertainment programme.

A.V. Iglikov, M.U. Kutybayev, B.T. Matkarimov268

9. Translation Sessions

Translation sessions organized at Atakent Park Hotel. For translation we asked team
leaders to bring their own laptops, and less than 10 laptops were requested from organiz-
ers. At IOI’15 was used IOI Translation system created in Taiwan for IOI’14 with minor
modifications. At the first translation session a large printing queue was caused by inef-
ficiently organized printing procedures with operator intervention, this was improved
for the second session. In the evening before contest day 2 a power outage happen in the
hotel, causing one hour delay in GA meeting start time. Fortunately, both backup and
central power recovered by power service engineers on duty, and we did not switch to
the backup plan – translation hall at host University without coffee break. Translation
nights continued up to 5 a.m. In total, 454 task statements with notices was prepared dur-
ing translation sessions and published at IOI’15 host and IOI official websites.

10. Question/Answer Sessions

Question/Answer sessions organized at Atakent Park Hotel in parallel with IOI Confer-
ence. At IOI’15 clarification forms from contestants was scanned and distributed with-
in “IOI 2015 Team Leaders” Google group, being visible to all team leaders, and text
translation from any team leader who knows question language was accepted. Most of
contestant’s questions in fact were handled within IOI CMS, e.g. questions written in
English or any other language, known by ISC members. Only six questions from contes-
tants were handled at Question/Answer sessions.

11. Contest Tasks

For IOI tasks preparation we used automated platform for creating programming con-
test problems Polygon5, developed at Saratov State University, Russia, by Michael
Mirzayanov team from 2008. Polygon automates contest tasks preparation, organizing
effective team work on tasks and preventing typical errors, and supporting user access
management, version control, issue-tracking, integration with popular test systems, con-
test tasks archive compilation, long-time online backups, tasks search and classification
capabilities. For security reasons separate instance of Polygon was installed by Michael
Mirzayanov on our servers with two levels of authorization.

Boxes with souvenirs. Number of subtasks: 6. First two subtasks are easy and require
basic knowledge of programming with simple logic. Third subtask could be solved by
“brute force” algorithm. Starting from fourth subtask, contestants have to make simple
observations about the structure of the problem. Fourth subtask has a lot of different
solutions; the most popular one could be dynamic programming with 2 states. Subtask 5
and 6 could be solved only with most important observation of the task. The difference
is in implementation details of the algorithm which could give better performance. Tests

5	https://polygon.codeforces.com

IOI 2015 Report 269

development for this problem was relatively easy. Problem has special tests for checking
correctness of solutions on important observations.

Scales. Number of subtasks: 1. This problems has no subtasks. Score for this problem
depends on effectiveness of the algorithm. We used all the available tests for this prob-
lem, which could be easily generated and grouped by subtests. 56 different scores was
on this task at IOI’15 competition.

Teams. Number of subtasks: 4. First subtask could be easily solved by “brute force”
algorithm. The second subtask needs knowledge of well-known sorting algorithms.
Third and fourth subtasks need advanced geometry and data structure algorithms. A lot
of tests were prepared for this problem, including all corner cases. Most of tests were
prepared to test programs on time limits, which was crucial for this problem.

Horses. Number of subtasks: 5. First subtask very easy one. Starting from second
subtask contestants should make observation about algorithm structure. Second one is
just easy implementation of this algorithm. Third subtask needs another crucial observa-
tion, which helps to solve this subtask. Difference between third and second subtask is
only in constraints. The last subtasks could be solved only with advanced data structures
and programming techniques. Tests for this problem were quite tricky, because it consist
of a huge amount of corner cases. And there is a lot of space to make some mistake in
program. There are a lot of different tests that covers huge amount of occasions.

Sorting. Number of subtasks: 6. This problem has a lot of different subtasks, because
it could be solved in many different ways. Of course not all of them are efficient enough.
Most of the subtasks have some unique constraints which makes the problem easier
than the problem itself. First three subtasks don’t require main observation to solve the
whole problem. Difference between these subtasks is implementation difficulty. For the
next three one needs observation about the problem structure to be successfully solved.
Each time contestant needs to make more effort using additional technique or implement
additional data structure. Problem needed only some restricted amount of tests, which
was prepared using small test generators. They cover almost all cases, including corner
cases, small cases and large testcases.

Towns. Number of subtasks: 6. This problem may be divided into more than 6 sub-
tasks, it was decided to fix the number of subtasks on 6. Each subtask could be treated as
a different problem, because each of them has some specific constraint on some param-
eters. Depending on the contestant observations there might be slightly different algo-
rithm to solve with different score. The problem was divided by most interesting cases to
solve. Tests preparation for this problem was hardest one in the contest, consisted from
the algorithm which is hard to test with fixed amount of tests, because of the randomized
solutions. Jury tried to prepare a lot of different tests that increase probability of failure
of wrong solutions. Most of them were prepared depending on wrong solutions written
by jury itself and by beta testers.

When all task statements was completed we did not write tests verification programs,
based on final constraints and separated from tests verificator, already created by tasks
developers, this caused formally invalid test cases. Initially prepared graders was not
enough secured to prevent attacks. IOI tasks analysis with test data published at IOI’15
host and IOI official websites.

A.V. Iglikov, M.U. Kutybayev, B.T. Matkarimov270

12. IOI System

IOI system needs low feedback time and high availability/fault tolerance and high per-
formance/ throughput networking evaluation system, built on relatively low cost facili-
ties. All parts of IOI’15 system was reserved, 10% of laptops, 100+% of servers, 100%
network core switches and trunk lines, and 10% of network switches and network cables
to end-point devices. IOI’15 facilities were purchased in 2015 by open bid according
to the laws of the Republic of Kazakhstan. Many kinds of facilities were provided by
supporting organizations. IOI’15 facilities includes 1) uninterruptible power supplies:
built-in with laptops, 20 new 2kVA UPS for every network switch, 1 new Fujitsu APC
Online 20 kVA in server room, external 800kVA mobile power generator for competition
building; 2) various facilities for installation of power network in competition hall; 3)
415 HP ProBook 450 G2 laptops with external keyboard, mouse, mousepad as contes-
tants machines/grading system workers; 4) 30+ external monitors provided for contes-
tants by request; 5) servers: 4 new HP/ProLiant DL380Gen9, 6 new (6+) Fujitsu blade
servers; 6) 1 new Fujitsu NetApp backup storage system; 7) 14 Alcatel-Lucent 48 port
layer-2 network switches, supporting VLANs and 1 GigE Ethernet; 8) 4 Alcatel-Lucent
layer-3 10 GigE switches at network concentration points; 9) Fujitsu rack; 10) network
cables, testers, cable channels, telecommunication boxes, etc. for network installation;
11) 5 new fast color printers; 12) 5 new (+5) fast black-white printers; 13) 3 new (+7)
big Samsung monitors as information desks, network monitor, contest results online pre-
sentation, etc.; 14) 5+ projectors for presentations; 15) 10 new climate control facilities
installed, 6 in competition hall, 4 in student hotel; 16) 1 audio system for announcements
in competition hall; 17) various video/photo translation/publication facilities for public
media coverage; 18) 6 mobile communications jammers for quarantine; 19) 1 voting
system for GA meetings.

ITC/HSTC report follows: Laptops was chosen to have more modern technical charac-
teristics than at previous IOI, and to maximize work time on battery, e.g. 15.6” display
and Core i5 CPU, and to fit in the budget. 336 laptops were allocated for contest hall, 60
for grading system, 19 for translation session and other needs. Host received similar (but
not exact) laptops about 3 months before IOI, to prepare the system and test battery work
time. The laptops arrived about 1 month before IOI. The network was not yet set up,
so we couldn’t fully test the laptops at that time, we just checked that every laptop can
successfully be turned on and boots the pre-installed system. The primary servers used
for the contest were HP DL380 Gen9. Everything was installed on one server. Another
server was a full copy of the main and had database was being replicated to it, so in case
of problems we could switch to it in minutes (and nothing would be lost). Third server
was used for live backups of contestant machines; we couldn’t do this on the first server
due to high load on the file system. Fourth server was used for translation sessions. We
also had blade servers and tower machines ready to use as a backup system. We used 10
Gbps network interfaces on the server with 10 Gbps switches in the server room. Switch-
es in the contest hall all had 1 Gbps links to contestant’s laptops and 2 10 Gbps uplinks
to the server room. All switches outside of the contest hall were backed up, so if any one

IOI 2015 Report 271

fails network would be still up. We had several spare switches for the contest hall and
we could configure them in few minutes to replace any failed switch. All switches were
managed remotely by university network administrator. Cable network built safely using
dual camera cable raceways for both power and digital networks. Competition hall has 6
video cameras to monitor from ISC/ITC rooms.

Contestant sample images preparation: once we had the IOI’15 laptops, we took 5 of
them for setting up the contestant software. Initial software setup was performed using
Ubuntu package-management software (APT). Basic software installation was scripted
(INSERT REPO LINK). Some manual configuration had to be done for setting up help
in some IDEs (INSERT MANUAL LINK). Also, several days before the IOI we up-
dated the image. Two versions of Eclipse 3.8 and 4.4 were provided. The 3.x branch
considered to have better performance, while the 4.x branch has more features. After
the installation of software following issues was detected 1) KWrite could not open any
file for reading (fixed by installing missing KDE packages); 2) Default destination of
Java API for Eclipse, NetBeans and IntelliJ IDEA points to Oracle internet site (JDK
links was fixed in configuration); 3) Default C++ help files are 15 years old (replaced by
actual StdLibC++ help files); 4) StdLibC++ help files are not complete (additional help
files was download from http://en.cppreference.com/); 5) Free Pascal IDE has
no help files (help files was downloaded and installed); 6) Free Pascal IDE fails on de-
bugging complex programs (not fixed); 6) Code::Blocks hangs when multiple instances
started in short period of time (not fixed). For each Editor/IDE following requirements
was checked: 1) It is possible to write, build, run and debug a programs solving “Search”
practice session problem on all supported languages (a lot of minor misconfigurations
found and fixed); 2) Help files are available for all supported languages (required help
files was downloaded and configured); 3) It is possible to save/load files (failed by
KWrite); 4) Printing are supported (printing is not implemented in Sublime Text edi-
tor and have bugs in Code::Blocks, to alleviate later issue contestants was instructed to
use “Print to PDF” or use different IDE/Text editor for printing). Keylogging software
(logkeys) was installed on contestants’ workstations. It allows monitoring contestant
activity before and during the contest. Some of the contestants performed activity on
theirs workstations before start of the contest (most of them – unintentionally, like sleep-
ing on keyboard) and was warned about that. The side-effect of the key logging was
ability to determine times when a contestant computer was hang. It became possible due
to timestamps that accompanies pressed keys and clear message of key logger restart.
Therefore, it is possible to determine the time of last key press before the hang-up and
first key press after it. So we have a good upper bound on hand-up time.

Imaging contestant machines: for imaging we follow Bernard Blackham report for
IOI 2013 (Blackham, 2013). We have set up a dhcp boot server (dnsmasq), which for-
warded laptops to boot TinyCoreLinux from tftp server (atftpd). The imager script was
being downloaded after TCL is booted, so we didn’t have to update TCL image each
time we change the imager script. The imager script wipes the partition table, re-parti-
tions the drive, and starts udp-receiver to receive the main partition image. We were able
to re-image up to 90 machines with the speed about 900 Mbps, which for 10 GB image
took about 1–2 minutes. We tried to re-image all the machines at once, but this didn’t

A.V. Iglikov, M.U. Kutybayev, B.T. Matkarimov272

work well (probably required some nicer setup). We decided not to lose time on this and
reimaged the hall by 3–4 rows (each row was up to 25 machines). Even in this case it
took about 10–15 minutes to reimage everything. We also didn’t bother on TCL image
size and contestant image size and had no issues with it. During imaging the address-
ing was the following: all laptops in the VLAN 18 with addresses 10.18.row.place / 16.
Server had one interface in VLAN 18 with address 10.18.0.1 / 16. During the contest the
addressing was the following: each laptop in different VLAN (1600 + (row – 1) * 100 +
place – 1) and address 10.row.place.2 / 24. Server had over 300 virtual interfaces with
addresses 10.row.place.1 / 24.

All managing of contestant’s machines and workers was done remotely (after several
tries). We could: turn on laptops remotely with wake-on-lan (which saved us from a lot
of walking), selectively re-image laptops, start memtest or badblocks on all the laptops,
do anything we want on the laptops during the imaging script is running (thanks to
Bernard for embedding a backdoor), do anything we want on the laptops after imaging
with SSH (laptop contained servers public SSH key) or NetAdmin. To control and moni-
tor contestant workstations we used Java-based NetAdmin tool by Georgiy Korneev. It
monitors current state of each computer in the network several times per second and
allows issuing control command to all workstations or selected part of them. There is
a command queue for each workstation, so the command executes only when worksta-
tion is accessible and all previous commands has been finished successfully. NetAdmin
allows issuing of server-side (local) and workstation-side commands (remote). Server-
side command executed on server by NetAdmin itself. For example, Copy contestant
data command looks as follows: scp -r {day} {ip}:/home/ contestant, where
{day} and {ip} are placeholders for current contest day (day0, day1, or day2) and IP-
address of the computer to copy data to. By default, command executes on all computers
simultaneously, but this is not the case for Copy Contestant Data command – if you try
to copy 100M simultaneously on 360 computers this will result in terrible network per-
formance. NetAdmin is able to throttle execution of such kind of commands to specified
number of simultaneous executions. Workstations-side (remote) commands are executed
by special remote execution service, installed on controlled workstations. Both remote
execution service and NetAdmin server authorizes each other using TLS certificates.
Another option is to use ssh command on server side. An example of client-side com-
mand is Reboot: reboot -fn. Notice, that there is no need to specify exact computer to
reboot, as long as the command is run on that specific computer. NetAdmin support of-
fline commands that executes event when workstations are not accessible. Offline com-
mands are useful for wake-on-lan and similar scenarios. NetAdmin also has been used
to monitor and control grading system invocation workstations.

During the competition, we performed backups of contestant home directory on each
workstation. On days 1 and 2 backups scheduled to run each three minutes. During the
practice session backups was performed each minute to test network throughput and to
measure influence on contestants. Average backup of all contestant workstations took
40–50 seconds, with peaks up to 60 seconds. Backups was performed using rsync in-
cremental backups (--link-dest), this allows to make snapshots of home directory,
while preserving hard drive space and network throughput. Using this scheme the initial

IOI 2015 Report 273

backup of the single workstation has size of 300+MB. To reduce this size we imple-
mented cross-workstation incremental backups. In this scheme we took the full backup
of only one «original» workstations (still 300+MB), while backups of the other worksta-
tions was made as incremental relative to «original». This allows us to reduce the size
of the initial backup to 5MB/workstation. Most of this 5MB are files regenerated by
Gnome/Unity after detection of new hardware ids after reimaging. New backup scheme
allows us to dramatically reduce time and space required for the initial backup. Unfortu-
nately, the backup time of all workstations was 5–7 mins, even when there are no actual
changes was made. Profiling shown than workstations CPU and network usage was
almost negligible, while performance was capped by server hard disc. Further investiga-
tion shown, that most of the time is spend by rsync to create hard link to each unmodi-
fied file during backup. To alleviate this issue we switched from Ext4 to BTRFS that
gave us 5 times boost. To speed up backups even more, we decided not to backup large
amount of files that should (almost) never change or are regenerated on startup. This two
tweaks combined reduced backup time of all workstations to 40–50 sec, while decreas-
ing workstation and network load. Test backup restore was performed several times, and
no issue was found. Unfortunately, backup restore during day 1 analysis resulted in hang
of heavily used workstations. After reboot all workstations become ok. Further inves-
tigations shown that hangs was due simultaneous update of Gnome configuration files
and cache by both user and rsync. There are two scenarios to work around this issue: 1)
Perform backup restore only when workstation is not in use. This is the main scenario in
the case of unrecoverable contestant workstations failure. In this case, restore took about
30 sec, which is small compared to time to try recovering workstation, and moving con-
testant to another one; 2) Restore backup to different directory. This scenario was used
on day 2 result discussions, when backups were restored to dayX/backup directories.

We used master version of CMS (which has evolved greatly during the year before
IOI’15) with some modifications. Main improvement of this year was testing a submis-
sion in parallel on all the workers on different test cases. So if there are some idle work-
ers, contestant would receive the result much faster than if it would be tested on one
worker as it was before. This lead to an issue with ES performance, but it was solved
by Stefano and Bernard before day 2. Proper patches for CMS will be posted in the of-
ficial repository. Other CMS modifications included: 1) specifying subtasks inclusion in
dataset options (when subtask 2 can include all the test cases from subtask 1 according
to the task statement, that could be specified in the dataset options, and results of evalu-
ation on test cases of subtask 1 will be included into results of evaluation on test cases
of subtask 2; 2) displaying results was done in an aggregated form (for each appeared
evaluation outcome we showed number of test cases and maximal used memory and
time); 3) Oracle JDK support; 4) many improvements for Polygon importer. There were
several problems with Java support: multi-threading, memory limit, time limit. Oracle
JDK is multithreaded by nature. During testing we observed about 17 threads required
to just start the program for Oracle JDK 8 on Ubuntu 15.10 x64. We had several choices:
1) limit number of threads with the sandbox (this would be problematic, because JVM
can start GC any moment on a separate thread); 2) limit the number of threads the con-
testant program is allowed to start (this should work with GC which is not being started

A.V. Iglikov, M.U. Kutybayev, B.T. Matkarimov274

by contestant program, but there was a theoretical possibility that standard libraries used
by the contestant could start some threads); 3) allow multi-threading. We have chosen to
allow multi-threading and counted the execution time as the sum of execution times of
all threads of the program. This lead to an interesting issue: if the program used amount
of memory close to the JVM heap size, then JVM would start GC on a separate thread,
and its working time will be added to the total execution time. To overcome this issue
we raised memory limits and JVM heap size (both -Xmx and -Xms). Another problem is
that standard data input classes (Scanner, BufferedReader) in Java are quite slow. With
help of Egor Kulikov we re-wrote all graders to use the raw FileInputStream, buffering
and parsing the input in the grader itself. After this, surprisingly, Java input become
much faster than input on C++. So we had to rewrite C++ input procedures as well
(reading number of bytes from the input and parsing them manually). After that the same
technique was applied to FreePascal graders.

13. Competition

Day 1 and 2 contests were started at 9:00 as planned by schedule. IOI’15 CMS evalu-
ation statistics: 5762 solutions at competition day 1 evaluated in total on 325118 tests,
8845 solutions at competition day 2 evaluated in total on 470563 tests. In total 371 print
jobs from 114 contestants was executed, 9 pages was a maximum per single job. Sub-
mits statistics by tasks vs. programming languages with number of different contestants
and submits presented in Table 1. C++ used by most of contestants, and Java usage
approaches C/Pascal usage. Java perspectives may be only estimated locking usage dy-
namics on next IOI’s.

ISC/ITC/HSTC reports on issues happen at contest time: Hardware setup, including
servers, workstations and networking was very solid. There was no major issues was
found, while several minor issues was fixed: 1) glitches on workstation screen when
the lid is moving (2 contestant, workstations were replaced); 2) heavy glitches for few

Table 1
Programming languages usage at IOI’15

 C++ Java Pascal C

day1 312 5278 5 90 5 81 4 58

boxes 308 2380 5 42 5 27 3 33
scales 281 1503 4 19 4 23 4 15
teams 263 1395 5 29 4 31 3 10

day2 312 8107 11 148 5 179 4 116

horses 305 3339 11 61 5 70 3 22
sorting 304 3006 6 66 4 72 4 93
towns 177 1762 4 21 2 37 1 1

IOI 2015 Report 275

seconds when video mode is changed (probably bug in video card drivers, does not af-
fect contestants); 3) two contestants was provided with additional monitors (by request);
4) no mouse pads on practice session (mouse pads were provided by request on days 1
and 2; 5) workstation hang-ups (real origin is undetermined, 8 contestants was affected
during day 1, and 4 during day 2).

Day 1:
At the beginning one of 12 CMS servers was not working properly due to misconfigura-
tion. As a result electronic statements and grading was unavailable for roughly 1/12 of
all contestants. They could still read the hard copies. This was reported around 9:15 and
fixed within ~5 minutes.

Around 9:40, a cheating case was detected. In problem Scales a contestant managed
to read the internal data of the grader. We fixed the grader, so that this type of hacking
would be much more difficult. When doing that we faced a CMS bug, which resulted in
grading not working for ~20 minutes. After that, the outstanding solutions were graded
quickly.

At 10:30 we discovered a problem in test data for task Teams. A task statement con-
dition was not satisfied in one test case, 2 students got affected. The first one was the
one who reported the issue, so he added a workaround within few minutes. The second
student submitted a solution that solved the incorrect test 13 minutes later after his incor-
rectly graded submission. Some other students already passed this test. A rejudge was on
the way, but we realized that it would not finish before the end of the contest. Because of
that, around 13:40 we have announced the details of the problem.

Around 12:30 the same CMS bug has shown up. Before it got fixed, around 12:33
we had a power problem with UPS on network switches, which caused the CMS server
to be unavailable for everybody. It was fixed in about 10 minutes. During this time, the
contestants could work on their computers. After few minutes the CMS bug was “fixed”
(graders were restarted). Unfortunately, one contestant has to reboot his computer during
power failure period. This reboot takes a lot of time, since DHCP server was inaccessible
at this moment. It is recommended to pin dynamic IP addresses in future installations.

At 12:55 the allowed interval between submissions increased from 1 to 5 minutes
(per task). This was dropped down to 1 for the last 8 minutes of the contest. During the
second half of the contest the grading time was around 18 minutes. To the best of our
knowledge, all grading results were reported within 25 minutes.

Several computers locked up during the contest and they had to be rebooted. We
have analyzed the logs, but the reason remains mysterious (we are still investigating).
In one case, it happened during the network outage, so the machine did not come up
immediately. The student has lost about 5 minutes, so we decided to extend the contest
by 5 minutes for him. However, additional analysis of log files revealed that some other
machines could have been unusable for up to 13 minutes. They were rebooted by the
volunteers, who did neither tell us nor recorded the details, and the contestants did not
complain, so we cannot be sure how serious the problem was. The volunteers will re-
ceive better instructions for day 2.

A large number of clarification requests were received due to students not knowing
how to compile their program in their preferred environment (mostly Code::Blocks).

A.V. Iglikov, M.U. Kutybayev, B.T. Matkarimov276

They had included graderlib.c and grader.cpp into their project, which caused multiple
symbols to be defined.

Public clarification actions: 1) In the beginning: Aman can give multiple souvenirs
when he is in a section; 2) Graders read I/O from file; 3) Scales grader behavior for in-
correct queries; 4) Late: sample grader prints not only the sequence, but also the number
of queries; 5) Late: Teams may give bad results.

8 machines froze and got rebooted incidents of rebooting from 3 to 15 minutes.
Questions received: 1) lots of technical questions – we assisted the students; 2) ques-

tions regarding the rules – we gave the full answered; 3) task related questions – often
answered ANSWERED IN TASK DESCRIPTION or INVALID QUESTIONS. Excep-
tions: questions regarding something that was clarified – then we tried to provide a very
helpful answer. Question/Answer translations worked fine.

Analysis of day 1 issues: 1) some cases of freezing computers may have been caused
by Code::Blocks grabbing the keyboard and mouse and then locking. However, there
may have been other causes, too; 2) There were 4 students affected by the regrade on
Teams. To gather more information on sporadic hang-ups of contestant’s workstations,
the remote syslog facility was set up. Syslog analysis allows attributing some of hang-
ups to Code::Blocks and finding the way to alleviate them. To test performance of re-
mote syslog workstations was simultaneously rebooted several times. No missing log
messages or substantial network load was detected during reboots.

Day 2:
During the day 2 all announcements were dubbed on the screen as popups using no-
tify-send.

There was a small issue in the sample grader for Towns. This was updated in CMS
before the contest and pushed to the machines at 09:05. 09:11: E-1 report could not
extract zip file, confirmed, using local versions for sorting at 09:15. Several issues rose
about day 2 graders, first at 09:13. There were two versions of graders; both of them
were the same. 09:32 clarifications notice that horse.out is 0/0. The .out files are results
of running sample graders, announcements made at 09:46. 09:20 ranking issue: submis-
sions with ids from day 2 overwrote submissions from day 1. Fixed at 09:40. 11:40
Found and fixed a typo in the announcement sorting.1.in –> sorting1.in. 13:07 another
ranking issue: some scores became lower after refresh. Fixed in 2 minutes. This was
likely caused by a faulty restart of one the ranking servers.

During the contest day 2, one more issue was found: the bug in Code::Blocks that
caused UI to hand while debugging some programs. Two affected contestants were in-
structed to use pkill in such circumstances. Recorded issues at day 2: 1) L-5 hardware
12:36–12:41; 2) G-15 multiple Code::Blocks freezes (~15 min total lost) caused by the
contestant repeatedly trying the same thing; 3) J-10: 12:30–12:35; 4) I-13: 13:40–13:44
Code::Blocks.

ITC investigated CMS issues and reported: After the ISC confirmed the problem on
a test case for Teams, the ITC inserted new test dataset in CMS and started the back-
ground judging. The system handling the queue of submissions saw an increase in work-
load that exposed an application level deadlock causing frequent freezes. Therefore the
background judging proceeded slowly, and eventually it was decided to switch to the

IOI 2015 Report 277

new dataset before its judging caught up. As the rate of submission increased, the dead-
lock was triggering again, requesting manual intervention each time. As judging became
slower, contestants increased their submission rate as they could not wait for the (poten-
tially positive) previous results. This forced us to increase the minimum time between
submissions to 5 minutes. The cause of the deadlock was found and fixed by Bernard
between day 1 and day 2. In parallel to this, one reason for the higher than expected
workload was CMS change to distribute each test case to a single worker, which has the
advantage of giving much lower latency when the system is relatively free. The unex-
pected drawback of this change, in a setting with high number of workers such as the
IOI, was that the system, handling the queue, was overwhelmed by the communication
with the workers. This problem was patched by Stefano between day 1 and day 2 (where
each evaluation was split in about half a dozen packets rather than one per test case).

14. Award Ceremony

322 IOI’15 contestants awarded 161 medals, 27 gold (rounded up), 55 silver (rounded
up) and 79 bronze. Jeehak Yoon from the Republic of Korea is single absolute winner of
IOI’15 with perfect score 600 from 600, he was awarded IOI trophy. IOI Distinguished
award was to Don Piele, USA, post mortem. Special presents were given to girls –
IOI’15 contestants (Kazakhstan tradition).

15. Conclusion

In IOI’15 participated 83 Official Teams (77 teams with 4 contestants, 3 teams with 3
contestants, 2 teams with 2 contestants, 1 team with 1 contestant), 0 Observing Countries,
1 President, 1 ED, 10 IC, 8 ISC, 7 ITC, 24 HSTC; 322 Official Contestants, 161 Leaders/
Deputy Leaders, 62 Guests + 7 Invited Guests + 2 children. Hosting IOI is an exceptional
event in a lifetime experience. Thank you very much IOI community for giving us the
opportunity to show a small part of our beautiful country! Welcome Kazakhstan again!

Acknowledgements

We greatly appreciate efforts and hard work of more than 200 specialists to organize
IOI’15, including staff, volunteers, engineers from the Ministry of Education and Sci-
ence of the Republic of Kazakhstan, Republican Scientific and Practical center “Daryn”,
al-Farabi Kazakh National University, administration of Almaty and Almaty region,
ITMO, Saratov SU, Moscow SU, Far-Eastern State University, ADA University, MIT,
Kazakh-British Technical University, International Information Technologies Univer-
sity, Kazakhstan Hewlett-Packard office, ALSI, Albeta Kazakhstan, Emergency service
Almaty, Kazakh State Circus, Medeo & Shymbulak administration, Kazakhtelecom and
many others. Thank you very much!

A.V. Iglikov, M.U. Kutybayev, B.T. Matkarimov278

References

IZhO (n.d.). International Zhautykov Olympiad. http://izho.kz/
Iglikov, A., Gamezardashvili, Z., Matkarimov, B. (2013). International Olympiads in Informatics in Kazakh-

stan. Olympiads in Informatics, 7, 153–162.
Mares, M., Blackham, B. (2012). Introducing CMS: a contest management system. Olympiads in Informatics,

6, 86–99.
Maggiolo, S., Mascellani, G., Wehrstedt, L. (2014). CMS: a growing grading system. Olympiads in Informatics,

8, 123–131.
APIO’14 (2014). Asian-Pacific Informatics Olympiad 2014. http://olympiads.kz/apio2014/
Blackham, B. (2013). Bernard Blackham report on IOI’13.

http://www.ioinformatics.org/locations/ioi13/

A.V. Iglikov – ISC member, Taiwan 2014, ITC member, Host Country
2015. Technical director of Kazakhstan subregion of the Northeastern
European Regional Contest of the ACM International Collegiate Pro-
gramming Contest. Jury chairman of the Kazakhstan National Olym-
piad in Informatics, International Zhautykov Olympiad (on Computer
Science).

M.U. Kutybayev – IOI Team leader of Kazakhstan 2014. ISC mem-
ber, Host Country 2015. Author of task “Horses” (IOI 2015). Jury
chairman of the Kazakhstan National Olympiad in Informatics, Inter-
national Zhautykov Olympiad (on Computer Science).

B.T. Matkarimov – IOI Team leader of Kazakhstan from 2005. IC
member, Host Country 2013–2016. Chair of IOI 2015. Initiator and
Jury chairman of Kazakhstan subregion of the Northeastern European
Regional Contest of the ACM International Collegiate Programming
Contest. Jury chairman of the Kazakhstan National Olympiad in Infor-
matics, International Zhautykov Olympiad (on Computer Science).

Olympiads in Informatics, 2016, Vol. 10, 279–283
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.20

279

The Informatics Olympiad in Mongolia:
Training Resources for non-English
Speaking Students

Altangerel KHUDER1, Danzan TSEDEVSUREN2
1School of Information, Communication Technology, Mongolian University
of Science and Technology
2School of Mathematics and Natural Sciences, Mongolian National University of Education
e-mail: khuder@must.edu.mn, tsedevsuren@msue.edu.mn

Abstract. In this country report we present activities related to Mongolian team training for na-
tional and International Olympiads in Informatics. First we will outline the current conditions and
problems Mongolian team is facing today. Then we describe possible solutions to those problems.
At the end we will compare our achievements to our country report published in IOI conference
in 2007. We hope this paper will be interesting for team leaders and teachers from non-English
speaking countries.

Keywords: information and communication technology, informatics education, informatics com-
petitions, programming contests, Informatics Olympiad, Mongolia.

1. Introduction

There are about 565 high schools and 497 000 students in Mongolia (Purevjal and Al-
tantuya, 2013). Each year Mongolian National Informatics Olympiad is organized in
four stages: School competition, District competition, City/Province competition and
National competition. Fig. 1. shows the participant numbers for each stage. Students
with top scores are admitted to the next level.

The first National Informatics Olympiad was organized in 1987. Mongolian In-
formatics Association is responsible for organizing whole annual national informatics
Olympiads in cooperation with the Ministry of Education and Science, other universi-
ties and ICT companies. In 2015 we’ve started using CMS (Contest Management Sys-
tem) in our National Competition which reduced the time needed for judging and made
it less human dependable (Maggiolo, Mascellani, and Wehrstedt, 2014).

The first four winners of the national Olympiad participate in the International Olym-
piad in Informatics. The national winners receive scholarships to study IT at local uni-
versities (Choijoovanchig, Uyanga, and Dashnyam, 2007).

A. Khuder, D. Tsedevsuren280

Professors from leading IT universities such as Mongolian National University of
Education, Mongolian University of Science and Technology and National University
of Mongolian, participate in trainings for IOI team.

Students solve 6 programming problems in two days for National competition. The
maximum score at the competition is 300 or 600 points. Fig. 2 shows the total participant
number and the percentage of the maximum score from absolute high score.

Fig. 3. shows results of the Mongolian team participation in IOIs from 2011 through
2015.

Fig. 1. Participants and structure of National Olympiad.

Fig. 2. Maximum score (in percentage from absolute high score) and participant number.

The Informatics Olympiad in Mongolia: Training Resources for ... 281

2. Key Issues and Problems

The following issues are the key challenges that hinder the success of Mongolian team
at the international competition:

Weak English language. Due to language barriers students cannot fully understand 1.	
tasks, use online internet sources and participate in online contests. Regular par-
ticipation in online contests can be very useful for the development of students’
programming and algorithmic skills.
In addition, online contest rankings show us the preparedness of our students at the
international level.
Lack of student’s skills and knowledge related to IOI syllabus. IOI syllabus gives 2.	
us list of knowledge that is required to solve most of the IOI problems. Lack of
knowledge on IOI syllabus results badly planned training and subsequently lack of
success at IOI.
Lack of highly qualified teachers to train students. The most successive former IOI 3.	
participants are going abroad after graduation to study and work. Now they work
for Google, Microsoft, Facebook, Amazon etc. This kind of “brain drain” takes
most of our teachers away. If former IOI participants would share their experience
with new participants it could help them much.

In the next section we will list how we have tried to improve students’ skills and
knowledge of IOI.

Fig. 3. Mongolian team results in IOI.

A. Khuder, D. Tsedevsuren282

3. Improvements

Most of the problems stated in the previous section related to English language skills.
Though teaching English is not our main purpose we’ve started looking for websites,
online contests, which can support Mongolian language. To solve a problem student
must translate the problem into Mongolian. However, it takes a lot of time and in addi-
tion student can misunderstand the problem.

There are many online contests organized almost every day on the internet. As most
of our students are not strong in English we were interested in websites which allow us
to add problems in Mongolian language and upload the tests or just translate the prob-
lems into Mongolian language.

So far we’ve found following websites and contests:
Bebras. Last year our students were able to do the Bebras problems in their native 1.	
language and they were excited because there were enough problems to challenge
themselves. In this contest we had wide choice for the easy and hard problems
(Vegt, 2013). We think many high school students were stimulated to participate
in informatics Olympiad after their Bebras participation.
SPHERE online judge (2.	 www.spoj.com). In 2008 one of our committee mem-
bers contacted Andrew Kosowski from Gdansk University, Poland and asked per-
mission to translate the problems on the website into Mongolian language. Now
most of the basic level online problems in Mongolian language are on SPHERE.
Now several teachers from Mongolian can add problems and organize contest on
SPHERE servers.
Croatian Open Competition in Informatics (3.	 www.hsin.hr/coci). There are 7
online contests in a year and the organizers allow translators from other countries
to get the problems in English and translate into their native language before each
online contest.
Hackerrank. The website allows to its users to be problem setter and organize a 4.	
contest.
USACO. One of our contestants contacted a personal from USACO and they 5.	
agreed him to get problems before the contest and translate them into Mongolian.
Asia-Pacific Informatics Olympiad. The Asia-Pacific Informatics Olympiad 6.	
(APIO) is an IOI-like competition for delegations within the South Asian / West-
ern Pacific region.

All these websites and online resources became available for us thanks to interna-
tional cooperation. Therefore we think one of the best ways to improve quality of our
national team is international cooperation.

As a result of a fruitful cooperation with Russian team we got their full syllabus for
IOI preparation. Now we have translated the syllabus in Mongolian language and we
hope this will help us to organize well-planned training.

Recently some of the former contestants are coming back to Mongolia to share their
experience with other contestants. That is a good way to share their knowledge with the
next generation and this kind of feedback will help us to support continuous develop-
ment of Mongolian team.

The Informatics Olympiad in Mongolia: Training Resources for ... 283

Also we have a dedicated website for our National Olympiad in Informatics so we
can save our results for later analysis (Mongolian National Olympiad NGO, 2015).

4. Summary

Compared to Mongolian report in 2007 there were following main improvements:
We introduced full IOI syllabus to students.●●
We have an official website for National contest.●●
We started using IOI judge system in National contest (CMS).●●

Skills and knowledge of Mongolian students are improving each year and there are
more and more students interested in Informatics Olympiad. To support them further we
will need some text book in the future.

Another future work for us is to develop international cooperation further so that our
students can participate in many more online contests in their native language. We hope
this way they can achieve good placements in IOI and become good specialists.

References

Mongolian National Olympiad NGO (2015). (In Mongolian). Retrieved 2016.04.21 from:
www.informatics.mn

Choijoovanchig, L., Uyanga, S., Dashnyam, M. (2007). The Informatics Olympiad in Mongolia. Olympiads in
Informatics, 1, 31–36.

Maggiolo, S., Mascellani, G., Wehrstedt, L. (2014). CMS: a Growing Grading System. Olympiads in Informa-
tics, 123–131.

Purevjal, A., Altantuya, Y. (2013). Statistical Report 2013. Ulaanbaatar: OchirPress LLC.
Vegt, W. v. (2013). Predicting the difficulty level of a Bebras task. Olympiads in Informatics, 132–139.

A. Khuder is an associate professor of the School of Information,
Communication Technology, Mongolian University of Science and
Technology. He is PhD in ICT and actively participates in the orga-
nization of Mongolian Informatics Association. His research interests
include Natural Language Processing, Operating Systems and Artifi-
cial Intelligence.

D. Tsedevsuren is Professor at School of Mathematics and Natural
Sciences, Mongolian National University of Education. He is PhD in
ICT and Educational Studies, and he is currently working as a Presi-
dent of this Mongolian Informatics Association. His research interests
include Informatics education, ICT in eduaction, theory and methodo-
logy of eLarning and electronic learning content development.

Olympiads in Informatics, 2016, Vol. 10, 285–290
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.21

285

Belarusian Olympiad in Informatics

Iryna KIRYNOVICH1, Aliaksei TOLSTSIKAU2

1Faculty of Computer-Aided Design, Belarusian State University
of Informatics and Radioelectronics
Brovki 6, Minsk, Belarus, 220013
2Faculty of Applied Mathematics and Computer Science, Belarusian State University
Nezavisimosty Ave. 4, Minsk, Belarus, 220030
e-mail: kirinovich.irina@yandex.ru, tolstikov@bsu.by

Abstract. Olympiad in Informatics has been held in Belarus since 1988 and is a high priority di-
rection in the work with gifted students. National Olympiad in Informatics consists of four stages.
It is the most popular intellectual competition among youth in the Republic of Belarus.

Keywords: Olympiad in Informatics, trainings, selection for international competition, Interna-
tional Olympiad in Informatics, IOI.

1. Introduction

In 2016 the XXIX Belarusian Olympiad in Informatics was held in Mogilev, Belarus.
Belarusian team has taken part in IOI since 1990, when the II International Olympiad in
Informatics was held in Minsk. For 26 years the Republic of Belarus was represented by
63 members who were awarded by 79 medals (gold 14, silver 33, and bronze 32).1

Participation in the International Olympiads is the final step of multi-stage competi-
tion among gifted students. Participants of the first selection and training camp are de-
termined during the final round of the national contest. In 30 days teams of the Republic
of Belarus prepare for participation in IOI, IMO, IPhO, IChO, IBO. The national contest
and the preparation for international competitions are provided by employees and stu-
dents of the leading universities

National Olympiads are organized by the Ministry of education of the Republic of
Belarus.

The winners (Fig. 1) of the final stage of the competition have the opportunity to
enroll in the state universities without exams.

1	http://stats.ioinformatics.org/countries/BLR

I. Kirynovich, A. Tolstsikau286

2. National Belarusian Olympiad in Informatics

National Olympiad in Informatics is held with the aim of identifying and improving the
capabilities of the gifted students in the field of informatics and programming. The main
goals of the National Olympiad are to increase interest in learning programming, to deep
their theoretical knowledge and practical skills, to prepare students for participating in
the international competitions. Participation in all stages of the Olympiad is free for
students.

National Olympiad is held in each academic year in four stages: the first stage is the
educational establishment level, the second stage is the district (city) level, the third
stage is the regional competition, the fourth stage is the final national round.

Problems of three types are used at the stages of the National Olympiad in Informat-
ics; each of them requires developing an algorithm for the problem and implementing it
in one of the available programming languages (C++ or Pascal). The problem of the first
type is the classic one: contestant has to write a program that reads the input and pro-
duces the answer, i.e. the contestant doesn’t know which test data will be used to check
his program. The problem of the second type is a question with open tests. In problems
of this type participants have all input data, and it is necessary to provide the results of
the solution for known test data.

Solution grading for the second type problems usually uses partial scoring, the solu-
tion is compared with the optimal or best solution among all participants of the contest.
The problem of the third type is the interactive one. In problems of this type the source
code of a participant interacts with unknown to him library. Solutions obtain input and
the list of actions that should be performed using known protocol. These problems allow

Fig. 1. The final stage of the Belarussian Olympiad in Informatics in 2016 – winners of the 1st
degree diplomas. Head of Department of education of regional Executive Committee Vladi-
mir Ryzhkov is standing in the middle of the photo.

Belarusian Olympiad in Informatics 287

using questions required processing of input data in real-time, games, tasks, “black box”
interaction etc.

Between the stages of the Olympiad training camps are held to prepare students to
participate in the future stages of the competition.

The winners of each round of the Olympiad are awarded with I, II, and III diplomas
(Fig. 2). The number of winners at each stage of the contest does not exceed 45% of the
number of participants. The number of I diplomas does not exceed 20% of the number
of winners. Share of II diplomas is no more than 30%, III diplomas – no more than 50%.
The actual number of winners at each stage is determined by the jury.

2.1. First and Second Stages

The first stage of the National Olympiad should be held not later than November of
the current academic year and is an internal stage in each institution of the Republic of
Belarus. At this stage all interested students take part in the competition. The best stu-
dents qualify to participate in the second stage of the Olympiad in accordance with the
established quota. The problems preparation for this stage is not kept centrally so each
institution determines the format and prepares questions independently.

The second stage is the city or district level. At this stage the contest is held no later
than December of the current academic year and consists of one practical exam. The
contest problems for the second stage of the Olympiad are prepared centrally by each
regional department of education and contain usually only the classic problems. After
the second stage of the Olympiad each district forms a team to participate in the third
stage of the Olympiad.

Fig. 2. Awarding 3rd degree diplomas and medals to the holders of the final stage of the Be-
larussian Olympiad on Informatics 2016.

I. Kirynovich, A. Tolstsikau288

2.2. Third Stage

The third stage of the National Olympiad is held in each region of the Republic of
Belarus (7 in total). All participants compete on the same problem set prepared by the
Ministry of education of the Republic of Belarus. The problem of the second type (open
tests) adds to the classic problems at this stage. The competition is held in 2 practical
exams, each of them requires solving 3–4 questions. The problem complexity is signifi-
cantly higher at this stage than at the previous one.

Each region forms a team of 15 students to perform at the final stage. In addition, the
team may be expanded at the expense of the last year contest winners (final stage), who
won diploma this year (third stage), but was not ranked in the top 15 in the region, as
well as the winners of the International Zhautykov Olympiad (Kazakhstan).

In January/February each regional team receives additional training camp for 14
days to prepare for the final stage. Students listen to the theoretical lectures on construct-
ing algorithms, how to use data structures in the efficient way, and various branches of
mathematics and computer science. In addition to theoretical studies there are practical
exams with analysis.

Team of the Lyceum of the Belarusian State University participates in addition to the
seven regions of the Republic of Belarus in the final stage of the Olympiad.

2.3. Final Stage

The final stage of the National Olympiad is carried out by the Ministry of education
within 5 days in one of the host cities in March/April (Table 1). The contest problems at
this stage contain the interactive task in addition to the classical and open tests.

In the National Olympiad in Informatics all students shares a common rank list re-
gardless of grade (Table 2). About 50% of the participants of the final stage of the Olym-
piad are graduates of secondary schools, gymnasiums and lyceums.

All students (grade 11) who won the final stage are eligible for admission to the state
universities of the Republic of Belarus without exams.

3. Preparation for International Competitions

According to the results of the final stage of the National Olympiad the list of 10–12
most successful students is formed for selection and preparation of the participants of
the International Olympiad in Informatics. Camps are held in 2–3 phases with a total
duration of 30 days.

At the first phase of the trainings participants compete in from 10 to 15 rounds, the
complexity of the problems is close to the international level. After each round analy-
sis is provided by coaches. In addition, training sessions are conducted with rounds of
solving different types of problems: object recognition, optimization problems, game
problems, etc. The list of the International Olympiad in Informatics participants forms

Belarusian Olympiad in Informatics 289

after the first camp. The team is approved by the Ministry of education of the Republic
of Belarus.

During the next camps coaches make lectures with different topics based on the
complex data structures and algorithms, usage of a contest system image provided by
IOI organizers and other. Participants continue preparation solving the competitions
from other countries and regions. The participation in training camps for students is
free.The results of the team of the Republic of Belarus in IOI over the last 5 years are
presented in Table 3.

In Belarus operates the high-tech Park, which includes more than 150 resident com-
panies. Every year, the resident companies of the Park of high technologies take part in
rewarding winners of the final stage of the Olympiad in Informatics (Fig. 3).

The winners of the final stage of the Republican Olympiad will be awarded with cash
prize of the special Fund of the President of the Republic of Belarus for social support of
gifted students and shall be included in a national data Bank of talented youth.

The winners of the international Olympiad receive the title of Laureate of the special
Fund of the President of the Republic of Belarus for social support of gifted pupils and
students.

The presence of this title gives the right to receive a number of social benefits.

Table 1
Number of participants of the final stage in 2012–2016

2012 2013 2014 2015 2016

123 123 120 122 120

Table 2
Distribution of participants of the final stage in 2012–2016

Grade 2012 2013 2014 2015 2016
Partici-
pants

winners Partici-
pants

winners Partici-
pants

winners Partici-
pants

winners Partici-
pants

winners

6–8 9 2 5 3 9 4 7 2 7 1
 9 14 5 18 6 14 4 22 8 19 7
10 43 21 35 12 32 15 29 12 43 22
11 57 28 65 34 65 31 64 32 51 24

Table 3
Performance of the team of the Republic of Belarus in IOI in 2011–2015

2011 2012 2013 2014 2015

10 grade Gold 11 grade Gold 11 grade Gold 11 grade Bronze 11 grade Silver
10 grade Silver 11 grade Gold 11 grade Silver 10 grade Silver 11 grade Silver
 9 grade Silver 10 grade Silver 11 grade Bronze 10 grade Bronze 11 grade Bronze
 9 grade Silver 10 grade Bronze 11 grade Bronze 8 grade – 10 grade Bronze

I. Kirynovich, A. Tolstsikau290

4. Conclusion

This article briefly describes the procedure for conducting the National Olympiad in
Informatics in Belarus. Description of all four stages of the competition and the sched-
ule of training and selection camps are provided. In the Republic of Belarus National
Olympiad in Informatics is an important and significant event. Belarusian students won
lots medals at the international level.

I. Kirinovich, associate professor at the Department of engineering
psychology and ergonomics, Belarusian State University of Informatics and
Radioelectronics, has Ph.D. degree in physics and mathematics. Chairman of
the jury at the final stage of the National Olympiad in Informatics, team
leader of the Republic of Belarus for participation in the International
Olympiad in Informatics, national coordinator of the international
informatics contest "Bebras". Areas of research: simulation and optimization
of electronic microwave devices.

A. Tolstsikau, senior lecturer at Department of computational mathematics,
Belarusian State University. Member of the jury of the final stage of National
Olympiad in Informatics and various student programming contests.
Research interests include parallel and distributed computing, computational
complexity theory and algorithms and systems processing large volumes of
information.

I. Kirynovich, associate professor of the department of engineering
psychology and ergonomics, faculty of computer design, Belarusian
State University of Informatics and Radioelectronics, PhD in Phys-
ics and Mathematics, national coordinator of the Bebras contest in
Belarus, the Chairman of the jury of the final stage of the Republi-
can Olympiad in Informatics scientific and pedagogical leader for the
preparation team of the Republic of Belarus for participation in the
international Olympiad in Informatics.

A. Tolstsikau, senior lecturer at Department of computational math-
ematics, Belarusian State University. Member of the jury of the final
stage of National Olympiad in Informatics and various student pro-
gramming contests. Research interests include parallel and distributed
computing, computational complexity theory and algorithms and sys-
tems processing large volumes of information.

Fig. 3. Nine girls participated in the final stage of the Republican Olympiad on Informatics
2016. Some of them won medals. Director of the company “Yandex Bel” Alex Sikorsky has
congratulated the participants.

About Journal and Instructions to Authors

OLYMPIADS IN INFORMATICS is a peer-reviewed scholarly journal that provides
an international forum for presenting research and developments in the specific scope
of teaching and learning informatics through olympiads and other competitions. The
journal is focused on the research and practice of professionals who are working in the
field of teaching informatics to talented student. OLYMPIADS IN INFORMATICS is
published annually (in the summer).

The journal consists of two sections: the main part is devoted to research papers
and only original high-quality scientific papers are accepted; the second section is for
countries reports on national olympiads or contests, book reviews, comments on tasks
solutions and other initiatives in connection with teaching informatics in schools.

The journal is closely connected to the scientific conference annually organized dur-
ing the International Olympiad in Informatics (IOI).

Abstracting/Indexing

OLYMPIADS IN INFORMATICS is abstracted/indexed by:
Cabell Publishing●●
Central and Eastern European Online Library (CEEOL)●●
EBSCO●●
Educational Research Abstracts (ERA)●●
ERIC●●
INSPEC●●
SCOPUS ●● – Elsevier Bibliographic Databases

Submission of Manuscripts

All research papers submitted for publication in this journal must contain original un-
published work and must not have been submitted for publication elsewhere. Any manu-
script which does not conform to the requirements will be returned.

The journal language is English. No formal limit is placed on the length of a paper,
but the editors may recommend the shortening of a long paper.

Each paper submitted for the journal should be prepared according to the following
structure:

concise and informative title●●
full names and affiliations of all authors, including e-mail addresses●●
informative abstract of 70–150 words●●

list of relevant keywords●●
full text of the paper●●
list of references●●
biographic information about the author(s) including photography●●

All illustrations should be numbered consecutively and supplied with captions. They
must fit on a 124 × 194 mm sheet of paper, including the title.

The references cited in the text should be indicated in brackets:
for one author – (Johnson, 1999)●●
for two authors – (Johnson and Peterson, 2002)●●
for three or more authors – (Johnson ●● et al., 2002)
the page number can be indicated as (Hubwieser, 2001, p. 25)●●

The list of references should be presented at the end of the paper in alphabetic order.
Papers by the same author(s) in the same year should be distinguished by the letters a, b,
etc. Only Latin characters should be used in references.

Please adhere closely to the following format in the list of references:
For books:

Hubwieser, P. (2001). Didaktik der Informatik. Springer-Verlag, Berlin.
Schwartz, J.E., Beichner, R.J. (1999). Essentials of Educational Technology. Allyn

and Bacon, Boston.
For contribution to collective works:

Batissta, M.T., Clements, D.H. (2000). Mathematics curriculum development as a
scientific endeavor. In: Kelly, A.E., Lesh, R.A. (Eds.), Handbook of Research De-
sign in Mathematics and Science Education. Lawrence Erlbaum Associates Pub.,
London, 737–760.

Plomp, T., Reinen, I.J. (1996). Computer literacy. In: Plomp, T., Ely, A.D. (Eds.), In-
ternational Encyclopedia for Educational Technology. Pergamon Press, London,
626–630.

For journal papers:
McCormick, R. (1992). Curriculum development and new information technolo-

gy. Journal of Information Technology for Teacher Education, 1(1), 23–49.
http://rice.edn.deakin.edu.au/archives/JITTE/j113.htm

Burton, B.A. (2010). Encouraging algorithmic thinking without a computer. Olympi-
ads in Informatics, 4, 3–14.

For documents on Internet:
International Olympiads in Informatics (2008).

http://www.IOInformatics.org/

Hassinen, P., Elomaa, J., Ronkko, J., Halme, J., Hodju, P. (1999). Neural Networks
Tool – Nenet (Version 1.1).
http://koti.mbnet.fi/~phodju/nenet/Nenet/General.html

Authors must submit electronic versions of manuscripts in PDF to the editors. The
manuscripts should conform all the requirements above.

If a paper is accepted for publication, the authors will be asked for a computerpro-
cessed text of the final version of the paper, supplemented with illustrations and tables,
prepared as a Microsoft Word or LaTeX document. The illustrations are to be presented
in TIF, WMF, BMP, PCX or PNG formats (the resolution of point graphics pictures is
300 dots per inch).

Contacts for communication

Valentina Dagienė
Vilnius University Institute of Mathematics and Informatics
Akademijos str. 4, LT-08663 Vilnius, Lithuania
Phone: +370 5 2109 732
Fax: +370 52 729 209
E-mail: valentina.dagiene@mii.vu.lt

Internet Address

All the information about the journal can be found at:

http://ioinformatics.org/oi_index.shtml

Publisher office: Vilnius University Institute of Mathematics and Informatics
 Akademijos str. 4, LT-08663 Vilnius, Lithuania
 July, 2016

Olympiads
in Informatics10

IOI
International Olympiad in Informatics

I S S N 1 8 2 2 - 7 7 3 2

Olympiads
in Informatics
Volume 10, 2016

O
lym

p
iad

s in
 In

form
atics V

olu
m

e 10, 2016

Olympiads
in Informatics
Volume 10, 2016

J. ALEMANY FLOS, J. VILELLA VILAHUR
eSeeCode: Creating a Computer Language from Teaching Experiences

3

R. CASTRO, N. LEHMANN, J. PÉREZ, B. SUBERCASEAUX
Wavelet Trees for Competitive Programming

19

S. COMBéFIS, G. BERESNEVIČIUS, V. DAGIENĖ. Learning Programming through Games
and Contests: Overview, Characterisation and Discussion

39

Á. ERDőSNé NéMETH, L. ZSAKÓ
The Place of the Dynamic Programming Concept in the Progression of Contestants’ Thinking

61

S. GRÜTTER, D. GRAF, B. SCHMID
Watch them Fight! Creativity Task Tournaments of the Swiss Olympiad in Informatics

73

J.I. GUNAWAN. Understanding Unsolvable Problem 87
J. HROMKOVIČ. Homo Informaticus – Why Computer Science Fundamentals are an Unavoid-

able Part of Human Culture and How to Teach Them

99
J. HROMKOVIČ, T. KOHN, D. KOMM, G. SERAFINI

Examples of Algorithmic Thinking in Programming Education

111
M. KABÁTOVÁ, I. KALAŠ, M. TOMCSÁNYIOVÁ. Programming in Slovak Primary Schools 125
E. KALINICENKO, M. OPMANIS. Collecting, Processing and Maintaining IOI Statistics 161
A. KARCZMARZ, J. ŁĄCKI, A. POLAK, J. RADOSZEWSKI, J.O. WOJTASZCZYK

Distributed Tasks: Introducing Distributed Computing to Programming Competitions

177
M.M.I. LIEM. Reshaping Indonesian Students Training for IOI 195
W. Di LUIGI, G. FARINA, L. LAURA, U. NANNI, M. TEMPERINI, L. VERSARI

oii-web: an Interactive Online Programming Contest Training System

207
W. van der VEGT.

Bridging the Gap Between Bebras and Olympiad; Experiences from the Netherlands
223

T. VERHOEFF. Problem Solving, Presenting, and Programming: A Matter of Giving and Taking 231

REPORTS
M. DOLINSKY. Gomel Training School for Olympiads in Informatics 237
V. DUMANYAN, A. ANDREASYAN.

Armenia: IOI Participation and National Olympiads in Informatics

249
A. GREMALSCHI, A. PRISACARU, S. CORLAT.

Olympiads in Informatics in Republic of Moldova

255
A. IGLIKOV, M. KUTYBAYEV, B. MATKARIMOV. IOI 2015 Report 263
A. KHUDER, D. TSEDEVSUREN. The Informatics Olympiad in Mongolia: Training Re-

sources for non-English Speaking Students
279

I. KIRYNOVICH, A. TOLSTSIKAU. Belarusian Olympiad in Informatics 285

ISSN 1822-7732

