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Foreword

Time flies like an arrow

A popular example from the world of Artificial Intelligence (and Computational Lin-
guistics), the phrase “Time flies like an arrow” is used to illustrate the ambiguity of lan-
guage and the difficulty in comprehending structure. As a metaphor, it expresses how 
quickly time passes. Study the syntax and you can argue that it’s an instruction to record 
the movement of flies (perhaps in the manner of an arrow, or only those that are similar 
to arrows), a description as to the preferences of a breed of fly, etc.… Some interpreta-
tions have meaning, others less so, but underlying this is the message that something 
apparently straightforward can have multiple meanings, nuances, interpretations. An 
unexpected depth of meaning within a simple form.

IO

IO – Informatics Olympiads. For those of us involved with national and international 
olympiads there are numerous reasons why we got involved. For some, it has been 
the challenge of competing: an opportunity to flex the intellectual muscles, a delight 
in problem solving or even the pleasure of pushing yourself against other similarly 
minded individuals. For others, it is the academic pursuit as the olympiads provide a 
mechanism for learning and teaching: a way to practice skills and infuse knowledge; a 
way to demonstrate that knowledge, skill and application to the wider world. Perhaps 
for others it is the sense of community: fellow students, fellow educators, competitors 
and friends. All of this before we even ask the question as why we stay involved.

10

There are, so says the old joke, 10 types of people in the world – those who understand 
binary and those who do not. In our modern world it is increasingly important to be 
amongst those who understand. If we go back to the first days of the IOI, computer sci-
ence was still a specialist pursuit. We had had a decade of home computers, so comput-
ers were accessible to many, and computing was appearing school curricula, but unless 
you took an interest your exposure could be fleeting. We now exist in a world where 
people carry powerful computers in their pockets – ask yourself how many of the com-
petitors at this year’s IOI carry a phone but do not wear a watch. So many facets of daily 
life aided by computer programs, a many-headed beast that demands constantly to be 
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fed. It is not just teaching individuals how to program, most people will never write or 
need to write a line of code, but an understanding of what is happening inside the black 
box – how things work, what is feasible, knowing what is going wrong to know how to 
make things right – is an important skill.

10

This is the 10th year for the Olympiads in Informatics journal. The first year when we 
have publishing two volumes, as we are delighted to publish a special volume celebrat-
ing the informatics education of our host – special thanks is given to the guest editor 
Marina Tsvetkova. We have published a total of 185 papers showcasing 200 authors 
from 50 countries. Technical papers and country reports. Algorithms and tasks. Re-
views and opinions. The format of the journal is very similar to those early days; a 
forum for those in the community to write about specialised technical issues, an op-
portunity to share our experiences and knowledge, and to give freedom for those who 
are not academics to talk about their work. Looking back with the benefit of hindsight 
we might have developed the journal in a different direction but, with that same know-
ledge, we can say that we have fulfilled (in the most part) the vision and aims that we 
had when first establishing the conference.

Things are not always as they seem; it certainly does not seem like 10 years already. 
Time flies like an arrow indeed.

There are individuals without whose tireless work this volume of the journal – in-
deed every volume of the journal – would not exist. As always, thanks are due to all 
those who have assisted with the current volume – authors, reviewers and editors. A lot 
of work goes, not only to the writing of the papers, but to an extended period of review 
and correction and, in several cases, translation. Peer viewing all of the papers takes a 
significant amount of time and work and special thanks should be given to those oth-
erwise unsung reviewing heroes: Benjamin Burton, Sébastien Combéfis, Walter Gan-
der, Gintautas Grigas, Mathias Hiron, Ville Leppänen, Päivi Kinnunen, Jari Koivisto, 
Krassimir Manev, Martinš Opmanis, Rein Prank, Jūratė Skūpienė, Peter Taylor, Ahto 
Truu, Willem van der Vegt. Particular thanks are due to the organisation committee for 
IOI’2016 in Russia without whose assistance we would be unable to hold the confe-
rence. Their assistance, during what is an already busy period, is gratefully received.

Editors
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Abstract. It has been almost 50 years since the creation of Logo – one of the first educational 
programming languages. Although most people agreed that it was important to teach computa-
tional thinking to children, only recently have school and district leaders begun to adopt curricula 
to include it – mainly through Scratch. In many cases this adoption has failed to provide the right 
methodologies and tools to teachers.

In this paper, we analyse some of the different languages used in classrooms today and we 
propose an improved alternative that we have created – eSeeCode. We also share our experiences 
using this language in classrooms and how students can learn using this tool.

Keywords: informatics curriculum, promoting informatics, programming language.

1. Overview

Reading Papert’s Mindstorms: Children, Computers, and great ideas, one can have the 
feeling that we have not advanced much in the past 35 years (Papert, 1980). Many coun-
tries are trying to include Coding as a required skill to learn in schools, either as a spe-
cific subject or as part of a technology course. However, in many schools, teachers do 
not have the resources, materials and/or knowledge to bring computer science and cod-
ing into the classroom. This is the case of Spain, among other countries, where computer 
science has been introduced into the curriculum, but has failed to provide the details on 
how to implement it properly, thus providing teachers the freedom and responsibility to 
decide how to teach some basic computer science concepts (Saez-Lopez et al., 2016, 
Ackovska et al., 2015, Duke et al., 2000).

In this paper, we will analyse several computer languages and materials, and we 
will explain the difficulties students find when using them in class. As Edsger Dijkstra 
explains, the selection of the programming language will influence how the students will 
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understand computer science (Dijkstra, 1999). We will base our examples on some of the 
most popular computer languages used in Spain today, although this experience can be 
extrapolated to many other countries.

1.1. Key Terms

To begin, we will use the term “educational computer language” in a broad sense, as a 
programming language used to teach coding in classrooms, ranging from professional 
computer languages such as C++ to puzzle-related languages as Lightbot. Because in 
many cases language and programming environment cannot be analysed separately, we 
will use them indistinguishably.

We will use the term text-based coding to describe languages that permit students to 
type their own code, giving them total freedom in the expressions they write. In contrast, 
we will use the term visual block based programming as the type of coding where you 
select your own blocks, and build the programs with a drag-and-drop interface. There is 
a fundamental difference when discussing the use of these languages in the classroom, 
as the former, generally speaking, cannot prevent students from making syntax errors, 
while the latter prevents these type of mistakes. Fig. 1 and Fig. 2 show different ex-
amples of text-based coding and visual block based programming.

We will differentiate between two kinds of paradigms when discussing different ap-
proaches to teaching. The first will be Problem Solving, where the teacher can present 
the student a short, self-contained problem that needs to be answered. In the particular 
case of this paradigm, we will also use the term Puzzle Solving. Similar in concept 
to problem solving, we consider puzzle solving to have more of a recreational focus, 
where there is a known set of rules that include multiple variations. For example, when 
solving a sudoku puzzle there is a specific set of rules, and by changing the numbers 

Fig. 2. Visual coding example with EV3 to make a Lego Robot move in a square pattern.

Fig. 1. Text-based coding example with Logo to create a square.
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you change the problem. The teacher acts as a problem-setter or planifier, deciding 
which problems to be solved at each moment, such as when a student is asked to code 
the Eratosthenes sieve.

As an alternative to problem solving we find Project-based learning. In Spain, this 
strategy is gaining increased attention in the school setting. As part of project-based 
learning, students take a more active and creative role by pursuing an authentic and real-
world project that addresses essential questions and works towards gaining an enduring 
understanding of a relevant issue. The teacher here is more of a guide or facilitator that 
helps the student when needed. In computer science this has the form of software design, 
applied programming and modelling. For example, a student could work on solving the 
problem of being able to identify a number as prime or not, with the project title being 
“Create a game that uses prime numbers”. 

1.2. Languages

To help keep the explanation focused, we have created a list of the main languages used 
in schools in Spain, and have classified them by similarity of characteristics. 

The final result is shown below:
Under text-based coding we will find two separate groups: the pure educational lan-

guages such as Logo or Processing, and the professional languages such as C++, Java, 
Python and Javascript.

Under visual block based coding we find again two groups: educational languages 
such as Scratch, Alice, Kodu, Ev3, AppInventor, and the group of puzzle languages 
such as Lightbot and Beebot. Strictly speaking, Lightbot and Beebot are not complete 
languages, but they are used to teach basic structures to students. It is for this reason that 
we have decided to include them in our analysis.

Although each language has its own particular characteristic, we will analyse a rep-
resentative of each group. The languages we have chosen are: Logo, C++, Scratch and 
Lightbot.

2. Main Characteristics

To be able to compare the different languages we have created a short introduction for 
each one. 

2.1. Logo

Originally created by Wally Feurzeig and Seymour Papert in 1967, there are many ver-
sions of the language used in schools. Its main objective was to teach programming to 
students from ages five to thirteen (Papert, 1980). Due to the fact that it has been around 
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for so long, there has been more than 300 versions of the language, with a substantial 
amount of literature related to it. (Boytchev, 2013).

Main characteristics:
Educational (ages 5–13).●●
The majority of versions use text-code. ●●
The first activities proposed were problem-solving oriented, although there was ●●
some space for creativity. This will vary with versions.
Uses a drawing area where you can move a pointer called a “Turtle”.●●
Main academic fields are basic algorithmics and 2D–3D geometry depending on ●●
the version.
In general there were no debuggers, but a step-by-step execution was possible ●●
in many versions, which helped locate errors. Also syntax errors are difficult to 
correct.

2.2. C++

Designed by Bjarne Stroustrup in 1983, C++ is a professional computer language utilized 
heavily in many academic and professional circles. It is a compiled language, allowing 
the user to be able to select a programming environment. Its standard library makes it 
easier to use, as compared to its predecessor C (Stroustrup, 2007). It is important to note 
that in this category that there are very different approaches depending on the paradigms 
used (Duke et al., 2000), but we will not take them into consideration for the current 
analysis and will common ground.

Main characteristics:
Professional (ages 12+)●●
C++ uses formal code.●●
The language accepts both problem-solving activities and project-oriented ●●
learning.
No drawingarea. General interface uses a console to write and read (input/out-●●
put). This can be extended to use of files.
Main academic fields are advanced algorithms, data structures, and numerical ●●
problems. Uses of classes helps teach system design.
Depending on the Interface there is a good debugger, but syntax errors are hard ●●
to read.

2.3. Scratch

Scratch was created in 2005 by Lifelong Kindergarten research group at Massachusetts 
Institute of Technology Media Lab led by Mitchel Resnick. Although you can trace some 
of its origins to Logo, its different approach to teaching computer science places it in a 
different category (Resnick et al., 2009). 
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Main characteristics:
Educational (ages 8–16).●●
It uses visual block based programming.●●
The language is more focused on project-oriented programming.●●
There is a “drawing area” used to place objects and move them around. ●●
Main academic fields cover basic algorithm, software design.●●
Due to the visual programming interface with blocks, it is impossible to get syntax ●●
errors. There is no debugger.

2.4. Lightbot

There is an educational movement promoted by code.org to reach children in different 
regions of the world and give them tutorials to learn how to code. This movement started 
as the “Hour of code” and has had a big impact all around the world. Almost 200,000 
events were carried out in more than 140 countries. (Code.org, 2013–2016)

Many schools around the world use this material as an introductory material for 
Computer Science. Among the different tutorials that you can find, we selected one that 
had a large acceptance rate in the teacher community in Spain – Lightbot. 

Lightbot is a puzzle-based game where you need to light some squares on a grid. It 
was created in 2008 by Danny Yaroslavski, but it was with the hour of code that it be-
came popular. (Gouws et al., 2014)

Main characteristics:
Educational (ages 4–8 and 9+).●●
It uses visual block based programming.●●
The language is focused only on puzzle solving.●●
It has nice animations of a robot moving around.●●
Main academic fields cover basic algorithms (no variables).●●
Impossible to get syntax errors, the execution can be considered ●● step-by-step.

3. Developing a Curriculum

It is clear that these languages are difficult to compare to one another because of their 
fundamental differences. To be able to do so we will analyse its uses in the classroom 
and their main drawbacks if used alone. Later we will study the combination of one or 
more language.

When considering the development of a curriculum we have to take into account 
many factors, but mainly the maturity of the students (their age) and the amount of time 
they will spend engaging with that curriculum. In our case we will consider students 
from primary – secondary schools, and a relatively long length of time of engagement 
(3–4 years). Although some consider this length insufficient (Winslow, 1996), it is a 
valid starting point to achieve competence in programming. Some main objectives can 



J. Alemany Flos, J. Vilella Vilahur8

be found in some studies (Duncan and Bell, 2015) and in some publications like the 
Computing Progression Pathways (Dorling, 2014).

3.1. Teaching with Only One Language

Using the code.org tutorials in the classroom may seem like a good idea because of the 
students’ high level of initial engagement; however, over time this strategy can backfire 
if it is assigned for too long as the teacher has limited control over the content (s/he can-
not put his own problems), and the tutorials are short and very specific.

One of the program’s strong points is that the students get positive feedback and do 
not feel frustrated when they fail. This is probably due to the fact that they view Lightbot 
and other tutorials in code.org as a game, instead of a class problem.

If we look at the drawbacks from Lightbot we can see that the number of commands 
is very limited and do not include variables. For younger children this is good because 
the less options you give them the more focused and easy it will be to arrive at solutions. 
On the other hand it is not good if the students are mature enough to learn and understand 
it quickly. The use of loops is another drawback. To create a loop one must make a proce-
dure that calls upon itself (as in recursion). This makes an infinite type of loop. Although 
the students can find it intuitive, they have a difficult time understanding conditionals 
and being able to predict this kind of behaviour. Fig. 3 shows the use of loops and func-
tions. We have to keep in mind that although some teachers might use it as a tool to teach 
programming, it does not cover some basic algorithmic concepts that are important, and 
its programs cannot be generalised. (Lightbot 2016, Gouws et al., 2014 )

Currently in Spain the most popular educational programming language is Scratch, 
where it has become quite popular, evidenced by the fact that Barcelona hosted the Con-
necting Worlds Scratch Conference in 2013. With Scratch, students are engaged and 
motivated (Saez-Lopez, 2016), but after many years of use their interest wanes. This is 
a big drawback because it generates apathy towards programming and, in some cases, 
a dislike for programming altogether. There are also some technical drawbacks. For 
example, the lack of text coding makes it difficult to read and write long conditionals 
and programs. There are some projects to overcome this difficulty (Harvey and Mönig 

Fig. 3. Lightbot usage of recursive procedures instead of loops.
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2010), but it is not included in the main tool. In addition, the high level language makes 
the student miss the opportunity to understand what is behind some of the instructions. 
Finally, as it can be seen in Fig. 4, Scratch allows some “parallel programming”, which 
is actually not accurate as it is executed sequentially and depends on the order the pro-
cedures were created. This is a problem because the student cannot guess the results of a 
given program, which is one of the main objectives when teaching CS. (Dorling, 2014)

For a long time the most popular educational programming language in Spain was Logo. 
It was used in the 1980’s through early 1990’s, but its use faded away in the late 1990’s. We 
can see this, for example, because it disappeared from the teacher majors in universities. 
There was not an immediate substitution by another language, but the government stopped 
promoting it as it was not news. This is reflected, for instance, in the use of it when training 
teachers at that time. (Simon, 1996) At the onset, students were motivated by this new ap-
proach to teaching and learning (Rubinstein, 1974), but today the look of a majority of the 
Logo platforms appear outdated and need a visual update. There are two major drawbacks 
to Logo. Its theoretical use was for students aged 5–13, with newer versions this could be 
extended until age 15, but text-based coding may bring syntax errors, and students need 
some maturity to be able to correct them. If not well attended students would get frustrated 
with programs that could not run. At the same time, similarly to Scratch, it has a limited 
life span in the student studies due to the apparent lack of practical utility.

The last group of languages to analyse is the professional ones. This are the most 
common choice among high school students. The students see the real value of cod-
ing and can explore other areas such as physics and mathematics, but because it is not 
prepared for the classroom the learning curve is very steep. Winslow describes the five 
steps from novice to expert (Winslow, 1996), in small-to-medium classrooms, the steep 
learning curve produces a clear and early separation between those who understand the 
content (and move through Winslow learning steps) and those who do not and remain as 
Novices. Another drawback is that due to the lack of visual assistance (in general) and 

Fig. 4. Scratch multiple parallel procedures.
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less attractive interface it is more difficult to motivate the students to use it. The syntax 
of some functions can also be a problem for some students. For instance, the syntax of 
the for loop is more complicated than in other languages, which makes basic algorithms 
sometimes hard to teach (Finkel et al., 1994, Robins and Rountree, 2003). Depending 
on the programming environment used, the syntax errors are very difficult to read to the 
untrained eye, as can be seen in Fig. 5, where only a single character missing produces 
20 lines of errors when compiling.

One big advantage is the amount of resources that can be found on the internet, in 
particular online judges like Codeforces, Timus, Topcoder, etc. With this sort of informa-
tion it is really easy to prepare lists of problems for the students to engage.

It is worth pointing out that, in general, all of these languages and platforms are 
student focused. There are few tools for the teachers, and this makes using only one 
language more difficult. There are some positive exceptions, like the case of Jutge.org. 
(Jutge 2008–2016, Giménez et al., 2012) This online automated judge has been prepared 
as a tool for the classroom and not just for self-learning. Teachers can set up classes, 
have their own sets of problems and can view students’ progress. This kind of platform 
contributes to the gamification of learning computer science, by giving achievements, 
keeping track of the number of problems solved, etc. When students perceive it as a 
game, they become more motivated and less frustrated. 

4. Our Proposal: eSeeCode

After the analysis of the pros and cons of the different languages we decided that we 
should try to create a language that would eliminate almost all the weaknesses. 

The result of our work is eSeeCode both a language and a programming environment. 
Main characteristics:

Both visual code and formal code. You can transition from one to another.●●

Fig. 5. Syntax error in C++. The programming environment is CodeBlocks.
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Both educational and professional language.●●
It is problem solving oriented.●●
Main academic areas cover basic and advanced algorithms, 2D geometry (turtle ●●
graphics) and numerical problems. 
Has a debugger, and includes simple syntax errors handling.●●

4.1. Description of eSeeCode

eSeeCode’s environment offers four different programming levels: from a pure graphi-
cal click-and-run interface to a pure text syntax highlighting editor, with two middle in-
terfaces. We call this levels views, because we want to show the students that code is just 
a representation that can have different forms. This can be seen in Fig. 6. This allows for 
a smooth progress in programming learning while keeping a common general interface, 
instruction set and platform. Time saved in this manner can be spent reinforcing other 
important objectives or learning a complementary second language.

The Touch view is our approach to the Puzzle Solving problems and is designed to 
work with students of ages 5–8. The set of instructions is represented by a set of icons 
(Fig. 7). The icons at this level have no text to maximize ease of use. These instructions 

Fig. 6. Different views of the same code and its result.

Fig. 7. Instruction set of the Touch view.
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cover the basic movement of the guide, size of the drawing, colours and general position-
ing. Each time the student clicks one instruction the environment executes it directly. 

The second view created is the Drag view. This view still uses icons as instructions 
but the student can move them freely once placed in the coding area. These instructions 
accept different arguments and the icons change to match the values of the parameters. 
Some examples of this behaviour can be seen in Fig. 8. Notice that the icons also include 
a name to help the student “read” the code. To execute a program the student needs to 
click the run button.

The next view is the Build view, which is similar to the Drag view as the blocks can 
be displaced around the code area freely. However these blocks don’t include icons, just 
the name of the instructions and the arguments. The student can read the code fully, but 
to create it has to choose among a specific set available. This set is larger than the one 
from the drag view and contains a greater variety of instructions. This list of instructions 
allows the student to be able to explore eSeeCode by him/herselves, and provides the 
student with the familiarization of the names without having to memorize the commands 
and the arguments.

The last view is the Code view. In this level students can type their own code. 
We created eSeeCode based on JavaScript (although this base is well hidden), so af-
ter mastering in the programming in Code view the students can program freely us-
ing this well-known programming language. The platform accepts and executes any 
JavaScript program allowing for a deeper learning. A side advantage to the use of 
JavaScript is the fact that it is not required to be installed to function, as it will work 
with any browser.

In the Code view syntax errors are possible, but we try to give short errors that the 
student can correct. This can be seen in Fig. 9. The platform also has a debugger to be 
used in case the student’s program does not execute as expected. When running a pro-
gram, the editor will restyle the code to encourage students to use clean code.

In the context of the “low-floor, high-ceiling” proposed by Papert (Papert, 1980) and 
used by Resnick (Resnick et al., 2009), eSeeCode has a lower-floor (easy-to-use) than 
Logo and Scratch, and a much higher ceiling (being able to hold complex programs) 
comparable to that of C++. The Touch view could be considered our low-floor while the 
Code view our high-ceiling.

Although you can try to create long programs, we have designed eSeeCode to be a 
problem-solving tool and have provided it with an optional easy-to-use Input/Output 
interface. 

Fig. 8. The icons of the Drag view adapt depending on their parameters.
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4.2. Teacher Point of View

Programming languages, platforms, and materials are only oriented towards the stu-
dent’s use, obviating that one of the most influential parts on the learning of any process 
is the teacher. Providing teacher tools, and configurable platforms is key to an excellent 
use in class, given the uniqueness of each environment.

One of the main purposes of creating eSeeCode was also to be able to give the 
teacher a set of tools so s/he can create high quality exercises and materials for their 
courses. The interface is highly and easily configurable and it can be embedded in any 
webpage, allowing the teachers to configure it for each problem if needed. The tools 
already implemented are:

A tutorial creation assistant, which creates dynamic tutorials●●
A problem setter assistant, with which the teacher can restrict the views that can ●●
be used, decide which instructions are allowed (and how many times each can be 
used), preload code (hidden or not to the student) so that the student only needs to 
complete part of it, etc.
Create step-by-step animations of the execution of programs.●●

Some of this tools are complemented by a Moodle module that allows the teacher to 
collect students problems and to set up specific exercises.

4.3. Experiences with Students

Many experiences have been carried out with students, both in an academic context and 
as an extracurricular activity.

eSeeCode has been used as a language to transition from Scratch to C++, and avoid 
the difficulties that appear from going from a visual block based language to a textual 
based language (Dorling et al., 2015). This experience was done with 12 years old stu-
dents that had previous knowledge of Computer Science since they had taken some 

Fig. 9. Syntax error in eSeeCode.
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Scratch courses. This allowed the teachers to teach directly using Code view, but they 
allowed the students to go back to the Build view to avoid the empty page difficulty 
(Resnick et al., 2009), where the student doesn’t know how to start because he is used to 
having a set of blocks. With the introduction of eSeeCode the teachers had to review the 
basic concepts of variables, conditionals, loops, etc. The methodology that was used was 
based on Polya problem-solving principles, where the student should take the following 
steps (Polya, 1945):

Understanding the problem 1.	 i.e. Can you explain the problem with different words? 
Can you create your own “paper and pencil” examples?
Devising a plan. 2.	 In our case this is clearly the Algorithm. Some things to consider 
when devising a plan are to try to find previous, similar problems.
Carrying out the plan. 3.	 This is the implementation of the algorithm. We propose 
the “baby steps” methodology, where you write the code step-by-step and execute 
along to avoid syntax errors, while making sure everything goes accordingly to the 
plan.
Looking Back. 4.	 Although no judge system has been created, the student should 
analyse if s/he obtained the desired result, going back to previous steps if s/he did 
not.

Although this experience is different than the experiment done by Lewis in a study to 
compare Scratch vs Logo (Lewis, 2010), a similar survey was created and it was taken 
by 59 of the students in the course. The survey consisted of 16 questions each being a 
4-level Likert scale. 

As it can be seen in Fig. 10 it seems that Scratch is easier to program, but in fact 
the total number of students that have a positive feedback (Strongly agree and Agree) 

Fig. 10. Students responses to a 4-level likert test about the use of Scratch and eSeeCode in class.
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is larger in the case of eSeeCode. One of the difficulties to analyse this question is the 
fact that the problems that the students had to solve in the two languages are different. 
What is interesting is that students would recommend in general to use eSeeCode to 
teach programming, this might have similar reasons to what Lewis describes (Lewis, 
2010), as the students feel more self-secure when typing their own code, and might see 
Scratch as something different than programming. This would be interesting to analyze 
in a future study.

When asking questions about the difficulties when learning the language, we en-
counter different opinions depending on the topic. In Fig. 11 we can see this results. 
Similar to what happened when asking about writing a program the opinion of the 
students is less strong with eSeeCode than with Scratch, although the numbers of posi-
tive vs negative are similar. We have to take into account that the view students were 
using more is the Code view, which makes it difficult to give a precise analysis of the 
situation.

Fig. 11. Student responses to a 4-level likert test about the difficulties when learning with 
Scratch and eSeeCode.
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What might be interesting is that the students opinion about the difficulties of the 
concept of repeat is statistically independent of the language (a Fisher exact test gives 
us a p-value of 0.3401 which tells us that the groups are not significantly different) This 
can be because the repeat concept is very easy to understand by the students.

Another experience we want to share is our own version of hour of code (Fig. 12) 
where students had to make programs to draw some typical optical illusions. Placing 
this activity in the context of students having an enjoyable time seemed to motivate 
the students to complete the tutorials and to try to draw their own images. Some of the 
activities were designed to be more difficult than the level of knowledge the students 
possessed and were accompanied with a solution code. The students would read the 
code and try to figure out the expected result. Although some students were not able to 
complete the activity, most of them enjoyed it. Another experiment we conducted was 
to give students the partial code for the program. In this activity we eliminated all the 
numbers from the code. The student was required to fill the gaps, until the right image 
would appear. Very few students would try numbers at random, the majority would 
first try to understand what the code did, and place the right numbers directly.

Three different sets of students tried the platform with this activity: Students that had 
never programmed before, students that had been introduced to Scratch and students that 
already knew Logo and C++. The difficulties found were similar in each group, conclud-
ing that it adapts to the student’s needs.

Fig. 12. Tutorials from our Hour of Code.
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4.4. Further Work

We have released eSeeCode as an open source project, and as such it is a continuing 
development. We believe that further work in the platform should include:

A new and adaptable design to make it feel more modern, and more user-friendly.●●
Not allowing syntax errors in the Blocks and Build views.●●
Teacher support material to be able to be used in class by non-programmer tea-●●
chers.
A formal study of the impact in the long run process and how it can be included ●●
in the regular curriculum. We believe this study should contain reports on Scratch, 
C++ and eSeeCode.

5. Conclusions

The time has come for teachers in Spain to take on the responsibility of curriculum 
development. This responsibility will come first by understanding the different options 
there exist, understanding the previous objectives, the ones we want to have in their 
place, and taking on a global vision. Right now one language cannot satisfy all the learn-
ing process. It is also valuable for the students to know more than one language, which 
would provide the option of overcoming the inherent weaknesses of each one.

eSeeCode tries to provide a new platform to overcome the main weaknesses found, 
but we believe it does not need to be a replacement but rather a complement to the learn-
ing process. The trials so far show that it is a viable language to take into the classroom, 
and that the students show a good overall satisfaction with it.
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Abstract. The wavelet tree is a data structure to succinctly represent sequences of elements over 
a fixed but potentially large alphabet. It is a very versatile data structure which exhibits interest-
ing properties even when its compression capabilities are not considered, efficiently supporting 
several queries. Although the wavelet tree was proposed more than a decade ago, it has not yet 
been widely used by the competitive programming community. This paper tries to fill the gap 
by showing how this data structure can be used in classical competitive programming problems, 
discussing some implementation details, and presenting a performance analysis focused in a 
competitive programming setting.
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1. Introduction

Let  = (1     ) be a sequence of integers and consider the following query over .

Query 1. Given a pair of indices ( ) and a positive integer , compute the value of the 
-th smallest element in the sequence ( +1     ).

Notice that Query 1 essentially asks for the value of the element that would occupy 
the -th position when we sort the sequence ( +1     ). For example, for the se-
quence  = (3 7 5 2 3 2 9 3 5) and the query having ( ) = (3 7) and  = 4, 
the answer would be 5, as if we order sequence (3 4 5 6 7) = (5 2 3 2 9) we 
would obtain (2 2 3 5 9) and the fourth element in this sequence is 5. Consider now 
the following update query.

Query 2. Given an index , swap the elements at positions  and  + 1.
That is, if  = (3 7 5 2 3 2 9 3 5) and we apply Query 2 with index 5, we 

would obtain the sequence  0 = (3 7 5 2 2 3 9 3 5).
Consider now a competitive programming setting in which an initial sequence of 

106 elements with integer values in the range [ − 109 109] is given as input. Assume that 



R. Castro et al.20

a sequence of 105 queries, each query of either type 1 or type 2, is also given as input. 
The task is to report the answer of all the queries of type 1 considering the applications 
of all the update queries, every query in the same order in which they appear in the 
input. The wavelet tree (Grossi, 2015) is a data structure that can be used to trivially 
solve this task within typical time and memory limits encountered in programming 
competitions.

The wavelet tree was initially proposed to succinctly represent sequences while still 
being able to answer several different queries over this succinct representation (Grossi 
et al., 2003; Navarro, 2014; Grossi, 2015). Even when its compression capabilities are 
not considered, the wavelet tree is a very versatile data structure. One of the main fea-
tures is that it can handle sequences of elements over a fixed but potentially large alpha-
bet; after an initial preprocessing, the most typical queries (as Query 1 above) can be 
answered in time (log σ), where σ is the size of the underlying alphabet. The prepro-
cessing phase usually constructs a structure of size ( ×   log σ) for an input sequence 
of  elements, where  is a factor that will depend on what additional data structures 
we use over the classical wavelet tree construction when solving a specific task.

Although it was proposed more than a decade ago (Grossi et al., 2003), the wave-
let tree has not yet been widely used by the competitive programming community. 
We conducted a social experiment publishing a slightly modified version of Query 1 
in a well known Online-Judge system. We received several submissions from experi-
enced competitive programmers but none of them used a wavelet tree implementation 
to solve the task. This paper tries to fill the gap by showing how this structure can be 
used in classical (and no so classical) competitive programming tasks. As we will show, 
its good performance to handle big alphabets, the simplicity of its implementation, plus 
the fact that it can be smoothly composed with other typical data structures used in 
competitive programming, give the wavelet tree a considerable advantage over other 
structures.

Navarro (2014) presents an excellent survey of this data structure showing the most 
important practical and theoretical results in the literature plus applications in a myriad 
of cases, well beyond the one discussed in this paper. In contrast to Navarro’s survey, 
our focus is less on the properties of the structure in general, and more on its practical 
applications, some adaptations, and also implementation targeting specifically the issues 
encountered in programming competitions. Nevertheless, we urge the reader wanting to 
master wavelet trees to carefully read the work by Navarro (2014).

2. The Wavelet Tree

The wavelet tree (Grossi, 2015) is a data structure that recursively partitions a sequence 
 into a tree-shaped structure according to the values that  contains. In this tree, every 
node is associated to a subsequence of . To construct the tree we begin from the root, 
which is associated to the complete sequence . Then, in every node, if there are two 
or more distinct values in its corresponding sequence, the set of values is split into two 
non-empty sets,  and ; all the elements of the sequence whose values belong to  
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form the left-child subsequence; all the elements whose values belong to  form the 
right-child subsequence. The process continues recursively until a leaf is reached; a leaf 
corresponds to a subsequence in which all elements have the same value, and thus no 
partition can be performed.

Fig. 1 shows a wavelet tree constructed from the sequence

 = (3 3 9 1 2 1 7 6 4 8 9 4 3 7 5 9 2 7 3 5 1 3)

We split values in the first level into sets  = f1     4g and  = f5     9g. 
Thus the left-child of  is associated to  0 = (3 3 1 2 1 4 4 3 2 3 1 3) If we 
continue with the process from this node, we can split the values into  0 = f1 2g and 
 0 = f3 4g. In this case we obtain as right child a node associated with the sequence 
 00 = (3 3 4 4 3 3 3). Continuing from  00, if we split the values again (into sets 
f3g and f4g), we obtain the subsequence (3 3 3 3 3) as left child and (4 4) as right 
child, and the process stops.

For simplicity in the exposition, given a wavelet tree  we will usually talk about 
nodes in  to denote, interchangeably, the actual nodes that form the tree and the sub-
sequences associated to those nodes. Given a node  in , we denote by Left () its 
left-child and by Right () its right-child in . The alphabet of the tree is the set of 
different values that its root contains. We usually assume that the alphabet of a tree is a 
set Σ  = f1 2     σg. Without loss of generality, and in order to simplify the partition 
process, we will assume that every node  in  has an associated value m () such that 
Left () contains the subsequence of  composed of all elements of  with values  
≤ m (), and Right () the subsequence of  composed of all elements with values 
  m (). (In Fig. 1 the value m () is depicted under every node.) We can also as-
sociate to every node  in , two values l () and r (), such that  corresponds to 
the subsequence of the root of  containing all the elements whose values are in the 
range [l () r ()]. Notice that a wavelet tree with alphabet f1     σg has exactly 
σ leaves. Moreover, if the construction is done splitting the alphabet into halves in every 
node, the depth of the wavelet tree is (log σ).

Fig. 1. Wavelet tree for the sequence  = (3 3 9 1 2 1 7 6 4 8 9 4 3 7 5 9 2 
7 3 5 1 3). Solid lines illustrate the execution of rank3( 14). Dashed lines show the 
execution of quantile6( 7 16).
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As we will see in Section 4, when implementing a wavelet tree the complete infor-
mation of the elements stored in each subsequence of the tree is not actually necessary. 
But before giving any details on how to efficiently implement the wavelet tree, we use 
the abstract description above to show the most important operations over this data 
structure.

Traversing the Wavelet Tree

The most important abstract operation to traverse the wavelet tree is to map an index in 
a node into the corresponding indexes in its left and right children. As an example, let  

be the root node of wavelet tree  in Fig. 1, and  0 = Left (). Index 14 in  (marked 
in the figure with a solid line) is mapped to index 8 in  0 (also marked in the figure with 
a solid line). That is, the portion of sequence  from index 1 to index 14 that is mapped 
to its left child, corresponds to the portion of sequence  0 from index 1 to 8. On the other 
hand, index 14 in root sequence  is mapped to index 6 in Right ().

We encapsulate the operations described above into two abstract functions, 
mapLeft ( ) and mapRight ( ), for an arbitrary non-leaf node  of . In Fig. 1, 
if  is the root,  0 = Left () and  00 = Right (

 0), then we have mapLeft ( 

14) = 8, mapRight ( 0 8) = 5 and mapLeft ( 00 5) = 3 (all indexes marked 
with solid lines in the figure). Function mapLeft ( ) is essentially counting how 
many elements of  until index  are mapped to the left-child partition of . Similarly 
mapRight ( ) counts how many elements of  until index  are mapped to the right-
child partition of .

As we will describe in Section 4, these two operations can be efficiently implemented 
(actually can be done in constant time). But before going into implementation details, we 
show how mapLeft and mapRight can be used to answer three different queries by 
traversing the wavelet tree, namely, rank, range quantile, and range counting.

2.1. Rank

The rank is an operation performed over a sequence  that counts the occurrences of 
value  until an index  of . It is usually denoted by rank( ). That is, if  = (1 

    ) then

rank( ) = jf 2 f1     g j  = gj

So for example, in sequence  in Fig. 1 we have that rank3( 14) = 3.
Assume that  is a wavelet tree for , then rank( ) can be easily computed with 

the following strategy. If  ≤ m () then we know that all occurrences of  in  appear 
in the sequence Left (), and thus rank( ) = rank(Left () mapLeft ( )). 

Similarly, if   m () then rank( ) = rank(Right () mapRight ( )). We 
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repeat this process until we reach a leaf node; if we reach a leaf  with this process, we 
know that rank( ) = .

In Fig. 1 the execution of rank3( 14) is depicted with solid lines. We map index 
14 down the tree using either  mapLeft or  mapRight  depending on the  m value 
of every node in the path. We first map 14 to 8 (to the left), then 8 to 5 (to the right) and 
finally 5 to 3 (to the left), reaching a leaf node. Thus, the answer to rank3( 14) is 3.

Rank is computed by performing (log σ) calls to (either) mapLeft or mapRight , 
thus the time complexity is ( ×  log σ) where  is the time needed to compute the 
map functions. Also notice that a rank operation that counts the occurrences of  be-
tween indexes  and  can be computed by rank( ) − rank(  − 1), and thus the 
time complexity is also ( ×  log σ). 

2.2. Range Quantile

The range quantile operation is essentially Query 1 described in the introduction: given a 
sequence  = (1     ), quantile(  ) is the value of the -th smallest element 
in the sequence ( +1     ). For instance in Fig. 1 for the root sequence  we have 
that quantile6( 7 16) = 7 It was shown by Gagie et al. (2009) that wavelet trees 
can efficiently solve this query.

To describe how the wavelet tree can solve quantile queries, lets begin with a simpler 
version. Assume that  = 1 and thus, we want to find the -th smallest element among 
the first  elements in . Then having a wavelet tree  for , quantile( 1 ) can 
be easily computed as follows. Let  = mapLeft ( ). Recall that mapLeft ( ) 
counts how many elements of  until index  are mapped to the left-child of . Thus if  

≤  then we know for sure that the element that we are searching for is in the left subtree, 
and can be computed as

quantile(Left () 1 mapLeft ( ))

On the other hand, if    then the element that we are searching for is in the right 
subtree, but it will no longer be the -th smallest in Right () but the ( − )-th small-
est and thus can be computed as

quantile( − )(Right () 1 mapRight( ))

This process can be repeated until a leaf node is reached, in which case the answer is 
the (single) value stored in that leaf.

When answering quantile(  ) the strategy above generalizes as follows. We 
first compute  = mapLeft ( ) − mapLeft (  − 1). Notice that  is the number of 
elements of  from index  to index  (both inclusive) that are mapped to the left. Thus, 
if  ≤  then the element we are searching for is in the leftchild of  between the indexes 
mapLeft (  − 1) + 1 and mapLeft ( ), and thus the answer is
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quantile(Left () mapLeft (  − 1) + 1 mapLeft ( ))

If    then the desired element is in the right and can be computed as

quantile( − )(Right () mapLeft(  − 1) + 1 mapLeft( ))

As before, the process is repeated until a leaf node is reached, in which case the an-
swer is the value stored in that leaf. In Fig. 1 the complete execution of quantile6( 

7 16) is depicted with dashed boxes in every visited node.
As for the case of the rank operation, quantile can be computed in time ( ×  log σ) 

where  is the time needed to compute the map functions.

2.3. Range Counting

The range counting query range[](  ) counts the number of elements with values 
between  and  in positions from index  to index . That is, if  = (1     ) then

range[](  ) = jf 2 f     g j  ≤  ≤ gj

A sequence of size  can be understood as the representation of a grid with  points 
such that no two points share the same row. A general set of  points can be mapped to 
such a grid by storing real coordinates somewhere and breaking ties somehow. For this 
representation the range counting query corresponds to count the number of points in a 
given subrectangle (Navarro, 2014).

To answer a range counting query over a wavelet tree  we can use the following re-
cursive strategy. Consider the interval [l () r ()] of possible elements of a sequence 
. If [l () r ()] does not intersect [ ], then no element of the sequence is in [ 

] and the answer is 0. Another case occurs when [l () r ()] is totally contained in 
[ ]; in this case all the elements of the sequence between  and  are counted, so the 
answer is j[ ]j =  −  + 1.

The last case (the recursive one) is when [l () r ()] intersects [ ] (but is not 
completely contained in [ ]); in that case the answer is the sum of the range counting 
query evaluated in both children. The queries for children are called with the same [ 

] as in the parent’s call, but the indexes  and  are replaced by the mappings of these 
indexes. That is, the answer is

range[](Left () mapLeft ( ) mapLeft ( )) +

		  range[](Right () mapRight ( ) mapRight ( ))

Note that if range is called on a leaf node , then l () = r () = , so the inter-
val is either completely contained (if  2 [ ]) or completely outside (if  62 [ ]). 
Both cases are already considered.
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It is not difficult to show that for a range counting query, we have to make at most 
(log σ) recursive calls (Gagie et  al. (2012) show detailed proof), and thus the time 
complexity is, as for rank and quantile, ( ×  log σ) where  is the time needed to 
compute the map functions.

3. Simple Update Queries

We now discuss some simple update queries over wavelet trees. The idea is to shed light 
on the versatility of the structure to support less classical operations. We looked for 
inspiration in typical operations found in competitive programming problems to design 
update queries that preserve the global structure of the wavelet tree. We only describe 
the high level idea on how these queries can be adopted by the wavelet tree, and we later 
(in Section 4) discuss on how to efficiently implement them.

3.1. Swapping Contiguous Positions

Consider Query 2 in the introduction denoted by swap( ). That is, a call to swap( ) 
changes  = (1     ) into a sequence (1     +1      ).

The operation swap( ) can be easily supported by the wavelet tree as follows. 
Assume first that  ≤ m (). Then we have two cases depending on the value of +1. 
If +1  m (), we know that  is mapped to the left subtree while +1 is mapped 
to the right subtree. This means that swapping these two elements does not modify any 
of the nodes of the tree that are descendants of . In order to modify , besides actu-
ally swapping the elements, we should update mapLeft ( ) and mapRight ( ); 
mapLeft ( ) should be decremented by 1 and mapRight ( ) should be incre-
mented by 1 as the new element in position  is now mapped to the right subtree. Notice 
that these are the only two updates that need to be done to the map functions.

The other case is if +1 ≤ m (). Notice that both  and +1 are mapped to 
Left (), and moreover, they are mapped to contiguous positions in that sequence. 
In this case, no update should be done to mapLeft ( ) or mapRight ( ). Thus, 
besides actually swapping the elements in , we should only recursively perform the 
operation swap(Left () mapLeft ( )) The case in which   m () is sym-
metrical. The complete process is repeated until a leaf node is reached, in which case 
nothing should be done.

To perform the swap in the worst case we would need to traverse from top to bottom 
of the wavelet tree. Moreover, notice that the map functions mapLeft and mapRight 
are updated in at most one node. Thus the complexity of the process is ( ×  log σ + 

) where  is the time needed to update mapLeft and mapRight , and  is the time 
needed to compute the map functions.
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3.2. Toggling Elements

Assume that every element in a sequence  has two possible states, active or inactive, 
and that an operation toggle( ) is used to change the state of element  from active 
to inactive, or from inactive to active depending on its current state. Given this setting, 
we want to support all the queries mentioned in Section 2, but only considering active 
elements. For example, assume that  = (1 2 1 3 1 4) and only the non 1 elements 
are active. Then a query quantile2

 ( 1 6) would be 3.
A simple augmentation of the wavelet tree can be used to support this update. Besides 

mapLeft and mapRight , we use two new mapping/counting functions activeLeft 
and activeRight . For a node  and an index , activeLeft ( ) is the number 
of active elements until index  that are mapped to the left child of , and similarly 
activeRight ( ) is the number of active elements mapped to the right child. Be-
sides this we can also have a count function for the leaves of the tree, activeLeaf ( 

), that counts the number of active elements in a leaf  until position . We next show 
how these new mapping functions should be updated when a toggle operation is per-
formed. Then we describe how the queries in Section 2 should be adapted.

Upon an update operation toggle( ) we proceed as follows. If  ≤ m () then 
we should update the values of activeLeft ( ) for all  ≥  adding 1 to 
activeLeft ( ) if  was previously inactive, or substracting 1 in case  was pre-
viously active. Now, given that  is mapped to the left child of , we proceed recur-
sively with toggle(Left () mapLeft ( )). If   m (), we proceed sym-
metrically updating activeRight ( ) for  ≥ , and recursively calling 
toggle(Right () mapRight ( )). We repeat the process until a leaf is reached, 
in which case activeLeaf should also be updated (similarly as for activeLeft ). 
The complexity of the toggle operation is then (( + ) ×  log σ), where  is the time 
needed to update activeLeft and activeRight in every level (plus activeLeaf 
in the last level), and  is the time needed to compute the map functions mapLeft 
and mapRight .

Consider now the quantile(  ) query. Recall that for this query we first com-
puted a value  representing the number of elements of  from index  to index  that are 
mapped to the left. If  ≤  we proceeded searching for quantile in the left subtree, 
and if  ≥  we proceeded searching for quantile( − ) in the right subtree (mapping 
indexes  and  accordingly in both cases). In order to consider the active/inactive state 
of each element, we only need to change how  is computed; we need to consider now 
how many active elements from index  to index  are mapped to the left, and thus  is 
computed as

 = activeLeft (  − 1) − activeLeft ( )

Then, we proceed exactly as before: if  ≤  we search for quantile in the left 
subtree, otherwise, we search for quantile( − ) in the right subtree. Notice that we 
always assume that when executing quantile(  ) the number of active elements 
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between  and  in  is not less than  (which can be easily checked using activeLeft 
and activeRight ).

Queries rank and range[] are even simpler. In the case of rank we only need 
to consider the active elements when we reach a leaf; in the last query rank( ) in a 
leaf , we just answer activeLeaf ( ). In the case of range[](  ), we almost 
keep the recursive strategy as before but now when [l () r ()] is totally contained 
in [ ] we only have to consider the number of active elements between index  and 
index , which is computed as

(activeLeft ( ) + activeRight ( )) −

		  (activeLeft (  − 1) + activeRight (  − 1))

In the case in which  is a leaf, this value is computed as activeLeaf ( ) −
activeLeaf (  − 1).

The complexity of these new queries is (( + ) ×  log σ) where  is the time 
needed to compute the activeLeft and activeRight functions and  is the time 
needed to compute the map functions.

3.3. Adding and Deleting Elements from the Beginning or End of the Sequence

Consider the operations pushBack( ), popBack(), pushFront( ) and 
popFront(), with their typical meaning of adding/deleting elements to/from the be-
ginning or ending of sequence .

First notice that when adding or deleting elements we might be changing the alpha-
bet of the tree. To cop with this, we assume that the underlying alphabet Σ  is fixed and 
that the tree is constructed initially from a sequence mentioning all values in Σ . Thus, 
initially there is a leaf in the tree for every possible value. We also assume that in every 
moment there is an active alphabet, which is a subset of Σ , containing the values actu-
ally mentioned in the tree. To support this we just allow some sequences in the tree to 
be empty; if there is some value  of Σ  not present in the tree at some point, then the 
sequence corresponding to the leaf node associated with  is the empty sequence. It is 
straightforward to adapt all the previous queries to this new setting.

Consider now pushBack( ) and assume that before the update we have jj = 

. Then, besides adding  to the end of sequence , we should update (or more pre-
cisely, create) mapLeft ( +1) and mapRight ( +1). If  ≤ m () then we 
let mapLeft (  + 1) = mapLeft ( ) + 1 and mapRight (  + 1) = 

mapRight ( ), and then perform pushBack(Left () ). If   m () then we let 
mapLeft (  + 1) = mapLeft ( ) and mapRight (  + 1) = mapRight ( 

)+1, and then perform pushBack(Right () ). Finally when we reach a leaf node, 
we just add  to the corresponding sequence.

The popBack() operation is similar. Assume that jj = , then besides deleting 
the last element in , we should only delete that element from the corresponding sub-
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tree. Thus, if  ≤ m () then we do popBack(Left ()), and if   m () we do 
popBack (Right ()). When we reach a leaf node we just delete any element from it. 
Notice that in this case no mapLeft or mapRight needed to be updated.

The pushFront and popFront are a bit more complicated. When we do 
pushFront( ) we should do a complete remapping: if  ≤ m () then for every  2 
f1     g we should do

 mapLeft (  + 1) = mapLeft ( ) + 1

mapRight (  + 1) = mapRight ( )

and finally set mapLeft ( 1) = 1 and mapRight ( 1) = 0 and perform the call 
pushFront(Left () ). If   m () then we should do

 mapLeft (  + 1) = mapLeft ( )

mapRight (  + 1) = mapRight ( ) + 1

and finally set mapLeft ( 1) = 0 and mapRight ( 1) = 1 and perform the call 
pushFront(Right () ). When a leaf node is reached we just add  at the begin-
ning of the corresponding sequence. The popFront() operation is similar. Let jj = 

. If 1 ≤ m () then we should update mapLeft ( ) to mapLeft (  + 1) −
1, and mapRight ( ) to mapRight (  + 1) for all  from 1 to  − 1, and then do 
popFront(Left ()). Symmetrically if 1  m () then we should update mapLeft ( 

) to mapLeft (  + 1), and mapRight ( ) to mapRight (  + 1) − 1 for all  
from 1 to  − 1, and then do popFront(Right ()). Upon reaching a leaf node, we just 
delete the value from the front.

The complexity of all the operations above is (( + ) ×  log σ) where  is the 
time needed to update mapLeft or mapRight in every level, and  is the time needed 
to compute the map functions. Just notice that for the cases of the pushFront and pop-
Front we have to update several values of mapLeft and mapRight per level.

4. Implementation

In this section we explain how to build a wavelet tree and how to construct the auxiliary 
structures to support the mapping operations efficiently. Based on this construction we 
also discuss how to implement queries explained in the previous section. Additionally, 
we present an implementation strategy alternative to the direct pointer based one. We 
implemented both approaches in C++ and the code is available in github1.

1	https://github.com/nilehmann/wavelet-tree
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4.1. Construction

A wavelet tree implementation represents an array [0  − 1] of integers in the interval 
[0 σ − 1]. Our construction is based on a node structure and pointers between those 
nodes. Every node  will be identified by two elements  and  (which essentially 
correspond to l () and r () in Section 2), and an associated sequence 

 which is 
the subsequence of  formed by selecting elements in the range [ ]. As we will see, 
values  and  and the sequence 

 do not need to be explicitly stored and can be 
computed when traversing the tree if needed.

The construction of a wavelet tree starts creating the root node associated to the 
original array  and the interval [0 σ − 1]. We then proceed recursively as follows. In 
each node  we found the middle of the interval 

 = ( + )2 (which corresponds 
to the value m () described in Section 2). We create two new nodes  and  as left-
child and right-child of , respectively. Then, we perform a stable partition of the array 

 into two arrays 

 and , such that 
 contains all values less than or equal to 


 and 

 those greater than . The construction continues recursively for the left 
node with the array 

 and the interval [], and for the right node with 
 and 

the interval [
 + 1 ]. The base case is reached when the interval represented by the 

node contains only one element, i.e.,  = . It is not necessary to store arrays 
 cor-

responding to each node . They are only materialized at building time to construct the 
auxiliary structures to support the mapping operations required to traverse the tree as 
described below.

As previously discussed, the fundamental operations mapLeft and mapRight cor-
respond to count how many symbols until position  belong to the left and right node 
respectively. To support these operations, when building a node  we precompute for 
every position  how many elements in the array 

 belong to the right node – they are 
greater than 

 – and store the results in an array . We could store a similar array  0
 

to store how many elements belong to the left node, but it is easy to note that values of 
both arrays are related as follows:  0

 [] =  − [] + 1.

To understand how 
 is computed, it turns out useful to associate a bitvector 

 

that marks with 0’s elements less than or equal to 
 and with 1’s those greater than . 

This bitvector must support the operation of counting how many bits are set to 1 until a 
position , which is commonly referred as a rank operation. Our array 

 is computed on 
build time as the partial sum of 

 by the recurrence [0] = [0] [] = [ − 1] 

+ [], thus supporting the rank operation in constant time. The compression character-
istics of the wavelet tree arise mainly because it is possible to represent these bitvectors 
succinctly while maintaining constant-time rank queries (Clark, 1998; Okanohara and 
Sadakane, 2007; Raman et al., 2002). However, in a competitive programming setting 
memory constraints are less restrictive and our representation shows off to be sufficient. 
In case the memory is an issue, a practical and succinct implementation is presented by 
González et al. (2005).
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4.2. Implementing Queries and Updates

We now briey discuss how every operation in Section 2 can be efficiently implemented.

mapLeft and mapRight. These two operations can be easily implemented with the array 
; in a node  the number of elements until position  that go to the left is  −  [] + 

1. Since we are indexing from 0, position  is mapped to the left to position  −  []. 
Analogously, a position  is mapped to the right to position [] − 1. Notice that both 
mapping functions can thus be computed in constant time, which implies that rank, 
quantile and range operations can be implemented in (log σ) time.

swap. The swap operation first map the position  down the tree until we reach a node  
where the update needs to be performed. At this point the (virtual) bitvector 

 is such 
that [] 6= [ + 1]. Swapping both bits can only change the count of 1’s until posi-
tion , and thus, only [] should be updated. If [] = 0 we do [] = [] + 1, and 
if [] = 1 we do [] = [] − 1. This shows that the map functions can be updated 
in constant time after a swap operation, which implies that the complexity of swap is 
also (log σ).

toggle. In this case we only need to implement activeLeft, activeRight and ac-
tiveLeaf. To mark which positions are active we can use any data structure represent-
ing sequences of 0’s and 1’s that efficiently supports partial sums and point updates. For 
example we can use a binary indexed tree (BIT) (Fenwick, 1994) which is a standard 
data structure used in competitive programming that supports both operations in (log ) 
time. Thus with a BIT we are adding a logarithmic factor for each query and now rank, 
quantile and range operations as well as toggle can be implemented in (log  ×  
log σ). In terms of construction, when using a BIT in every level we are only paying a 
constant factor in the size of the wavelet tree.

pushBack and popBack. These operations only modify the array 
 in some nodes. 

Pushing an element at the end updates the (virtual) bitvector 
 appending a new 0 or 1 

(depending on the comparison between the new element and ), so 
 being a partial 

sum of 
 of size 

 only needs a [] = [ − 1] + [ − 1] update. Popping 
an element from the end updates 

 and 
 doing the inverse operation, so if 

 is of 
size 

 we only need to delete [ − 1] from memory. Both operations can be done in 
amortized constant time using a dynamic array, thus the complexity of all queries plus 
pushBack and popBack is (log σ) time.

pushFront and popFront. These are similar to pushBack and popBack, but act at the 
beginning of the bitvector . To prepend a bit  to a bitvector 

 we must prepend its 
value to . If the value of  is equal to 1 we must also increment by 1 every value in 
. Because it is too slow to update every position of , we define a counter δ that 
starts at 0 and is incremented by 1 every time a bit equal to 1 is prepended. We then just 
prepend  − δ to , in which case the real count of ones until position  is obtained 
by []  +  δ. Popping an element is as easy as deleting the first element of 

 from 
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memory and decrementing δ by 1 if the value of [0] + δ was equal to 1. If we want 
to mix front and back operations, we could use a structure such as a dequeue (Knuth, 
1997), which allows amortized constant time insertions at the beginning and end of an 
array while maintaining constant random access time. Thus the complexity of all queries 
is still (log σ) time.

4.3. Big Alphabets and the Wavelet Matrix

In a competitive programming setting the size of the array  will depend on time restric-
tions, but typically it will not exceed 106. However the number of possible values that  

can store could be without any problems around 109. Thus the number of values actually 
appearing in  is much smaller than the range of possible values. For this reason one 
usually have to map the values that appear in the sequence to a range [0 σ − 1]. Com-
monly, this will require a fairly fast operation to translate from one alphabet to the other 
with a typical implementation using, for example, a binary search tree or a sorted array 
combined with binary search.

To avoid having this map operation, the wavelet tree could be constructed directly 
over the range of all possible values allowing the subsequences of some nodes to be emp-
ty. A naive pointer-based construction will require (σ) words which might be excessive 
for σ = 109. Because many nodes will represent empty subsequences, one can save some 
space explicitly tracking when some subsequences become empty in the tree.

There is an alternative implementation of the wavelet tree called wavelet matrix 
(Claude et al., 2015) that was specifically proposed in the literature to account for big 
alphabets. Given an alphabet its size can be extended to match the next power of two, 
yielding a complete binary tree for the wavelet tree representation. For each level, 
we could then concatenate the bitvectors of each node in that level and represent the 
structure with a single bitvector by level. The border between each node is lost, but it 
can be computed on the fly when traversing. This means extra queries yielding worse 
performance. Instead, the wavelet matrix breaks the restriction that in each level sib-
lings must be represented in contiguous positions in the bitvector. When partitioning 
a node at some level  the wavelet matrix sends all zeroes to the left section of level 
 + 1 and all ones to the right. The left and the right child of some node at level  do 
not occupy contiguous positions in the bitvector at level  + 1, but the left (resp. right) 
child is represented in contiguous positions in the left (resp. right) section of the level 
 + 1. Additionally, a value  is maintained at each level to mark how many elements 
were mapped to the left.

With this structure the traversing operations can be directly implemented by per-
forming rank operations on bitvectors at each level. Specifically, instead of maintaining 
an array 

 for every node, we maintain an array 
 for each level. Array 

 store the 
cumulative number of 1’s in level . Then, a position  at level  is mapped to the left 
to position  − [] at level  + 1. The same position  is mapped to the right to position 
 + [] − 1.
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The wavelet matrix has the advantage of being implementable using only (log σ) 
extra words of memory instead of the (σ) used to store the tree structure in the pointer 
based alternative while maintaining fast operations. This (log σ) words are insignifi-
cant even for σ = 109, which means that the structure could be constructed directly over 
the original alphabet. On the other hand the wavelet matrix is somehow less adaptable, 
because it does not support directly the pop and push updates. However, it can support 
swap and toggle in a similar way as the one described for the wavelet tree.

5. Wavelet Trees in Current Competitive Programming

We conducted a social experiment uploading 3 different problems to the Sphere Online 
Judge (SPOJ)2. All the problems can be solved with the techniques shown in the previ-
ous sections. We analyze the solutions to these problems submitted by SPOJ users. Our 
analysis reveal two main conclusions: (1) experienced programmers do not consider the 
use of wavelet trees, even in the case that its application is straightforward, and (2) for 
the most complex cases when they succeed, they use fairly involved techniques produc-
ing solutions that are dangerously close to time and memory limits. We have found, 
however, some incipient references of wavelet trees in the competitive programming 
community3, as well as more detailed explanations in Japanese4, which obviously estab-
lish an idiomatic barrier for many programmers.

We identify the three mentioned problems as ILKQ1, ILKQ2 and ILKQ3 and they 
are described as follows.

ILKQ1 considers a slightly modified version of the quantile query. The size of the initial 
sequences is 105, the range of possible integer values in the sequence is [−109 109], and 
the number of queries is 105. The time limit is 1s. 

Link: http://www.spoj.com/problems/ILKQUERY

ILKQ2 considers rank queries plus toggling the state of arbitrary elements. The size of 
the initial sequence is 105, the range of possible values is [−109 109], and the number of 
rank plus toggle queries is 105. The time limit is 0.4s. 

Link: http://www.spoj.com/problems/ILKQUERY2

ILKQ3 considers the quantile query of ILKQ1 plus swaps of arbitrary contiguous posi-
tions. The size of the initial sequences is 106, the range of possible values is [−109 109], 
and the number of quantile plus swap queries is 105. The time limit is 1s. 

Link: http://www.spoj.com/problems/ILKQUERYIII/

Notice that ILKQ3 although involves the same query as ILKQ1, it is considerable 
harder as it can mix updates (in the form of swaps) and the input sequence can be 10 
times bigger than for ILKQ1. Table 1 shows an analysis of the submissions received5.

2	http://www.spoj.com/
3	http://codeforces.com/blog/entry/17787
4	http://d.hatena.ne.jp/sune2/20131216/1387197255
5	 This data considers only until late March 2016.
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5.1. Analysis of Users Submitting Solutions

We received submissions from several type of users, several of them can be considered 
as experienced programmers. From them, even expert coders (rank 100 or better on 
SPOJ) got lot of Wrong Answers (WA) or Time Limit Exceeded (TLE) verdicts which 
shows the intrinsic difficulty of the problems. Considering the three problems, 5 out 
of the 10 distinct users who got an Accepted (AC) veredict have rank of 60 or better 
on SPOJ, and 8 are well-known ACM-ICPC World finalists. For problem ILKQ3 we 
received only two AC. Both users solved the problem after several WA or TLE verdicts. 
For ILKQ1 and ILKQ2 the best ranked submitter was the top 1 user in SPOJ who ob-
tained AC in both problems. For ILKQ3, the best ranked submitter was among the top 5 
in SPOJ and obtained only TLE veredicts.

5.2. Analysis of the Submitted Solutions

As we have told before, we received 0 submissions implementing a wavelet tree solu-
tion. We now briefly analyze the strategies of the submissions received. For the sake of 
the space, we cannot deeply analyze every strategy but we provide some pointers for the 
interested reader.

The most common approach for ILKQ1 was sorting queries (as the problem is of-
fline) plus the use of a tree data structure. One of the mainly used in this case was 
mergesort tree. In a mergesort tree, nodes represent sequences of contiguous elements 
of the original array and contains a sorted version of those sequences. Leaves represent 
one element of the array, and the tree is built recursively by merging pairs of nodes 
starting from the leaves. The construction can be done in ( log ) time and space. 
Quantile queries can be answered by identifying the, at most (log ), nodes that define 
a query range, and then doing two (nested) binary searches, one for counting elements 
less than or equal than a value , and the second over  to find the -th minimum ele-
ment. The total strategy gives (log3 ) time which can be optimized up to (log2 ) 
using fractional cascading. This was enough given the time constraints.

Table 1
General submission statistics

Submitted Accepted Non-accepted
WA TLE RTE

ILKQ1 49 9 19 18 3
ILKQ2 32 6 15   8 3
ILKQ3 35 2 12 15 6
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For ILKQ2 and ILKQ3 sorting of queries or any offline approach is not directly 
useful as queries are mixed with updates. For ILKQ2 we received some submissions 
implementing a square root decomposition strategy, and run extremely close to the time 
limit. The most successful strategy in both problems was the use of ideas coming from 
persistent data structures, in particular persistent segment trees6. As in any persistent 
structure, the main idea is to efficiently store different states of it. Exploiting the fact that 
consecutive states do not differ in more than (log ) nodes, it is possible to keep  dif-
ferent segment trees in ( log ) space. Persistent segment trees can be used to answer 
quantile queries but need some more work to adapt them for updates like swaps as in 
ILKQ3. The two correct solutions that we received for ILKQ3 make use of this structure. 
It’s relevant to notice that given the input size and the updates, implementing a persistent 
segment tree for this problem can use a considerable amount of memory. In particular, 
one of the AC submissions used 500MB and the other 980MB. Our wavelet tree solution 
uses only 4MB of memory.

6. Performance Tests

Existing experimental analyses about wavelet trees focus mostly on compression char-
acteristics (Claude et al., 2015). Moreover, they do not consider the time required to 
build the structure because from the compression point of view the preprocessing time is 
not the most relevant parameter. Thus, we conducted a series of experiments focusing on 
a competitive-programming setting where the building time is important and restrictions 
on the input are driven by typical tight time constraints. The idea is to shed some light on 
how far the input size can be pushed. We expect these results to be useful for competitors 
as well as for problem setters.

We performed experimental tests for our wavelet tree and wavelet matrix implemen-
tations comparing construction time and the performance of rank, quantile and range 
counting queries. We consider only alphabets of size less than the size of the sequence. 
To analyze the impact of the alphabet size, we performed tests over sequences of dif-
ferent profiles. A profile is characterized by the ratio between the size of the alphabet 
and the size of the sequence. For example, a sequence of size 103 and profile 05 has an 
alphabet of size 500.

Measurements. To measure construction time we generated random sequences of in-
creasing size for different profiles. For each size and profile we generated 1,000 se-
quences and we report the average time. For queries rank, quantile and range counting, 
we generated 100,000 queries uniformly distributed and averaged their execution time. 
The machine used is an Intel® Core™ i7-2600K running at 3.40GHz with 8GB of RAM 
memory. The operating system is Arch-Linux running kernel 4.4.4. All our code are 
single-threaded and implemented in C++. The compiler used is gcc version 5.3.0, with 
optimization flag -O2 as customary in many programming contests.

6	bit.ly/persistent-segment-tree
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Results. No much variance was found in the performance between different profiles, but 
as may be expected sequences of profile 1 – i.e., permutations – reported higher time in 
construction and queries. Thus, we focus on the analysis of permutations to test perfor-
mance on the most stressing setting. For the range of input tested we did not observe big 
differences between the wavelet tree and the wavelet matrix, both for construction and 
query time. Though there are little differences, they can be attributed to tiny implemen-
tation decision and not to the implementation strategy itself.

Regarding the size of the input (Fig. 2), construction time stays within the order 
of 250 milliseconds for sequences of size less than or equal to 106, but scales up to 
2 seconds for sequences of size 107, which can be prohibitive for typical time con-
straints. For the case of queries rank, quantile and range counting we report in Fig. 3 
the number of queries that can be performed in 1 second for different sizes of the input 
sequence. For rank and quantile, around 106 queries can be performed in 1 second for 
an input of size 106. In contrast for range counting, only 105 queries can be performed 
in the same setting (Fig. 3).

It would be interesting as future work to perform a deep comparison between the 
wavelet tree and competing structures for similar purposes such as mergesort trees 
and persistent segment trees, testing time and memory usage. From our simple analy-
sis in the previous section one can infer that wavelet trees at least scales better in 
terms of memory usage, but more experimentation should be done to draw stronger 
conclusions.

    
Fig. 3. Number of queries that can be performed in one second.

Fig. 2. Construction time in milliseconds.
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7. Concluding Remarks

Problems involving advanced data structures are appearing increasingly often in world-
wide programming competitions. In this scenario, competitive programmers often prefer 
versatile structures that can be used for a wide range of problems without making a lot of 
changes. Structures such as binary indexed trees or (persistent) segment trees, to name 
a few, conform part of the lower bound for competitors, and must be in the toolbox of 
any programmer. The wavelet tree has proven to be a really versatile structure but, as 
we have evidenced, not widely used at the moment. However, we have noted that some 
programmers have already perceived the virtues of the wavelet tree. We believe that the 
wavelet tree, being quite easy to implement, and having such amount of applications, is 
probably becoming a structure that every competitive programmer should learn. With 
this paper we try to fill the gap and make wavelet trees widely available for the competi-
tive programming community.

Acknowledgments 

J. Pérez is supported by the Millennium Nucleus Center for Semantic Web Research, 
Grant NC120004, and Fondecyt grant 1140790.

References

Clark, D. (1998). Compact Pat Trees. PhD thesis, University of Waterloo.
Claude, F., Navarro, G., Ordóñez, A. (2015). The wavelet matrix: an efficient wavelet tree for large alphabets. 

Inf. Syst., 47, 15–32.
Fenwick, P. M. (1994). A new data structure for cumulative frequency tables. Software: Practice and Experi-

ence, 24(3), 327–336.
Gagie, T., Navarro, G., and Puglisi, S.J. (2012). New algorithms on wavelet trees and applications to informa-

tion retrieval. Theor. Comput. Sci., 426, 25–41.
Gagie, T., Puglisi, S.J., Turpin, A. (2009). Range quantile queries: another virtue of wavelet trees. In: SPIRE. 

1–6.
González, R., Grabowski, S., Mäkinen, V., Navarro, G. (2005). Practical implementation of rank and select 

queries. In: WEA. 27–38.
Grossi, R. (2015). Wavelet trees. In: Encyclopedia of Algorithms. Springer.
Grossi, R., Gupta, A., Vitter, J.S. (2003). High-order entropy-compressed text indexes. In: SODA’03. 841–850.
Knuth, D. (1997). The Art of Computer Programming, Volume 1: Fundamental Algorithms. Third Edition. 

Addison-Wesley. 238–243.
Navarro, G. (2014). Wavelet trees for all. J. Discrete Algorithms, 25, 2–20.
Okanohara, D., Sadakane, K. (2007). Practical entropy-compressed rank/select dictionary. In: ALENEX. 60–

70.
Raman, R., Raman, V., Rao, S. (2002). Succinct indexable dictionaries with applications to encoding k-ary trees 

and multisets. In: SODA. 233–242.



Wavelet Trees for Competitive Programming 37

R. Castro is a computer engineering student at Department of Com-
puter Science, Universidad de Chile, bronze medalist of IOI’2013 in 
Brisbane, and problem setter for OCI (Chilean Olympiad in Infor-
matics).

N. Lehmann is master’s student in computer science at Department 
of Computer Science, Universidad de Chile. His research interests are 
semantics, design and implementation of programming languages and 
type systems. He is the Scientific Committee Director of OCI (Chilean 
Olympiad in Informatics). Deputy Leader at IOI 2014 and 2015. Chil-
ean Judge of ACM ICPC 2014 and 2015.

J. Pérez is Associate Professor at the Department of Computer Sci-
ence, Universidad de Chile, and an Associate Researcher of the Chil-
ean Center for Semantic Web Research. His research interests are da-
tabase theory, data exchange and integration, graph databases, and the 
application of database technologies to the Semantic Web and the Web 
of Data. He is one of the directors of OCI (Chilean Olympiad in Infor-
matics), and the Chilean team leader at IOI since 2013.

B. Subercaseaux is an undergraduate student of computer science at 
Department of Computer Science, Universidad de Chile, and problem 
setter for OCI (Chilean Olympiad in Informatics).





Olympiads in Informatics, 2016, Vol. 10, 39–60
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.03

39

Learning Programming through  
Games and Contests:  
Overview, Characterisation and Discussion

Sébastien COMBÉFIS1,2, Gytautas BERESNEVIČIUS3 
Valentina DAGIENĖ3

1 Electronics and IT Unit, École Centrale des Arts et Métiers (ECAM)
Promenade de l’Alma 50, 1200 Woluwé-Saint-Lambert, Belgium
2 Computer Science and IT in Education ASBL, Belgium
3Vilnius University Institute of Mathematics and Informatics
4 Akademijos Street, Vilnius LT-08663, Lithuania
E-mails: s.combefis@ecam.be; gytber@gmail.com; valentina.dagiene@mii.vu.lt

Abstract. Learning of programming and, more generally, of computer science concepts is now 
reaching the public at large. It is not only reserved for people who studied informatics (computer 
science) or programming anymore. Teaching programming to schoolchildren presents many 
challenges: the big diversity in ability and aptitude levels; the big amount of different tools; the 
time-consuming nature of programming; and of course the difficulty to motivate schoolchildren 
to keep them busy with hard work. There are various platforms that offer to learn coding and 
programming, in particular game-based platforms, which are more and more popular. These 
latter exploits of the gamification process focused on increase in motivation and engagement 
of the learners. This paper reviews the main kinds of online platforms to learn programming 
and more general computer science concepts, and illustrates the review with concrete platforms 
examples.

Keywords: game-based learning, gamification, learning programming, online programming plat-
form, programming contest.

1. Introduction 

Informatics (computer science or computing) as a science discipline, and in particular 
programming as an important part of that, is gaining a lot of popularity these years in 
education. As core subjects in a computer science (CS) major, programming subjects 
play an important role in a successful CS education. One of the greatest challenges 
faced by most students is the understanding of programming basics, especially for nov-
ices or for those who are in their first year of studies. Students develop algorithmic 
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thinking or computational thinking at secondary and even at primary school. Using 
simple programming languages such as Scratch became accessible to young children 
(Maloney et al., 2004).

Games have been used for educational purposes for decades. The popularity of games 
has led to the idea of using them in the learning of programming, taking advantage of 
the engaging features of games. In a very broad sense, two different approaches are used 
when using games or game-like elements in educational contexts: 1) gamification and 
2) serious games. The term gamification is commonly defined as the use of game design 
elements in non-game contexts (Deterding et al., 2011). Serious games are associated 
with a standalone game or platform, as well as indicated as a computer game (Djaout 
et al., 2011). In this paper, we are going to use the general term to refer to game-based 
learning with main focus on teaching programming.

Game-based learning is concerned with using games not for entertainment, but for 
educational purposes. Those who work within the field of gamification focus on iden-
tifying the context and conditions that support the integration of digital games within 
informal and formal learning environments. Educational scientists have pointed up 
several features of games that allow them to be used as learning tools. For example, 
games are engaging (Dickey, 2005) and motivating (Prensky, 2003). They also provide 
a lot of experiences (Arena and Schwartz, 2013) and an excellent feedback on perfor-
mances (Shute, 2011). Finally, games support very well the learner centred education 
(Gee, 2005).

A contest can be seen as a part of game-based learning. Contests make the teaching 
of programming more attractive for students. Furthermore, programming with computer 
is one of the appropriate and effective ways to develop problem solving skills and com-
putational thinking. During contests, students have the possibility to compare their abili-
ties and learn from others. There have been many contests in programming throughout 
all over the world; most of them focus on algorithmic problem solving.

Many teaching environments already contain game-like elements such as points, in-
stant feedback, and goals. However, there are engaging aspects in games that could be 
used in educational settings more widely. In well-designed games, even a failure can be 
a reward and triggers positive emotions (Ravaja et al., 2005). There is no off-the-shelf 
formula for designing successful games, nor is there one perfect learning environment.
However, by deepening our understanding of the effects of games and game-like en-
vironments in educational settings, we can design and support more effective learning 
activities, and ultimately improve the learning of computer science.

The move from classical learning platforms to online contests and games can be 
explained as a way to ensure the best motivation as possible for their users. The online 
platforms can provide tools such as rankings, duels, discussion rooms, etc. to motivate 
their users to participate regularly. Finally, research on gamification in all its forms has 
proven that educational games improve the engagement of learners if the game is de-
signed properly (Barata et al., 2013; Nah et al., 2014). Online platforms where students 
can learn programming are being developed all over the world, ranging from simple di-
rect learning platforms to platforms of games that indirectly teach programming (Com-
béfis and Wautelet, 2014).
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This paper reviews literature of the last decade on programming education for school 
students (high, secondary and primary levels) using games and online platforms that 
support games and contests which goal is to teach programming. The literature review 
of programming games and an overview of programming learning platforms were struc-
tured to accomplish the following three research objectives:

To overview the last decade literature on programming education using games.1.	
To identify the important online platforms for learning programming through 2.	
games and contests.
To identify suitable tools for programming novices.3.	

The goal of the paper is twofold: from one side, to provide an overview of the work 
that has been done in this area, and from the other side, to discuss the important tools 
(online platforms and contests) and to improve programming education. After this intro-
ductory part, Section 2 makes a short presentation of the understanding of gamification 
and overviews the literature on teaching programming using games. Section  3 pres-
ents three kinds of online platforms, which allow students to learn programming. Then 
Section 4 tours several existing contest platforms. Finally, the last section concludes 
the paper with some thoughts about what could be the future evolution of these online 
platforms and contests and makes some suggestions for teaching programming by edu-
cational games or by other ways.

2. Short Overview of Literature

The application of game design elements of non-game scenarios is known as gamifica-
tion. Some authors stated that gamification uses elements of experiences (Deterding 
et al., 2011). It must also impart some rules or structure to the experience to influence 
participants’ action. Gamification adds game design elements as well as promoting the 
psychological benefits and motivational ability of games but in different contexts.

Programming games are an important part of educational games. A programming 
game is a computer game where the player has little or no direct influence on the 
course of the game. Instead, a computer program or script is written in some domain-
specific programming language in order to control the actions of the characters or 
other entities.

There are several definitions of serious games. For example, Alvarez and Michaud 
(2008) state that a serious game must include a genuine entertainment element combined 
seemingly with a practical dimension. Some researchers argue that all games have a 
serious purpose, such as gambling. That is why a majority of simulators would be con-
sidered as serious games (Sawyer and Rejeski, 2002).

Game design may be defined as “the action of making sense of things related to a 
game” (Mora et al., 2015, p. 3). Another description is “the act of deciding what a game 
should be” (Schell, 2008, p. xxxviii). Game design is related to enjoyment, while gami-
fication points towards a business objective. Similarity of game design and gamification 
design is that both rely on the principles of game design theory.
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2.1. Related Works

The ACM and IEEE computer society state that “computer science is becoming one of 
the core disciplines of a 21st century university education, that is, something that any 
educated individual must possess some level some level of proficiency and understand-
ing of proficiency and understanding” (ACM/IEEE…, 2013, p. 48). However, there 
are a lot of students who are becoming less interested in computer science. Colleges 
and universities routinely report that almost half of those students who initially choose 
computer science study soon decide to abandon it. There are high dropout rates as well 
as high failure rates of high school students in programming courses. Decades of effort 
have been put into decreasing these rates.

There were several approaches to motivate students to learn programming. Program-
ming fundamentals may be hard skills to learn for students, especially for novices. In 
order to help students, there are several attempts to teach programming by using educa-
tional or serious games.

Programming courses are an important part in computer science subjects. Object-
oriented programming is difficult for students, especially first year students. The embed-
ding of gamification in programming courses could maximize student participation and 
have a positive impact on learning (Azmi et al., 2015). The gamified social activity is de-
signed to promote interaction among students and they may assist and give feedback to 
each other online. Online collaborative learning and the participation of students should 
be emphasised as well. Moreover, aesthetics is also a very important part in a game, 
because it makes it “fun”, which contributes to engage students in the learning process. 
The embedding of gamification in programming courses were analysed and showed that 
gamification in online collaborative learning can enhance participation among first year 
programming students. The participation is an important part in each computer science 
study due to motivation and lower dropout rates.

Vihavainen et  al. (2014) present another approach in a literature overview. Their 
paper reports about 60 pre-interventions and post-interventions and analyses their influ-
ence on students’ pass rates in programming courses. Statistically, pass rates after these 
interventions increased nearly by one third compared to traditional teaching. A more 
detailed discussion is presented about seven courses on gamification intervention after 
which pass rates increased by 10.8% on average.

Tillmann et al. (2013) deals with an alternative platform called “Pex4Fun”. On this 
platform, grading of traditional MOOCs (Massive Open Online Course) assignments 
has been changed to an automated grading assignment system based on the symbolic 
execution, designed for students and teachers. This platform is a game-based learning 
and teaching environment, where teachers may create interactive games for students. 
Students can learn programming by playing programming games in “Pex4Fun” as well 
as having programming duels between each other.

There are several important components of game elements. As Hunicke et al. (2004)
have discovered the game mechanics represents data and algorithms. Game dynamics 
is the lifecycle of the mechanics that act to engage a player’s input and other’s output. 
Also, game aesthetics plays important role in the emotional part of the player in order to 
keep them engaged with the game.
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Several researchers worked on more detailed classification of games. For example, 
Azmi et al. (2015) classified game elements into three categories 1) game mechanics 
(badges, leaderboard, points, levels...), 2) dynamics (personal dynamics – desire for re-
ward, personal promotion; social dynamics – altruism; achievements, peer collabora-
tion), and 3) aesthetics (challenges). The gamified design needs to embed collaborative 
elements for collaboration among the students. Aesthetics is recommended element in 
educational games, because it makes the game “fun” and engages with the learning 
process. Online educational game should have the online support as well as collabora-
tive learning.

While there is still scepticism that something called a game could be anything more 
than a leisure activity, serious organizations are getting serious results with serious games. 
Serious games may be defined as an application with three main components: experi-
ence, entertainment, and multimedia (Laamarti et al., 2014). Especially entertainment 
dimension in serious games has the potential to enhance the user’s experience through 
multimodal interaction. Additionally, digital serious games contain different media. 

The paper of Laamarti et al. (2014) overviews studies on serious games in different 
application areas including education, well-being, advertisement, cultural heritage, inter-
personal communication, and health care. Also, many platforms were analysed and dis-
cussed, what the necessary components of the game to be successful are. A survey on dig-
ital serious games in general is conducted and a taxonomy of serious games is created. 

Several components of serious games were distinguished and categories of criteria 
were suggested (Laamarti et al., 2014). These criteria may be useful for any program-
ming games as well. So, providing guidance to players within the game is important. 
This will provide them with the necessary knowledge and prevents them from feeling 
“lost” or disturbed. Another thing is avoiding negative consequences in the game, be-
cause otherwise it may result in the player’s low performance. Music element makes 
players play the game longer, because of more motivation and engagement will be as an 
effect of this. Multiplayer collaborative exercise games are more motivating and engag-
ing than single-player appropriate games. Collaborative environment increases players’ 
motivation. It is significantly important to offer challenges in the game for children, but 
the challenges must be at the right level (neither too high, nor too low). It is the key in 
keeping the players’ interest in the game. Educational games need to take into considera-
tion sound instructional models to be successful.

More detailed recommendations are provided for educational games designed for 
using in a classroom. School teachers are concerned about the curriculum and they also 
have limited time resources. It is recommended that educational games would be based 
on the curriculum due to the acceptance of many teachers and integration in the class.

Additional recommendations for necessary components of the games to be success-
fully used can be as follows (Laamarti et al., 2014):

 a.	 User-centred software engineering: an important element is the perspective that 
the designers contribute to the development teams and the experience that the 
player will obtain.
 b.	 Multimodal games: multiple modalities should be incorporated (e. g. visual, au-
ditory and haptic combination).
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 c.	 Social well-being: stimulating a feeling of virtual presence or connectedness of 
social well-being in real life.
 d.	 Adaptive gaming: a serious game should adapt or personalize a particular play-
er’s capabilities, needs, and interests.
 e.	 Standardization of evaluation: heuristic evaluation standards must turn into a 
reality. That is useful for acquiring higher credibility.
 f.	 Sensory-based simulations: serious games can be created based on real world 
sensory data so that real world scene would be accurately reconstructed. 

Many commercial games demonstrate the properties of sound instructional design, 
even in games not intended for educational purposes (Becker, 2008). The author has 
recommended the following success factors for educational games: 1) Gain attention; 2) 
Inform learners of the objective; 3) Stimulate recall of prior learning; 4) Present stimu-
lus material; 5) Provide learning guidance; 6) Elicit performance; 7) Provide feedback; 
8) Assess performance; 9) Enhance retention and transfer. These factors were based on 
well-known learning and instructional theories.

One suggestion for recreating games is to modify an existing non-educational games 
into programming games (Muratet et al., 2010). The authors have used existing online 
non-educational games ideas to develop their own serious games. For example, there 
is a game “Kernel Panic”, having following features: it has no resource management 
except for time and space; all units are free to create; it has a small technology improve-
ment tree with less than ten units; and it uses low-end vectorial graphics, which match 
the universe. In this game a player gives orders to the units to carry out operations (i.e. 
moving, building, and so forth). So the authors (Muratet et al., 2010) changed the game 
design that the player has to write a program code in order to make the actions of his 
units and play. The authors modified some games into serious games and students, e.g. 
players may play these games using different programming languages: C, C++, Java, 
OCaml, Ada and an interpreted language called “Compalgo”.

Another paper (Cuba-Ricardo et al., 2015) describes some characteristics and regu-
larities from the behaviour of three students as they solved a programming problem as 
well as reveals the methodology stages using several methods, techniques and tools. 
The paper is limited by the time of contestants, who have between 60 and 90 minutes in 
contest of final states. 

Successful computer programmers must have several cognitive skills as listed by 
Surakka and Malmi (2004). Contestants’ opinions must be taken into account in order 
to have full view of their outputs. So, it was decided to use computer programs that take 
screenshots in short periods of time. The methodology of characterizing the cognitive 
process of solving programming problems was organized into five stages:

Preparation of the process.a.	
Recording the process of exercise application.b.	
Analysis, processing and assessing of the partial reports (observation of pic-c.	
tures).
An interview session.d.	
Final assessment.e.	
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The implementation of the methodology revealed that programmers’ took notes in 
the worksheets and the reasoning followed when determining the solution algorithm. 
So, monitoring programming students’ actions is a useful method to discover not only 
final outputs, but intermediate results of the learning process as well. We think it may 
be one of the essential issues to be taken into consideration of teaching programming 
curriculum, especially for novices. Monitoring process could be done by computer auto-
mated programs and be used as a general method (e.g. it may be a live survey after your 
programming contest).

Researchers focus on investigating successful components of educational games that 
could help to reduce dropout rates of students in computer science. The embedding of 
gamification in programming courses can be one of solutions for that: it can help to 
maximize student participation and learning, motivate and reduce dropout rates, espe-
cially for novices in programming (Azmi et al., 2015). Some platforms, e.g. Prog&Play 
may help even to recruit students in computer science (Muratet et al., 2010). Interven-
tion of educational games in programming courses raises pass rates by 10.8% on average 
(Vihavainen et al., 2014).

A feedback is an important and necessary part in education and educational games 
(Azmi et al., 2015; Cuba-Ricardo et al., 2015; Tillmann et al., 2013). Good feedback can 
be implemented by providing guidance to players within the game so that they do not feel 
“lost” (Becker, 2008) or by avoiding negative consequences in the game. Another solu-
tion is to make the game a multiplayer one to motivate players to play the game longer.

The most successful factors are multiple modalities of games, players’ collaboration, 
adaptive or personalized game components based on real world sensory data (Laama-
rti et al., 2014). Non-educational games may be gamified and used for teaching program-
ming courses as well (Muratet et al., 2010). Contests and duels in programming games 
are engaging and may be used to raise programming skills (Cuba-Ricardo et al., 2015).

All the authors that are mentioned in this section have stated that educational games 
motivate students to learn. In general, you may use all these researched factors when 
your own create programming games.

2.2. Taxonomy of Educational Games

As there is growth of researches in the educational games field and it is a necessity to 
improve the value of teaching or learning programming by educational game, we were 
working on the taxonomy of educational games. We adapted the framework of serious 
games’ taxonomy based on the paper (Laamarti et al., 2014). Firstly, we will provide a 
short introduction to the mentioned taxonomy. After that we will discuss our novelties 
and provide a classification of several online programming games.

Five categories for serious games classification are presented by (Laamarti et al., 
2014, p. 6):

 1.	 Application Area refers to different application domains (education, well-being, 
training, advertisement, interpersonal communication, health care, others). 
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 2.	 Activity. It depends on the activity of a player to play a game (physical exertion, 
psychological, mental).
 3.	 Modality. Here it is the channel by which information is sent from the computer to 
the human(s) participating in the game (visual, auditory, haptic, smell, others).
 4.	 Interaction Style. The interaction style defines whether the interaction of the 
player with the game is done using keyboard, mouse, or Joystick or using some 
intelligent interfaces, e. g. a brain interface, eye gaze, movement tracking, and tan-
gible interfaces. The research showed that choosing the right interface may have an 
impact on the success of the game.
 5.	 Environment. This criterion defines the environment of the digital game (social 
presence, mixed reality, virtual environment, 2D/3D, local awareness, mobility and 
online). 

We investigated the classification and found limitations, especially when applying 
for programming education by using games. For educational online programming games 
an extension and adaptation of the proposed taxonomy are needed (Fig. 1).

Application area. So, an application area of programming games is only one – edu-
cation to program educational games. A field of the programming educational games 
activity usually is a mental process. We will have in mind that application area of educa-
tional programming games is education, activity field is mental and we will omit these 
fields as a result.

Modality. Usual modality fields of educational programming games are visual and 
auditory, but sometimes it may be haptic.

Fig.1. The classification of the educational programming games (adapted and extended sche-
ma of Laamarti et al., 2014).
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Interaction style. Interaction style in our taxonomy is keyboard/mouse, tangible 
interface, brain interface and joystick, because educational games usually may be classi-
fied just in these fields. But we remain open to discussion about this question.

Environment. As environments of programming games may be any of Laamarti 
et al. suggested environments, we include all of the areas: social presence, mixed reality, 
virtual environment, 2D/3D, local awareness, mobility and online.

Learning approach. We include this new field to classification of educational games. 
This is because analysed research papers on educational games pays a lot of attention 
to successful methods of teaching or learning. We propose that the learning approach of 
educational games may be classified into single player, multi player, mixed players (part 
of the game may be single-player game and part of the game may be multi-player game), 
peers (it is important to pay attention to communication between peers), collaboration 
(some educational games may teach team work), support of teachers (students easier 
learn while they are playing with a help of teachers/lecturers).

3. Online Platforms for Learning Programming

Several different kinds of online platforms to learn programming do exist. The most 
classical platforms are able to automatically execute code and provide feedback. They 
provide lessons that the learner can follow and propose interactive coding exercises with 
immediate correction. Combéfis and le Clément de Saint-Marcq (2012) proposes a short 
review of such platforms. Swacha and Baszuro (2013) propose such a classic platform, 
but they included game elements in it. For example, the courses in their platform are 
characterised by the set of completed areas, the number of earned points and the attained 
level. Moreover, it is possible to challenge other students and take part in contests.

In addition to the specific platforms to learn coding and programming, online courses 
are also proposed in the form of MOOCs (Combéfis et al., 2014). Another example is 
Khan Academy, which provides interactive lessons and videos with coding exercises 
(Morrison and DiSalvo, 2014). Both these kinds of platforms propose a full course with 
videos for the theory and then practical coding exercises with more or less detailed direct 
automated feedback. They are designed with the learning process as the main objective.

This section presents three main categories of online game platforms with different 
goals: learn to code, learn algorithmic thinking and learn to create games. Proposed ex-
amples are discussed according to the background presented in the previous section, for 
the particular case of learning computer science skills. The last subsection, then discusses 
how and what game elements can be added to an online platform in order to gamify it.

3.1. Learn to Code

The first category of game platforms contains those whose goal is to make their users 
learning and training to code. Coding games require the learner to understand and to be 
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able to write code to solve challenges. Different coding activities are possible, the main 
ones being:

Bugfix●● : the user is given a program that contains a bug to be fixed.
Recovery●● : the user is given a program where some parts are missing that have to 
be filled.
Code writing●● : the user has to write an instruction, a function or a program from 
scratch.
Agent●● : the user has to write a program that represents the behaviour of an intel-
ligent agent.

To help the learner to identify the bug, additional information is provided in the state-
ment of the challenge. For example, a precise specification of the program or the results 
of the execution of test sets can be provided. Once the learner has written/fixed the 
code, he submits it and then gets a feedback. As summarised by Combéfis and Wautelet 
(2014), feedback is very important for the learning process. Those feedbacks can take 
several forms such as:

A simple succeeded/failed status.●●
The result of the execution of test sets.●●
A textual feedback providing hints regarding the failure.●●

Codecademy is an example of an online game platform to learn how to code (Fig. 2). 
The left part of the window provides the explanations of the new concept to learn. In-
structions about the exercise are then provided at the very bottom of this left pane. The 
learner can directly code in the editor located in the right part and then submit his/her 
code for correction. If the code is wrong, a simple feedback trying to explain why is 
provided and if it is right the learner earns a badge, increases his/her progress and can 
go to the next lesson.

Fig. 2. Codecademy proposes a course composed of lessons in which you have to write code 
and for which you will earn badges and make progress whenever you succeed.
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3.2. Learn Algorithmic Thinking

Coding is not the only field of computer science that can be taught through online plat-
forms. As described by Combéfis et al. (2013), it is also possible to grow algorithmic 
thinking through interactive problems, in particular to learn programming concepts.

For example, LightBot (https://lightbot.com) is used to learn the notion of pro-
gramming and in particular recursion through a simple game where the user has to solve 
puzzles. Each puzzle requires the learner to write a program composed of visual blocks 
to drive a robot to a goal. Fig. 3 shows the main window of the game where the robot 
and its environment are shown on the left and the program representing the behaviour 
of the robot is shown on the right. LightBot is not a platform to learn how to code, but to 
teach programming concepts. In the more advanced levels, the notions of function and 
therefore recursion are introduced.

Another example is Initial Conditions (https://reheated.org/games/ini-
tial), shown in Fig. 4, where the player has to find a solution to a search problem. In 
this game, the player faces to a grid with rivers and has to place a certain number of 
villages so that a river passes through them and so that no two cities are adjacent (hori-
zontally or vertically).

Fig. 3. In LightBot, the player has to find a correct sequence of actions to perform so that the 
robot reaches the blue cell and lighten it.

Fig. 4. In Initial Conditions, the player has to place cities on a map so that a river is passing 
through them and so that two cities cannot be adjacent. This particular map has one river and 
the player has to place five cities.
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This problem is a typical an artificial intelligence (AI) search problem that could for 
example be solved using any exploration algorithms, or with a constraint programming 
solver, for example. Again, it is not explicitly explained to the learner who just sees a 
game with puzzles to solve. Playing the game will challenge the learner and should de-
velop algorithmic thinking in learner’s mind.

Again, if the purpose is educational, the provided feedback is very important. For 
LightBot, the feedback is visual since the learners can visualise the execution of their 
programs and therefore visually debug them if the robot failed to reach the goal. For 
Initial Conditions, the only feedback is a success/failed status indicating which cities are 
violating the constraints or which river is missing villages.

3.3. Learn to Create Games

Finally, another kind of online programming learning platforms offers the possibility for 
the users to create their own games. On these platforms, the learner has to program a 
game, typically with a visual programming language. For example, Scratch (https://
scratch.mit.edu) uses a visual block programming language to program the behav-
iour of sprites.

The main window of the application where the game is shown on the left part and the 
code is shown on the right (Fig. 5). The behaviour of each sprite can be programmed and 
they can also communicate together.

Another similar platform is Flowlab (http://flowlab.io) where the game is rep-
resented by flowchart diagrams (Fig. 6). As in Scratch, the game is built with sprites 
whose individual behaviours can be programmed.

Fig. 5. The main window of the Scratch program is split into two parts: the left part shows 
the sprites of the game and the right part shows the programs representing the behaviour of 
the different sprites.
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This last category requires the learner to be able to program, but not necessarily to 
write code. The focus is put on the creativity and on the skills needed to design and ar-
chitecture an application. 

3.4. Gamification of an Online Learning Platform

Proposing an online platform is useful to make the material available to every learner. 
But only relying on the online aspect is not enough to motivate them to learn. As detailed 
in the second section, gamification can help to foster learners to make progress, increas-
ing their engagement and motivation. Several kinds of elements can be introduced to 
build online game platforms:

Points and rankings amongst players.●●
Levels, grades, badges that are related to the progression.●●
Live fights/contests between players or against bots.●●

One other important element that can be taken into account is the contextualisation 
of the statements of the challenges and exercises. There are indeed two main strate-
gies that can be used to gamify an online platform to learn programming. Either game 
elements can be added to an already existing platform (points, rankings, badges…) or 
the platform can be rethought and redesigned so that to transform it completely into 

Fig. 6. In Flowlab, the user programs the game using flowchart diagrams representing the 
behaviours of the different sprites it included in the game.
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a game. As highlighted by Morrison and DiSalvo (2014) who relate the gamification 
of the Khan Academy, one critical motivational element to have is to place the user 
at the centre by adding elements of pure play, to make the gaming more “playful”. 
Examples of such approaches include CodeSpells (Esper et al., 2013) and Gidget (Lee 
et al., 2013).

Ibáñez et  al. (2014) made an experiment to explore the impact of gamification 
techniques on the engagement and learning about the C programming language. The 
authors conclude that the gamification they performed has a positive impact on the 
students’ engagement. Most students continued to work even after having earned the 
maximum amount of points. O’Donovan et al. (2013) present a case study where they 
used gamification in a university-level course about game development. In their pa-
per, the authors provide insights about gamification mechanics and explain how the 
design of their game has been created and which game elements have been used. Their 
research allows them to conclude that the gamification they performed in a university 
setting was effective, increasing the engagement and understanding of the students. 
Again, it is a situation where the platform has been thought as a game from the start-
ing point.

4. Online Programming Contests

This section presents several online game platforms, so that to cover the different ten-
dencies that exist today and the characteristics presented in the previous section. The 
focus has been put on platforms that available for free (at least a standard version).

4.1. Leek Wars

Leek Wars (http://leekwars.com/) is a game where the player has to program the 
behaviour of a leek. The goal of the leek is to defeat another leek during a fight that takes 
place in a garden. Depending on the level of the player, his/her leek can be equipped with 
more weapons, health-recovering objects, etc.

The leeks are programmed in JavaScript and an API provides functions to manipu-
late the leak and to get information about the environment. This API is very well docu-
mented, which also trains learners to manipulate such documentation.

The platform offers the possibility to develop several AIs and to choose which one 
to use at any time. The player can experiment his/her AIs against bots, before jumping 
into the garden to fight with other real players. To motivate the player, a level system has 
been put in place. For each fight that is won, the player gains experience points, which 
allow him/her to level up. A higher level grants access to more objects such as weapons, 
magic spells, etc. It also improves the ranking of the player.

The game also proposes a cooperative mode where teams composed of leeks belong-
ing to different players can fight against other teams. Such cooperative mode is another 
technique used in games to foster people to play regularly.



Learning Programming through Games and Contests: Overview, ... 53

4.2. CodinGame

CodinGame (https://www.codingame.com) proposes coding challenges to solve. 
Basically, the user is asked to code agents that have to interact in a given environment 
in order to achieve a given goal. In the example shown in Fig. 8, the user has to code the 
spaceship so that to destroy all the targets on the ground. The spaceship is moving from 

Fig. 7. Two leeks are fighting in a war, playing alternatively one after the other. The garden is 
divided into cells between which the leeks are moving and has some impassable obstacles.

Fig. 8. In this mission, the agent is a spaceship that must destroy targets on the ground. These 
targets have different heights so that the spaceship must destroy them in the right order if it 
does not want to enter in collision with any of them.
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left to right then back from right to left while descending when it reaches the rightmost 
part of the world. The difficulty is that targets have different heights and the spaceship 
must avoid entering in a collision with any of them.

Several test sets are provided and to succeed, the code of the player must pass them 
all (some being public and others being hidden). The execution of the code also results 
in an animation, which makes it possible for the learner to directly visualise the behav-
iour he/she wrote. This latter point helps to increase the motivation and engagement of 
the learner, better than a simple textual test execution report. Finally, the platform of-
fers the possibility to code the agents with a lot of different programming languages.

Several challenges/missions are available for the user to tackle. They are organised 
into categories such as tutoring, advanced, etc. The users can follow their progress and 
that motivates to solve more challenges.

4.3. Code Hunt

CodeHunt (https://www.codehunt.com) is developed by Microsoft Research and 
propose coding challenges driven by tests. The goal of the game is to guess what the 
code must do, and then fix it until it passes all the tests. Fig. 9 shows the main view of 
Code Hunt where the code is on the left and the results of test execution are shown on 
the right. Pressing the “Capture code” button triggers the execution of a bunch of tests, 
shown on the right.

When the user solves a yet unsolved puzzle, he/she gains points so that to increase 
his/her position in the ranking. Moreover, some puzzles are initially locked and will only 
unlock when the user has solved enough puzzles. This possibility to unlock puzzles is an 
incentive for the user that motivates him/her to progress.

Fig. 9. The main window of Code Hunt is split into two parts: the left part shows the code 
being run and the right part shows the result of the execution of the public tests.
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4.4. Code Fights

Code Fights (https://codefights.com) is a platform where users can participate 
in fights against bots or other real players. A fight typically consists in three puzzles to 
solve. One fight typically consists of three challenges. As shown in Fig. 10, the main 
window shows the statement of the challenge on the right and the code with the results 
of public tests on the right.

The learner can train him/herself by fighting bots or can defy any other player for a 
fight. There are two kinds of bots: simple ones and others developed by companies. If 
you manage to beat a company bot, you got a chance to be contacted by the company 
to possibly get a job. Another interesting feature proposed by the platform is tourney, 
where you compete with several other real players on the same challenges. To win the 
tourney you have to solve all the challenges as fast as possible.

4.5. Discussion and Comparison

The presented online platforms have some common points and differences. First of all, 
they are all in the “learn algorithmic thinking” category described in the previous sec-
tion. Then, the level of gamification of the different platforms is quite different. A plat-
form that has been completely designed with games in mind is one that completely 
agrees with the definition of gamification, as detailed in the previous section. The first 
one, namely Leek Wars, is a full online game with cooperative aspects where the ulti-
mate goal is for the player to level up to become the best leek, the one with the most 

Fig. 10. The main window of Code Fights is split into two parts: the left part shows the state-
ment of the challenge and the right part shows the code and the result of the execution of the 
public tests.
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intelligent behaviours. The three other platforms do contain some game element, but 
they are not designed completely as full games. Table 1 summarises the game elements 
that appear in the presented platforms.

All the platforms presented in this paper can also be classified according to the 
adapted and extended schema we proposed to classify educational programming games. 
Table 2 shows how that classification can be done. All the games presented in this paper 

Table 1
The four presented online game platforms to learn different skills of coding training and 

contains different game elements

Platform Trained skills Game elements

Leek Wars Coding agents’ AI
Inventing algorithms

Points and rankings
Challenges against bots and other players
Cooperative mode

CodinGame Understanding specifications 
Coding objects’ behaviours 

Points, trophies, badges, rankings
Levels and achievements
Matches against other players

Code Hunt Fixing bugs
Code recovery
Understanding tests sets results

Points and rankings
Levels with challenges to unlock

Code Fights Understanding specifications
Coding algorithms
Fixing bugs
Code recovery

Points, levels and rankings
Matches against other players or bots

Table2
Classification of the platforms

Game Modality Interaction style Environment Learning approach

Codecademy Visual Keyboard/Mouse Social Presence
2D
Online

Single Player

Code Fights Visual Keyboard/Mouse Social Presence
2D
Online

Mixed Player

Code Hunt Visual Keyboard/Mouse 2D
Online

Single Player

CodinGame Visual Keyboard/Mouse Social Presence
2D
Online

Single Player

Initial Conditions Visual Keyboard/Mouse 2D
Online

Single Player

Leek Wars Visual Keyboard/Mouse 2D
Online

Mixed Player
Collaboration

LightBot Visual Keyboard/Mouse 2D
Online

Single Player
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are visual ones with which the players interact with the keyboard and mouse. Concern-
ing the environment, all the games are of course online ones. They are also all 2D games 
and some of them will require social presence, in particular for those where duels are 
available. Finally, the learning approaches of those selected games can be either single 
or mixed player. One of the game, namely Leek Wars, supports collaboration through the 
creation of teams of Leeks.

5. Recommendations and Conclusions

To conclude this paper, the learning of programming is accessible not only to higher 
education students, but it is accessible to others as well. A lot of online platforms have 
been developed and made accessible on the Internet. In addition to the classical learn-
ing platform or MOOCs, a broad range of game-based online platforms have emerged. 
The main advantage of such platforms is that they foster their users to learn and keep 
progressing, making programming fun.

Tasks and challenges proposed by these games-based platforms could inspire tasks 
proposed in the IOI for two main reasons. First, contestants to the IOI are probably using 
those platforms so that they may be expecting similar tasks at the IOI. Second, the moti-
vational aspect of those tasks could be transferred to the IOI contest, also the making it 
more motivational and interesting for its contestants.

We referred and analysed papers on gamification: contests; online platforms; online, 
educational, programming and serious games. These are our main findings from these 
papers for educational or serious programming games to be successful, motivating to 
learn programming and so on:

Feedback and assessment is very important in any educational games. Assessment a.	
may be automated or not, but it raises efforts of students. Feedback provides in-
formation about the learning process.
Games must have aesthetics – game must be fun to engage and improve intrinsic b.	
motivation to learn computer science or programming.
Collaborative educational games raise the participation of students.c.	
Participation is necessary for motivation to learn as well as for reducing high d.	
dropout rates of programming students.
Multiplayer collaborative games are more motivating and engaging than single-e.	
player appropriate games.
Guidance in educational game helps players not to feel confused while they are f.	
playing.
Aesthetics make any educational game “g.	 fun”. It involves players into the game.
Avoid negative consequences, because otherwise players may perform low.h.	
Involve music in game design and the players will probably play the game longer.i.	
The level of challenge neither ought to be not too low nor too high (it keeps the j.	
interest of players).
Games with multiple modalities, adaptive or personalized, based on real world k.	
sensory data may be more successful.
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Contests and duels in programming games may be used to improve the program-l.	
ming skills.

We proposed taxonomy of the programming educational games and classified several 
online programming games / platforms. All of these games are visual; interactive with 
keyboard/mouse, 2D and online. The majority of them are designed for a single player, 
however, two of them are designed for mixed players (game may be played as single 
player or multiplayer) and one of them involves collaboration aspect. As we already 
mentioned, multiplayer and collaborating games are more motivating. 3D-games some-
times have more advantages than 2D, but it depends more on a combination of many 
other mentioned or not mentioned factors.

Our findings may be useful in creating educational programming games on your 
own, or recreating non-educational games and gamifying them to teach programming, it 
is especially useful for novices in programming. This research does not propose to use 
all these factors, because some of them may be successful in one kind of games, but may 
not be successful for other type of games. However, it is recommended to use at least 
some of these factors due to our research analyse.
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Abstract. The special problem-solving strategies have been receiving a lot of attention lately, 
whether it is teaching computational thinking for all or computer science for competitors. A di-
dactically interesting question is how problem solving can be developed in children’s minds, what 
steps and tasks lead through from understanding the idea to its professional usage. In this paper 
we present and explain how and in what forms the given problem-solving strategies, especially 
the dynamic programming concept, appear in children’s informatics studies: from CS unplugged 
activities through Bebras tasks and national CS competitions to efficient coding at the IOI.

Keywords: dynamic programming concept, teaching informatics in primary and secondary 
schools, preparing for contests.

1. Overview

There are a lot of problem-solving strategies which every contestant has to be familiar 
with. In this paper, we want to focus on one of the most important ones, specifically dy-
namic programming, because “[Until] you understand dynamic programming, it seems 
like magic” (Skiena, 2008).

The dynamic programming name came from Bellmann in the 1950’s (Dreyfus, 
2002). He wanted to find a name for the multistage decision making process, in which 
the general case is very hard to solve thus one must use the divide & conquer concept. It 
leads back to special cases, when the solution is expressed more easily – not in terms of 
the unknown function, but in terms of an action or decision.

If we want to speak about dynamic programming, we also have to examine other cor-
responding concepts, like recursion, memoization and divide & conquer.

The concept of recursion consists of a recursive function and a recursive implemen-
tation; it is a top-down approach. Usually the runtime of the algorithm is exponential 
and this technique usually fails already in a small sample size. The memoization is a 
top-down approach as well, it is more effective than recursion. The core idea is the 
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same: recursive function and recursive implementation, but storing the calculated re-
sults, thus without calling the recursive step again when the actual state previously 
appeared.

When we are experienced enough to implement a recursive approach correctly, 
there is a special technique for dramatically reducing the runtimes of certain algo-
rithms from exponential to polynomial or from factorial to exponential, at the expense 
of higher memory usage. This is done by solving sub-problems and storing the results 
using a dynamic programming concept. The concept is about a recursive function, but 
the implementation is to build the values from bottom up without calling the recursive 
step repeatedly.

The simplest type of dynamic programming is when an array is filled – namely a 
table – cell-by-cell in a predetermined order, implementing the recursive function from 
bottom up. We will call it a basic DP.

Some people use the term dynamic programming only for those recursive problems, 
which involve optimization, but the technique of completing a table to solve any other 
type of problem is almost the same when it comes to implementing the solution. We will 
call it classic DP.

The dynamic programming as problem-solving strategy is the implementation of the 
following five steps (Horváth, 2004):

Analysing the (optimal) solution’s structure.1.	
Dividing it into subproblems and components:2.	

Dependence of components must be acyclic.a.	
Every subproblem (optimal) solution should be a (recursive) expression of b.	
components’ (optimal) solution.

Expressing each subproblem’s (optimal) solution as a (recursive) function of com-3.	
ponents’ (optimal) solution.

These three steps are the planning of recursive algorithm. DP comes from the next 
two steps:

Calculating subproblems’ (optimal) solutions from bottom up (completing a ta-4.	
ble).
Calculating an (optimal) solution from the previously calculated and stored infor-5.	
mation.

If you are familiar with the basic DP techniques then you could continue with some 
advanced techniques (Steinhardt, 2008).

The first advanced type is to keep track of all possible transition states. In this case 
DP means filling out a table row-by-row, with the values depending on the row number 
and values in the previous row.

Second advanced type is the dynamic greedy type.
The third advanced type is a steady state convergence, only for more experienced 

students. In this case the recursive equation must be repeatedly applied, then values will 
converge exponentially to the correct values.

All of the DP types have a place in different stages and in different ages of contes-
tants’ studies.
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2. Place of Dynamic Programming in Algorithms Textbooks

There are a lot of textbooks about algorithms. They discuss all algorithms sequentially 
and directly as they are written for university students. The structure of these books and 
the place of dynamic programming in them is different.

In the textbook of Skiena (2008) the DP takes place after data structures, sorting and 
selecting algorithms, graphs, combinatorics, backtrack and parallel programming. In the 
chapter of dynamic programming, he compares algorithms using cache vs. computa-
tion at first. After this, he discusses the problem of string matching, longest increas-
ing subsequence and partition problem. The limitation of DP is presented via travelling 
salesperson’s problem and there are some words about correctness and efficiency of DP. 
Just after the DP concept comes the recursion and memoization, the concepts of the top-
down structures.

In the textbook of Kleinberg and Tardos (2006) there are basic algorithms, graphs and 
greedy algorithms first. To process sets which can be divided into independent parts they 
recommend divide & conquer concept. Just after this method, they speak about DP: the 
recursion, the memoization and iteration over sub-problems are the parts of this chapter.

In the textbook of Dasgupta et al. (2006), dynamic programming is presented after arith-
metics, primes, cryptography, hashing, divide & conquer, graphs and greedy algorithms via 
examples: travelling salesman’s problem, longest increasing subsequence and knapsack.

In the textbook of Sedgewick and Wayne (2011) there is no chapter dedicated to DP, 
but the concept appears in some points of the book.

In the textbook of Gupta (2009) DP comes after introduction to algorithms, divide & 
conquer method and greedy method.

Bebis (2007) has lot of chapters about sorting and searching methods, DP comes 
after that.

There are not two textbooks, in which the place of DP is the same in the sequence 
of algorithms. Sometimes it comes before graphs (Gupta, 2009), often it comes after 
graphs. Occasionally it is before recursion (Kleinberg and Tardos, 2006), but in the most 
common order its place is after recursion and memoization. Sometimes it is placed be-
fore the greedy algorithms, sometimes after. Textbooks do not usually stress the differ-
ences between dynamic programming and greedy approach, nor warn they about the 
danger of accidentally using one instead of the other.

These textbooks are almost useless for primary and secondary school pupils because 
of their advanced mathematics and informatics contents. Some parts of them may be 
useful in upper secondary, just for contestants preparing for IOI.

3. New Way for Contestants Learning DP in Upper Secondary School

Last year there was a paper in IOIJournal about the critical analysis of textbooks and 
new way of teaching DP (Forišek, 2015) for upper secondary school students preparing 
for national olympiads and IOI. He started with the Fibonacci sequence – something is 
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well-known by children from math studies – implementing it with a recursive function 
and making this function more efficient with memoization. He compares iterative and 
dynamic solution, then introduces DP bottom-up. He demonstrates that the exponential 
solution longest common subsequence problem with a top-down approach turns poly-
nomial (o(n2)) with a bottom-up approach. It is a very good structure if students want to 
prepare for olympiads all at once.

There is a book about competitive programming, which was written for contestants 
preparing for ACM ICPC and IOI (Halim and Halim, 2014). It is not a real textbook, it 
teaches the effective type detection of tasks and the correct, error-free coding, not the 
concepts behind the algorithms. According to it contestants’ main goal ‘should be to 
honing [their] ability to recognize a problem as DP, finding the recursive formula for 
such a problem, coding the problem, and doing all of this quickly’.

After data structures and problem-solving strategies like searching – iterative & re-
cursive – divide & conquer concept and greedy algorithms comes dynamic program-
ming through an example: UVA 11450 wedding shopping. The chapter begins with the 
repetition of recursion, backtrack, optimization and counting problems. It shows, that 
this task’s solution: greedy method failed with wrong answer (WA), divide & conquer 
method failed with WA (because of non-independent parts), complete search failed 
with time limit exceeded (TLE). The dynamic programming method with top-down 
(memoization) and with bottom-up approach is working. After this very detailed analy-
sis he gives six more example with analysis and many task recommendation to become 
familiar with this method.

We think these methods work effectively for students in upper-secondary-school-age 
(grade 11–13) preparing purposefully for national and international olympiads.

4. Teaching Dynamic Programming in Primary and Secondary School

If the students know structured programming concept (Floyd), they are familiar with 
the top-down concept too, because of stepwise refinement; and they are familiar with 
the concept of bottom-up, because concrete objects and functions. So the pupils knows 
top-down and bottom-up paradigms as soon as they begin to implement a computer 
program.

We think teaching dynamic programming ideally begins in upper primary school in 
mathematics and informatics lessons. Implementation of DP on computers is possible 
when children are familiar with the basic data structures (integer, boolean, array), basic 
algorithms (sequence, iteration, selection, searching, procedures and functions) and the 
concept of recursion.

4.1. CSUnlugged 

There is not any activity yet that covers dynamic programming in the CSUnplugged re-
pository, but there is an intention to make a good one from the change-making problem.
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4.2. BEBRAS

In the Bebras competitions there are tasks about DP every year. There are other tasks, 
in which the recursion is the best solution. There are many in which the greedy gives 
wrong answer and the dynamic programming concept must be used for the right solu-
tion.

On Bebras competitions the DP problems appear in a wide range of age groups and 
difficulties also. It proves that the concept of DP comes much earlier than at the end of 
secondary school and it is understandable for everybody, not only for contestants: it is 
part of computational thinking skills.

The easiest task of DP is from 2013 for grade 5–8: the Pairs without Crossing (Kreu-
zungsfreie Pärchen). The brute force algorithm is working, but takes long time to try 
every possible connection pairs, the dynamic concept make it easy. In 2011 the problem 
Earn coins (Münzen verdienen) is a special case of the classic knapsack problem. This 
one was one of the hard problems for the grade 5–6, middle for grade 7–8 and easy for 
grade 9–10. In 2014 another classic DP problem appeared, the Expensive Bridges (Teure 
Brücken) which one was hard problem for the grade 7–8, middle for grade 9–10 and easy 
for grade 11–13. 

There are more problems connected to DP for secondary-school-age students: the 
Jumping Puddles (Pützenspringen), the game ROOK, in 2010 the task Pinecone (Tan-
nenzapfen), in 2014 the Best translation (Beste übersetzung) and in 2015 the Fireworks2 
(das Feuerwerk2).

4.3. Tasks for Contestants of Upper-Primary-School-Age

In the grade 5–6 we could start with LOGO programming. It provides a strong foun-
dation in the basic programming structures, like sequence, iteration and selection. 
Through the drawings, it also visualizes the concept of recursion well. They can imag-
ine and implement binary tree (Fig. 1), the Sierpinski-triangle (Fig. 2), the Koch-curve 
(Fig. 3).

       
       Fig. 1.  Binary tree.                                                      Fig. 2. Sierpinski-triangle.

Fig. 3. Koch-curve.
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In Hungary and many other countries, they meet table filling and the thought of 
recursion in mathematics. They calculate total number of possible paths in a grid of 
characters, from the top-left corner to the right-bottom corner to spell a given word 
(Fig. 4). They calculate total number of possible paths, even if there are empty squares 
in the grid (Fig. 5).

Pupils of grade 7–8 meet simple recursive sequences and functions, like the Fibo-
nacci sequence. In mathematics lessons, they meet combinatorial problems (permuta-
tion, variation and combination without repetition) without naming them. They come 
across problems, like longest/shortest path in a directed/undirected graphs and coloring 
problems on very small graphs, coin changing problem for small numbers, shaking 
hands/sitting in a row/around a table, they calculate extreme values in Diophantine 
problems. These problems are solved with table filling or with recursive expressions. 
The formulas, like n! or �𝑛𝑘�  are not formulated.

They can solve problems like these:

How many different, 10 cm high towers can build from 2 cm high blue, 2 cm high 
yellow and 1 cm high red building blocks?

If they draw it systematically (seeing the blocks from bottom), they can guess the 
recursive expression an = an – 1 + 2*an – 2 and they check it empirically. The solu-
tions are: 1, 3, 5, 11, 21, 43, 85, 171, 341, 683.

How many different covering exist on a 2*8 table with 1*2 size dominos?

    
      Fig. 4. Spelling a given word.                                   Fig. 5. Spelling a given word with a pit.

Fig. 6. a1 = 1, a2 = 3, a3 = 5, a4 = 11 – Counting with drawing systematically.

Fig. 7. a1 = 1, a 2 = 2, a 3 = 3, a 4 = 5 – Counting with drawing systematically.
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If they draw it systematically (seeing the blocks from the right), they can guess the 
recursive expressionan=an–1+an–2 and they check it empirically. The solutions are:1, 
2, 3, 5, 8, 13, 21, 34. The solution can be built for any given N with a table filling.

In primary schools the children meet problems with large numbers also, like 1000 
points, 2016 numbered cards, 10 000 people. In such cases, the obvious idea is – instead 
of the original task – to examine a simplest problem. What happens if the number of 
points is 2, 3, 4, ..., the number of cards is 5, 6, 7,…, the number of people is 2, 3, 4,…? 
If any regularity is noticed, they try to verify it empirically and apply it on the original 
problem with large numbers. On primary-school-level, formulating and using the hy-
potheses is enough to solve such problems.

On the other hand, these problems can be implemented on the computer, as a recur-
sive expression or with table filling for larger numbers. The next classical problems are 
the first appearance of dynamic programming approach for them:

Robot – A robot starts from the top left corner (1,1) of a MxN grid. At each step 
the robot can make one of the two choices: move one cell to the right or move one 
cell down. How many possible paths are there for the robot to reach the right-
bottom corner of the grid?

The robot problem can occur in many variations at grade 7 and 8:
The question is the same, but there are cells in a grid, on which the robot can’t ●●
step on (traps).
The question is the same, but there are cells in a grid, on which the robot have ●●
to step on (mandatory fields).
In every cell there are given number of pearls and the question is, what is the ●●
maximum number of pearls the robot can collect on its way.
Mix of traps and pearls.●●

Staircase – You are standing in front of a staircase, which has N stairs. Your goal 
is to reach the top. If you are standing on the ith step, you can hop to (i+1)st or 
(i+2)nd or (i+3)rd step. Given N, calculate the count of total possible paths for you 
to reach Nth stair!

Coin Change – You want to make change for given N cents and you have infinite 
supply of each of S1, S2, .. , Sm valued coins. How many ways can you make the 
change?

Subset sum – Detect, if any of the subset from a given set of N non-negative in-
tegers sums up to a given value S!

Dice Throw Problem – Given N dice, each with m faces, numbered from 1 to m. 
Find the number of ways to get sum X! (X is the summation of values shown by 
the dices.)

Flooring – How many different coverings exist on a 1*N floor with 1*1 and 1*2 
parquet pieces? How many different covering exist on 2*N floor with 1*2 parquet 
pieces?
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Towers – How many different, N meters high towers can be built from 2 meters 
high blue, 2 meters high yellow and 1 meter high red blocks?

The previous dynamic programming problems should be solved at the primary-
school-level as the analogous math problems: children formulate and use the hypo-
thetical recursive expressions and implement them with table filling, without extensive 
argumentation. Mostly they cannot calculate directly the answer, but they can give a 
recursive formula and the direction of filling the table, and this way they can solve the 
problem. They can solve basic DP problems, without optimization.

On informatics contest the children use basic data structures (integer, boolean, one 
and two-dimensional array of integers, simple strings) and basic algorithms can be ap-
plied for various problems in various wording. Choosing, selecting, counting, search-
ing, summarizing, selecting maximum/minimum, sorting, separating into two groups, 
prime testing are these basic algorithms. Stages of solving tasks are understanding the 
problem, choosing the right data structure, selecting right algorithm, implementing and 
testing it. In addition to the conservative tasks there are ad-hoc problems where children 
can apply basic algorithms creatively. The basic DP problems appear in the regional and 
national rounds of competitions.

4.4. Tasks in Lower-Secondary-School-Age

In Hungary and many other countries the children continue to learn combinatorial prob-
lems in grades 9–10 in mathematics lessons, they group and formalise these problems. 
During these years, they also meet the idea of mathematical induction, so they can prove 
the previously discovered recursive formulae. They learn about sequences and some-
times they give the explicit formulae for recursive expressions. They know the formula 
of n! and  �𝑛𝑘�  , they also learn Pascal-triangle. But they do not necessarily know the 
relationship between the binomial coeffitients and the Pascal-triangle.

They can discover and solve more complex recursive expressions, sometimes these 
functions call each other, like:

How many different covering exist on a 2*N table with 1*2 and 1*1 size dominos?

Drawing it systematically is not enough to formulate the recursive expression. 
One must analyze possible cases. The result comes with two expressions in simul-
taneous recursion: dn = an–1 + fn–1, fn = an–1 + dn–1, an = 2*an–1 + an–2 + fn–1 + dn–1.  
After simplification: an = 3*an–1 + an–2 – an–3.

Fig. 8. a1 = 2, a2 = 7, a3 = 22, a4 = 71 – Counting with drawing systematically.
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In this age they learn the basics of graph theory in mathematics, they learn types 
of graphs (trees, binary trees, relational matrix), storage of graphs (vertex matrix, edge 
matrix, edge list) and algorithms of graphs (breadth first traversal, depth first traversal, 
relations) in informatics. They meet recursion again, divide and conquer, backtrack, and 
greedy algorithms too, on basic level.

They learn all classic dynamic programming problems, as follows:

Partition problem – Divide the set of numbers into two groups, where sum of 
each group is same!

Longest Increasing Subsequence – Find the length of the longest subsequence 
of a given sequence, such that all the elements are sorted in increasing order.

Knapsack Problem – A thief robbing a store can carry a maximal weight of W 
in his knapsack. There are N items and ith item weighs wi and is worth vi dollars. 
What items should the thief take?

Contiguous subsequence with maximum value – Find the contiguous array 
with the maximum sum in a given an array, containing both positive and negative 
integers!

Minimal number of coins for change – What is the minimal number of coins, to 
make change for a given amount T only coins of values v1, v2, …, vn can be used?

These examples can be solved by using recursion with optimization, the right order 
of filling the table must be given usually it is not evident. There are a number of varia-
tions of these problems, sometimes the difference is merely wording.

Next type of DP problems is game strategy in various formats, like: 

Optimal Strategy – Consider a row of N coins of values v1, ..., vN, where N is 
even. We play a game against an opponent by alternating turns. In each turn, a 
player removes either the first or last coin from the row and receives the value 
of the coin. Determine the maximum possible amount of money we can definitely 
win if we move first?

Basic data structures may be supplemented with string and real. There are a number 
of dynamic programming problems with strings, too:

Longest Common Subsequence – Find the longest common subsequence of two 
strings, where the elements are letters from the two strings and they should be in 
the same order!

Longest Common Substring – Find the longest common substring of two 
strings!

Edit Distance – Given two strings and a set of operations Change (C), insert (I) 
and delete (D). Find minimum number of operations required to transform one 
string into another!

On informatics contest classic dynamic tasks can be in every round, so the contestants 
have to be ready to solve it.
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4.5. National Olympiads

In grades 11–12 contestants prepare for national Olympiads. They know a lot of algo-
rithms, in these years they learn to use advanced data structures, like set, priority queue, 
stack, and they implement previously learned algorithms with these data types. While in 
previous years they were asked for the existence of the solution or the number of steps 
in the solution, now they also have to decrypt the entire path traversal in dynamic pro-
gramming problems.

Sometimes there are strict memory limits and there is no space for the whole table. In 
this case, only the values of those cells have to be stored in memory, which are essential 
to the calculation of the next row. During the decryption process the rebuilding of the 
table may be as hard and interesting to implement as the original problem.

They learn about combinatorial and geometrical problems.
Within the concept of divide and conquer, recursion or dynamic programming more 

complicated expressions should be optimized.
There are advanced DP problems: all possible transitions and dynamic greedy type.
Example of complicated problems:

Balanced Partition – There is a set of N integers each in the range 0 ... K. Parti-
tion these integers into two subsets such that you minimize |S1 – S2|, where S1 
and S2 denote the sums of the elements in each of the two subsets!

The dynamic programming concept among strings also leads complicated problems, 
like:

Shortest Palindrome – Form a shortest palindrome by appending characters at 
the start of the given string.

Palindrome Min Cut – Find the minimum number of cuts required to separate 
the given string into a set of palindromes.

Longest Palindromic Substring – Find the longest palindromic substring of a 
given string!

Longest Palindromic Subsequence – Find the longest palindromic subsequence 
of a given string!

The contestants in the upper secondary age want to be computer scientists or engi-
neers, they do not only know the basic algorithms but they can cope with complex tasks.

4.6. Regional and International Olympiads

When you want to prepare for Regional or International Olympiads you have to know 
everything about dynamic programming which is included in the textbooks. You have 
to solve a huge number of tasks. On Olympiads the solution of tasks are some kind of 
creative mixture of known algorithms.

Some examples:

Interval-Scheduling Problem (Greedy and DP Approach) N k-tuples processes 
are given with start & end times. Select as many processes as possible such that 
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(I) no two selected processes intersect and (II) at most one process is selected 
from each k-tuple!

intersec Complete all tasks given the deadline, so that no task overlap!

Box Stacking – You are given a set of N types of rectangular 3-D boxes, where 
the i^th box has height h(i), width w(i) and depth d(i). You want to create a stack 
of boxes which is as tall as possible, but you can only stack a box on top of an-
other box if the dimensions of the 2-D base of the lower box are each strictly 
larger than those of the 2-D base of the higher box. You can rotate a box, any of 
the side can be its base. It is also allowable to use multiple instances of the same 
type of box.

Counting Boolean Parenthesizations – You are given a boolean expression con-
sisting of a string of the symbols ‘true’, ‘false’, ‘and’, ‘or’ and ‘xor’. Count the 
number of ways to parenthesize the expression such that it will evaluate to true. 
For example, there are 2 ways to parenthesize ‘true and false xor true’ such that 
it evaluates to true. The order is defined only by parentheses.

There are many tasks for practice on the online preparing and contest sites, like 
usaco.org, codeforces.com, codechef.com, uva.onlinejudge.org, spoj.pl. If you have met 
each type of concept detailed above, the textbook of Halim is a good choice for prepar-
ing for IOI.

5. Conclusions

Some antecedents of the dynamic programming concept for example the concept of re-
cursion, might come up in earlier mathematics and informatics studies. If you are aware 
of this, introducing DP as a new problem-solving strategy is much easier.

We think, if you want to teach the technique of DP you have to start from a simple 
recursion then through memoization and table filling you could end with a real DP for 
optimization problems. You could start the whole process in the primary school age and 
circularly, returning to it in higher and higher levels your students would be familiar with 
this hard concept.

In the upper primary school, the basic DP comes up: a recursive expression imple-
mented with table filling. At the beginning of secondary school, the classic DP programs 
continue the sequence: recursive expressions with optimization and at implementation 
the right order of table filling need to be thought of. In upper secondary school, the 
children can be familiar used with advanced types of DP: all of the previous problems 
with the retrieval of the way, how the optimal solution is built up, dynamic greedy type 
and the type, when you have to keep track of all possible transition states. Preparing for 
Olympiads, the students need everything from textbooks and the combination of other 
types of approaches.

Finally, it would not be magic for the contestants, just a useful problem-solving 
strategy.
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Abstract. As part of the qualification process for the Swiss Olympiad in Informatics, the con-
testants are each year confronted with one “Creativity Task”. Unlike typical problems in pro-
gramming competitions, creativity tasks usually do not have an optimal solution, and are often 
adaptations of popular board or computer games. After receiving all submissions, a tournament is 
organized, where the students can watch how their programs play interactively against each other, 
and points are awarded to the authors according to the tournament ranking.

We present and discuss this task format in general, as well as the specific creativity tasks of 
the past 10 years, accompanied by an online archive of the task descriptions, sample solutions and 
game servers.

Moreover, we describe our task selection process and criteria, the task creation process, and 
the experience gained and best practices established in the past years.

Finally, we present the many advantages of this task format, showing why we think it is a 
refreshing alternative to the common IOI-style tasks given in most national selection rounds.

Keywords: creativity tasks, interactive tasks, heuristics, programming competition, board games, 
artificial intelligence contest, tournaments, task visualization.

1. Introduction

During the first round of the Swiss Olympiad in Informatics (SOI), the students have 
two months to solve a set of tasks at home and submit them on the SOI website. There 
are practical and theoretical tasks, and one creativity task. This paper is about the cre-
ativity tasks.

Contrary to typical tasks in programming competitions, the creativity tasks are usu-
ally designed in such a way that there is no optimal solution, or that the optimal solu-
tions are not efficient enough. The creativity tasks are often adaptations of popular 
board or computer games, and the game can be played with two or more players. The 
participants’ task is to write a program able to play the game. We will refer to such 
programs as bots.

An interesting aspect of this task format is that the participants’ bots can play and 
compete against each other.
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At the start of each year’s first round, the following material for the creativity task is 
published on the SOI website:

The ●● task description, describing the rules of the game and its parameters. De-
pending on the game, these could include, for instance, width and height of the 
playing field, or a map of the playing field, the number of players, the initial 
amount of money/food of each player, etc. The task description also specifies 
the communication protocol between the bots and the game server (see below), 
which defines how the bots have to communicate their actions and how they are 
informed about the other bots’ actions. All communication is done via standard 
input/output.
A ●● game server, a program written by the task authors, which launches the bots, 
communicates with them according to the protocol and keeps track of the game 
state. It informs the bots about all the relevant changes and prints a log of each 
action and state change. The server also acts as a judge that can terminate bots 
that drop out of the game or take too long to answer. If the interaction protocol is 
easy to read, the game server can also allow for human players that type in their 
commands interactively. This way, the participants can play against their own 
bots by hand.
Some ●● sample bots in various programming languages. These bots follow all the 
rules of the protocol, but they just pick a random move in every step. The par-
ticipants can base their solutions on these sample bots to quickly learn how to 
implement the protocol and input/output. Moreover, they can evaluate their bots 
by letting them play against the sample bots.
A ●● visualization, which reads the log produced by the game server, and displays a 
graphical animation of the game. For some of our tasks, the game server already 
provides a rudimentary text-based visualization of the game. 

After the end of the first round of the SOI, the organizers let the submitted bots 
compete against each other in a large number of games covering many different configu-
rations, to make sure that the obtained results are representative and random decisions 
average out well enough. The results of all these games are then aggregated into a final 
score for each participant.

Between the first and the second round of the SOI, all participants are invited to an 
event called “SOI-Day” consisting of task discussions, talks and presentations. At this 
event, a shortened version of the the creativity task tournament is presented as if it was 
a live tournament, and the participants can thrill while watching their bots compete 
against the others.

2. Ten Years of Creativity Tasks

In this section, we give a brief presentation of each creativity task of the past ten years. 
We omit details such as the communication protocols, and refer the reader to the online 
task archive (http://creativity.soi.ch) for the full task descriptions.
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2.1. Connect Five (2007)

Task description On a 20 × 20 grid, two players (black and white) alternate in placing a 
stone of their color on an empty square. As soon as a player succeeds in placing 5 stones 
in a row (horizontally, vertically or diagonally), he wins.

Note that unlike the game sold under the name “Connect Four”, the stones do not 
“fall down” in their column, but stay exactly where they were placed.

Discussion This variant of the game is also known under the name “Gomoku”, and ap-
peared at the International Computer Games Association’s Computer Olympiad in 1989, 
1990, 1991 and 1992.1  

2.2. Fight of the Ant Populations (2008)

Task description On a grid with obstacles, multiple ant colonies are fighting against 
each other. Each player controls all ants of a colony. In every turn, the player sees the 
7 × 7 neighborhood of each of his ants and can move them individually to an adjacent 
tile. Some tiles contain food, others contain ants or the hill of the enemy. Collecting food 
and carrying it back to the own hill allows the colony to grow. If an ant attacks another 
ant both die. If an ant reaches an adversarial hill, three random ants of that colony die. 
Which colony survives the longest?

Discussion This game allows for a huge variety in strategies. Some submissions as-
signed different jobs to the ants, for instance: explorers that go to unknown territory, 
workers that collect the closest food, guards that stay near the hill and warriors that try 
to reach the hill of the enemy.

2.3. Grand Theft Cake (Portal Maze) (2009)

Task description The players are searching for a big cake in an unknown, polygonal 
maze with walls all around them. They have a handheld portal device that allows them 
to teleport from A to B instantly. They can walk around with a speed of 1 meter per 
second. In 0.1 seconds, they can look in a direction to learn how far away the wall is. 
It takes 5 seconds to shoot a portal in a direction (either of type A or B). The cake is a 
circle of one meter diameter. The goal is to find the cake and return to the starting posi-
tion as quickly as possible.

Discussion The submitted solutions made creative use of the portal. Some just used it 
to return to the start quickly, others repeatedly used it as a shortcut throughout the entire 
search for the cake.

1	http://www.game-ai-forum.org/icga-tournaments/game.php?id=30
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2.4. Tanks (2010)

Task description Each player controls a tank, which can move on a line and fire one 
missile per round. The tanks can use different weapons, which are specified by their 
range, their impact radius, and their damage points. The tanks have an unlimited number 
of missiles of each weapon. When a missile hits a position, the damage points of all 
tanks within the impact radius increases by the number of damage points of the weapon, 
and tanks reaching a predefined number of damage points die. Moving around costs fuel, 
and the fuel is limited. The last surviving tank wins.

Discussion Most submissions implemented some simple ad hoc heuristics. The winning 
solution was 285 lines long and in each round, it chose the weapon and target position 
which would cause the highest total damage to all opponents, supposing that they would 
not move. If there was a tie between several possibilities, the one with the biggest impact 
radius was chosen.

2.5. Multisnake (2011)

Task description Multisnake is a multi-player version of the popular computer game 
called snake (Fig. 1). It is played on a rectangular grid which contains some obstacles. 
Each player controls a snake, and in each turn, all snakes move simultaneously by one 
step. When a snake moves onto a field occupied by an obstacle or by a snake, it dies. 
The winner is the last surviving snake. Some tiles contain a black or white ball. When a 
snake eats a white ball, it grows by one, and when it eats a black ball, it shrinks by one. 
To enforce termination of the game, all snakes grow by one each T turns, where T is a 
small positive integer.

Discussion The winning solution was 1005 lines long, implemented a complex scoring 
function for possible states, and explored them recursively.

Fig. 1. Multisnake.
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2.6. Find the Anthill (2012)

Task description In this second ant-themed task, the story was more peaceful: each ant 
just has to find the way back to its own ant hill (Fig. 2). The big difference is that this 
time each ant is controlled by a separate instance of the participant’s submission. So the 
program controlling a single ant does not know where the other ants of its colony are, 
unless they are in its 7 × 7 field of view.
Like in nature, there is a distributed way of communication though: scents. The ants can 
place one out of 256 different scents on their current tile and they can sense the scents 
that other ants (of their own or of other colonies) put there. So if one ant sees the hill, it 
can leave hints for its colleagues.

Discussion Successful submissions made creative use of the scent hints to share knowl-
edge between the ants. Some even tried to learn and imitate the marking patterns of the 
opponents to mess with it and cause confusion.

2.7. Who wants to be a billionaire (2013)

Task description The task is to write a bot which can interactively answer multiple 
choice questions with four possible answers, using Wikipedia articles as a knowledge 
base. For each question, the bot is allowed to consult up to 25 articles on the English 
Wikipedia. To do so, the bot has to provide a query string to the game server, and the 
game server will look up the article on Wikipedia (or in its cache), and feed a plain text 
version to the bot.

Discussion Most solutions were based on keyword search combined with some strategy 
to avoid frequent words which do not carry any meaning. The submitted bots would not 
have become billionaires, but the best was still twice as good as a random bot (which 
would have scored 

tournaments are fun to watch as the interaction between the bots suggests that the 
contestants are immediately fighting against each other. 
Finally, we believe that creativity tasks are also a way to train for the newer, less-
standard IOI tasks where heuristical solutions are required. Examples of such creative 
IOI tasks include Languages and Maze from IOI 2010, Odometer from IOI 2012 and 
Art Class from IOI 2013. 
4.4. Disadvantages of this Task Format 
It often proved challenging to find tasks that beginners can easily get started with but 
still leave a lot of options for the creativity of more advanced students. This higher 
initial hurdle lead to fairly small numbers of serious submissions for many of the 
presented tasks. From an organizer's point of view, creativity tasks take significantly 
more time to prepare and grade than regular tasks. 
5. Conclusion 
In summary, creativity tasks proved to be a beneficial addition to the types of 
algorithmic challenges given in the first national round of the Swiss Olympiad in 
Informatics. 
We provide the full description and supplementary material for the presented tasks 
online at http://creativity.soi.ch and we want to encourage other delegations to 
experiment with such task types and look forward to learning about their experiences. 
Acknowledgments  
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Fig. 2. Find the Anthill.
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There were 11 submissions, and for the tournament, they were fed a total of 547 
questions. Table 1 shows the ranking and their percentage of correct answers. Note that 
the primary ranking criterion was whether they were compilable and never crashed, and 
the number of correct answers was only the secondary criterion.

2.8. Cops and Robbers (Scotland Yard) (2014)

Task description Some cops are hunting a robber in a city whose streets and junctions 
are given as an undirected connected graph (Fig. 3). Initially, the cops and robbers are 
positioned on distinct junctions (nodes in the graph), and in each round, the robber and 
all cops move along an edge of the graph. As soon as a cop moves onto the same node 
as the robber, the cops win, and if this never happens during a predefined number of 
rounds, the robber wins.

One bot controls the robber, and another bot controls all cops. Every bot must be 
able to play both roles. At any time, the bots know the entire graph and the positions of 
all agents.

Discussion This is a classic problem in graph theory and we refer to Aigner and Fromme 
for a nice introduction (Aigner and Fromme, 1984).

The participants mostly implemented sophisticated scoring functions that would for 
instance weigh the distance between the cops and the robbers against the number of pos-
sible escape routes.

Fig. 3. Cops and Robbers.

Table 1
The ranking and their percentage of correct answers

rank 1 2 3 4 5 6 7 8 9 10 10

% correct 50% 37% 35% 45% 36% 28% 27% 2% 0% N/A N/A
behavior never crashed sometimes crashed did not compile



Watch them Fight! Creativity Task Tournaments of the Swiss Olympiad in Informatics 79

2.9. Diamond Auction (2015)

Task description The players are at an auction bidding for diamonds. Each player starts 
with the same amount of gold and for each diamond everyone can bid an amount of his 
choosing. The highest bid gets the diamond, but all offered gold has to be paid. The goal 
is to maximize the number of bought diamonds using only the given amount of gold. To 
allow for more interesting strategies, there are several games played with the same play-
ers without restarting the participant’s programs. This way, they can learn and exploit 
each other’s strategies.

Discussion Being a very simple game with a simple protocol, we had many submissions 
for this task. Many of them implemented a random strategy sometimes even worse than 
our sample bots. Most of the more successful solutions tried to imitate the opponent or 
to predict the next move. The following graph (Fig. 4) shows the last game of the final, 
the lines showing the bids of the two players for the different rounds. Although the bids 
seem random the players are able to predict each others bid and bid just a little bit more. 
This results in a very clever use of the available gold.

2.10. Vector Car Racing (2016)

Task description Each player controls a car and in each round he can change his veloc-
ity vector by at most one in both directions. The game is played on a grid (i.e. a graph 
paper) with a start, a goal, some checkpoints and some walls enclosing a racetrack. The 
goal is to visit each checkpoint at least once and be the first to reach the goal. Should a 
player drive into the wall (e.g. if he didn’t slow down early enough in a turn) he will be 
reset to the last visited checkpoint. To allow for some interaction, we added two items 
that can manipulate the velocity vector of other players.

Discussion This game is a well known pen and paper game and goes back to Jürg Niev-
ergelt. It became widely known by an article in Martin Gardner’s column in the Scien-
tific American (Gardner, 1973).

Fig. 4. Diamond Auction (the graph shows the last game of the final).
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The submissions fell into one of two categories: sophisticated algorithms beating 
human players easily (3 submissions) or being barely able to play the game (4 submis-
sions). One example from the second category used DFS to determine the “shortest” 
path resulting in some of the longest possible paths.

The winning submission consists of 1741 lines of code using a wide range of algo-
rithms. On small maps it uses a four dimensional BFS (location and velocity) to find 
the optimal solution. On bigger maps, a heuristic is used to improve the runtime of this 
algorithm and only paths between two checkpoints are calculated. To find the best order 
of checkpoints it uses some more heuristics to find a good approximations for the travel-
ing salesman problem.

2.11. Statistics

Table 2 shows our observed participation rates in the last ten years. Given the bonus-like 
character of the creativity tasks, participation rates in the past years fluctuated heavily. 
Usually, only students with enough time (and interest) left after solving the five classical 
problems tackled the creativity task. Tasks with a very simple interface (like the dia-
mond auction in 2015) seem to have drawn additional interest, probably because writing 
a first solution was easily possible within an hour, also for beginners.

3. Implementation Details

3.1. Our Task Selection and Creation Process

The SOI is organized by a team of approximately twenty people, most of whom are 
former participants and now university students. Each year when the preparations of the 
first round of the SOI start, they discuss a few proposals for the creativity task on their 
internal mailing list. Once the task is chosen, two to three organizers are selected to 
write the detailed task description and implement the game server and the visualization. 
A few more organizers proofread the task description and write sample bots in as many 
languages as possible.

Table 2
Participation rates in the last ten years

year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

task c5 ants maze tanks snake ants quiz c&r 

(4 submissions). One example from the second category used DFS to determine
the “shortest” path resulting in some of the longest possible paths.

The winning submission consists of 1741 lines of code using a wide range of
algorithms. On small maps it uses a four dimensional BFS (location and velocity)
to find the optimal solution. On bigger maps, a heuristic is used to improve the
runtime of this algorithm and only paths between two checkpoints are calculated.
To find the best order of checkpoints it uses some more heuristics to find a good
approximations for the traveling salesman problem.

2.11 Statistics

The table below shows our observed participation rates in the last ten years.
Given the bonus-like character of the creativity tasks, participation rates in the
past years fluctuated heavily. Usually, only students with enough time (and
interest) left after solving the five classical problems tackled the creativity task.
Tasks with a very simple interface (like the diamond auction in 2015) seem to
have drawn additional interest, probably because writing a first solution was
easily possible within an hour, also for beginners.

year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
task c5 ants maze tanks snake ants quiz c&r  race
creativity 17 N/A 4 6 2 10 11 9 25 7
total 21 31 35 40 48 29 29 28 52 72

3 Implementation Details

3.1 Our Task Selection and Creation Process

The SOI is organized by a team of approximately twenty people, most of whom
are former participants and now university students. Each year when the prepa-
rations of the first round of the SOI start, they discuss a few proposals for the
creativity task on their internal mailing list. Once the task is chosen, two to three
organizers are selected to write the detailed task description and implement the
game server and the visualization. A few more organizers proofread the task
description and write sample bots in as many languages as possible.

The organizers of the creativity task are usually people who have successfully
taken part in the creativity task a few years before when they were participants,
and they are supported by older organizers who prepared the creativity task
a few times before. This ensures a good knowledge transfer, which leads to
good creativity tasks, even though this task format is more challenging for task
creators than ordinary tasks and even though every year, many organizers join
and leave the team.

8

race
creativity 17 N/A   4   6   2 10 11   9 25   7

total 21 31 35 40 48 29 29 28 52 72



Watch them Fight! Creativity Task Tournaments of the Swiss Olympiad in Informatics 81

The organizers of the creativity task are usually people who have successfully taken 
part in the creativity task a few years before when they were participants, and they are 
supported by older organizers who prepared the creativity task a few times before. This 
ensures a good knowledge transfer, which leads to good creativity tasks, even though 
this task format is more challenging for task creators than ordinary tasks and even though 
every year, many organizers join and leave the team.

3.2. Evaluating the Submissions

After the end of the first round of the SOI, the organizers review and compile all submis-
sions for the creativity task, and then run a large number of games, covering a represen-
tative selection of different game parameter and player combinations. The results of all 
these games are then aggregated into a final score for each participant, and points for the 
creativity task are awarded as follows:

A bot that follows the protocol and is capable of playing the game without violating ●●
any rules is awarded a predefined percentage p of the points, usually between 30% 
and 50%, depending on how difficult the task is. We also look at the source code to 
see if it witnesses more effort than just copying one of the provided sample bots.
The rest of the points are awarded according to the aggregated score described ●●
above, in such a way that the participant ranked last gets p points, and the partici-
pant ranked first gets full score.
If the bot contains minor bugs, such that it can still play in most games, but some-●●
times crashes, runs into an infinite loop, or violates the rules, some points are de-
ducted.

This grading scheme ensures that every effort to write a program for this task is re-
warded, even if it ranks last, which hopefully encourages beginners to tackle this task.

3.3. Technical Considerations

Ease of running the game server and the visualization It is crucial that all participants 
are able to run the game server on their own computers.2 However, the game server 
needs to be able to invoke other programs (the bots) and read from their standard output 
and write to their standard input, a feature which is hard to get operating system indepen-
dent. And even if the game server works on all major operating systems, the instructions 
on how to install the dependencies, compile and run it might look so long and compli-
cated that beginners are quickly scared off. For the visualization, it can even get worse, 
if specific graphics libraries have to be installed and linked.

2	 We cannot provide an online game server instead, because in the first round of the SOI, no participants 
should be disadvantaged because they cannot use their favorite programming language. This would mean 
that we would have to support a very large number of programming languages, and moreover, it would 
require a big effort for the sandboxing.
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In our experience, implementing the game server in Java, which is available on all 
platforms, seems to be the best solution. But even getting a Java game server to run was 
a bit challenging for some participants, because some could only install Java 6 (instead 
of newer versions) on their system, while others did not know how to specify the paths 
to the bots as command line arguments, etc. But we could always help them by email 
support or through our forum. What we do not know, however, is how many people did 
not succeed in getting the server to run, but did not ask for help.

For the visualization, the two best solutions seem to be either to integrate the vi-
sualization in the Java game server, or to implement it as an HTML5/JavaScript page, 
where one can paste the log of the game server, and then watch the visualization. An 
advantage of the latter is that it only requires a web browser, which is available on every 
computer, so we can provide some sample game logs, so that the participants can watch 
some games before even starting to implement their own solution and to bother getting 
the game server to run.

Fraud Detection The grading of the creativity task is not fully automated on purpose. 
The submissions are compiled manually to check for compatibility issues and the source 
code is read to get an idea of the participant’s solution and to check that all the rules are 
followed. Given the small number of participants, this is feasible and also eliminates the 
need for a separate fraud detection or sandboxing of the submitted programs.

4. Discussion

4.1. Task Selection Criteria

We now present our criteria for the selection of the creativity task. This is more a collec-
tion of useful arguments that came up in past discussions rather than an ultimate list.

Interactivity: ●● It should be interactive, and interaction should not only happen be-
tween the game server and the bots, but also between the bots, i.e. the possible 
moves of a player should depend on the actions that the other players took before. 
This is mostly to make the task more fun and different from the standard tasks, but 
it is not strictly necessary. For instance, the Grand Theft Cake task (section 2.3), 
or the Who wants to be a billionare? task (section 2.7) do not have any interaction 
between the players, and still were successful creativity tasks. In the case of the 
Vector Car Racing task (section 2.10), however, some special effects were added 
to the traditional game to make it interactive, and to increase the size of the search 
space that optimal solutions would have to explore.
Hardness: ●● There should be no optimal solution, or optimal solutions should be too 
expensive to calculate.
Flat learning curve: ●● The task should be simple, with few, easy to understand 
rules, so that it is suitable for beginners, but it should also offer many interesting 
options for advanced participants.
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Novelty: ●● The task should not be “too standard” to make sure one cannot just copy 
and adapt a standard solution found on the internet. For instance, chess or Nine 
Men’s Morris were proposed in the past years, but not chosen for this reason.
Continuous Complexity Curve: ●● There should be a continuous spectrum of imag-
ineable solutions between straightforward random bots and very sophisticated so-
lutions.
Plethora of solutions: ●● There should be many different solutions that could work 
reasonably well and are feasible to implement. For instance, for some proposed 
tasks, it was feared that applying a standard minimax algorithm would be almost 
the only reasonable solution, and these tasks were thus not chosen.
Manual playing: ●● It is a plus if the game can be played by hand, such as Multisnake 
(section 2.5) or Vector Car Racing (section 2.10), so that the participants can com-
pare their bots to their own intuitive playing style.
Visualizability: ●● A good task should allow for an appealing way of watching the 
interaction between the bots and giving a dramatic view on the progress of the 
game.

4.2. Similar Task and Contest Types

The IOI and other programming contest are always experimenting with new, less algo-
rithmic task types. We refer to Verhoeff (Verhoeff, 2009) for an overview of classical, 
algorithmic IOI tasks. Forišek (Forišek, 2013) gives an overview of the programming 
contest landscape. He also presents some tasks from the IPSC and Slovak national com-
petitions whose goal is different from just finding the fastest algorithm. Some contests 
entirely focus on hard optimization problems like Topcoder’s Marathon matches and 
Google’s Hash Code and other contests feature tournaments of competing bots for inter-
active problems like the AI Challenge or the Computer Olympiad.

Creativity-like tasks are also mentioned as game-playing events by Burton in (Bur-
ton, 2008), where many interesting suggestions for out-of-the-ordinary activities in 
Olympiad training camps are proposed.

4.3. Advantages of this Task Format

In our opinion, creativity tasks offer a number of unique possibilities. These nonstandard 
tasks can keep the participants busy for many weeks. They can try out all kinds of crazy 
algorithms and even the best ones are never really done. But also students with limited 
time can participate with some quick extension of the provided random bot.

The visualization of these tasks are ideal to be shown on a large screen during an 
award ceremony as parents, friends and teachers can really see what the contestants 
were doing. As related board and computer games are well-known, an audience that is 
not familiar with specifics of the algorithmic challenge can also appreciate the results. 
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The tournaments are fun to watch as the interaction between the bots suggests that the 
contestants are immediately fighting against each other.

Finally, we believe that creativity tasks are also a way to train for the newer, less-
standard IOI tasks where heuristical solutions are required. Examples of such creative 
IOI tasks include Languages and Maze from IOI 2010, Odometer from IOI 2012 and Art 
Class from IOI 2013.

4.4. Disadvantages of this Task Format

It often proved challenging to find tasks that beginners can easily get started with but 
still leave a lot of options for the creativity of more advanced students. This higher initial 
hurdle lead to fairly small numbers of serious submissions for many of the presented 
tasks. From an organizer’s point of view, creativity tasks take significantly more time to 
prepare and grade than regular tasks.

5. Conclusion

In summary, creativity tasks proved to be a beneficial addition to the types of algorithmic 
challenges given in the first national round of the Swiss Olympiad in Informatics.

We provide the full description and supplementary material for the presented tasks 
online at http://creativity.soi.ch and we want to encourage other delegations 
to experiment with such task types and look forward to learning about their experi-
ences.
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Abstract. In recent IOIs, there are several problems that seem unsolvable, until we realise that 
there is a special case to the problem that makes it tractable. In IOI 2014, the problem ‘Friend’ 
appears to be a standard NP-hard Maximum Independent Set problem. However, the graph is gen-
erated in a very special way, hence there is a way to solve the problem in polynomial time. There 
were several contestants who didn’t identify the special case in this problem, and hence were stuck 
at the problem. In this paper, we will study a well-known technique called reduction to show that 
a problem we are currently tackling is intractable. In addition, we introduce techniques to identify 
special cases such that contestants will be prepared to tackle these problems.

Keywords: special case, unsolvable, NP-hard.

1. Introduction

The problem ‘Friend’ in IOI 2014 required contestants to find a set of vertices with maxi-
mum total weight, such that no two vertices in the set are sharing a common edge. This 
is a classical Weighted Maximum Independent Set problem. We can show that Weight-
ed Maximum Independent Set problem is NP-hard by reduction from 3-SAT (Cormen 
et al., 2009). Since the formulation of NP-completeness 4 decades ago, no one has been 
able to propose a solution to any NP-hard problem in polynomial time. Clearly, it is not 
expected that a high school student can solve the problem in 5 hours. None of the Indo-
nesian IOI 2014 team solved this problem during the contest. After returning from the 
competition, I asked the Indonesian team about this problem. None of the team members 
were aware of the fact that Maximum Independent Set is an NP-hard problem, and thus 
were stuck trying to solve a general Maximum Independent Set problem.

A similar problem also occurred in IOI 2008. The problem ‘Island’ required contes-
tants to find a longest path in a graph with 1,000,000 vertices. The longest path problem 
is a classic NP-hard problem which can be reduced from the Hamiltonian path problem. 
If a contestant is not aware that the longest path problem is difficult to solve, the con-
testant may spend a lot of his/her time just to tackle the general longest path problem, 
without realising that there is a special case to the given graph.
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Generally, some contestants spend too much thinking time trying to solve something 
that is believed to be unsolvable. If only they realise that their attempt is intractable, 
they may try a different approach and find a special case of this problem. In section 2 
of this paper, we will introduce a classic reduction technique often used in theoretical 
computer science research. In the context of competitive programming, we may find out 
that a problem which we are attempting is unlikely to be solvable. After realizing that 
a problem is intractable, we are going to discuss how to proceed to solve the problem 
in section 3. Finally, in section 4 we will take a look at some common special cases in 
competitive programming that can be used to solve these kind of problems.

Fig. 1. The result of Indonesian team in IOI 2014, taken from http://stats.ioinformat-
ics.org. The red squared column highlights the ‘Friend’ problem.

Fig. 2. IOI 2014 tasks statistics, taken from http://stats.ioinformatics.org. ‘Friend’ 
problem is the second least accepted problem in IOI 2014. It may be because some contes-
tants (at least all the Indonesians) were stuck at trying to solve a general case of Maximum 
Independent Set.

Fig. 3. The result of Indonesian team in IOI 2008, taken from http://stats.ioinformat-
ics.org. The red squared column highlights the ‘Island’ problem.
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2. Identifying Intractability of a Problem through Reduction

We would like to know that the problem that we are attempting is unlikely to have an 
immediate solution. The most common way is to apply a well-known technique called 
reduction. Suppose we know that problem  X  is impossible to solve, and we also know 
that we can solve problem  X  by using problem  Y  as a black-box1. If we can solve 
problem  Y , then we can solve problem  X  as well. Therefore, problem  Y  is also im-
possible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have 
yet to be solved in polynomial time for more than 4 decades. MIN-VERTEX-COVER 
is a graph problem that involves finding a minimum subset of nodes such that for every 
edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a graph 
problem of finding a maximum subset of nodes such that for every edge, at most one of 
its endpoint is in the subset. Suppose we already know that MIN-VERTEXCOVER is 
a NP-hard problem. Therefore, we can show that MAX-INDEPENDENT-SET is also a 
NP-hard problem by reducing a MIN-VERTEX-COVER problem into a MAX-INDE-
PENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If 
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Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y
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From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily 
constructed if we have a MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER 
is a NP-hard problem. It is good to know as many NP-hard problem as possible. This 
is necessary so that if we encounter a new problem  X , we can use any of the NP-hard 
problems that we know, reduce it to problem  X , and thus prove that  X  is also NP-
hard.

3. How to Proceed

Suppose we already know that a problem is unsolvable (i.e. any known algorithm will 
not solve this problem in time). In competition, it is impossible to complain that “This 
is unsolvable, can you eliminate this problem?” to the judges, since the judges believe 
they have a solution. Such a request is absurd when there are already several contestants 
who have solved that problem. Also, in a major competition (e.g. ACM International 
Collegiate Programming Contest World Finals, IOI), it is unlikely that the judges have 
incorrect solution.

3.1. Approximation

In real life, when we cannot find the optimal solution, we can try to find the solution 
that is close to the optimal solution. More specifically, we try to find a solution that is 
not larger than 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional
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for this problem is to prune the exponential algorithm we use to find all possible paths 
(ACM ICPC World Finals 2010 Solutions. n.d.). If at some point we know that it is 
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“hacking” a complete search algorithm. Therefore, we will not discuss this technique 
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3.3. Finding Small Constraints

Suppose there is an NP-hard problem with large 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  that is impossible to solve expo-
nentially (e.g. 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

 ). Sometimes we should also look for other small constraints 
that may help. For example, a SUBSET-SUM problem is considered an NP-hard prob-
lem, and will not be solvable with 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

 . When we are given the constraint that all 
the elements inside the array are small (e.g. 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

 ), this problem can be solved using 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  Dynamic Programming, where 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  is the upper bound of the elements inside 
the array. Even though the running time of the algorithm is exponential to the size of 
the input, the algorithm is still fast enough for the given constraint. Another way to 
apply this technique is when the value of 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  is not too large (e.g. 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

 ). For ex-
ample, while 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  algorithm for 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  is unlikely to run in one second, we can, 
for instance, use a 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  Meet In The Middle algorithm for solving a problem like 
SUBSET-SUM. While 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  is still exponential to 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

 , it is much faster than 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

, and the range of 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  that it can solve is twice the range of 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional

Jonathan Irvin GUNAWAN

  using a 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional
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constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

We consider the sequence 

Figure 4: Comparison of O(2N ) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

 , and we define 

Figure 4: Comparison of O(2N ) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  to be the first 

3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
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programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
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Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
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the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.
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way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
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SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
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Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
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2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y
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3 How to proceed
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2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y
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Figure 4: Comparison of O(2N ) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y
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constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional
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constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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Figure 4: Comparison of O(2N ) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
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Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
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3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
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examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
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4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
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vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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Figure 4: Comparison of O(2N ) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.
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Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges
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vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).
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The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
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2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y
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Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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2 Identifying Intractability of a Problem through Reduction
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Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
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of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
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can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y
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3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
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examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).
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et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
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holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
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planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
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The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
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We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
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Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
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4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
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of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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  in its 
running time can be changed into 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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ing Bellman-Ford algorithm takes 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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  (Halim and Halim, 2013), but it only takes 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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  in a planar graph. Counting the number of connected components using DFS in 
a general graph takes 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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 , but it only takes 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  in a planar graph. Therefore, 
if the problem requires us to compute the number of connected components in a planar 
graph, even though the constraint states that 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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 , the standard 
DFS solution still runs under one second (in competitive programming, we assume that 
1 million operations can be done in 1 second (Halim and Halim 2013)).

4.1.2. Maximum Clique Problem
The Maximum Clique problem requires us to find the maximum set of vertices in a graph, 
such that every pair of vertices in the set is directly connected by an edge. By reduction 
from vertex cover, the maximum clique problem on general graph is NP-hard. However, 
it is easy to solve this problem in planar graph. Consider the problem of colouring a 
graph such that no two adjacent vertices have the same colour. Note that if there is a 
clique of size 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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  in a graph, the set of the vertices inside the clique must be coloured with 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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  vertices can 
be solved naively in 

graph requires at least k colours. By the four colour theorem, any planar graph can be coloured with at most four
colours. (Gonthier 2005). Since at most four colours are required to colour a planar graph, there does not exist
a clique with more than four vertices. Hence, we can solve the problem by checking whether there is a clique
with four vertices. If there is no clique with four vertices, we check whether there is a clique with three vertices.
Finding whether there is a clique with k vertices can be solved naively in O(V k). Therefore, the whole solution
takes O(V 4) time, which is polynomial. The solution can be improved to O(V 2). Instead of having four nested
loops to find four vertices independently, we can have two nested loops over the edges instead and test whether
the four vertices (which are the endpoint of the two edges) form a clique. This solution takes O(E2), which is the
same as O(V 2) in planar graph.

4.1.3 Problem example

We will use a past competitive programming problem to illustrate the importance of the properties in a planar
graph. The ‘Traffic’ problem from Central European Olympiad in Informatics (CEOI) 2011 illustrates this concept
well. In this problem, there is a directed graph with up to V = 300, 000 vertices given in a 2D plane. There are
two vertical lines denoted as ‘left’ and ‘right’. All vertices are contained within the ‘left’ and ‘right’ lines, with some
vertices possibly lying on these two lines. The problem requires the contestant to print the number of visitable2
vertices lying on the ‘right’ line from every vertex lying on the ‘left’ line (which we shall call ‘left’ vertices and
‘right’ vertices for simplicity). An instance for this problem can be seen on figure 5.

Figure 5: An instance of problem ‘Traffic‘. In this example, the expected output is {4, 4, 0, 2}, since the top ‘left’
vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 ‘right’ vertices, the third top ‘left’ vertex
cannot visit any ‘right’ vertex, and the bottom ‘left’ vertex can visit 2 ‘right’ vertices

The bruteforce solution for this problem is to run DFS from every ‘left’ vertex which gives us a running time
2vertex v is visitable from vertex u if there is a path from u to v
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graph requires at least k colours. By the four colour theorem, any planar graph can be coloured with at most four
colours. (Gonthier 2005). Since at most four colours are required to colour a planar graph, there does not exist
a clique with more than four vertices. Hence, we can solve the problem by checking whether there is a clique
with four vertices. If there is no clique with four vertices, we check whether there is a clique with three vertices.
Finding whether there is a clique with k vertices can be solved naively in O(V k). Therefore, the whole solution
takes O(V 4) time, which is polynomial. The solution can be improved to O(V 2). Instead of having four nested
loops to find four vertices independently, we can have two nested loops over the edges instead and test whether
the four vertices (which are the endpoint of the two edges) form a clique. This solution takes O(E2), which is the
same as O(V 2) in planar graph.

4.1.3 Problem example

We will use a past competitive programming problem to illustrate the importance of the properties in a planar
graph. The ‘Traffic’ problem from Central European Olympiad in Informatics (CEOI) 2011 illustrates this concept
well. In this problem, there is a directed graph with up to V = 300, 000 vertices given in a 2D plane. There are
two vertical lines denoted as ‘left’ and ‘right’. All vertices are contained within the ‘left’ and ‘right’ lines, with some
vertices possibly lying on these two lines. The problem requires the contestant to print the number of visitable2
vertices lying on the ‘right’ line from every vertex lying on the ‘left’ line (which we shall call ‘left’ vertices and
‘right’ vertices for simplicity). An instance for this problem can be seen on figure 5.

Figure 5: An instance of problem ‘Traffic‘. In this example, the expected output is {4, 4, 0, 2}, since the top ‘left’
vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 ‘right’ vertices, the third top ‘left’ vertex
cannot visit any ‘right’ vertex, and the bottom ‘left’ vertex can visit 2 ‘right’ vertices

The bruteforce solution for this problem is to run DFS from every ‘left’ vertex which gives us a running time
2vertex v is visitable from vertex u if there is a path from u to v
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by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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graph requires at least k colours. By the four colour theorem, any planar graph can be coloured with at most four
colours. (Gonthier 2005). Since at most four colours are required to colour a planar graph, there does not exist
a clique with more than four vertices. Hence, we can solve the problem by checking whether there is a clique
with four vertices. If there is no clique with four vertices, we check whether there is a clique with three vertices.
Finding whether there is a clique with k vertices can be solved naively in O(V k). Therefore, the whole solution
takes O(V 4) time, which is polynomial. The solution can be improved to O(V 2). Instead of having four nested
loops to find four vertices independently, we can have two nested loops over the edges instead and test whether
the four vertices (which are the endpoint of the two edges) form a clique. This solution takes O(E2), which is the
same as O(V 2) in planar graph.

4.1.3 Problem example

We will use a past competitive programming problem to illustrate the importance of the properties in a planar
graph. The ‘Traffic’ problem from Central European Olympiad in Informatics (CEOI) 2011 illustrates this concept
well. In this problem, there is a directed graph with up to V = 300, 000 vertices given in a 2D plane. There are
two vertical lines denoted as ‘left’ and ‘right’. All vertices are contained within the ‘left’ and ‘right’ lines, with some
vertices possibly lying on these two lines. The problem requires the contestant to print the number of visitable2
vertices lying on the ‘right’ line from every vertex lying on the ‘left’ line (which we shall call ‘left’ vertices and
‘right’ vertices for simplicity). An instance for this problem can be seen on figure 5.

Figure 5: An instance of problem ‘Traffic‘. In this example, the expected output is {4, 4, 0, 2}, since the top ‘left’
vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 ‘right’ vertices, the third top ‘left’ vertex
cannot visit any ‘right’ vertex, and the bottom ‘left’ vertex can visit 2 ‘right’ vertices

The bruteforce solution for this problem is to run DFS from every ‘left’ vertex which gives us a running time
2vertex v is visitable from vertex u if there is a path from u to v
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by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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We will use a past competitive programming problem to illustrate the importance of the 
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graph requires at least k colours. By the four colour theorem, any planar graph can be coloured with at most four
colours. (Gonthier 2005). Since at most four colours are required to colour a planar graph, there does not exist
a clique with more than four vertices. Hence, we can solve the problem by checking whether there is a clique
with four vertices. If there is no clique with four vertices, we check whether there is a clique with three vertices.
Finding whether there is a clique with k vertices can be solved naively in O(V k). Therefore, the whole solution
takes O(V 4) time, which is polynomial. The solution can be improved to O(V 2). Instead of having four nested
loops to find four vertices independently, we can have two nested loops over the edges instead and test whether
the four vertices (which are the endpoint of the two edges) form a clique. This solution takes O(E2), which is the
same as O(V 2) in planar graph.

4.1.3 Problem example

We will use a past competitive programming problem to illustrate the importance of the properties in a planar
graph. The ‘Traffic’ problem from Central European Olympiad in Informatics (CEOI) 2011 illustrates this concept
well. In this problem, there is a directed graph with up to V = 300, 000 vertices given in a 2D plane. There are
two vertical lines denoted as ‘left’ and ‘right’. All vertices are contained within the ‘left’ and ‘right’ lines, with some
vertices possibly lying on these two lines. The problem requires the contestant to print the number of visitable2
vertices lying on the ‘right’ line from every vertex lying on the ‘left’ line (which we shall call ‘left’ vertices and
‘right’ vertices for simplicity). An instance for this problem can be seen on figure 5.

Figure 5: An instance of problem ‘Traffic‘. In this example, the expected output is {4, 4, 0, 2}, since the top ‘left’
vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 ‘right’ vertices, the third top ‘left’ vertex
cannot visit any ‘right’ vertex, and the bottom ‘left’ vertex can visit 2 ‘right’ vertices

The bruteforce solution for this problem is to run DFS from every ‘left’ vertex which gives us a running time
2vertex v is visitable from vertex u if there is a path from u to v
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by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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 . It is very difficult to find a solution (if any) faster than 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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  for this problem. However, there is an important constraint on the problem. The 
graph given in this problem is always a planar graph. We first relabel the ‘right’ vertices 
in ascending order according to the y-coordinate. The planar properties ensures that for 

2	 vertex v is visitable from vertex u if there is a path from u to v 
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every ‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is 
a contiguous sequence, assuming that we have removed all ‘right’ vertices which are 
not visitable from any ‘left’ vertex. With this property, there is a 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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  solution 
(CEOI 2011 Solutions, n.d.).

4.2. Bipartite Graph

Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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  and 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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  such that all edges connect a vertex from 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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  and a vertex from 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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 . Some 
problems have a bipartite graph as an input although the problem statement does not 
explicitly state that the given input graph must be bipartite. The problem that we used 
as an introduction for this paper, IOI 2014 Friend is a very good example. The construc-
tion of the graph in subtask 5 of this problem implicitly ensures that the final graph 
will always be bipartite. There are several graph problems that are NP-hard for general 
graph but solvable in polynomial time if the graph is bipartite. Since bipartite graph and 
bipartite matching was recently included in IOI 2015 syllabus (Forišek, 2015), we can 
expect that this type of problem may be conceived in the near future of IOI. We will 
take a look at several examples.

4.2.1. Vertex Cover and Independent Set (and Maximum Matching)
As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-
INDEPENDENTSET problems are NP-hard. However, both of these problems are 
solvable in polynomial time on bipartite graph. By Konig’s theorem, the size of the 
minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite 
matching (Bondy and Murty, 1976), and the size of the maximum independent set in 

Fig. 5. An instance of problem ‘Traffic’. In this example, the expected output is {4, 4, 0, 2}, 
since the top ‘left’ vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 
‘right’ vertices, the third top ‘left’ vertex cannot visit any ‘right’ vertex, and the bottom ‘left’ 
vertex can visit 2 ‘right’ vertices.



J.I. Gunawan96

bipartite graph is equal to the number of the vertices minus the size of the maximum 
bipartite matching. Therefore, both problems are equivalent to finding the size of the 
maximum bipartite matching, which can be solved in 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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  time. Finding the size 
of the maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maxi-
mum-Flow algorithm is much simpler to solve, as compared to using Edmonds Blos-
som algorithm on general graph. This is actually the solution of the 5th subtask of IOI 
2014 Friend.

4.3. Directed Acyclic Graph

A directed acyclic graph is a directed graph that does not contain any cycle. Similar to 
planar and bipartite graphs, there are several graph problems that are much easier to 
solve if the graph is a directed acyclic graph.

4.3.1. Minimum Path Cover
MIN-PATH-COVER is a problem that requires us to find the minimum number of 
vertex-disjoint paths needed to cover all of the vertices in a graph. By a simple re-
duction from Hamiltonian Path, this problem is NP-hard. A graph has a Hamiltonian 
Path if and only if we only need one path to cover all of the vertices. However, this 
problem can be solved in polynomial time for a directed acyclic graph. For a graph 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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 . Then it can be shown by Konig’s Theorem that 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up

Jonathan Irvin GUNAWAN

  vertex-disjoint paths 
that cover all of the vertices in 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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4.4. Miscellaneous

4.4.1. Special Case of CNF-SAT Problem
We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. 
This problem requires the contestant to find a solution with the minimum number of 
true variables that satisfy a CNF-SAT problem with up to 2,000 variables (Google 
Code Jam 2008 Round 1A, ‘Milkshake’ problem, n.d.). The CNF-SAT is a satisfiability 
problem given in a conjunctive normal form (i.e. conjunction of disjunction of literals) 
which was proven to be NP-hard (Cook, 1971). Therefore, it is unlikely that there is an 
algorithm to solve a CNF-SAT problem with 2,000 variables in less than 8 minutes3. 
However, there is a special property in this problem, in which at most one unnegated 
literal exists in each clause. Therefore, all clauses can be converted into Horn clauses. 
With this property, a linear time algorithm exists. (Google Code Jam 2008 Round 1A, 
‘Milkshake’ solution, n.d.).

3	 In Google Code Jam, contestants are given 8 minutes to produce the output upon downloading the input.
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5. Conclusion

In conclusion, we can use a well-known reduction technique to prove that a problem that 
we are currently attempting to solve is impossible (or at least it is very hard such that no 
people has been able to solve it for more than 40 years). In competitive programming 
(including IOI), understanding this technique is essential so that we will not be stuck at 
trying to solve an impossible problem, thus prompting us to find another way to solve 
the problem. To prove that a problem is NP-hard, it is good to know as many NP-hard 
problems as possible, so that we can reduce from any one of the problems that we know 
to the new problem. Some of the classic NP-hard problems include 3-SAT, Vertex Cover, 
Independent Set, and Subset Sum. After realizing that the problem is NP-hard, we must 
be able to find the special case that makes the problem solvable. We must be able to find 
a special property that breaks the reduction proof. Having a lot of practice on these kind 
of problems will help us to familiarize with the possibilities of a special case. Some of 
the common special cases include planar, bipartite, and directed acyclic graph.
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1. Introduction

The development of human society is mainly determined by the ability to derive knowl-
edge and to find efficient ways of applying it. Let us explain this claim more carefully. 
Human beings sample experiences by observations and experiments and use them to 
generate knowledge by combining their experience with logical thinking. The derived 
knowledge is used to develop procedures in order to reach concrete goals. A crucial point 
in our considerations is that to use such procedures one usually does not need to fully 
understand the knowledge used to obtain such procedures. To an even higher extent, one 
does not need to understand the way in which this knowledge was derived and verified. 
Let us illustrate this on a simple example. 

The famous theorem of Pythagoras claims c2 = a2 + b2 in any right triangle, where 
c is the length of the longest side (hypotenuse). This theorem was used to fix the right 
angles when building houses and temples in the classical antiquity. The workers only 
needed to build a triangle of sizes 5 units, 4 units, and 3 units in order to get a right 
angle, and for sure they did not need to understand how the theorem of Pythago-
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ras was discovered and how it was proven. Hence, to successfully apply the derived 
knowledge, one did not need to master the high qualification of an investigator. In this 
way, scientists changed and still change society and became a crucial factor in human 
development.

Computer science was created as a natural step forward in the above described devel-
opment, when the following two conditions were satisfied:

Using the exact language of mathematics, one was able to discover and describe 1.	
procedures in such a way that no intellect was needed to apply them. Executing 
them step by step, everything was unambiguous, and no educated or trained per-
son was needed to find the right interpretation of the particular instructions of the 
procedure executed.
The technology enabling to execute the discovered procedures by machines was 2.	
developed, and languages providing the opportunity to “explain” universal ma-
chines what they have to do were designed.

In this context, we speak about automation. We let the machine execute not only 
physical work, but also such human work considered as intellectual work in the past. 
This is the reason why computer science is a mixture of mathematics and enginee-
ring. 

On the one hand, one uses the concepts, methods, and the language of mathemat-
ics in order to understand the considered entities and their relations so exactly that 
algorithms as unambiguously interpretable procedures can be developed in order to 
solve a variety of problems everywhere in science, technology, and everyday life. Here, 
mathematics is the instrument that has to be mastered together with the specific area in 
which one tries to solve problems. 

On the other hand, developing and improving the enabling technology is mostly 
engineering. This is not only about hardware, but especially about software enabling 
us to conveniently communicate with computers in high-level programming lan-
guages.

We see that computer science is a part of the natural development of science, and 
it became a discipline that is crucial for the performance of the human society. This 
contextual view is important when thinking about what computer science actual is, and 
how to teach computer science in schools. We are asked not to teach specific isolated 
facts, methods, and other final products of scientific work, but the way how they were 
discovered, i. e., the paths from the motivation coming from the general context of sci-
ence to the final products of the research work and engineering. As in its fundamentals 
computer science is very strongly related to mathematics as its basic research instru-
ment, we start with the question “What is mathematics and how to teach it?” in the 
next section, and use the derived point of view in the final section to propose the way 
of teaching computer science in schools. Before the final section, however, we discuss 
engineering as a missing subject in schools in Section 3. Again, we use this discussion 
in order to show in the final section how teaching computer science can contribute to 
understanding some basic concepts of engineering and how it integrates them in the 
school curriculum.
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2. Mathematics as the Language of Science and Consequences  
of this View for Teaching It

What is mathematics? If you pose this question, you can get a lot of different answers; 
frequently, even the response that this question is too hard to be answered satisfactorily. 
A mathematician or a university student can tell you with high probability that she or 
he proves theorems and thus investigates the structure and the properties of artificial 
mathematical objects, which can be useful to model reality, or the relationships between 
different such objects. A high-school student can tell you that mathematics consists of 
calculations that can be used to solve some classes of mathematical tasks (also called 
problems) such as solving quadratic equations or systems of linear equations or analyz-
ing the properties of a curve. Obviously, you can also get a response that mathematics 
is something that is hard to understand, and that every “normal” human being can exist 
and be successful without it. This is a frequent answer, and unfortunately it is more of a 
rule than an exception.

Mathematics is the most powerful instrument humans ever have developed in order 
to investigate the world around us. But it is taught in such a way that the students do 
not realize this fact. Especially in high schools, they learn methods (algorithms) to solve 
some given problems (for instance, to find a maximum of a function). This may be also 
viewed positively as an intellectual challenge, because several methods are not easy to 
manage. But the bad news is that they can learn to successfully apply methods for solv-
ing different problems without really understanding why these methods work properly. 
High-school students often do not have a good intuition of what infinity or limits are 
about, but they use these concepts in a fuzzy way in order to analyze artificial functions 
without seeing any relation to reality. What are we doing wrong? A lot. We have to start 
to think first about what mathematics is, and then to try to find a way how to teach math-
ematics in a proper way.

From my point of view, the best way to view mathematics is as a special language 
developed for science, i. e., for knowledge generation. Going a few thousand years 
back, people wanted to discover “objective” knowledge. The important word here is 
the word objective. If you want to reach that, first of all you need a language in which 
each statement has an unambiguous interpretation for everybody who mastered this 
language. How to reach this? First of all, you need to give an absolutely exact meaning 
to the words (notions) you use, because the words are semantically the corner stones of 
each language. In this context, mathematicians speak about axioms. Many people have 
the wrong impression that axioms are claims in whose truthfulness we believe, but of 
which one is not able to prove that they are true. This is mostly not the case. Axioms 
are the precise definitions of basic notions that describe our intuition about the mean-
ing of these notions. Probably the first concepts people tried to fix were notions such as 
number, equality, infinity, point, line, distance, etc. What is very important to observe is 
that people needed hundreds and in some cases thousands of years to come up with such 
definitions that the community of philosophers and later mathematicians has accepted. 
Why was all of this done? First of all, the language of mathematics is able to describe 
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objects, structures, properties, and relationships in an unambiguous way. In this context 
we speak about the “descriptional” power of mathematics. Thus, people were able to 
formulate exact claims this way, and so to express our knowledge unambiguously. But 
this was only one side of the language of mathematics. The language of mathematics 
was also used to derive new knowledge from the given knowledge, i. e., as a knowledge 
generator. Leibniz formulated this role of mathematics in a very nice way. He wanted to 
omit all political discussions and fighting in different committees by simply expressing 
the real problems in the language of mathematics, and then using calculations and logi-
cal derivations to obtain the right solution. Interestingly, he called this “automation” 
of the human work. By now we know that this dream of Leibniz cannot be achieved. 
There are two reasons for that. First of all, because of its exactness, the language of 
mathematics is restricted in its descriptional power, and so we cannot translate all real-
world problems into this language. Secondly, one of the most important discoveries of 
the last century made by Gödel tells us that the argumentational power of the language 
of mathematics is smaller than its descriptional power. This means that one can formu-
late claims in current mathematics for which there do not exist proofs of whether they 
are true or not.

What do scientists learn from that? The development of the language of mathemat-
ics is similar to the development of natural languages. You need to create new words 
and describe their meaning in order to increase its descriptional power, and to be able 
to speak about things you were not able to speak about before. Moreover, you need new 
concepts and words to be able to argue about matters you were not able to argue before, 
i. e., in order to strengthen your capability of deriving new knowledge by thinking. A 
very important point is that the process of developing the language of mathematics is 
infinite. As long the number of basic, axiomatic words of the language of mathematics 
is finite, one can always formulate claims that are not provable within this mathematical 
language, and one has to introduce new words in order to be able to prove them and so 
to make new discoveries. 

A very nice example is the notion of infinity. Nobody saw anything infinite in the 
real world, and even most physicists believe that the universe is finite. This means that 
infinity is something artificial, simply an artificial product of mathematics. But without 
this concept, most of the current science would not exist. Without the notion of infinity, 
there would be no concept of limits and so we would not be able to exactly express no-
tions like actual speed or actual acceleration. Our science simply would be somewhere 
before the discoveries of Newton. Hence, without the “artificial” concept of infinity, 
one is strongly restricted in the ability to discover our finite, real world.

Another example of a crucial notion is the concept of probability. Most of the sci-
ences, even the non-exact ones such as didactics, psychology, medicine, and economy, 
heavily use this concept to model and investigate reality, and if they would make predic-
tions without this concept, they would have serious trouble to convince society that their 
results are trustable to some extent and not only expert opinions.

Why did we focus on the view of mathematics presented above? Because it is the 
nature of mathematics that shows us which changes are necessary in order to improve 
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the education in mathematics for everybody. Based on this, we recommend to adopt the 
following concepts:

Focus more on the genesis of the fundamental notions (concepts) of mathematics. 1.	
To define them took centuries, to prove most of the theorems took a few years. 
Each new concept enabled to investigate so many things that no single discovery 
can compete with introducing a fundamental concept. The strengthening of math-
ematics as a research instrument is the main job of mathematics, and deriving 
new concepts (not necessarily on the axiomatic level) in mathematics provides 
the best, true picture of its nature. Without this, nobody can really understand its 
role and usefulness. And only if one understands the genesis of mathematics as 
the development of a language of science and as a research instrument, one can be 
able to apply it regularly to all areas of our life. Teaching mathematics this way 
can completely change the behaviour of the members of our society. Instead of 
memorizing and sampling facts provided, one would start to verify the degree of 
trustability of claims sold as knowledge and to understand to which extent and 
under which conditions one is allowed to take them seriously.
Concrete examples first, abstraction as a final discovery. One first has to touch 2.	
concrete problem instances and objects in order to get some intuition about their 
properties. Then, one can formalize her or his intuition into a formal concept. 
One has to follow the natural way of discovering that usually goes from concrete 
to abstract. To sell methods and theorems as final products is as poor as teaching 
manuals for washing machines or Microsoft office instead of teaching discover-
ies of physics, mechanics, and computer science that enabled to develop these 
products.
Teach algorithmics instead of training calculation methods. Pupils learn in schools 3.	
to multiply arbitrarily large integers in decimal representations, to solve quadratic 
equations and systems of linear equations, or to analyze functions, etc. In all cas-
es, most pupils learn to apply given methods, but most of them do not understand 
why they work. It is more of a challenging memorizing than a deep understanding 
of the nature of the algorithms used. One has to start to introduce problems instead 
of presenting methods solving them, and ask the pupils and students to solve con-
crete problem instances first and finally to discover an algorithm as a robust pro-
cedure that is able to solve any of the infinitely many concrete problem instances 
of the given problem. Discovering algorithms as well-functioning calculation pro-
cedures offers another quality of education in mathematics than executing a given 
calculation method, which any pocket calculator can do faster and more reliable. 
Teach programming as the art of exactly describing the methods discovered in an 
unambiguously interpretable way in the language of the machines, and strengthen 
the ability of exact communication this way.
Teach the principles of correct argumentation. Teach the notions of implication 4.	
and quantifiers, and train direct and indirect proofs. Do not believe that the pupils 
in high schools cannot learn to verify and to derive simple proofs. They did not 
manage this in the past, because there was no effort made to teach proving claims, 
or most effort in this direction was done in a wrong way.
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Guarantee the opportunity to the pupils to deal with the subjects as many time as 5.	
needed at an individual speed. Mathematics is one of the sciences that needs a 
large number of iterative touchings of particular topics until one is allowed to say 
“Eureka,” and gets a reasonable understanding of what it is about. The trouble is 
that no teacher can assure this by herself or himself for everybody in the class. 
Another problem is that most textbooks of mathematics are good collections of 
exercises, but explanations are written more for teachers than for pupils. One way 
out is to change the style of the textbooks. The textbooks should be written in 
such a way that pupils and students would be able to learn from them by their own 
with a minimal support from outside. Partitioning the discoveries into a number 
of small, natural steps written in the language mastered by the pupils at the cor-
responding age, and regularly giving the opportunity to verify whether one under-
stands the topic up to now properly are some of the basic principles used to create 
good textbooks for mathematics.

Finally, one can ask how to reach the new teaching style for mathematics described 
above. For sure, one cannot ask the high-school teachers to make this change without 
showing them how to do this in detail. One also cannot ask educationalists, who do not 
have a sufficiently deep contextual knowledge of mathematics to master these changes. 
The movement has to start at the universities, where the teaching style has to change 
first. In order to speed up this process in Switzerland, in our department at ETH Zürich 
we develop new textbooks for teaching different topics of mathematics and computer 
science for all school levels. Our experiments prove that mathematics can become one 
of the most favorite subjects of pupils and students if taught in the way described 
above. Students can successfully master topics that were considered to be too hard for 
them before, and the marks in mathematics can be significantly higher than the average 
marks over all topics.

For me, it is not a question of whether the proposed evolution of the education in 
mathematics will come. It is only the question of the time at which particular countries 
will need to adopt it. Since this is a service for the future generation, the earlier the 
better.

3. Why Engineering is Not Allowed Not to Be a Part of Basic Education

As mentioned in the introduction, human society uses the knowledge discovered in order 
to reach different goals more efficiently by developing various procedures or different 
products. This is highly creative work that is beyond the pure learning of facts and mak-
ing calculations that can be completely automatized. The whole process of engineering 
work starts with a description of the goals to be achieved. After that, one starts to com-
bine experience and fundamental knowledge of science in order to design a solution that 
has to be implemented as a prototype. Next, one has to test this prototype, modify, and 
improve it until an acceptable product is produced.
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In today’s schools, we find almost nothing about the concept of iterative specifying, 
testing, modifying, and improving the product of our work, let alone about fundamental 
constructive ways of creating original products. But this is fundamental to human ac-
tivities since the beginning of time. The current school systems ignore this fact to a high 
extent and are more about teaching to memorize than teaching to work in a creative 
way. One can explain this educational misconception by the fact that, in contrast to 
basic scientific models of reality, the engineering work is heavily dependent on experi-
ence that is often hard to formalize and thus to teach. The creative work of engineers 
as human experts cannot be described by an algorithm (a method). However, this must 
not be a reason to remove engineering from education, because students also have to 
learn to build their own experience over a longer period of time in order to become an 
expert for a special area.

The crucial fact we want to point out is that computer science mastered to formalize 
several basic concepts of engineering and made them available to our schools as a result. 
Teaching computer science is a chance to introduce engineering as a highly creative, 
constructive activity to our educational system.

Let us consider some concrete illustrations. Probably the most fundamental con-
cept of technical sciences is modularity. One builds some simple units with clear and 
well verifiable functionalities and calls them modules. Then one uses these modules 
as fundamental building blocks to construct more complex systems that are again 
considered basic modules for constructing even more complex systems. There is no 
upper bound on the growth of the complexity of systems built in such a way. Un-
believably many human activities can be described by this modular concept. This 
includes learning. Ones learns some simple facts and methods and their applications 
in a restricted framework. After that, one masters them perfectly in such a way that 
one can use them as elementary operations in attacking more complex tasks. All spiral 
curricula run in a well-designed modular way. Thinking in a modular way when try-
ing to reach given goals is the most fundamental instrument of creative human work. 
And it does not matter whether you apply it top-down or bottom-up. If one applies a 
top-down approach, then everything is clear and one designs only a transparent and 
well-verifiable plan for constructive work. More typical is the bottom-up approach 
where one builds more and more complex modules without knowing what the final 
product will be about.

Programming is an excellent instrument to teach modularity. Writing programs to 
automate solving different tasks provides modules for attacking much more complex 
tasks. Children of age between 10 and 12 are able to put five loops into each other with-
out being disturbed by or even observing the complexity of their final product due to 
modularity. One simple program containing a loop gets a name and so becomes a new 
instruction. This instruction is used in the body of another loop that also becomes a new 
instruction used in another loop, etc. Here, one can train both, the top-down approach as 
well as bottom-up approaches devoted to open-end tasks. To practice the ability to bring 
a clear structure into complex processes is at least as important as any of the fundamen-
tal concepts of sciences or humanities contained in the school curricula.
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Another important concept is teaching to test or verify products of our work. Typi-
cally, children verify their own products by asking teachers or adults to tell them whether 
their work resulted in what they were asked to reach. But this way, they cannot suffi-
ciently build their self-confidence because they need a strong dependency on their super-
visor. They have to learn to trust their solutions by being taught to verify the products of 
their work by themselves. Programming is again a wonderful instrument for this purpose 
using the platform or editor that fits the educational requirements. One can learn to test 
the functionality of programs by running them on several data sets as well as by the veri-
fication approach based on a transparent structuring of the program into small modules 
whose correct behavior can by easily verified.

In general, constructive engineering work within the educational system changes the 
behavior of young people in an essential way. They move from the role of customers 
searching for products with some desired property to the role of creative inventors for 
designing and developing products with new, original functionalities. The never-ending 
story of improving any human products with no limits on what can be approached in the 
future would be the most important, great consequence of embedding the creative way 
of thinking of engineers into school systems.

4. Teaching Computer Science as a Fundamental Step in the Evolution  
of Our Educational Systems

In the two previous sections, we already outlined, with respect to improving teaching 
of mathematics and introducing engineering, the principal contributions that could be 
offered by teaching computer science in schools in a proper way. This word “proper” is 
crucial for us, and thus we start by listing what we are not allowed to do if we want to 
avoid a disaster when introducing computer science to schools. In what follows, we pres-
ent the most frequent mistakes that already caused frustrations in different countries.

To teach how to work with concrete software products and call it computer sci-1.	
ence. This activity destroyed the image of computer science as a scientific disci-
pline in the past.
To let computer science be taught as a part of “social media” by teachers educated 2.	
in human sciences only, and focusing on social, emotional and psychological as-
pects of communication by new technologies.
To choose the topic to be taught by committees of experts offering their favorite 3.	
topic without looking at the whole context of science as presented above in Sec-
tion 2.
To sell computer science as the ability to work with computers.4.	
To sell computer science as a special branch of mathematics.5.	
To sell computer science as a pure engineering discipline.6.	
To try to teach the newest achievements of computer science. Think about what 7.	
would happen if physics would try to do that instead of following the history, and 
thus developing step by step our view of the physical world.
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To try to sell computer science as a joy much easier than mathematics and physics 8.	
by avoiding any depth and thus a spiral curriculum, and instead presenting one 
simple application after the other.
Going too much into technical details about concrete programming languages, 9.	
software systems, or hardware.

While 1, 2, and 4 have been the main reasons for destroying the image of computer 
science in the society in the past, currently the points 7 and 8 are the major danger for 
establishing computer science as a school subject.

After listing what we are not allowed to do, it is now time to switch to positive 
recommendations and conceptual work. We do not want to make a proposal for the 
content of a computer science curriculum, because our goal is not to go too much into 
detail, and because, for sure, there are various possibilities for good implementations of 
the computer science subject in schools. What we try here is to recommend a strategy 
and principles that are useful for designing a computer science curriculum that can be 
accepted as a fundamental part of education in its generality for everybody, and that es-
sentially contributes to:

The understanding of our world (in this case with the focus on the artificial world 1.	
created by humans).
Developing our way of thinking in a dimension that cannot be compensated by 2.	
teaching other school subjects.
Providing knowledge that is useful and sometimes even expected as prior knowl-3.	
edge for the study of a variety of specialized scientific disciplines later (university 
studies, etc.).

As a byproduct, we have to aim to improve teaching overall, especially by strength-
ening the subjects mathematics and natural sciences. We already presented the basic 
strategy how to design a computer science curriculum in Section 2 about mathematics. 
We have to follow the genesis of computer science and think about motivations and 
fundamental concepts introduced and discovered by computer scientists from the point 
of view of science as a whole. For sure, we have to think about or even discover which 
concepts are available to which extent in which age, and to follow all the ideas for cre-
ating good teaching materials as presented in Section 2. Let us be more concrete and 
present a few examples.

One can decide to introduce programming at the age between 8 and 14. The first 
step is to deal with abstractions that enable us to unambiguously describe the problem 
instances. Then we teach to sample experience by trying to find solutions to concrete, 
special problem instances, whose size and complexity may grow with growing experi-
ence. After some time, one can develop a strategy that works successfully for a small 
collection of problem instances that we subsequently call a problem. Having a solution 
strategy, one has to learn to communicate it, i. e., to unambiguously describe it for any-
body else. After that, we are allowed to start teaching proper programming by describing 
our strategy as a program in a suitable programming language. We are not allowed to 
teach the list of all instructions (fundamental words) of a programming language. We 
have to start with very few (10 to 15) fundamental instructions, and use modularity to 
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create new words (instructions) in order to make our communication with the computer 
more convenient. After writing programs, we let them run in order to verify their cor-
rect functionality and learn to correct, improve, and modify our programs in order to get 
a final product with which we are satisfied. Let us list some of the added values when 
teaching the introduction to programming in the way described above:

Training and strengthening the abstraction in representing real situations by draw-1.	
ing graphs, writing lists or tables with different kinds of elements.
Contributing to teaching mathematics by searching for a solving strategy, instead 2.	
of simply learning a method as a given product of the work of others.
Strengthening the ability to express matters and procedures in an exact way, and 3.	
so to improve the way used to communicate.
Recognizing that a language is not a given final product of human work, but that 4.	
any language is continuously developed, and that in case of a programming lan-
guage one can develop the language on her or his own with respect to her or his 
personal demand.
Defining new instructions by describing the meaning of the new words by sub-5.	
programs, one learns the principle of a modular design that is common and fun-
damental in engineering.
Introducing the concepts of testing, verifying, modifying, and improving is the 6.	
first contact with the creative, constructive work of engineers.

A really good teaching sequence for introductory programming can be created if one 
focuses on the above listed added values and not on technical details of programming 
languages and other software used or on a specific class of tasks.

Another nice example is teaching cryptography. Cryptography can be viewed as 
the history of developing the notion “secure cryptosystem.” One can start with the 
historical examples in order to introduce the basic terms decryption, encryption, key, 
and cryptosystem with a lot of creative work by designing and breaking new, own 
cryptosystems. After defining the concept of “security” by Kerckhoff, one can build 
the bridge to probability theory. The concept of probability was used to design new 
cryptosystems and later to break them. One can wonderfully understand the impor-
tance and the usefulness of the concept of probability studying the history of secret 
communication in this way. Then one can introduce the formal mathematical defini-
tion of absolutely secure cryptosystems with respect to the concept of probability, and 
recognize that such system cannot be built for practical purposes. Finally, the concept 
of computational complexity offering public-key cryptosystems is the way out, leading 
to the recent e-commerce.

What we try to repeatedly present as the key strategy is to follow the history of the 
discoveries of particular concepts, methods, and ideas, and not to try to sell finalized 
products of science. The creative work is the most (and may be even the only really) 
exciting part of the study. Let us teach creativity by repeatedly discovering things that 
were already discovered, up to the point where one is able to discover something com-
pletely new. Forget about teaching facts, teach how to verify the trustability of claims 
made by others. We are lucky, because we are allowed to create a curriculum for a 
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completely new subject. We can implement principles, which the other subjects still 
did not recognize, and so contribute to the evolution of the system of education. For 
those who would like to see detailed implementations of the design principles presented 
above, we recommend to following textbooks from our production (Böckenhauer and 
Hromkovič, 2013; Freiermuth et al., 2014; Hromkovič, 2011; Hromkovič, 2014) or 
the book “Algorithmic Adventures – from Knowledge to Magic” (Hromkovič, 2008; 
Hromkovič, 2009).
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Abstract. Algorithmic thinking and problem solving strategies are essential principles of com-
puter science. Programming education should reflect this and emphasize different aspects of these 
principles rather than syntactical details of a concrete programming language. In this paper, we 
identify three major aspects of algorithmic thinking as objectives of our curricula: the notion of a 
formal language to express algorithms, abstraction and automation to transfer proven strategies to 
new instances, and the limits of practical computability.

The primary contribution of this paper are three examples that illustrate how general aspects 
of algorithmic thinking can be incorporated into programming classes. The examples are taken 
from our teaching materials for K-12 and university non-majors and have been extensively tested 
in the field.

Keywords: algorithmic thinking, K-12, spiral curriculum, programming education, Logo, Python.

1. Introduction

Algorithmic thinking constitutes one of the core concepts of computer science. It has 
proven a versatile and indispensable tool for problem solving and found applications far 
beyond science. Hence, sustainable computer science education should be built upon 
algorithmic thinking as its primary objective, thus unfolding benefits for a broad and 
general education. However, how do we bring algorithmic thinking to computer science 
education? In this paper, we identify a number of principles that we want to deliver to 
students at different levels. As the main contribution, we describe concrete examples of 
how to teach these paradigms, which have been proven successful in the past.

Our work is part of ubiquitous efforts towards establishing sustainable computer science 
in K-12 education. Particularly noteworthy and inspiring are “CS unplugged” approaches 
as proposed by Bell et al. or Gallenbacher, which do completely away with computers 
and solely focus on the underlying algorithmic principles (Bell et al., 2012; Gallenbacher, 
2008). By incorporating such ideas into programming education, we effectively combine 
the strengths of the two approaches, resulting in a truly sustainable education.
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1.1. The Setting

The examples presented in this paper stem from teaching materials we have developed 
for primary school, high school, and university, respectively (Gebauer et  al., 2016; 
Böckenhauer et al., 2015a; Böckenhauer et al., 2015b; Kohn, 2016). The goal of our 
endeavours is to create a spiral curriculum that starts as early as fifth grade in primary 
school with iterations throughout mandatory school, and including computer science 
classes for non-majors at university level.

We use both Logo and Python in our classes and found that the simplicity of Logo 
is especially well-suited for primary school and complete beginners. At high school 
and university level, Python then allows us to discuss topics in more depth and to better 
link our programming classes to mathematics and the sciences. We have also extended 
our Python interpreter and included Logo’s repeat-loop into Python. This allows us 
to introduce iteration at an early stage without the need for variables, getting the best 
of both worlds.

Our curricula and examples make heavy use of turtle graphics, both in Logo as well 
as in Python. Apart from the obvious benefits of direct visualization, the turtle is also a 
source of powerful didactical metaphors. In particular, the examples as presented in this 
paper all rely on turtle graphics to convey or visualize an algorithmic principle.

1.2. Objectives

Computer science is a vast field with algorithmic thinking at its core. Our curricula 
hence focus on the study of algorithms and its various aspects. Our approach comprises 
three major aspects of algorithmic thinking, as described in the following paragraphs: 
the notion of the programming language as a formal language to express algorithms, abs-
traction and automation as central problem solving strategies, and the limits of practical 
computability as a motivation for improving existing algorithms. More on the authors’ 
goals, motivation, and approaches can be found in a complementing paper (Hromkovič 
et al., 2016).

Concept of a Formal Language. Students are introduced to programming as a means to 
convey instructions to a machine – in our case the turtle. The initial set of instructions is 
strongly limited and restricted to basic movements such as moving forward and turning. 
Each instruction has a clearly defined syntax and semantics, avoiding any ambiguity. 
At first, then, programming is the activity of writing sequences of such instructions, en-
coding graphical shapes. From our perspective, this is to say that students use a formal 
language to combine words to sentences. Even though each valid sentence conveys the 
information of a graphical shape, not every sentence makes sense in the context of the 
interpretation of the resulting shape.

The initial vocabulary given to the students is not adequate to encode more complex 
shapes in a human-accessible form. Students are early required to extend the vocabulary 
by defining new words, i. e., by defining subroutines. In the context of the turtle, this can 
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be beautifully explained as “teaching the turtle new words” (Papert, 1993). The seman-
tics of the new words is expressed algorithmically as a sentence over an already existing 
vocabulary. Think, for instance, of a house consisting of a triangle and a square. Both 
the triangle and the square themselves might be expressed as sequences of forward- and 
turning-instructions.

Hence, our objective is to provide students with a simple yet expandable base of 
instructions, the means to combine these instructions to sentences, and to define new 
words with associated unambiguous semantics. This way, the students are exposed to 
the concepts of modularization, formal languages, and expressing semantics in algo-
rithmic form.

Abstraction and Automation. Programming is, of course, much more than combining 
instructions to form programs. Some of the most essential key concepts are abstraction 
and automation. Modularization, for instance, only unfolds its full potential in combi-
nation with parameters. Having a dedicated instruction to draw a square, say, helps to 
clarify the intent of a program. Allowing that very same instruction to draw squares of 
various sizes makes it versatile and open to applications beyond its initial conception. 
Further abstraction could even introduce a second parameter to pertain to the number 
of vertices to draw, resulting in one instruction capable of drawing all regular polygons 
(see Fig. 1).

Abstraction itself also requires the concept of automation. Even drawing a regular 
polygon with a given number of vertices is a tedious task without the notion of a loop. 
For the step to an abstract instruction encompassing all polygons, the loop becomes a ne-
cessity. Once this level of automation is mastered, students are introduced to loops with 
variations, allowing for figures such as spirals where even the “parameter” automatically 
varies (see Fig. 1).

Automation and abstraction are not just core concepts of programming but of com-
puter science and algorithmic thinking in a much wider sense. Expressed in the context 
of problem solving, abstraction corresponds to the question “Can we adapt an already 
known or universally available strategy to solve the problem at hand?” Once we know 
how to solve a single instance, we then employ the concept of automation to apply our 
solution to a large set of instances.

Fig. 1. By parametrizing programs, we gradually gain more versatile algorithms and proce-
dures. Drawing a square of fixed size is the first step towards drawing arbitrary polygons of 
various sizes (above). Likewise, loops allow us to build ever more complex and larger prog-
rams out of simple and small parts (below).
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Limits of Practical Computability. Finding solutions automatically is not always 
feasible. Indeed, the insight that there are problems that cannot be solved algorithmi-
cally (i. e., undecidable problems), shown in 1936 by Turing in his seminal paper “On 
Computable Numbers, with an Application to the Entscheidungsproblem” (Turing, 
1936), is one of the deepest results of mathematics and laid the foundation for com-
puter science itself. However, even computable problems can often only be solved 
under certain restrictions, e. g., using an unacceptable amount of resources (time and 
space), or without full precision due to numeric errors. This gives rise to numerous 
interesting research questions and solutions, which can both be explained to non-
professionals.

For education, however, we need to make computability and its limitations visible 
and tangible. A prime example to serve this objective, as taken from turtle graphics, 
are circles. A computer cannot draw an exact circle, it must be drawn using an ap-
proximation such as a polygon (or Bézier curve). The cost of drawing an approximat-
ing polygon increases with the number of vertices, mainly due to the fact that the 
turtle needs time to turn at the vertices. Students therefore must find a compromise 
between more accurate representations and faster renderings, and eventually realize 
that the limitations of screen resolution quickly nullify additional precision beyond a 
certain point.

When seen in the light of modern applications, intractability is of particular impor-
tance to cryptography. In this regard, the inability to design efficient algorithms has 
far-reaching implications beyond computer science and its inclusion into the curriculum 
is well-warranted. At the same time, we found cryptography to be very motivating and 
well-suited as a subject of its own (Freiermuth et al., 2010).

2. Modular Development: Building a Town Step by Step

Our group is actively involved in introducing young students to programming as soon 
as at fifth grade. To this end, we developed teaching material, hold classes, and, most 
importantly, introduce teachers to our didactic approach as well as to fundamental 
concepts of computer science. These school projects are based on the German text-
book An introduction to programming in Logo (Hromkovič, 2014, German: Einfüh-
rung in die Programmierung mit Logo), and on a Logo booklet (Gebauer et al., 2016) 
covering the contents of its first seven chapters. The following example is taken from 
this booklet.

As already mentioned, one of the main objectives of our programming classes con-
sists in making the students confident with the modular development of programs and 
teaching them how to systematically apply this problem solving strategy to complex 
problems. To illustrate our approach and the achievements of the students, we present 
a sequence of learning activities from the third (out of seven) unit of the courses.

At this point, the students already know how to move the turtle forward and back-
ward on a straight line, how to rotate it as well as how to iterate over a sequence of 
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instructions for a predefined number of times. More precisely, the current vocabulary of 
the turtle comprises the following instructions as well as their abbreviations: forward 
(fd), back (bk), left (lt), right (rt), clearscreen (cs), penup (pu), pendown 
(pd), and repeat. Furthermore, the students are already used to giving their programs 
names and to reusing available programs as subprograms within main programs in an 
elementary way. In subsequent activities, they learn how to develop a table that consists 
of rows of identical squares in a proper modular way.

To reinforce the concept of modular development, the students are now challenged 
to write a program for drawing a small town, which consists of streets with identical 
houses. While the program for drawing a house is already available in the booklet, the 
students are expected to consequently apply the approach they intensively practiced. 
They are therefore expected to:

Identify the next shape or pattern they can systematically reuse.●●
Write a sequence of instructions for drawing it.●●
Give this subprogram a name.●●
Test and iteratively improve the code until the solution meets the assignment.●●

Afterwards, the students should reflect on how to adjust the position of the turtle in 
order to draw the pattern by simply reusing the program they developed above, to test 
and to iteratively improve their approach, and to finally integrate the two modules of 
their solution. In a following step, this new main program can be reused as a subprog-
ram in other main programs of increased complexity. More specifically, the students are 
given the program shown in Listing 1.1 accompanied by the following exercise, which 
asks them to study the effects of each command in detail.

Exercise. Where does the turtle start drawing the house? Think about the path the 
turtle follows when drawing the house using the program HOUSE. Where is the 
turtle located at the end of the execution? Draw the image and describe the effect 
of each command.

Next, they are told how to design a program HOUSEROW (Listing 1.2) that uses HOUSE 
as a subprogram. Here, the most difficult task is to position the turtle in such a way that, 
after each iteration, the new house is drawn at the correct coordinates.

Listing 1.1: Drawing a house using a simple repeat-loop.

to HOUSE
rt 90
repeat 4 [fd 50 rt 90]
lt 60 fd 50 rt 120 fd 50 lt 150

end

Listing 1.2: Drawing a row of houses.

to HOUSEROW
repeat 5 [HOUSE rt 90 pu fd 50 lt 90 pd]

end
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Finally, the students are asked to use the modular approach in order to draw the town 
that consists of multiple streets. This way, the students learn how to extend the language 
of the computer step by step with more complex programs. The crucial observation is 
that the overall complexity is hidden in the smaller subprograms.

Exercise. At this point, we would like to extend the complex of buildings by 
additional streets. Use the program HOUSEROW as a building block to draw the 
image shown in Fig. 2.
Hint: After the completion of a row, the turtle has to be moved to the correct posi-
tion to build the next street.

Modular development offers a didactically appealing platform for creative tasks. In 
the two following exercises, the students observe that even small changes such as adding 
a window, a door, or a chimney to their houses may have a considerable impact on the 
overall outcome of the streets and the town they are designing.

Exercise. We decide to order the roof for the houses from another vendor. That 
is, we get two types of building blocks: One called ROOF and another one called 
BASE. Write two programs to draw the two building blocks. Combine those pro-
grams to form a new program HOUSE1 that draws a house.

Exercise. The houses in Listing 1.1 are very simple. Try to be creative and come 
up with a new design for a house. Use your house to build an entire complex of 
buildings.

The students learn that modular development is a systematic and efficient problem 
solving strategy. Moreover, they experience that subsequent changes in a basic module 
of a properly developed complex program require no or very limited additional program-
ming effort.

Fig. 2: A small town that consists of 15 houses.

At this point, the students already know how to move the turtle forward and
backward on a straight line, how to rotate it as well as how to iterate over a
sequence of instructions for a predefined number of times. More precisely, the
current vocabulary of the turtle comprises the following instructions as well as
their abbreviation: forward (fd), back (bk), left (lt), right (rt), clearscreen
(cs), penup (pu), pendown (pd), and repeat. Furthermore, the students are
already used to giving their programs names and to reusing available programs
as subprograms within main programs in an elementary way. In subsequent
activities, they learn how to develop a table that consists of rows of identical
squares in a proper modular way.

To reinforce the concept of modular development, the students are now
challenged to write a program for drawing a small town, which consists of streets
with identical houses. While the program for drawing a house is already available
in the booklet, the students are expected to consequently apply the approach
they intensively practiced. They are therefore expected to:

– identify the next shape or pattern they can systematically reuse,
– write a sequence of instructions for drawing it,
– give this subprogram a name, and
– test and iteratively improve the code until the solution meets the assignment.

Afterwards, the students should reflect on how to adjust the position of the
turtle in order to draw the pattern by simply reusing the program they developed
above, to test and to iteratively improve their approach, and to finally integrate
the two modules of their solution. In a following step, this new main program
can be reused as a subprogram in other main programs of increased complexity.

More specifically, the students are given the program shown in Listing 1.1
accompanied by the following exercise, which asks them to study the effects of
each command in detail.

5

Fig. 2. A small town that consists of 15 houses.
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3. Making Approximation Errors Visible with the Pac-Man

The turtle draws a circle by approximation, actually drawing a polygon with, say, 36 ver-
tices (in practice, students often choose 360 vertices at first, building upon their knowl-
edge that 360○ stands for a complete circle). While the resulting figure is not discernible 
from a true circle on the screen, the approximation requires a couple of corrections when 
the circle is combined with other shapes. Most prominent is the question of finding the 
circle’s center and the correct value of the radius. Both are slightly, but discernibly, off 
compared to a true mathematical circle.

A particularly illuminating example is drawing a Pac-Man shape. Students are asked 
to write a Python program that draws a Pac-Man and typically end up with a solution as 
shown in Listing 1.3 (note that the repeat-loop shown here has been added to Python in 
order to support our curriculum. A further discussion can be found in the aforementioned 
complementing paper (Hromkovič et al., 2016)). However, their resulting pictures show 
that the shape is not closed as seen in Fig. 3: there is a small gap at the center of the 
shape. This discrepancy is subsequently discussed in a dedicated section and leads to a 
precise drawing of a pie chart.

Why does this gap in the center occur and how can we correct it? In a circle, any ra-
dius meets the circumference perpendicularly. This fact has been used twice in the prog-
ram (Listing 1.3). For the approximation with a polygon, this does not hold anymore: 
the angle between the radius leading to a vertex and the circumference requires a small 
correction φ (Fig. 4). The correction φ is exactly half of the turtle’s turning angle at each 
vertex. For our example with 36 vertices, this results in a 5○-correction (Listing 1.4). The 
correction of the angle can also be taken into the loop, resulting in a more symmetrical 
solution (Listing 1.5).

Listing 1.3: Drawing a Pac-Man.

from turtle import *
RADIUS = 100
right(45)
forward(RADIUS)
left(90)
repeat 27:

forward(RADIUS * 3.1416 * 2 / 36)
left(10)

left(90)
forward(RADIUS)

Listing 1.4: Correcting the angle (1).

left(90 + 5)
repeat 27:

forward(RADIUS * 3.1416 * 2 / 36)
left(10)

left(90 - 5)
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Finally, an alternative solution is to have the radius meet the circumference not at a 
vertex but at the center point of an edge. In this case, the radius does meet the circumfer-
ence perpendicularly. The resulting code, again, has a very symmetrical form (Listing 
1.6). Yet the ratio between radius and circumference now differs and requires to change 
the used approximation of the value of π.

4. Runtime Analysis Backed up by a Little Math

One of the authors is currently part of the team responsible at ETH Zurich for teaching 
computer science basics to non-computer science students (more specifically, students 
of biology, pharmacology, environmental sciences, health sciences and technology, ag-
riculture, geology, and nutritional sciences).

We have been introducing students to Logo using the previously mentioned booklet 
(Gebauer et al., 2016, see Section 2), whose main part is covered in roughly the first unit 

Listing 1.5: Correcting the angle (2).

repeat 27:
left(5)
forward(RADIUS * 3.1416 * 2 / 36)
left(5)

Listing 1.6: Starting the circumference not at a vertex but at the center of an edge instead.

repeat 27:
forward(RADIUS * 3.15 / 36)
left(10)
forward(RADIUS * 3.15 / 36)

Fig. 4. As circles are approximated by polygons the radius does not  
meet the circumference in a right angle but is off by an angle φ.

Fig. 3. An incomplete Pac-Man.
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of the lecture. After that, an advanced booklet is supplied that is specifically designed for 
this class (Böckenhauer et al., 2015a). As part of this booklet, more involved concepts 
such as variables, conditional execution, and while-loops are introduced. The students 
are then given three projects, which consolidate what they have learned so far by design-
ing small programs to solve specific tasks (Böckenhauer et al., 2015b). The lecture is 
accompanied by exercise classes in which the students are asked to present and explain 
their solutions to a tutor.

As a first step towards the mathematical analysis of algorithms, we give the students 
the following project. The examples are taken from the project booklet (Böckenhauer 
et al., 2015b) and the corresponding lecture notes. The goal is to show the students the 
idea of how to mathematically analyze how long a program will run depending on the 
input size. A typical example that does not need anything beyond high school mathema-
tics is to test whether a given number is prime. Logo is especially suited to visualize the 
distribution of (small) prime numbers without much overhead.

The first component is a program called QUAD (Listing 1.7) that draws a square, and 
which essentially consists of a simple loop, which the students already know from previ-
ous lessons. The size of the square is determined by the value of the parameter :WIDTH.

Next, we can write a program that tests whether a given input is a prime number. 
This is done in the most straightforward fashion, i. e., by testing whether there is smaller 
number (except 1) that divides it. Depending on the result, either a red or black square is 
drawn on the screen using the instruction setpencolor (setpc). Before that, the turtle 
is hidden with the instruction hideturtle (ht). The corresponding algorithm PRIME 
is shown in Listing 1.8.

The students can easily follow the steps and try out different inputs. As a next step, 
we ask them to carefully check corner cases, and give them the following exercise.

Listing 1.7: A simple square.

to QUAD :WIDTH
repeat 4 [fd :WIDTH rt 90]

end

Listing 1.8: Testing whether a given number is prime.

to PRIME :NUM
ht
make "IT 2
make "ISPRIME 1
while [:IT<:NUM] [

make "RES mod :NUM :IT
if :RES=0 [make "ISPRIME 0] []
make "IT :IT+1

]
if :ISPRIME=1 [setpc 1 QUAD 8] [setpc 0 QUAD 8]

end
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Exercise. PRIME does not yet work correctly on all inputs as the value of :IT is 
initially set to 2. However, we know that 1 is by definition not a prime number. 
Thus, PRIME 1 creates an incorrect output. Extend the program such that a black 
square is drawn when the input is 1. Moreover, an error message should be output 
if 0 or a negative number is given.

Once the students familiarized themselves with the algorithm, we discuss its running 
time. It is obvious that the time grows with larger inputs, and this seems to be unavoi-
dable on an intuitive level. Furthermore, it is easy to see that the running time directly 
depends on how often the body of the while-loop has been executed. We therefore agree 
on counting the number of these executions and neglect how many instructions are exe-
cuted with each iteration. The above trivial attempt needs roughly 2 iterations for inputs 
of length  (hence,  is the number of bits used to represent the input number). Now we 
show how to improve this running time using a little bit of math. The following exercise 
is well-suited to be presented to the students as part of the lecture.

Exercise. We can now make our algorithm PRIME “faster” (more efficient) by 
having it execute the while-loop less often. To this end, we make use of the 
following idea.
Suppose the input  is not a prime number. Then, by the definition of a prime 
number, there is a number , which is neither 1 nor , that divides  without 
remainder. But from this it also follows that there is a second number , which 
is also neither 1 nor , that also divides  without any remainder. An important 
point is that one of these two numbers is not larger than the square root   of . 
If, e. g.,  is larger than  , then  has to be smaller, since otherwise  ·  were 
larger than .
We want to use this observation to improve PRIME. Write an algorithm PRIME2 
which works exactly as PRIME, but in which the while-loop is modified such that 
the variable :IT does not take the values of all numbers smaller than :NUM, but 
only those that are smaller than or equal to :NUM .

The students are asked to verify the speedup by trying different inputs. Good can-
didate inputs to observe the increase in speed of course depend on the computer used. 
Moreover, the students can try to make a simple running time analysis of PRIME2 them-
selves, which leads to the result that the loop is now executed at most (roughly) 1.41 

times for inputs of length .
The above considerations give rise to another question, namely in which kind of ana-

lysis we are interested. To this end, the algorithm is modified such that the while-loop 
is left as soon as a divisor of the input is found. The resulting algorithm obviously still 
works correctly, but is it faster? Indeed, if the input is, say, an even number, the running 
time of the new algorithm is a lot better. However, if the input is prime, both algorithms 
take the same time. This is exactly the difference between a best case and a worst case 
analysis of the algorithm’s running time.

Now we can follow the modular building of algorithms (see Section 2) and use PRI-
ME2 as a building block to visualize the distribution of small prime numbers. More 
precisely, the algorithm PRIMES shown in Listing 1.9 uses PRIME2 as a subprogram to 
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visualize the appearances of prime numbers among the first :MAX natural numbers.
The result of executing PRIMES 26 is shown in Fig. 5. Next, we can improve the 

appearance by having the squares drawn in multiple rows (Listing 1.10). To this end, we 
write a new algorithm PRIMES2 with an additional parameter :ROW. The turtle moves to 
the next row whenever it drew a number of squares that is divisible by the value of :ROW. 
With PRIMES2 104 26 we obtain an output as shown in Fig. 6.

An advanced exercise then deals with prime powers. The students should solve this 
task at home, either alone or in small groups. The difficulty of this exercise is due to the 
usage of a return statement, which is implemented by the output instruction in Logo.

Fig. 2: The distribution of prime numbers between 1 and 26. Instead of red and
black squares, we use filled and unfilled ones.

Fig. 3: The distribution of prime numbers between 1 and 104.

However, if the input is prime, both algorithms take the same time. This is exactly
the difference between a best case and a worst case analysis of the algorithm’s
running time.

Now we can follow the modular building of algorithms (see Section 2) and use
PRIME2 as a building block to visualize the distribution of small prime numbers.
More precisely, the algorithm PRIMES shown in Listing 1.9 uses PRIME2 as a
subprogram to visualize the appearances of prime numbers among the first :MAX
natural numbers.

Listing 1.9: Visualizing primes.
to PRIMES :MAX

pu lt 90 fd 300 rt 90 pd
make "TEST 1
repeat :MAX [

pu rt 90 fd 10 lt 90 pd
PRIME2 :TEST
make "TEST :TEST+1

]
end

The result of executing PRIMES 26 is shown in Figure 5. Next, we can improve
the appearance by having the squares drawn in multiple rows (Listing 1.10). To
this end, we write a new algorithm PRIMES2 with an additional parameter :ROW.
The turtle moves to the next row whenever it drew a number of squares that is
divisible by the value of :ROW. With PRIMES2 104 26 we obtain an output as
shown in Figure 6.

An advanced exercise then deals with prime powers. The students should
solve this task at home, either alone or in small groups. The difficulty of this
exercise is due to the usage of a return statement, which is implemented by the
output instruction in Logo.
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Fig. 5. The distribution of prime numbers between 1 and 26. Instead of red and black 
squares, we use filled and unfilled ones.Fig. 2: The distribution of prime numbers between 1 and 26. Instead of red and

black squares, we use filled and unfilled ones.

Fig. 3: The distribution of prime numbers between 1 and 104.

However, if the input is prime, both algorithms take the same time. This is exactly
the difference between a best case and a worst case analysis of the algorithm’s
running time.

Now we can follow the modular building of algorithms (see Section 2) and use
PRIME2 as a building block to visualize the distribution of small prime numbers.
More precisely, the algorithm PRIMES shown in Listing 1.9 uses PRIME2 as a
subprogram to visualize the appearances of prime numbers among the first :MAX
natural numbers.

Listing 1.9: Visualizing primes.
to PRIMES :MAX

pu lt 90 fd 300 rt 90 pd
make "TEST 1
repeat :MAX [

pu rt 90 fd 10 lt 90 pd
PRIME2 :TEST
make "TEST :TEST+1

]
end

The result of executing PRIMES 26 is shown in Figure 5. Next, we can improve
the appearance by having the squares drawn in multiple rows (Listing 1.10). To
this end, we write a new algorithm PRIMES2 with an additional parameter :ROW.
The turtle moves to the next row whenever it drew a number of squares that is
divisible by the value of :ROW. With PRIMES2 104 26 we obtain an output as
shown in Figure 6.

An advanced exercise then deals with prime powers. The students should
solve this task at home, either alone or in small groups. The difficulty of this
exercise is due to the usage of a return statement, which is implemented by the
output instruction in Logo.

11

Fig. 6. The distribution of prime numbers between 1 and 104.

Listing 1.9: Visualizing primes.

to PRIMES :MAX
pu lt 90 fd 300 rt 90 pd
make "TEST 1
repeat :MAX [

pu rt 90 fd 10 lt 90 pd
PRIME2 :TEST
make "TEST :TEST+1

]
end

Listing 1.10: Visualizing primes more nicely.

to PRIMES2 :MAX :ROW
pu lt 90 fd :ROW*10/2 rt 90 pd
make "TEST 1
repeat :MAX [

pu rt 90 fd 10 lt 90 pd
PRIME2 :TEST
make "REST mod :TEST :ROW
if :REST = 0 [

pu lt 90 fd :ROW*10 lt 90 fd 10 rt 180 pd
] [ ]
make "TEST :TEST+1

]
end
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Exercise. A prime power is a natural number that has exactly one prime factor. For 
instance, 27 is a prime power since it has the prime factorization

27 = 3 · 3 · 3 = 33.

Clearly, every prime number is thus also a prime power.
In this project, you design a program PRIMEPOW, which checks whether a given 
number is a prime power. To this end, do the following steps:

 Rewrite the program 1.	 PRIME to obtain a program PRIMEOUT that uses the com-
mand output instead of drawing squares. If the value of :NUM is prime, the 
value 1 should be returned, otherwise 0.
 2.	 PRIMEPOW has one parameter :TEST. We want to check whether the value as-
signed to :TEST is a prime power (possibly with the exponent being 1).
 First, the program checks using 3.	 PRIMEOUT whether :TEST is a prime num-
ber. If so, “Prime.” is printed on the screen and the execution is ended using 
stopall.

make "ISPRIME PRIMEOUT :TEST
if :ISPRIME=1 [pr [Prime.] stopall] []

 Otherwise, all numbers smaller than the value of 4.	 :TEST are iterated, and again 
using PRIMEOUT it is checked whether the current number is a prime. If so, it is 
checked whether it divides the value of :TEST without remainder.
 If such a prime number is found, 5.	 PRIMEPOW takes note of this by setting the 
value of a variable :FOUND to 1. :FOUND is initialized with 0. If a second such 
prime number is found, this will be noted since the value of :FOUND is already 
1. In this case, “More than one divisor.” is printed on the screen and the execu-
tion is again ended with stopall.
 Finally, if 6.	 :FOUND is still 1 after all numbers were tested, “Prime Power. Base: 
” and the prime number that divides the value of :TEST without remainder are 
printed on the screen.
 Check 7.	 PRIMEPOW using small input values.

This introduction using Logo proved to be very valuable for the students in the suc-
ceeding lessons, where we implement more complex projects using Python. More pre-
cisely, they were able to learn important paradigms without having to worry too much 
about syntactical details.

5. Conclusion

Programming education is a great opportunity to teach important core concepts of com-
puter science on various levels and to establish algorithmic thinking as part of a broad 
and general education. A necessary prerequisite is, of course, that we find ways to go 
beyond teaching the specifics of a programming language and rather put emphasis on 
those aspects of programming that lead to a deeper understanding of computer science.
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In this article, we have provided three examples of how programming education can 
incorporate more general principles of algorithmic thinking. All three examples have 
been taken from our well-tested teaching materials for primary school, high school, and 
university level, respectively. Further details about our curricula are given in the comple-
menting paper (Hromkovič et al., 2016).

References

Bell, T., Rosamond, F., Casey, N. (2012). Computer science unplugged and related projects in math and computer 
science popularization. The Multivariate Algorithmic Revolution and Beyond, Springer-Verlag, 398–456.

Böckenhauer, H.-J., Hromkovič, J., Komm, D. (2015). Programmieren mit LOGO – Projekte. 
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/

logo_projekte.pdf

Böckenhauer, H.-J., Hromkovič, J., Komm, D. (2015). Programmieren mit LOGO für Fortgeschrittene.
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/

logo_heft_2_de.pdf

Freiermuth, K., Hromkovič, J., Keller, L., Steffen, B. (2010). Einführung in die Kryptologie. Springer.
Gallenbacher, J. (2008). Abenteuer Informatik. IT zum Anfassen – von Routenplaner bis Online-Banking. 

Springer, 2 edition.
Gebauer, H., Hromkovič, J., Keller, L., Kosírová, I., Serafini, G., Steffen, B. (2016). Programmieren mit 

LOGO.
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/

logo_heft_de.pdf

Hromkovič, J. (2014). Einführung in die Programmierung mit LOGO – Lehrbuch für Unterricht und Selbststu-
dium. Springer, 3 edition.

Hromkovič, J., Kohn, T., Komm, D., Serafini, G. (2016). Combining the Power of Python with the Simplicity of 
Logo for a Sustainable Computer Science Education. Unpublished Manuscript.

Kohn, T. (2016). Python. Eine Einführung in die Computer-Programmierung. 
http://jython.tobiaskohn.ch/PythonScript.pdf

Papert, S. (1993). Mindstorms. Basic Books, 2 edition.
Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings 

of the London Mathematical Society, 42(2), 230–265.



J. Hromkovič et al.124

J. Hromkovič is professor of informatics with a special added fo-
cus on computer science education at ETH Zurich. He is author of 
about 15 books published in 6 languages (English, German, Russian, 
Spanish, Japanese, and Slovak) and about 200 research articles. He 
is member of Academia Europaea and the Slovak Academic Society.

T. Kohn is writing his PhD thesis in computer science at ETH Zurich. 
The focus of his research is programming education, particularly in 
high schools. He holds an MSc in mathematics from ETH and has been 
teaching mathematics and computer science for 10 years.

D. Komm is lecturer at ETH Zurich and an external lecturer at Uni-
versity of Zurich. He studied computer science at RWTH Aachen 
University and Queensland University of Technology. He received 
his PhD from ETH Zurich in 2012. His research interests focus on 
algorithmics and advice complexity.

G. Serafini is lecturer in the Computer Science Teaching Diploma 
Program at ETH Zurich. He holds a MSc in computer science and 
a teaching diploma in computer science from ETH Zurich. His re-
search interests focus on the contribution of computational think-
ing to school education. He is a member of the board of the Swiss 
Computer Science Teacher Association and a member of the Swiss 
Olympiad in Informatics.



Olympiads in Informatics, 2016, Vol. 10, 125–159
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.09

125

Programming in Slovak Primary Schools

Martina KABÁTOVÁ1, Ivan KALAŠ1,2, Monika TOMCSÁNYIOVÁ1

1Department of Informatics Education, Comenius University
Mlynska dolina, 842 48 Bratislava, Slovak Republic
2UCL Knowledge Lab, Institute of Education 
23-29 Emerald Street, WC1N 3QS London
e-mail: martina.kabatova@gmail.com, {kalas; tomcsanyiova}@fmph.uniba.sk

Abstract. In our paper, we want to present the conception of elementary programming in primary 
Informatics education in Slovakia and the process of its integration into ordinary classrooms. 
First, we will familiarize the reader with the tradition of so called ‘Informatics education’ in 
Slovakia and with the various stages of the process of its integration. We will formulate the learn-
ing objectives of the elementary informatics as a school subject in Slovakia (referring to Blaho 
and Salanci, 2011) and give reasons why we believe that it offers an important opportunity for 
developing informatics knowledge, computational thinking and problem solving skills. We will 
primarily focus on the presentation of our arguments why we consider programming (in the form 
rigorously respecting the age of the primary pupils) to be appropriate and productive constituent 
of learning already for this age group. Several recent research findings, presented by Ackermann 
(2012) and others support our position here. In the next chapter, we will present in detail the 
conception of elementary programming and how it is implemented in the continuing professional 
development (CPD) of primary teachers in Slovakia. We will examine which programming en-
vironments are being used, what kind of pedagogies and which specific learning objectives our 
teachers apply. We will list programming concepts and identify corresponding cognitive opera-
tions, which we find appropriate for primary pupils. Then we will present and analyse the CPD of 
our in-service teachers (and the position of programming in this process) which we have recently 
implemented in Slovakia. Another important element of our CPD strategy is the well-known 
Bebras contest (in Slovakia it is called ‘iBobor’ or ‘Informatics Beaver’). In the next chapter of 
our paper, we will apply qualitative educational inquiry methods to examine how our concep-
tion of elementary programming has really penetrated into primary classes in Slovakia. We are 
also interested in how it is being received by the teachers and pupils. Through interviews with 
the teachers we will identify different aspects of the whole process and main risk factors, which 
may complicate or hinder the implementation. In the final chapter, we will study the tendency 
to develop informatics and programming at the primary level in the context of various research 
projects presented in the academic research literature. We will compare various key findings of 
other research projects with our own experience.

Keywords: educational programming, primary education, computing, computational thinking.
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1. Introduction

In recent years many educators, education policy makers and scientists call for integra-
tion of what they call computational thinking into primary education of all pupils. In in-
fluential documents like (The Royal Society, 2012) a need to distinguish computational 
thinking (or computer science, informatics or computing education) from the ICT educa-
tion is declared. However, reasons for such reflections differ – computer scientists and 
industry leaders feel that not enough young people (and only very few women) choose to 
pursue a career in computer science and they believe that if pupils become familiar with 
some informatics concepts (within their primary education already) they will favour it 
later in their lives and careers. Others believe that computational thinking is equally 
important and key skill as literacy and mathematical thinking and they call for a redefi-
nition of literacy and for integrating digital literacy development into primary education 
for the sake of educating a fully developed citizens to live in the digital world.

While ICT oriented education is included in most national curricula, many countries 
do not pay any special attention to including other (and in our opinion more interesting 
and more important) informatics concepts. However, we can observe important new step 
in the UK by establishing computing as a compulsory subject in every school year since 
September 2014.

The situation in Slovakia is different from most of the countries. Informatics as a 
separate mandatory subject was established many years ago and for many years we have 
been systematically preparing teachers for teaching it. The authors of our national cur-
riculum took a great care to include topics from core informatics along with learning of 
basic ICT skills.

Since Comenius University plays a key role in building National Informatics Cur-
riculum (2011, 2015) we have a lot of experience with integrating educational informat-
ics both into schools (primary, lower secondary and upper secondary) and into teachers’ 
professional development (PD). Some activities with digital technology were recently 
nation-wide integrated into early childhood education (or children 3 to 6) as well: see 
e.g. (Pekarova, 2008) and (Kalaš, 2010).

The whole conception of informatics is a broad and interesting topic to study, but for 
the purpose of this paper we fully focus only on one of its topics, namely, on program-
ming at primary level in Slovakia. We will discuss its conception and the process of its 
integration into ordinary classrooms. We will present and explain:

The reasons and short history of implementing primary informatics as a modern (a)	
core subject taught in Slovak primary schools.
Why we consider appropriate to have separate school subject focused on ICT and (b)	
informatics, while we also support integration of ICT across curriculum.
What role primary programming plays in our conception of informatics educa-(c)	
tion and what forms, methods and pedagogies we consider appropriate in this 
context.
How we proceed with the implementation of these objectives through in-service (d)	
teacher development.
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What problems we have encountered, how this process actually evolves in our (e)	
schools, how the teachers read our objectives, which objectives and correspond-
ing skills they have mastered, how they interpret them and finally – which factors 
of the implementation we and the teachers perceive as risky or unfulfilled.

Brief History of Informatics at Slovak Schools

First we will familiarize the reader with the tradition of informatics education in Slova-
kia and various stages of the process of its implementation. We will briefly describe how 
the informatics education was established – from the period of experimental education 
at upper secondary schools in late 60s and early 70s, to the current stage of informatics 
as mandatory school subject for students from grade 2 (i.e. 7 to 8 year olds) up to the 
mid-upper secondary stage (i.e. 16 to 17 year olds).

In early 70s some of the vocational technical schools began to prepare students for 
operating industrial machinery via computers. In these schools some students learned 
basics of programming in Fortran and Cobol. Students first designed their programs us-
ing flowcharts, then they prepared corresponding punch cards which were then taken to 
the computer lab. Students never saw the computer themselves since it was usually lo-
cated in a different institution and it took up several rooms. In the late 70s some schools 
built their own computer labs. In some industrial towns (where most of the vocational 
technical schools were located) special central computer labs were established. At that 
time new study programmes were launched at universities called informatics (at the 
beginning called cybernetics).

In 80s most of the upper secondary schools opened special classes focused on infor-
matics. However, appropriately qualified teachers were absent. In school year 1982/83 
Faculty of Mathematics and Physics of Comenius University opened a new study pro-
gramme focused on upper secondary informatics teachers’ pre-service education. Those 
students had access to the university computer EC1010 where they could write and run 
programs in Pascal. Soon after that several universities began to build computer labs 
equipped with 8-bit computers (e.g., PMD-85, Didaktik Alfa, PP-01), often using a ver-
sion of Basic as a programming language

Many activities designed to attract young people to informatics emerged – in 1985 
a P category of International Mathematical Olympiad started (later transformed into a 
stand-alone International Olympiad in Informatics). A series of articles on program-
ming in environments like Karel and Logo were issued in the Zenit magazine targeted 
at secondary school students. Since 1986 a school subject “Informatics and comput-
ers” became part of the National Curriculum. Special classes focused on algorithms 
and programming were established at several grammar schools and vocational techni-
cal schools.

In early 90s most of the upper secondary schools taught informatics. A special com-
puter lab with several PCs was usually dedicated to this subject, mostly taught by special-
ized teachers. The educators inspired by success at upper secondary school developed 
an experimental informatics curriculum also for lower secondary schools. For example, 
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Kosicka Str. Primary School in Bratislava opened a class focused on programming. Pu-
pils aged 11 to 15 wrote game-like programs in a visual programming environment 
called Comenius Logo (Blaho et al., 1995) and (Tomcsanyiova and Tomcsanyi, 1997). 
In the second half of 90s computers become more affordable and many businesses and 
households acquired them. In order to train students to use computers effectively, in-
formatics in schools changed its orientation and became more user oriented – students 
learned how to create electronic documents (in T602, a text editor of that time), use 
spreadsheet editor, send and receive e-mails, navigate files and operating systems etc. In 
late 90s the National Curriculum was revised to incorporate five main topics – Informa-
tion around us; Communication through ICT; Problem solving and algorithmic thinking; 
Principles of ICT; and Information society.

In 2008 a new National Curriculum for primary and secondary schools prescribed to 
teach informatics as a mandatory core subject from year 2 (7 to 8 year olds) to mid-upper 
secondary stage (16 to 17 year olds). At all school years five main topics of informatics 
remain the same and they cover basic digital literacy, ICT user skills, programming and 
core concepts of informatics, hardware and other digital technology related concepts, 
digital safety and other information society related concepts. At different school years 
the topics are taught differently – first and foremost respecting the pupils, their age and 
developmental stage.

There is an intense initiative in Slovakia to integrate digital technology into early 
years (pre-primary) education as well. Through an EU funded project teachers in early 
years education centres (kindergartens) are being educated to use digital technology ap-
propriately with their children. Programmable toy Bee-Bot have been introduced, see 
(Pekarova, 2008) and (Kalaš, 2010).

According to our anecdotal information, programming at upper secondary level is 
mostly done in Delphi or Lazarus environments, with more and more schools gradually 
switching to Python. At lower secondary schools, Imagine Logo and Scratch are popular 
programming languages. At primary schools most widespread environments are Thomas 
the Clown, EasyLogo and several other microworlds that have been created in our de-
partment (we will present them in chapter 3).

2. Elementary Informatics, Computational Thinking and Programming

In accordance with the recent report of Informatics Europe and ACM Europe (2013) 
we will use the term informatics when we are speaking about the broad scientific field 
behind the digital technology. For us “informatics” is also an umbrella term that includes 
computing, ICT, and digital literacy – basically all concepts that have anything to do 
with digital technology, information or theory behind them.

An effort to distinguish various fields within school informatics is apparent in the 
Royal Society report (2012). However, we use these terms in a slightly different way 
from definitions provided there. By the term ICT we understand a set of user oriented 
skills (e.g., using a text editor, spreadsheet editor, creating graphics, animation, working 
with sounds …). Digital literacy in our context is understood as a set of basic skills that 
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everyone should acquire during their education in order to use digital technology (not 
only computers but all digital devices) effectively, safely and meaningfully to solve their 
everyday problems and tasks.

To understand what exactly is covered by our informatics (as a school subject) let’s 
have a closer look at the five main topics in next chapter of our paper.

2.1. Informatics as a School Subject in Slovakia

Slovak National Curriculum (2011) codifies the following core school subjects rooted in 
informatics science (however, since 2015 both subjects are unified as Informatika):

“●● Informaticka vychova”, or Elementary Informatics in English, for school years 
2 to 4 (pupils aged 7 to 10), while whole primary education consists of year 1 to 4 
(i.e. pupils aged 6 to 10).
“●● Informatika”, which translates as Informatics, for school years 5 to 11 (pupils 
aged 10 to 17) at so called lower secondary and upper secondary schools.

For each of these subjects there is about 1 lesson per week, usually in a computer 
lab. Besides these dedicated subjects many ICT (and some informatics) elements are 
integrated across subjects as well, but that aspect will not be discussed in this paper.

Informatics as a core school subject is designed for every pupil regardless of their 
gender, future career or highest level of education they will reach. Great emphasis is on 
the age appropriateness – the content and form should always respect developmental 
stage of the pupils.

In all school years the five main topics of informatics remain the same, their content 
is always designed to fit the specific age group. National curriculum of primary infor-
matics is presented in detail in Blaho and Salanci (2011). At primary schools the five 
topics cover:

I●● nformation around us is the most comprehensive topic that includes working 
with text, graphics and multimedia. At primary school, pupils explore data struc-
tures – simple tables, graphs, dictionaries and mind maps.
Communication via ICT●●  – pupils work with websites relevant to their interests; 
they learn to use a web browser, e-mail client and chat.
Methods, problem solving and algorithmic thinking●●  – pupils learn to solve 
various problems and write down solutions (using words, icons or specific com-
mands), they learn to control an agent directly and later by planning commands 
in advance. They learn to understand the causal connection between the program 
and behaviour of the agent. In this paper we will focus solely on this part of school 
informatics – and specifically on the elementary programming.
Principles of ICT●●  topic deals with hardware parts of the computer (keyboard, 
mouse, display) and external devices. Pupils also learn to work with folders and 
files.
Information society●●  – pupils learn about risks involved in using digital technolo-
gy, about privacy and about the impact of information technology on the society.
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We believe that these five topics cover the same concepts as three topics suggested in 
the Royal Society report (2012): digital literacy, information technology and computer 
science – which resulted into introducing a new compulsory subject computing in the 
UK since 2014.

In some other countries there is a strong initiative to include computational think-
ing and informatics concepts into all school subjects, see (Barr and Stephenson, 2011), 
instead of creating a separate dedicated subject. However, Slovak tradition of “infor-
matics” as a school subject is a long one (including corresponding pre-service and in-
service teacher development) and we believe that informatics is a distinct and important 
scientific field that should have a similar position in the education as mathematics or 
physics. Another contributing fact is that it seems to be unreasonable to demand from all 
the teachers to learn informatics concepts or how to incorporate computational thinking 
into their respective subjects – according to our experience they already struggle with 
integrating basic ICT elements into their teaching.

2.2. Programming as a Component of School Informatics

The core topic in the National Curriculum (2011, 2015) of school informatics that is 
most interconnected with informatics as a science is named Methods, problem solving, 
and algorithmic thinking. In it we expect pupils to learn how to solve various types of 
problems, externally represent a solution, and use such representation as an object to 
think with about the problem. Carefully chosen problems and well thought out peda-
gogy can lead directly to computational thinking development and even rather deep into 
elementary programming.

The term computational thinking was introduced and later developed by Wing, 
who understands it as 

“a thought process involved in formulating problems and their solu-
tions so that the solutions are represented in a form that can be effec-
tively carried out by an information-processing agent” (Wing, 2011). 

Recently, an interesting study by Selby (2013) refines the definition of computa-
tional thinking as... 

“a focused approach to problem solving, incorporating thought pro-
cess that utilizes abstraction, decomposition, algorithms, evaluation, 
and generalization.” 

Wing and several other authors call for incorporating computational thinking into 
formative education of children (Wing 2008), (Lu and Fletcher, 2009), (Lee et al., 2011) 
and (Hu, 2011). In some countries the focus is still on implementing informatics educa-
tion only into secondary school, see e.g. (Hubwieser, 2012) and (Settle et al., 2012). 
Our main interest lies in developing computation thinking “from the bottom” – i.e. form 
preschool and primary education. However, it is difficult to choose appropriate form 
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and content when it comes to this target group. According to Piaget’s theory of cognitive 
development (1993), in accordance with Hu (2011) and also according to our own expe-
rience, most children reach the ability to work with abstractions only around their tenth 
year and some of them even later. It is agreed in the relevant literature that abstraction is 
the very essence of computational thinking. And yet we believe that supporting the de-
velopment of computational thinking can productively start at the age of 5 or 6 by con-
ducting well thought introductory steps leading to what we call elementary informatics.

Our first steps begin with direct manipulation with objects without the need to ab-
stract or represent the process that is involved in their manipulation. While these activi-
ties may not resemble computational thinking at a first glance, we believe they are good 
preparation for development of higher order cognitive skills.

By elementary programming we understand activities in which pupils perform 
certain problem solving tasks of controlling an agent or planning its future behaviour 
– in a digital environment (programmable toy, microworld, programming environ-
ment...). We strongly believe that elementary programming is an excellent means for 
developing, implementing and verifying problem solving skills within the domain of 
computational thinking. If initiated at the primary stage of education, we also call it 
primary programming. An interesting study on connection of computational think-
ing and programming can be found in (Selby, 2012). There are many age-appropriate 
tools and environments that allow us to design meaningful and engaging elementary 
programming activities while respecting children’s developmental stage. We believe 
we comply with the Blackwell’s definition of programming (2002): 

“Programming involves loss of direct manipulation as a result of ab-
straction over time, entities or situations. Interaction with abstrac-
tions is mediated by some representational notation.” 

However, several problems arise if we want to define elementary programming ac-
tivities. As we have already mentioned above – children in our target group have not 
yet developed their abstract thinking, and so abstracting over time itself is a problem. 
On the other hand, we believe that many valuable activities can be conducted before 
any kind of abstraction is involved. Moreover, these activities often have other features 
that are compatible with programming (e.g., some sort of representation is being used; 
planning future behaviour is expected etc.). We believe that learning to think com-
putationally and to program one’s solutions can be done gradually by doing specific 
activities that only slowly lead to a true abstraction, decomposition of problems and 
generalization of solutions.

We are aware that some authors consider programming at such an early age to be at 
least disputable, see (Lu and Fletcher, 2009), some regard programming as a significant 
form of computing but mathematical in its foundation, see (Hu, 2011). In this context 
we perceive elementary (or primary) programming as a tool for developing early com-
putational thinking skills. We believe that carefully chosen tools, activities and pedago-
gies are an excellent way of integrating both – elementary programming and computa-
tion thinking – into primary education of all pupils. We – in accordance with Resnick 
(2012) – “believe in Papert’s dream of computational fluency for everyone”, that 
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“children should learn to program their own animations, games and 
simulations – and in the process learn important problem-solving 
skills and project-design strategies” and that it is necessary “to ex-
pand the conception of digital fluency to include designing and creat-
ing, not just browsing and interacting”. 

However, we need to carefully build these skills gradually, always thinking about 
age-appropriateness.

There are several educators that promote programming as a productive and engaging 
activity even for very young children. They are looking for age-appropriate forms and 
study how do children approach various programming situations.

Mogardo et al., (2006) deal with a pioneer experiment of Perlman who in 1970s de-
signed a programming tool for preschool (and preliterate) children. The TORTIS system 
consisted of physical floor turtle that was controlled by logo-like commands depicted on 
plastic cards. Cards were placed into slots and after pushing a button they were executed 
by the floor turtle. Both the agent and the commands were tangible. Authors themselves 
admit that in the time of the described experiment there was only a little understanding 
of developmental psychology of a child and Perlman probably had not designed the tool 
in accordance with what we now would consider appropriate for such young children 
(the paper describes working with 3–5 year olds). However, some of her observations 
(analysed in 2006 by Mogardo et al.) are valuable even now – e.g., that children didn’t 
manage to associate the screen commands with the movements of the turtle and even 
after adding the plastic cards (which were basically physical representations of screen 
commands for the turtle) children failed to understand that each card represents a move-
ment of the turtle. We believe this problem is closely associated with a cognitive devel-
opmental stage of the children – at the age of 5 they definitely do not possess the ability 
to understand the connection between the plastic cards picturing commands and move-
ments of the turtle on the floor. Our suggestion is to conduct different pre-programming 
activities that do not involve external representations (e.g. playing with Bee-Bots or 
even more trivial tools that involve “one command, one move” direct manipulations 
of the agent at a time) – and leave the programming activities involving abstractions 
and representations to later stages when pupils begin to develop the understanding of 
abstraction and external representations.

Ackermann deals with young children and their programming adventures in (2012) 
where she describes three aspects of programming as observed by the work with pre-
school children: 

“1) making things do things (instruct them to follow and execute or-
ders); 2) animating things (endow them with a mind of their own, 
teach them to look after themselves); 3) poking things (modulate how 
things act and interact by tweaking some parameters in their environ-
ment).” 

Ackermann admits that this is hardly a definition of programming per se and that 
the concept of programming is difficult, ever-changing and bearing many meanings to 
different people of different professions. However, she agrees that “programming, at 
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its core, is about giving instructions – or commands – to be executed by a machine”. 
She presents several “settings where youngsters are asked to give and execute orders, 
take over control”. For example – ambient programming is a new promising style that 
has a potential to attract many children, even those who in general do not incline to 
more traditional programming activities. Another take on ambient programming is de-
scribed by Eisenberg (2009). On the other hand Ackermann refers to these activities 
as “programming (in a weak sense)” and she puts the word programming into quota-
tion marks. In agreement with this approach we also distinguish our activities from 
hard programming and we will refer to them as elementary programming or primary 
programming. Another approach to programming, currently getting growing attention 
and becoming more widespread in all stages of education is physical computing and 
educational robotics programming, see e.g. (Przybylla, Romeike, 2014) or (Mayerova, 
Veselovska, 2016).

An interesting attempt at programming with primary school children is reported also 
by Gibson (2003). Probably the most successful initiative for programming for children 
is the Scratch community. Programming environment is being developed by researchers 
at the M.I.T. and it is continuously being improved and thoroughly studied, see Maloney 
et al. (2009) and Brennan et al. (2012).

3. Slovak Conception of Primary Programming

In this chapter we will present the conception of programming in Slovak primary educa-
tion, based on current National Curriculum (2011, 2015) and materialised in the struc-
ture and content of the recent nation-wide professional development (PD) project for 
700 primary teachers (see chapter 4). We will briefly characterise programming environ-
ments that have been used in the PD sessions and are currently being used in primary 
schools, what kind of pedagogies teachers apply and what are their learning objectives. 
We will analyse programming concepts and identify corresponding cognitive operations, 
which we consider appropriate for primary pupils.

In the Slovak approach to primary programming we can identify three domains with 
several sub-domains (with several overlaps and without any strictly predefined order 
of implementation, although with numerous dependencies in developing programming 
concepts and operations):

 1)	 Solving problems and handling solutions.
 2)	 Controlling an agent:

Direct control of an agent.●●
Indirect control (building and handling future behaviours).●●
Some advanced concepts of primary programming (e.g. parameters, loops and ●●
procedures).

 3)	 Tinkering with interactive environments:
Multiple agents and their properties.●●
Static scenarios.●●
Dynamic scenarios.●●
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3.1. Solving Problems and Handling Solutions

One of the main learning goals of primary informatics is to learn how to solve problems, 
and represent, evaluate, verify and reflect on their solutions. We consider concepts and 
practices in this domain to be exceptionally productive and developmentally appropri-
ate. They can naturally contribute to all topics of primary informatics – including el-
ementary programming.

In informatics education we focus especially on the procedure of problem solving 
which leads from the initial to the final state (the solution) while keeping given rules. 
Pupils probably do not perceive the procedure as the most important part of solving 
problems, but from the perspective of informatics education it is the core of the problem 
solving – the product (drawing the house, cannibals and missionaries transported to the 
opposite bank of the river, getting to the target square of the ‘snake-and-ladder’ game) 
is only a means of motivation. Therefore we choose problems that have interesting solv-
ing procedure (method or steps). We should always focus on the procedure of finding 
the solution and on its externalized representation (see Fig. 1). We should not neglect 
to verify if pupils are able to execute, communicate, analyse, evaluate and modify the 
discovered method of solution.

When designing lesson plans dealing with problem solving, it is important to choose 
both appropriate problems and learning activities to be conducted during the lesson. For 
some problems there exist supporting digital environments that enable pupils to solve 
them through direct interaction and visualization. This hands-on approach to solving 
problems supports experiments, iterative solutions, repeating solutions and trying out 
different solutions.

For example: the well-known puzzle about transporting the wolf, the goat and a cab-
bage across the river using one boat is an ideal problem for implementing via a software 
environment (Fig. 2 left). By clicking objects pupils experiment with transporting them. 

Fig 1. The first image is the required outcome – a one stroke drawing. The second and the third images  
(the third one being in fact a sequence of images) are possible notations of the procedure of 
how to solve it. Both solutions demonstrate how a solving procedure can be noted.

Fig. 2. On the left the Wolf, Goat and Cabbage puzzle environment. Right: screenshot from a 
similar puzzle with missionaries and cannibals, see http://game-game.sk/18394/.
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Usually they solve the puzzle by trial-and-error method. Though, when they are asked 
how they have done it, they are motivated to reproduce and describe the solution and 
some of them are easily prompted also to put down the sequence of steps for transporting 
all items successfully.

If the environment is well designed it makes it easy to proceed from (1) solving the 
problem, through (2) experimenting with the solution procedure to the (3) represent-
ing/recording the procedure for future repeated solving of the same problem (maybe 
even without its immediate execution). These three steps in fact describe the advance-
ment from solving problems to programming.

These are computational cognitive operations that are involved while solving prob-
lems and handling their solutions:

Discuss and think about the core of a problem, about the relevant information ●●
provided by the problem assignment, about the conditions of solvability, about 
an appropriate procedure that will find a solution, about the difficulty level of 
the given problem, to look for similar problems that will help us to solve the 
problem.
Use different strategies for finding the solution – like drawing a diagram, list-●●
ing all combinations, guess-and-confirm, divide problem into smaller parts, find a 
similar problem, find a repeating pattern, look for the solution form the end etc., 
see Polya (1957).
Explain the solution to someone else, to teach a friend how to solve it (verbally, ●●
by non-verbal means, using a specific language).
Learn from someone else how to solve the problem (using verbal or non-verbal ●●
communication).
Write down the solution (by a picture, or series of pictures, using icons, text, video ●●
or audio).
Reason about the language and the form of notation of the solution in order to ●●
make it eligible for others.
Execute the solution and verify its validity, correct wrong steps of the solution.●●
Review certain properties of the solution (its eligibility, length, ‘price’… ), assess ●●
and compare it with several different solutions.
Look for different solutions of the same problem.●●
Reason about the non-existence of the solution.●●

3.1.1. Activities and Examples
An interactive microworld inspired by a task from the Bebras contest (see e.g. Dagienė 
and Stupurienė, 2016) enables pupils to experiment with sorting a group of children ac-
cording to their heights (Fig. 3). It is possible to switch two children by clicking on the 
first one then the second one. This microworld also records the steps of the solution into 
a text file. A teacher or a researcher can use it to find out what strategy pupils used – if 
they all solved the problem similarly or if they applied different strategies – systematic 
or more random.
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3.1.2. Pedagogy – Observations and Recommendations
The specific organization of the lesson is up to the teacher – she is responsible for choos-
ing the problems and selecting the activities according to the learning goals of the topic. 
Teacher can use many ready-to-use applications, microworlds and pre-made lesson plans. 
Many problems can be solved without the computer. Many tasks from the Bebras contest 
are suitable and they are available through the Bebras portal. The activities should be 
built around a direct manipulation with physical objects; or if they are implemented via 
some software application they should use appropriate pictures (dice, beads, building 
blocks, animals, persons …). It is crucial to motivate the pupils to actively think about 
the solution method and not to focus only on the end product – i.e. they should realize 
the difference between the procedure of drawing a house by one stroke and the resulting 
drawing where they can see no longer how it was done.

3.2. Controlling an Agent

Second domain of primary programming deals with two important and crucial concepts 
of pre-programming activities – direct and non-direct control of an agent. The first one 
is represented by a set of activities and suitable software applications that allow pupils 
to command an agent (a toy, another child, an on-screen character or animal etc.) to do 
something – mostly, to move to a given location. Each command is immediately ex-
ecuted and a result can be observed. Non-direct control of an agent gets pupils into real 
programming – they are asked to construct a sequence of commands in advance, which 
is then executed.

3.2.1. Direct Control of an Agent
Direct control of an agent can take place in a physical world where the teacher conducts 
an activity during which pupils give other pupils certain pre-defined commands (e.g. 
turn left, walk) to solve a given task (e.g. guide your friend from the desk to the door). 
Sometimes the commanded child can be replaced by a toy that is moved by hand ac-
cording to the commands. There are also toys that can be controlled by a remote con-
trol, or digital toys with control buttons placed directly on them. Ambient programming 

Fig. 3. Interactive application for a problem solving task.
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can also have similar characteristics, see (Eisenberg, 2009). In a software application a 
pupil controls a virtual agent. It is crucial for such microworlds to maintain age-appro-
priateness – using child-friendly graphics, presenting an engaging agent that a child can 
identify with or that can be perceived as a hero protagonist. In both cases (physical and 
virtual) the agent can execute only small set of well-defined basic commands – make 
a step, turn left, turn right, play a sound, take an object, pick a colour, set a pen size, 
turn pen down etc. In many software applications the virtual agent can be controlled 
directly but also by programming, i.e. without immediate execution of the command 
(see the next chapter 3.2.2.).

The most basic task for an agent is to move from one place to another. This task is of-
ten motivating enough and pupils are willing to carry it out and think about the sequence 
of commands to accomplish this goal. They gradually realise that:

Only a limited set of commands is available to use in the solution (in a physical ●●
environment the teacher determines them, in a microworld they are usually set by 
the application itself).
The current state of the agent is always represented by its visible attributes: rota-●●
tion, position, pen colour etc.
The execution of each command has a very concrete, specific and unambiguous ●●
effect on the agent and/or on the whole scene where it acts.

We choose the agents so that pupils are familiar with them and the activities they 
perform are more or less grounded in their reality (e.g. a bee flies to the flower, an ant 
moves objects) or at least actions of the agent should be believable (e.g. a turtle moves 
around and draws a line with its tail). Most agents therefore are animals, vehicles or 
human characters.

Many cognitive tasks listed in part 3.1. can be practised using activities mentioned 
in this chapter – by directly controlling the agent pupils can reason about the procedure 
of finding the solution, they can explain their solution to a friend, they can review spe-
cific properties of a given solution and it’s correctness, or think about possible notation 
of the solution.

Activities and examples
Each of the software applications that will be presented in this chapter has its own spe-
cific features. They use different agents and different control interface, some of them 
record a sequence of commands. If the sequence of the steps can be recorded, we should 
consider its level of abstraction – the commands could be e.g. coloured pieces of paths 
(Thomas the Clown) or arrows that guide the agent (World of the Ant, Bee Tasks). An-
other significant difference in various microworlds and applications is whether the agent 
moves in a rectangular grid (Ice Cubes, Bee Tasks, World of the Ant, EasyLogo, Baltie), 
in a graph (Thomas the Clown) or with no visible constraints (Scratch). Rotation mode is 
closely related to the movement and the grid type – the agent can rotate either relatively 
or absolutely. Relative rotation means that the agent turns depends only on its previ-
ous heading; this is most common in open complex environments (Baltie, EasyLogo, 
Scratch). Absolute rotation is common in simpler applications where the agent moves in 
rectangular grid, usually only in four possible directions.



The agent in Thomas the Clown application is the clown on the bicycle. He moves in 
the graph-like network of roads. The child controls him by clicking the blue, yellow 
or red road piece in the right centre of the screen (see Fig. 4 left). The commands are 
executed immediately but the sequence is also recorded at the bottom of the screen. The 
task is to get Thomas from one place on the map to another.

In the Ice Cubes microworld the robot pushes the ice cubes (Fig. 4 right). It is controlled 
by the keyboard keys and the task is to move all ice cubes to their designated places. The 
sequence of moves is not recorded. Many similar microworlds are available on the web, 
though they are often perceived as games without educational dimension. Both applica-
tions check if the solution is correct.

The World of the Ant application features an Ant as the agent (see Fig. 5 left). The goal 
is to guide it through the maze to the door. Pink flower and blue star enable the Ant to 
walk through colourful walls. The Ant is controlled by the keyboard keys. The sequence 
is not recorded.

In the Bee Tasks the agent is a blue insect controlled by clicking the buttons with arrows 
(see Fig. 5 right). The goal is to guide it to the flower. The sequence of the commands 
is recorded on the bottom of the screen. Both microworlds verify whether the solution 
is correct.

 
Fig. 5. On the left the World of the Ant application, on the right the Bee Tasks.

Fig. 4. On the left Thomas the Clown application, on the right an Ice Cubes microworld.
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EasyLogo is open environment in which it is possible to change the appearance of the 
agent (in this case a frog). The agent is controlled by three buttons in the top right corner 
(Fig. 6 left). Forward arrow moves it one step forward on the grid – the agent moves 
along the grid lines, not from centre of the square to the next square. The left and right 
arrows turn the agent relatively to its current position. The goal is to guide the frog to the 
pond. This application does not check whether the solution is correct, nor does it record 
the sequence of commands in the direct mode.

Baltie is another open environment (Fig. 6 right). The grid where the agent (a sorcerer 
named Baltie) moves is not visible. Similarly to EasyLogo there are three buttons for 
the movement – first turns the agent relatively to the left, second moves Baltie one step 
forward and the third turns him relatively to the right. Baltie can conjure pictures – a 
child can choose pictures form the huge pre-prepared set. The picture will appear in front 
of Baltie and it is also possible to construct more complex images consisting of many 
smaller pictures. There is no in-built control of the correctness and the application does 
not record the sequence of commands in this mode.

Some of these applications allow creating and adding custom tasks for pupils – 
World of the Ant and EasyLogo. In World of the Ant we cannot choose a different agent 
or change the final goal of tasks, but we can design the maze and place object on differ-
ent positions. EasyLogo is more opened – it allows to change the agent to any picture, 
set different backgrounds and completely rephrase the goal of the task (e.g. instead of 
guiding a frog to the pond we can ask pupils to move the frog along a square shape). We 
consider this an important feature – the teacher can design her own tasks which are bet-
ter suited for the pupils and their skills, or match the motivation for the specific lesson. 
However, designing new tasks, creating custom pictures and related technical obstacles 
put a lot of demands on the teacher.

Open programming environments, such as Baltie, Scratch or EasyLogo can be used 
for the direct agent-controlling activities as well. However, a meaningful task has to be 
designed (or programmed) by the teacher first. There is no in-built solution checking and 
if the teacher needs such feature she has to virtually create the microworld to achieve 
this. A pre-made and partially programmed activity e.g. in Scratch can simulate desired 

 
Fig. 6. On the left is EasyLogo, on the right is Baltie.
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features of direct agent control. A path for the agent is in the following example a part 
of the backdrop (Fig. 7 right). The cat is controlled by keyboard arrows – this behaviour 
was programmed by the teacher in advance. Teacher also included a script that checks 
whether the cat is at the end of the path or whether it deviated from the path earlier. 
Similar assignments can be added to EasyLogo (Fig. 7 left), but it is not possible to add 
automatic solution checking.

Pedagogy – observations and recommendations 
A teacher conducting these or similar activities must remember that the learning goal is 
to build basic understanding of controlling an agent by specific commands. The pupils 
should realize there is a causal connection between the commands and the behaviour 
of the agent. Since the control is direct and each command is immediately carried out, 
making this connection is possible for pupils before reaching formal operational stage 
of their cognitive development. In each application we presented the behaviour of the 
agent is visualized. This allows pupils to immediately see how they are progressing in 
the solution. We recommend using activities or environments that automatically check 
if the solution is correct. According to our experience, pupils are more motivated to 
solve problems if they have immediate feedback on their success. In our approach we 
always use direct control of an agent as an introductory activity to the very basics of 
elementary programming.

3.2.2. Indirect Control of an Agent – Building and Handling Future Behaviours
In the previous chapter we described activities in which the agent immediately carried 
out each command. Next step may naturally be focusing on planning the whole sequence 
of commands which will be executed only once it is complete. We call this approach 
an indirect control of an agent. Here again we can control either a physical agent (a 
classmate, a toy, or special programmable digital toy such as a Bee-Bot that is designed 
for that purpose) or a virtual one “living” in a software application on the screen. When 
working with physical agents pupils can write down the sequence of their commands on 
the paper, or draw it using pictures (an interesting activity by itself is to design the proper 
notation and discuss what ‘proper’ means in this context). E.g. programmable Bee-Bot 

 
Fig. 7. Similar assignments in EasyLogo and Scratch.
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does not display the sequence at all – it is entered by pressing the buttons atop the toy, 
but the child has to remember it or observe it when the toy moves according to the com-
mands. When using software applications, notation is usually given by its designers – 
some applications use icons with arrows, icons combined with text or different kind of 
pictures (e.g. colour of the road in Thomas the Clown).

Indirect agent control assignments usually have the same goal as activities described 
in the previous part – to guide the agent from one place to another. Again it is possible 
to include also other actions e.g., picking and using items or avoiding obstacles. Since 
the sequence of commands is explicitly recorded – and thus visualized and editable – 
pupils can finish the sequence or add missing commands, or even correct the sequence, 
i.e. work with the representation. We can classify the cognitive operations according to 
what has to be done with the sequence of commands:

Construct the sequence that guides the agent from its initial position to a final re-●●
quired position according to the assignment.
Interpret a given sequence of commands (there are various ways of how to verify ●●
the interpretation, the most straightforward is when pupils move the agent accor-
ding to the given sequence e.g., by clicking on the grid squares).
Identify the final position of the agent after executing the commands.●●
Identify the correct sequence among several sequences (more advanced version is ●●
to identify an incorrect sequence among several correct ones).
Complete the sequence if the last step is missing, or two last steps are missing, or ●●
any step is missing.
Identify and correct an incorrect command within the sequence.●●
Find alternative solution, find a solution with specific properties (e.g. the path is ●●
the shortest possible, or on its path the agent will cross equal count of yellow and 
blue squares etc.).

Activities and examples
While most activities described above are suitable for implementation in a virtual micro-
world, it would probably be unreasonable to include all possible types of assignments 
into one environment, thus getting too complex or too much time consuming for primary 
pupils. Therefore several different applications are being used in our primary schools 
that focus on specific tasks or certain groups of tasks.

Indirect controlling of an agent in Thomas the Clown is implemented e.g. in the straw-
berry picking task (Fig. 8 left): the robot is waiting at the entrance to the garden, once 
a player completes a sequence of commands for moving and picking the strawberries, 
the robot will execute it. The goal is to pick all ripe red strawberries in the garden. Se-
quence is created by clicking the icons in the left part of the screen and it is recorded on 
the panel above the stage. When the sequence is being executed the active command is 
always highlighted. This microworld automatically generates different gardens of 2 by 
3 grid squares.

In the World of the Ant (Fig. 8 right) we can also choose indirect control mode. At the 
bottom of the stage there is a set of commands – four arrows are for absolute rotation 
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and icon with legs represents moving one step in to the direction set previously. The Ant 
will carry out the sequence only after the child pushes the red button. The application is 
open to design many different mazes.

The Bee Tasks microworld was designed to offer several possible types of tasks we 
mentioned earlier. In its current version there are nine types – the first one was already 
described in part 3.2.1. as it is a direct control of the agent. The others are: interpreting 
a sequence of commands, constructing a sequence (the Bee has to get to the square with 
the flower, see Fig. 9 left), placing the flower on the square where the Bee will end up 
after completing the given sequence (again interpreting the sequence), adding a missing 
command (last one, last two, any in the middle), constructing a sequence (the Bee has 
to end in the square with the flower, but there are obstacles as well), and identifying a 
right sequence among several given (Fig. 9 right). A sequence is constructed by click-
ing on the icons with arrows – based on the same principle as in Thomas the Clown 
microworld.

 

Fig. 9. Two different assignments in the Bee Tasks microworld.

 
Fig. 8. On the left Thomas the Clown, on the right World of the Ant.
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EasyLogo offers a mode in which children plan and construct the sequence of com-
mands (Fig. 10 left). However, this application behaves rather differently – it executes 
the commands immediately after they are dragged into the sequence – it doesn’t wait for 
completing the sequence (commands are in the column at the right side of screen). In 
this sense the agent is directly controlled. However, there is a button “Run again” which 
re-executes the sequence after it is created.

If we want to use Scratch for this kind of activities, we first need to prepare a project – 
create a suitable backdrop, create sprite(s) and build the scripts for all functions, includ-
ing script(s) to verify a solution (if we want to). An example below (Fig. 10 right) is an 
activity in which the goal is to build a sequence of commands for the Beatle to move from 
its green (start) square to another green (goal) square without even touching any other 
non-white square. The backdrop is a grid of white and coloured squares. In the Beatle’s 
scripts area there are four blocks prepared for the pupils – already with their inputs prop-
erly set (move to the centre of a neighbouring square and turn left or right 90). Pupils will 
construct the whole solution (script) for that situation by duplicating and snapping the 
blocks into one script. This task has many variants of different levels of difficulty.

In both of these examples the task could be to fill in one or more missing commands 
into the incomplete sequence (solution). Some of the environments presented so far of-
fer an option for the pupils or for the teacher to add their own tasks of the same kind. 
Scratch, World of the Ant and EasyLogo allow us to do so.

Similar tasks (where the goal is to guide the agent to a given goal) are used also in the 
Bebras contest. Since 2010 primary pupils can be involved in the contest in a special 
category specially designed for them. One task was inspired by Thomas the Clown (Fig. 
11 left) – the farmer has to get to his cow, but on his way he needs to grab the bucket. 
All possible paths are depicted as a graph with edges of different colours. Pupils are 
prompted to select the track which meets the criteria.

Second example from the Bebras contest is quite difficult task that proved to be 
problematic as only 20 % of pupils solved it correctly, 17 % didn’t answer at all. The 
story is: “A mouse is roaming in the maze, until it eventually reaches the cheese. Philip 
was observing the mouse and used small cards with arrows to record its movements. 
Unfortunately he dropped the cards and only two of them stayed at their places (see the 

 

Fig. 10. EasyLogo and Scratch.



M. Kabátová, I. Kalaš, M. Tomcsányiová144

upper row of squares). Place the remaining cards and restore Philip’s record.” The task 
was interactive and pupils could drag the cards into empty slots using mouse.

The last described assignment illustrates that this kind of activity can be really diffi-
cult and can also be given to much older pupils. The variety of presented tasks show that 
guiding the agent is very rich context with many possible activities and a lot of potential. 
At the same time it is apparent that planning a sequence beforehand and executing it only 
after it’s recorded is a programming-like activity that involves abstraction over time. 
Also the specific notation and execution of the sequence by some automatic machine-
like agent is a feature of full-flagged programming activity. However, these tasks are still 
set in a concrete situations and their solutions do not require pupils to design universal 
solutions that involve this kind of abstraction.

Pedagogy – observations and recommendations
It proved to be crucial that the application itself verifies whether the solution is correct. 
If the microworld offers several tasks or several levels of difficulty, pupils should not 
be allowed to skip them freely. Most motivating environments have a game-like design 
presenting a bit more difficult task in each level. The designers of the microworld should 
always prepare a set of tasks to be solved by pupils. They should be ordered according 
to their cognitive demands, they should be motivating and engaging, prompting pupils 
to learn new concepts and challenging to engage more demanding (but still developmen-
tally appropriate) cognitive operations. It is useful if the designer prepares several sets of 
tasks as they can be used for achieving different learning objectives, in different classes, 
for pupils at various stages of the learning process. Interesting option is to allow teachers 
to create their own tasks, however this approach has proven to be far too optimistic as 
only a small fraction of teachers are ready to do so.

3.2.3. Classification of the Microworlds Used for Direct and Indirect Control  
of a Virtual Agent
In part 3.2 we have presented several applications, microworlds and environments that 
are suitable for solving problems and learning computational thinking via programming-
like activities. They are all suitable for primary school pupils as such or after certain 
preparatory steps. We summarize their features in Table 1.

 
Fig. 11. Two Bebras tasks based on indirect control of an agent.
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3.2.4. Some Advanced Concepts of Elementary Programming
In the previous two parts we focused on basic concepts that are in our opinion and ac-
cording to our experience suitable and appropriate for all primary school pupils. Now 
we will present several others – more advance concepts – which still could fit into upper 
end of the primary programming, but probably not for the whole class and only with well 
experienced teacher.

Parameters
In some applications parameters in existing commands are rather intuitive and easy to 
use (e.g. in Scratch, Fig. 12 left). In this case there is no need to address this concept ex-

Table 1
Features of microworlds

Movement 
commands

keyboard keys World of the Ant, Ice Cubes
icons with arrows Bee Tasks, EasyLogo
icons with agent image Baltie
icons with colours Thomas the Clown
cards with text Scratch

Agent rotation 
style

without rotation Thomas the Clown
absolute rotation World of the Ant, Ice Cubes, Bee Tasks
relative rotation EasyLogo, Baltie, Scratch

Grid type graph Thomas the Clown
rectangles or squares Thomas the Clown, World of the Ant, Ice Cubes, Bee 

Tasks, Baltie
rectangular – lines EasyLogo
free movement (coordinates) Scratch

Notation (in direct 
control mode)

without notation World of the Ant, Ice Cubes, EasyLogo, Baltie, Scratch
automatic notation Thomas the Clown, Bee Tasks

Solution 
verification

no verification EasyLogo, Baltie, Scratch
automatic verification Thomas the Clown, World of the Ant, Ice Cubes, Bee 

Tasks

Agent actions only movement and/or rotation Thomas the Clown, World of the Ant, Bee Tasks, 
EasyLogo, Baltie

collecting objects Thomas the Clown, World of the Ant
moving objects World of the Ant, Ice Cubes
using objects World of the Ant
other Baltie, Scratch

Goals arrive at destination Thomas the Clown, World of the Ant, Ice Cubes, Bee 
Tasks, EasyLogo

other EasyLogo, Baltie, Scratch

Pre-made 
activities

no in-built activities Baltie, Scratch
set of fixed inbuilt activities Thomas the Clown, Ice Cubes, Bee Tasks
set of activities provided, 
custom ones may be added

World of the Ant, EasyLogo
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plicitly – children will understand immediately how to use them. Rather intuitive way to 
set the parameter is using a drop-down menu – in Scratch there are several – e.g. choos-
ing a sound which will play by the  “play sound” command. In this case pupils cannot 
make a mistake. Another child-friendly parameter is pen colour chosen from the palette 
(see EasyLogo displayed on Fig. 12 right). Parameters are present also in some modes 
of World of the Ant and in Baltie environment.

Loops
Several of described microworlds provide loops – Scratch, EasyLogo, Baltie. However, 
they are usually present in more complex open programming environments. Led by our 
department a small microworld focused on loop constructions was designed and devel-
oped (Fig. 13). In this application pupils control the Jumper who has to reach the door 
by jumping over platforms. The microworld is designed as a game – there are 24 levels 
in which the child solves more and more complex situations (it is also possible to design 
and add custom levels). Eventually the space for the commands becomes limited and 
pupils cannot solve the problem without using a repeat loop. This design proved to be 
highly motivating and pupils are deeply keen on completing the “game”. On the other 
hand, one of the teachers using this microworld reported that only about a half of pupils 
aged 8 to 9 years were able to learn to use the loop themselves. Loops appear also in the 
LEGO WeDo programming language that is designed for primary schools. In this case, 

Fig. 13. A game-like microworld named Jumper is focused solely on loop constructions.

 
Fig. 12. Parameters used in Scratch and EasyLogo.
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however, some commands implicitly contain repeated behaviour – turning on the motor 
means it will move until the program is stopped or some other action is assigned to it. As 
our research team reported pupils use the loops block rather easily and they intuitively 
understand their use in the programs they create for their robotic models.

Procedures
Some programming environments for primary pupils do not offer procedures (Scratch 
1.4), others are designed to use them (EasyLogo, Scratch 2.0). According to our experi-
ence this concept is rather complex and is a good candidate to postpone to years 5 and 
6. Here is an example of two procedures (Fig. 14 left) in EasyLogo. Pupils at first do not 
design them, as these loops are already prepared in the activity; she is prompted to use 
them in the program.

3.3. Tinkering with Interactive Environments

A programming environment named Living Pictures (influenced by Russian PervoLogo) 
has been specifically designed in our department to teach pupils some object-oriented 
concepts within elementary programming. In this environment pupils populate the virtual 
world (represented by a background) with moving objects – characters, animals, vehicles, 
plants or anything they choose from a pre-made set of pictures or draw them themselves. 
From the perspective of primary informatics pupils learn to control one or more objects, 
define their behaviours, clone them, set their properties and reactions to events.

Each object is at first depicted as a Logo turtle – the child should realise that this is 
in fact an abstract object that can take any form. Each object has different properties, its 
shape and position among them. Basic action of the object is its reaction to the onClick 
event (e.g. it can move few steps forward). Other events are triggered when the project 
is set to run and when objects collide, but we recommend to program these events later 
– with lower secondary school students, or with only some high achievers at the end 
of year 4. This programming environment is open – there are no pre-set activities. All 

Fig. 14. EasyLogo procedures for drawing a yellow rectangle and red triangle are used to draw house.
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assignments have to be designed and presented by the teacher. It is possible to add cus-
tom backgrounds and pictures. The teacher can adjust also the set of commands for the 
objects so that the pupils see only a limited sub set (Fig. 15). We consider this high level 
of customizability to be important especially if the application is designed for primary 
pupils. Setting up the user environment so that it is as simple as possible is crucial for 
the introductory lessons.

Another advantage of this application is that it is possible to export a project as an 
executable file (EXE). Thus pupils can be motivated to create moving pictures for their 
younger classmates (in accordance with Papert’s principles of constructionist learning). 
Pupils can present the executable file to their friends or relatives.

In next parts we will illustrate several activities that can be done in this environ-
ment. We will focus on shape, position and rotation of the object, and we will use three 
events – onClick, onRunProject and onCollision. We believe that the outlined sequence 
of activities leads from designing a scene and setting the properties of objects to execut-
ing dynamic scenarios with multiple objects with different behaviour (which involves 
abstraction over time and over situation as well, see Blackwell, 2002).

3.3.1. Multiple Agents and their Properties
In parts 3.1 and 3.2 pupils controlled only a single agent. Using Living Pictures (or 
similar microworlds) it is possible to introduce multiple agents with different or identi-
cal properties. We prefer to tinker with properties that are visible – shapes, positions, 
and rotations. First, pupils should encounter objects with shapes that enable to see its 
rotation (character, animal …) later they will learn that for some shapes rotations are not 
observable (snowflake, sun). A good metaphor for describing such activity is a theatre 
– there are several actors on the stage, each of them has their own specific scenario and 
eventually they interact. This description helps with distinguishing the preparation phase 
(setting the properties, preparing sequences of commands) and the execution phase (the 
objects carry out their instructions).

Activities and examples
A good introductory activity is populating the world – pupils choose the background 
(green hills and sky) and place several objects on it, then change shapes of these objects 

 
Fig. 15. Whole set of all commands (left) and limited set designed for a specific activity (right).
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so they look like sun, clouds and trees. We can ask pupils to shrink or grow the objects 
according to their positions in the background so that an illusion of depth is created (Fig. 
16 left). The features used here are: adding objects, changing their shapes, scaling down 
and scaling up and cloning objects. This activity can be done in many different settings 
– for example in the outer space (see Fig. 16 right). Rotation of the object can be also 
used in static scenarios (the astronaut is looking towards the aliens).

3.3.2. Static Scenarios
Clicking on or touching objects in the screen is nowadays the most intuitive way of 
interaction with the digital devices. This trend was set with the Windows interface and 
now is reinforced with touch screen technology. Objects in Living Pictures have a pre-
set onClick even that is triggered if the object is clicked by a computer mouse. Pupils are 
already familiar with this event and assigning a reaction to the object when it is triggered 
is the next step.

Activities and examples
In Living Pictures each object has its own event window into which the commands 
for the object are dragged from the command palette. When designing static scenarios 
pupils will change the shape, size and rotation of the objects. The most straight forward 
activity is changing costumes. First the background is chosen, then objects are placed. 
For each object that is a piece of costume the pupils will set a behaviour – when it is 
clicked its shape will change to the next one form the chosen set of shapes.

As an example let us select a winter background with a snowman. Objects that 
will change their shapes with a mouse click are the hat, the broom, his face and but-
tons (Fig. 17 left). Similar projects are easily done in Scratch. The sprites have when 
clicked event and a single next costume block rotates a set of prepared shapes for the 
sprite. In our example (Fig. 17 right) three sprites can be clicked – clown’s hat, eyes 
and mouth. Each object has the same and very simple script – switch the costume to 
the next one.

The greatest disadvantage of Living Pictures is that pupils can not immediately test 
the script and see what happens (they have to close the event window first and then run 
the project) – in Scratch it is possible. In Living Pictures it is also not possible to see the 

 
 Fig. 16. Two static scenarios done in Living Pictures.
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set of shapes for the object or which one comes next. In both environments we should 
encourage pupils to design the desired behaviour first for one object and only once it 
is tested and it works properly they clone it. This is done in accordance with object-
oriented approach in programming where the programmer first designs the prototype 
object and its methods. Only after that is it reasonable to create inherited classes and 
objects with modified behaviour. Primary school pupils can learn to distinguish different 
objects with different properties and behaviour, or to tell what objects have in common. 
We believe this level of abstraction is appropriate for the primary pupils in the highest 
years (10–11 year olds).

3.3.3. Dynamic Scenarios
Dynamic scenarios in Living Pictures environment involve assigning a motion to the 
objects. Most common is setting an infinite loop for the motion, which is done by check-
ing one of the options in the script (note that loop is not provided here as a programming 
structure). Throughout these activities pupils better understand the difference between 
preparation of the scene and running a project.

Activities and examples
In the Pond project pupils are prompted to set a background that will represent the pond. 
They place an object and change its shape so it looks like a fish. Then they set its direc-
tion – on our picture (Fig. 18 left) it will face right. In the event window they will com-
mand the fish to move forever forward. Default behaviour in Living Pictures is: if the 
fish is on the right edge of the screen it does not stop to move but it reappears on the left 
edge – objects do not bounce by default. This is a deliberate design choice that enables 
us to have an object which is forever moving to the right on a finite screen. After testing 
the fish’s behaviour pupils clone it. Now they can change direction for some of them, or 
add some commands to onClick event (e.g. the fish disappears).

This is one possible set of activities in Living Pictures:
Setting properties (shape, position, scale, direction) and cloning objects.●●
One or more objects react to the ●● onClick event.

 
Fig. 17. Left: The “t1” window displays the onClick event with one command – change 
shape to the next one – which looks like a filmstrip. On the right similar project built in 
Scratch.
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One object moves and reacts to the keyboard arrows; navigating this object is ●●
similar to direct agent control activities described in 3.2.
Infinite movements of one or more objects; only one command is given to objects ●●
(usually move forward) and it is set to repeat forever.
Infinite random movement of one or more objects on the scene, e.g. a butterfly is ●●
flying on a meadow, or Thomas the Clown is cycling on the plaza.
Infinite (random) movement of one or more objects on the scene and their reaction ●●
to onClick event. This activity is on the edge of game design – pupils can prepare 
a scene where objects move randomly, when they are clicked they disappear. Aim 
of the game is to hit all the objects.
Infinite (random) movement of one or more objects on the scene and their reac-●●
tion to onCollision event. These kinds of activities are probably too complex for 
primary pupils, but if they are familiar with all previously listed concepts, they 
may be able to do them. An example: one object is a basket that reacts to the arrow 
keys, other objects in the scene are apples that are falling down (they move for-
ever downwards), when the apple hits the basket it disappears. More complicated 
scenarios can be devised, but we believe there is too much abstraction involved 
and we do not consider this type of activity to be age-appropriate at Slovak pri-
mary level (consisting of only four years up to 10 years old pupils).

3.3.4. Pedagogy – Observations and Recommendations
We believe that tinkering objects, their properties and behaviours is an excellent oppor-
tunity for the primary pupils to learn the very basics of the object-oriented approach to 
programming. Activities in Scratch or Living Pictures are very intuitive. Pupils learn to 
change and set properties of objects, to distinguish the development phase form the run-
ning phase, to plan the future behaviour of objects, incorporate looping actions of objects 
and even begin to tinker with random values. It is crucial that these environments contain 
a large set of pre-made graphics and they should be opened to adding custom pictures. 
We believe that properly designed environment for tinkering with objects should:

Allow to add object easily.●●
Make changes in object properties (like shape, size or position) immediately visible.●●

 
Fig. 18. The Pond project created in Living Pictures.
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Enable the object to react to at least three events: ●● onClick, onRunProject, oOnCol-
lision.
Feature easy pupils-friendly manipulation with objects and their properties – by ●●
clicking and dragging.
Enable cloning objects together with their behaviours.●●

3.4. Implementation of Elementary Programming: Various Ways and Various Tools

It is apparent from activities described in parts 3.1, 3.2 and 3.3 that core of primary 
programming can be learned using specialized software applications or microworlds 
that are (a) specifically designed for primary pupils and (b) designed to address the 
learning goals we have listed earlier. There are many similar applications being created 
around the world: Scratch (and its newer version Scratch 2.0), Scratch Jr., Microworlds 
JR, LEGO WeDo or Baltie. Several powerful microworlds have been developed in our 
department and made available for teachers and their pupils through various portals, 
websites, projects and PD sessions. Those include Thomas The Clown, World of the Ant, 
EasyLogo, Living Pictures, Jumper and Bee Tasks. Ice Cubes microworld and many 
similar ones originate from ‘Infovekacik’ – an older Slovak on-line magazine for pupils 
created in cooperation with our department.

Another productive means to support implementation of primary programming into 
formal education for all children is the international contest Bebras. In Slovakia we 
initiated a special category for primary pupils and many contest tasks are deliberately 
designed to incorporate problem solving and elementary programming concepts. The 
national success and high number of contestants suggest that pupils and teachers are 
interested in this form of informatics.

4. Programming in Primary Teachers’ Professional Development

All Slovak primary teachers have to get a master degree from a pedagogical faculty of 
one of our universities. They are not specialists – they teach pupils of years 1 to 4 (6 to 
10 years old children) all subjects (sometimes excluding foreign languages and/or infor-
matics). In 2008 a new compulsory school subject was introduced – primary informatics. 
However, pedagogical faculties have failed to update their study programs to include 
corresponding pre-service development for future teachers till today. Fortunately, a na-
tional project focused on professional development of in-service informatics teachers 
was launched in 2008 (till 2011) and authors of this paper were involved – together with 
the teams from five universities across the country – in developing its strategy and con-
tent and delivering it to 700 in-service teachers. The main goal of the project was to offer 
a modern, up-to-date, high quality education necessary for teaching this new subject at 
primary schools. Note that similar situation and PD strategy is being reported from the 
Czech Republic by Vanicek (2013).
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Within the Slovak national project, 700 in-service primary teachers attended 18 
study modules (each 6 hours long). Each module belonged to one of four tracks: Digi-
tal literacy; Informatics; Didactics of primary informatics; and Modern school. The 
Informatics track included six modules: Computer and digital devices; Information 
around us 1–3; and Problem solving and basics of programming 1–2. Teachers that 
graduated from the PD should be able to use digital technologies both in their classes 
and when preparing for them. They should perceive the elementary informatics as an 
important part of pupils’ education and development, being able to meet the learn-
ing objectives of primary informatics as prescribed in the national curriculum. The 
study materials and whole lecturing process was designed to prepare the teachers for 
future development in digital technologies – for new microworlds and new operating 
systems, and also for new devices that would be used in the classrooms in near future. 
Authors of the study materials and lecturers took great care to introduce the teachers 
to a variety of software applications and appropriate teaching strategies. Teachers were 
learning how to evaluate appropriateness of software applications and microworlds 
and how to use them in the classroom.

From the perspective of this paper we find most relevant the modules dealing with 
problem solving, elementary programming and corresponding didactical materials. 
These areas had not been treated until then in any literature in our country (and hardly 
anywhere) and designing that content and delivering it to 700 in-service teachers was 
a real challenge and important innovative step towards new primary informatics. For 
the sake of the project, several new microworlds had been created, e.g. EasyLogo and 
Living Pictures, and participants used many other already existing microworlds and pro-
gramming environments designed for primary pupils by experts in Slovakia.

One of the most successful new developments in the project was an idea and im-
plementation of the Cards Tool (Tomcsanyi 2012). It is an authoring application that 
enables the teacher to design simple but vastly variable activities for any (primary) 
school subject. Participants of the project enthusiastically used the tool and created 
interesting activities that confirmed that primary teachers are creative and persistent 
and can use digital technology in their teaching. Since then, several thousand differ-
ent activities created by the teachers themselves in the Cards Tool have been posted at 
Slovak portal zborovna.sk.

Although we lost touch with most of the participants when the project finished, we 
are interested in following how they manage to utilize new skills in their practice. There-
fore we sporadically address a small sample of the participants and ask them to reflect 
about the project’s longer term benefits. From that (mostly anecdotal) data we may for-
mulate several interesting observations about the implementation of the problem solving 
and programming activities at primary level:

Primary informatics lessons are usually run in a special computer lab, dedicated to ●●
primary key stage (older pupils usually use another computer lab).
In each year group (2, 3 and 4) around 5 to 8 lessons are allocated to ●● problem solv-
ing and programming. These are usually taught in a row, often towards the end of 
the school year.
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Teachers are using the study materials extensively and share them with other col-●●
leagues. They have altered their lesson plans to incorporate teaching methods ap-
plied in the project’s PD sessions.
Problem solving tasks (as presented earlier) are not highly popular among the ●●
teachers; many teachers simply skip them. They rarely realise that those tasks are 
not puzzles nor riddles, nor that their goal is not to find the solution by trial-and-
error but systematically look for the solving method and reflect about the exter-
nally represented solution.
Teachers enthusiastically use some microworlds that were created for the project – ●●
most of all The Jumper, World of the Ant and The Living Pictures while EasyLogo 
is less popular. Interestingly, each teacher has a strong preference for exactly one 
of the microworlds.
Microworlds with the in-built sets of tasks of increasing difficulty and automatic ●●
verification of the solutions are used the most. Teachers often say they cannot pro-
vide immediate feedback for all pupils in the group and primary pupils are very 
keen on learning if they are progressing in the assignments. The sets should be 
designed to be solvable within one lesson (45 minutes). It should not be possible 
to skip the tasks in the set – only after the task is solved correctly the child can 
proceed to a harder one. 
Open programming environments are difficult to use and the teacher has to be ●●
better prepared for designing her own meaningful assignments and tasks within 
such environments (often it requires to attend extensive specialized training for 
the chosen environment). Our primary teachers probably have not reached that 
level of expertise yet.
Most of the teachers are familiar with, visit and use the ●● Infovekacik website – an 
on-line magazine for children with dozens of game-like microworlds. It would 
be probably useful to create a web portal with similar content and add lesson 
plans and recommended teaching methods. Teachers need good resources for their 
teaching that would inspire them to search for new suitable microworlds and soft-
ware applications.
Many teachers use The Cards Tool to design their own simple activities for ●●
other school subjects (mostly language and science, only rarely for primary 
informatics).
All teachers are appreciative and see high value of the project’s PD and of the new ●●
subject.

In conclusion, we believe that the national project and its PD programs were well 
designed and conducted. The participating teachers do incorporate learned skills and 
knowledge into their teaching. However, some of our plans proved to be too optimistic – 
most notably our inability to share with the primary teachers the importance and learning 
potential of the problem solving tasks (as described earlier in 3.1). Another failed expec-
tation was to assume they would design their own sets of tasks for the pupils to support 
their informatics learning objectives. Teachers prefer to use the activities we prepared 
for them and their PD. Clearly it is vital to provide suitable series of activities with each 
microworld or digital toy/tool.
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5. Discussion and Conclusion

Presented approach to primary programming has resulted from our previous experiences 
with teaching programming and developing programming interventions for all stages of 
schools, including university study programs for future teachers of informatics, for sev-
eral decades. Our professional roots lie in Logo culture, into which our Comenius group 
has contributed by two internationally recognized versions of Logo: Comenius Logo and 
Imagine Logo. From that background we inherited our endeavour to respect the needs of 
students, together with other principles of Papert (1999) such as:

The Logo programming language is far from all there is to and in principle, we ●●
could imagine using a different language, but programming itself is a key element 
of this culture.
So is the assumption that children can program at very young ages.●●
And the assumption that children can program implies something much larger: in ●●
this culture we believe (correction: we know) that children of all ages and from all 
social backgrounds can do much more than they are believed capable of doing. 
Just give them the tools and the opportunity.
Opportunity means more than just “access” to computers. It means an intellectual ●●
culture in which individual projects are encouraged and contact with powerful 
ideas is facilitated.

We have also learned how important it is to integrate programming into pupils’ learn-
ing experience only if they themselves see the meaning in doing so and perceive pro-
gramming as a means to express themselves, to solve problems, to make things happen... 
In the case of primary pupils, such programming should most probably restrict to build-
ing simple future behaviours in certain notational system and solving tasks, which arise 
from handling such behaviours.

Although we consider elements of programming to be key constituent of informatics 
in primary education, we do not develop it as a means to attract more students to later 
Computer Science majors. We build it as a valued and legitimate core subject contrib-
uting to general education and complex development of every girl and every boy. Yet, 
we hope, that it may consequently play that role as well – the skills, knowledge, and 
attitudes, which pupils gain in elementary informatics may later help them build sound 
understanding of Computer Science principles.

Programming, which we consider appropriate for primary pupils, can be naturally 
divided into three domains (while first domain should proceed the other two, we believe 
that the second and the third ones can be implemented in any order or even in parallel). 
They are:

Solving problems and handling solutions.●●
Controlling an agent.●●
Tinkering with interactive environments.●●

For each domain we have presented its main learning goals, corresponding com-
putational concepts, computational practices, and essential cognitive operations to be 
performed; selection of activities and examples, which in detail illustrate various types 
of tasks and problems to be solved; several software applications that are being used; 
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and also several pedagogical observations and recommendations, which resulted from 
our collaboration with the primary teachers.

Most of the programming environments, which are being used at Slovak primary 
schools, are free applications, usually small microworlds focused on one of the domains 
listed above, and one or several cognitive operations belonging to that domain. As partly 
validated in chapter 4, teachers usually exploit environments which they find attractive 
(although often not being able to verbalize which criteria they apply for judging this). 
However, they clearly favour environments supplemented with teacher materials and 
activities for pupils, and environments, which they may give away to their pupils for 
their home work and play.

Our experience in implementing programming at the lower secondary stage ISCED 2 
(although not based on systematic evidence yet) shows that three domains presented 
in the paper for primary stage can seamlessly be picked up and further elaborated in 
lower secondary years to cover further cognitive operations (like conditional steps in 
programs, abstractions, i.e. procedures without or with parameters etc.). However, ex-
tensive research to help us better understand cognitive demands of such programming 
and real values of educational programming for the complex development of primary 
and secondary students is inevitable. We have already undertaken some initial steps in 
this direction, see e.g. (Gujberova and Kalaš, 2013).

As we document in chapter 1, informatics in upper secondary education has con-
siderably long tradition in Slovakia. In recent years, it has been extended as a manda-
tory subject to lower secondary level (2005) and primary level (2008). In chapter 2, we 
briefly characterized its curriculum and its learning goals and especially the key role of 
programming within the subject.

We fully focused on educational primary programming in the paper. In chapter 3, we 
presented in detail our approach to such programming together with corresponding com-
putational concepts, cognitive operations, and programming environments employed in 
our classes. In chapter 4, we then described how the CPD for primary in-service teachers 
has been implemented – with partial successes and numerous obstacles and challenges 
that require permanent and intense support from the institutions responsible for educa-
tion. In spite of many obstacles and slow progression, there are many positive and stim-
ulating reactions from primary teachers who implement elementary informatics with 
exceptionally positive involvement. They also report positive attitudes of their pupils.

The development of the subject of informatics in primary school is a long-term pro-
cess. In it, we must thoroughly respect the requirements of the developmental appropri-
ateness, carefully observe and analyse the needs of the pupils, respect all stages of their 
learning processes, set correct priorities, and apply proper tools – so that we support the 
development of such programming, which our pupils will clearly benefit from. In this 
aspect, we deeply agree with Papert, Ackermann and other seminal authors when they 
advise not to learn programming for the sake of programming. Instead, we should... 

use the knowledge of programming to create contexts where other 
playful learning can happen. Children will engage in programming 
if they can get something out of it right now – not later when they’ll 
grow up, (Ackermann, 2012).
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1. Introduction

International Olympiad in Informatics (IOI, IOI-WEB) is the annual International Sci-
ence Olympiad for high school students. Since the first IOI held in 1989, a certain 
amount of data involving the competition is accumulated. However, due to a quite dif-
ferent quality of data for different years as well for different aspects of IOI, the data on 
its own is not useful.

Usually, we need the data to answer specific questions, like the following ones:
What are the results of the competition for the given year?Question 1.	
In what years did the given country participate?Question 2.	
How many medals overall has a certain country achieved?Question 3.	
What results did the particular person achieve?Question 4.	

As far as International Science Olympiads are concerned, Question 1 is answerable 
as publishing the results usually takes place. Sadly, however, publishing data about the 
event often ends here. About further questions, to the best of our knowledge, before the 
work on this project began, only International Olympiad in Mathematics (IMO, IMO-
WEB) had a centralized system that could answer all these Questions. Most of the other 
efforts in collecting and maintaining the statistics were not made by the organizers. Most 
notably, Waldemar Gorzkowski and Ádám Tichy-Rács compiled the list of winners for 
International Physics Olympiad (IPhO), but it was done in a separate PDF file, which is 
not very customizable and exportable and included only medalists.
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For International Olympiad in Informatics, the situation was even grimmer. Official 
IOI website (IOI-WEB) only collected individual IOI results, and often only for the 
medalists – the issue we will cover more in-depth in Chapter 4. There also existed two 
parallel projects – the one by Tom Verhoeff (TUE-NL) and another one by Stanislaw 
Waligorski (EDU-PL). Efforts to bring the results under similar format and process it 
to display results per country (EDU-PL) were made, but both projects were out-of-date 
and abandoned. Even the official website (IOI-WEB), despite several renovation at-
tempts, often relied on official individual IOI websites, which have a tendency to go 
offline in some cases.

The best resource at the time was SnarkNews project managed by Oleg Hristenko 
(SnarkNews). However, despite being able to answer Questions 3 and 4 (on medalists 
only), for old IOIs it only had a list of names and countries of all medalists in that year, 
which was far from ideal. Furthermore, to the best of our knowledge, it did not appear to 
solve the problems about data aggregation we will touch upon in Chapter 2.

With this in mind, the goal of the project was to collect as many data as possible and 
aggregate them in a unified format. Further, the goal was extended to create and imple-
ment an IMO-like system to be able to explore the data collected. This paper tells the 
story of this project from its inception to becoming part of the IOI infrastructure. We 
hope that the lessons we learned could be useful to other International and Regional Sci-
ence Olympiads looking how to overcome the same problems we tackled.

2. Data Collection

The work on this project began soon after IOI 2011. There was an interest in seeing the 
cutoffs for past IOIs to observe how they have changed percentile over the years. It was 
discovered that collecting the scores necessary for each kind of medal was not a trivial 
task, but after some time the necessary data was gathered (IOI-EDU).

At this time, the scale of the problem IOI had with statistics was observed, as 
some of the required data was only contained in one of the above-mentioned proj-
ects (EDU-PL), which in 2011 was already offline and was only available through the 
Wayback Machine (Archive). Despite the initial goal to collect only cutoff scores, it 
was quickly realized that in fact we have collected names, countries and at least total 
scores of every single IOI medalist. This meant that at least for some sense (in this 
case, IOI medalists) we can have some basic information, which led to the inception 
of this project. However, to illustrate the incompleteness of the data available, we can 
look at Fig. 1 and see that currently only 61% of IOIs have full per-task scores of all 
contestants available.

Again, limiting ourselves to IOI medalists only, it is trivial to process the raw data 
in such a way which could help us easily answer Questions 2 and 3. The biggest chal-
lenge with aggregating data, perhaps surprisingly, lies in Question 4. It has a couple of 
problems in its core and none of the resources available at the time appeared to have 
tackled it. First, the mapping function from a person to a name is not injective. So we 
cannot identify a person only by the name. Even more, as was discovered during the 
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collection of the data, even a tuple of name and a country is not enough to identify a 
person – there are two different people named Chen Zheng from China having partici-
pated in IOI.

Even bigger problem is the fact that the function mentioned above is not even a func-
tion. Putting aside the issue of a person changing a name (which in fact had occurred 
before – Jeppe Hallgren was known as Jeppe Petersen during IOI 2010), there is a seri-
ous issue of using a different spelling for the same person across different years. Most 
notably, Gennady Korotkevich was sometimes spelled as Henadzi Karatkevich. This 
whole issue is easily avoided with the help and understanding of the problem by the 
organizers – for example, the current IOI registration system asks leaders to pick specifi-
cally whether any delegation member is already in the registration database. However, 
until this support was added, this crucial part of information was lost, and so the biggest 
challenge in the whole data collection process was to recover this information.

In general, it was found that the same person is likely to represent the same coun-
try, although of course some exceptions are occurring like Fieke Dekkers (full name: 
Sophia Antonia Janna Dekkers), who was a member of a delegation from both Neth-
erlands and the United Kingdom or Rob Kolstad representing the USA and the United 
Kingdom. Even limiting ourselves to contestants, which we are at this stage, Tomasz 
Czajka has won two gold medals – one for Poland and one for the United Kingdom. 
Furthermore, it is reasonable to expect that if it is the same person, then he has com-
peted in close to consecutive IOIs – even if not strictly consecutive, a maximum gap 
of two IOIs is expected. Again, this does not hold if we are considering all delegation 
members, especially because it is common for former contestants to appear as a delega-
tion member after some gap. However, at this stage, these two assumptions turned out 
to be a good basis for determining whether two differently spelled or written names are 
in fact the same person.

It was decided that it is not realistic to expect that decision can be made automati-
cally without human input. However, it is certainly possible to provide a good set of 

Fig. 1. Availability of contestants’ scores for IOI 1989–2016.
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candidates for a human to look at in an attempt to minimize the human effort required. 
For the spelling differences mentioned above (which usually were a lot smaller than in 
the case of Gennady Korotkevich), Levenshtein distance (Levenshtein) between strings 
was quite a good indicator – if it were below a certain threshold, we would need to look 
at the pair to determine whether they are in fact the same person. However, it did not 
help to identify the second common case – if a person has several middle names, then 
often one set of middle names appeared in one year and a different one in another. In 
an attempt to tackle this issue, Levenshtein distance algorithm was run between all pos-
sible subsets (with the size at least 2) of individual words from the original strings. If 
any of those distances were small enough, the pair got triggered. In retrospective, while 
this did not catch all the cases, we feel that it generated a good enough accuracy in the 
original data set released.

Instead of unifying everything to a single format, as much data as we could find was 
released as a single Excel file (IOI-EDU). This included some tricky bits which were not 
documented well. For example, at IOI, the host can participate with the additional teams. 
At present, these teams are not competing officially, and so their representatives simply 
appear in the overall results at the proper position by the score but without any rank or 
medal. However, nothing of a sort was mentioned in the regulations earlier on. This 
led to a couple of precedents. Overall IOI 1989 winner, Teodor Tonchev, represented a 
second Bulgarian team. However, the official IOI 1989 printed booklet ranks him and 
declares a winner, so this interpretation was kept for that year. Secondly, in 1996 the 
second Hungarian team won four bronze medals. They were ranked in all the data we 
have seen and as per our inquiries, they appear to have received physical medals, so they 
were kept ranked as well.

To conclude, in this Chapter, we have discussed the challenges encountered regard-
ing collecting and processing the data. The most important issue we have identified here 
is to avoid having a person’s name and surname as the unique identifier. Even without a 
centralized system organizers should make efforts to record and keep information that 
can be used to tackle this problem in future.

3. Website Planning

At this point, there were no immediate plans to carry on. The data has been collected, 
and it has even received sets of corrections, in particular by Ilham Kurnia and Mojca 
Miklavec. However, creating a convenient interface to host the data collected was the 
end goal – while the created resource (IOI-EDU) was still much more useful than any-
thing available was at the time, it felt that there would be a huge potential wasted if it 
did not evolve further. To the best of our knowledge, while some efforts to create an 
IMO-like website based on the data collected were stated to us, they did not transform 
into anything concrete. That is the reason why in the spring of 2012 it was decided that 
the matter should be put in our hands and as such the plans for devising the website 
began to form.
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The most crucial thing to get right was the database design. It is tempting to incorpo-
rate a lot of redundant information in the tables so that obtaining the data necessary is as 
easy as possible. However, that could lead to huge problems with maintaining the tables. 
As such, the effort was spent into carefully designing the database format to minimize 
the amount of redundant data kept.

However, there are some notable exceptions to that in the database design. For 
example, the rank and the medal contestant earned is kept in the competition record. 
Technically this information is redundant since it can be obtained by analyzing others 
results. Such decision was taken, firstly, to speed up the computation, as it eliminates 
the need to query all that olympiad’s results if we are just interested in a single person; 
and secondly, to ease the handling of unranked teams, as now we can explicitly set 
a contestant to be unranked regardless of his position. The other example would be 
keeping the score of a contestant in his records directly. This is not always a redundant 
information since we do not always have full results (including the per-task scores). 
However, even if we had, the could have been some additional problems – at IOI 2000 
to avoid zeroes at the end of the competition extra 50 points were awarded per day for 
simply turning up, so in that case even if we had full results, the contestant’s total score 
would not simply be the sum.

The next big decision is about the cooperation between the database and the web 
server. It was thought that the database design was much less likely to change over time 
than the web server, and as such it was decided to write complicated queries which take 
care of everything, including composing and sorting the tables requested. This means 
that it is incredibly simple to write a website, as shown in Fig. 2, which queries the data-

Fig. 2. Simple website to query the contestants’ results from the database.



E. Kalinicenko, M. Opmanis166

base, once the queries are known. The website itself looks quite different nowadays, but 
this table is remarkably similar to the one used today.

Initially, there was a third goal conceived, which was to unite all International Sci-
ence Olympiads to be able to view a person’s results across all competitions. Due to lack 
of workforce, we decided to focus specifically on IOI instead. However, the database 
was designed with more than one science olympiad in mind and as such the database 
was split into two schemes – the one with IOI-specific data, like competition records, 
and the one with the common information (like information about people and countries). 
As a result, it would be easy for some other olympiad to use the information from the 
common information scheme, allowing people and countries to share information across 
olympiads.

The website itself was coded in PHP, however as mentioned previously, most of it 
is just the code for displaying the information in a pretty way on the website. The big-
gest part of the website devoted to this part is request processing, where we need to 
combine all information obtained from forms to a single SQL query, resize photos, etc. 
However, it would not take a ridiculous amount of effort to replace the web server with 
another implementation of it. As for the actual design and structure of the website, it was 
deliberately designed similarly to IMO’s statistics. However, certain aspects were im-
proved. For example, the country delegation page with photos is only easily accessible 
while IMO has not finished yet, and we made sure that the accessibility of that page is 
improved in the IOI statistics.

Finally, what is important to consider but easy to miss is the URL lifetime. Ideally, 
you would like to make sure that the link created a long time ago would still work in the 
future and would not become dead. This means that it is desirable to create a good set of 
URLs at launch so that they are as human-friendly as possible. For example, compare 
http://www.imo-official.org/country_individual_r.aspx?code=LVA and 
http://stats.ioinformatics.org/results/LVA, where both of these links lead 
to the same type of page. The major changes are also mostly backward compatible. For 
example, the link which could have been made in 2012 (IOI-GDR) still works, despite 
the server move and a country code change to comply with ISO standards. The only dead 
links resulted after merging the entries of two persons (usually, after an e-mail that two 
entries which we treat as different people are in fact the same person), and then using 
the old link would not redirect to the new one, however this will get fixed it if we can 
reconstruct with confidence which entries were merged from backups.

In retrospective, there were also a couple of bad design decisions. One of such is the 
“Login” button. Its sole purpose is to allow the moderator to login into the system to 
view and act upon submitted requests. However, it sometimes creates confusion when 
users think that they are required to have an account to submit a change, while in fact 
“Edit” or “Add” interfaces are available to anyone. Secondly, in the “Edit” interface, 
there is a “Submit” button after every section (Basic Information, Contact Information, 
Participation Information and Photographs). The reasoning behind this was a separa-
tion of requests by category with the idea that if additional verification is needed for 
confirming an IOI role, we could accept the changes of contact information separately. 
It turned out to be a bad decision, as on several occasions people had missed multiple 
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“Submit” buttons and were pressing the last one, which resulted in the loss of data when 
users thought they submitted a change while only the photo was submitted. Finally, after 
submitting a request, one receives a password to revoke it if needed. Sometimes people 
seem to believe that this is the CAPTCHA-like process for the request and accidently 
cancel them instead. Perhaps, revoking requests in a suggested way is not usual, and ad-
ditional warnings are required to prevent misunderstanding.

To conclude, in this Chapter, we have discussed the challenges encountered while 
designing a website. We feel that it is crucial to spend a considerable amount of time on 
planning the back-end, which can be easily overlooked in favor of the front-end. We feel 
that without a reasonable back-end, maintenance becomes unmanageable, which often 
leads to project abandonment.

4. Acquiring Data

The biggest challenge was obtaining the perfect (correct and complete) data. We cur-
rently have data about 5775 people in the database. However, a lot of data is still miss-
ing. Beginning from the first Olympiad at 1989 hosts usually produced a full list of the 
current IOI participants. Since 2000, this duty is stated in IOI Regulations (IOI-REG ver. 
2014 S5.10(4)). Nowadays, publishing such a list is straightforward since all the data 
is in the IOI Registration system and it is given to the host for organizational purposes. 
However, now, we have no such official source of information for years 1990, 1993, 
1995, 1998, 2002. Of course, now we can just point to the fact that these essential parts 
of IOI history are not kept in an appropriate manner.

During the initial project (IOI-EDU), only information about contestants was col-
lected. Now, we were suddenly interested in obtaining information on team leaders 
and other delegation members. We limit ourselves just to “international part” of IOI 
participants. In the IOI statistics, you cannot find information about representatives of 
the host country (management, technicians, guides, volunteers, etc.) who help to orga-
nize the whole event. Also, from the historical perspective, IOI roles are changing. For 
example, during the first IOIs team leaders comprised an International Jury not existing 
anymore as a body. In 1993, there were such positions as “President of the Interna-
tional Olympic Committee” and “President of the Technical Committee”. According to 
Regulations for that period, a president was nominated by the host country and today 
seems to correspond to the role of Chairman rather to the position of the President of 
IOI elected for a three-year term. Taking into account that it is almost impossible to 
solve all these semantic clashes of the past, we defined the following twelve roles of 
IOI participants: Contestant, Leader, Deputy Leader, Guest, Invited Guest, Observer, 
President, Executive Director, Chairman, International Committee (IC) Member, Inter-
national Scientific Committee (ISC) Member, and International Technical Committee 
(ITC) Member.

However, even keeping names of roles as close to the current Regulations as pos-
sible, there appear unexpected problems. For example, according to the Regulations 
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current host country has one representative in the IC. But how to proceed if the host is 
represented by different people in the in-between meeting of IC and at the IOI itself? Are 
there two representatives of the host or one person (which one?) must be forgotten? Also, 
in an attempt to avoid expanding the list of roles too much, by “Invited Guests” there are 
marked different categories of people – task authors invited by the Scientific Committee, 
invited members of international organizations and associations and others.  

We also provided functionality for the user to add some personal information to his 
profile like Codeforces/TopCoder handles, homepage, e-mail and social network pro-
files. This was implemented partially due to the anticipation that the website might be 
used for direct contacts and recruiting purposes by some parties and as such the ability 
to add contact information was desirable.

While the situation for contestants was not perfect, but still reasonable, the situation 
for other members of the delegations was close to appalling – even national websites 
listing all IOI teams for a specific country often omitted team leaders. However, it was 
anticipated that national delegations at large still have access to that information, so the 
natural choice would be to allow delegation leaders to provide and correct simply their 
data in the system. However, that did not quite solve the problem of contact information, 
and as well as that, it heavily relies on all delegation leaders being responsive to the 
cause. So it was decided that the editing access would not be limited to a single person 
for every country.

Instead, we decided to make the editing publicly available without any registration. 
Compared to the denied approach, we realized that there would also be bad and mali-
cious edits. However, our estimations said that this way we would receive more data; 
and if we can filter the good requests from the bad ones, we would obtain more infor-
mation this way, and since this was our primary goal, we decided to go with that. On 
the downside, every change submitted to the system has to be approved by modera-
tors, which created an additional effort on our side of things. In retrospect, there were 
12818 non-spam requests (including rejected malicious ones) at the time of writing out 
of 1295397 requests received overall, meaning that 99% of the requests we receive is 
spam. However the vast majority of them never reach our eyes, so despite that, we feel 
that it was the correct decision.

Furthermore, sometimes it benefited to go through a central point of moderation. For 
example, some confusion was created with Sweden and IOI 1989. The national website 
for Swedish Olympiads in Informatics lists IOI team for 1989 (SOI). Similarly, we have 
received requests to add this team to the system. However, we were in possession of the 
physical copy of the first IOI booklet having no records about a team from Sweden. After 
some conversations with Pär Söderhjelm, former Swedish team leader, it was learned 
that in 1989 there were two similar IOI-like initiatives. The Swedish team picked the 
“wrong” one (we would be interested get more information about this event!), so they 
did not participate in IOI 1989, and only joined IOI in 1990.

There were rare cases in the IOI history when teams mentioned in the official book-
lets did not participate in the competition due to visa issues or other, mostly political, 
reasons. Such cases of disagreement with official documents were resolved using direct 
communication with country representatives. 
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The biggest issue regarding missing data was generated by the rule that IOI had from 
2000 – for non-medalists their names and represented countries should not be published 
(IOI-REG ver. 2014 S5.10(3)) in the results and as a consequence usually are lost from 
freely available sources of information. We believe that not mentioning names of non-
medalists is contrary to Olympic spirit formulated by Pierre de Coubertin “The most 
important thing in the Olympic Games is not winning but taking part; the essential thing 
in life is not conquering but fighting well” (Coubertin). Contestants qualified to IOI as 
a rule passed many national and regional events and are good even if they do not obtain 
any medal at IOI. Furthermore, it creates a huge gap between the last bronze medal and 
the first person without the medal. Despite these two people being right next to each 
other in the standings, this rule made impossible for the second one to highlight his 
achievement easily. But for this project, it was decided that we would not allow indi-
viduals to de-anonymize their results if they desire as this was deemed to be impossible 
to verify. This concern turned out to be largely irrelevant, as we did not receive any such 
requests.

In an attempt to at least not to lose these names for the history, in the IOI Regulations 
since 2014 is stated that current IOI host is obliqued to “Produce a full result list con-
taining the final scores of all contestants, which is made available to the OED and ISC, 
along with the data required to generate those scores;” (IOI-REG ver. 2014 S5.10(4)). 
On the public side of things, this rule began being pointless from IOI 2010, when the live 
scoreboard during the contest was introduced. As such, other projects like SnarkNews 
(SnarkNews) have full results available and so it became a pointless exercise to remove 
the non-medalists’ names as the full results were already made available previously. In a 
hilarious display, IOI 2010 website still hosts both versions of results – anonymized and 
de-anonymized. As such, we have taken a strict stance on maintaining the full results of 
IOIs from 2010 onwards. Since then the risk of losing essential contest information is 
diminished.

However, we fully respect this rule while no live scoreboard was available. Most no-
tably, during the data collection stage, we have managed to discover the cached full re-
sults of IOI 2004, which presumably were published by organizers by mistake and were 
taken down soon afterward. Including these data in the Excel file resulted in two e-mails 
from IOI 2004 contestants asking to remove their name from the results. Their wishes 
were respected, and this was also the main reason for the decision of not publishing the 
de-anonymized results of IOI 2004’s non-medalists at all on the present website.

The biggest issue with that rule, however, is the fact that it made it easy for IOI orga-
nizers to neglect the data. Since 2000 in IOI Regulations it was specified that three lists 
should be published after the IOI:

The final scores of the medal winning contestants.1.	
A list of all participants.2.	
A list of all scores which contains no name/country information (IOI-REG, ver. 3.	
2014 S5.10(3)).

This rule does not oblique host to keep full scores for all contestants in any form. 
Moreover, often only the first list (as the most important list of the whole event) was 
published, meaning that non-medalists scores and all participants’ names were lost even-
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tually. We believe this is the main reason why the data we have today is so incomplete, 
which we believe was not anticipated at the time this rule was passed. Closing discussion 
about the availability of full results, it should be added that also rare cases of disquali-
fications are not clearly marked in results. Usually, such contestants appear as the last 
ones in the full results of the particular IOI together with contestants having no single 
submission into grading system. 

Despite the fact that IOI is an individual competition there are also some cumulative 
statistics available regarding country participation in IOI: the total number of medals, 
the total number of participated contestants, years of participation (counting only the 
years when there were contestants on the team), etc. However, it is important to note 
that we still keep records of all years even when there was only a single observer in a 
delegation. Following the spirit of individual competition, countries are never explicitly 
ranked; there are different ways to sort data, but you will never find rank next to the 
name of a particular country.

To conclude, in this Chapter, we have discussed the challenges encountered while 
attempting to collect additional data to obtain the complete picture and why this was 
necessary in the first place. The takeaway message from this would be to make sure that 
hosts publish all required information, and then make sure that the information is dupli-
cated in some centralized location – sometimes the last step would be forgotten, and the 
information would be lost after the host website would go offline. While Web Archive 
might save this information, it is not a good idea to rely on this.

5. Moderation

After reading the written above, a reader may have an impression that work is already 
completed and new data may appear only after the current IOI, and there will be no up-
dates in-between IOIs. Concerning IOI statistics, this is far from the reality. There is still 
plenty of work to perform outside of IOI period. In this Chapter, we list several examples 
of such work in the decreasing order of importance.

First, the main effort goes into the attempts to fill in gaps in the history by trying to 
contact persons probably having missing documents. We are confident that it is impos-
sible to get official data from hosts for five IOIs mentioned above. The most realistic 
way is to contact former team leaders and try to fill gaps on “delegation by delega-
tion” basis. The main obstacle here is that during early IOIs generations are changed 
and without proper local archives it is almost impossible to restore information. As 
well, different countries are differently interested in completing information regarding 
their country. At the moment of writing paper statistics for 44 countries (from 101 or 
43.56%) are completed.

Next, we have to deal with major requests concerning the website. These requests 
usually affect the whole website, so they have to be dealt with carefully. To give an ex-
ample, in the last season, two of such requests stood out.

For the first one, a former contestant argued that his name must be removed due to 
“right to be forgotten”. We insist that IOI Statistics is the source of strictly statistical and 
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historical information, and we do our best to keep it correct and complete as possible. 
Removing any essential piece of correct IOI information is against our efforts to com-
plete the whole picture of the IOI history. Also described “right to be forgotten” cases 
influenced just search engines (how easy is to find a particular piece of information) not 
the availability of information itself.

For the second example, S. Maggiolo suggested adding gender information to con-
testants’ data on the official IOI statistics website (Maggiolo). Since we rely on authori-
tative sources of information and no gender information was kept until the creation of 
the IOI Registration system, we do not believe it’s feasible to collect and verify the 
gender of individuals. Furthermore, addressing contestants according to their gender 
itself might be questionable – we are not attaching other personal information like 
race, religion, food preferences or disabilities; and we believe that some people might 
object to releasing information on their gender as well. We understand that these sta-
tistics might be considered useful to answer some research questions, like whether 
vegetarians tend to be better programmers, but we are not convinced at this point that 
the official IOI website is the right place for that. This matter was recently raised with 
International Committee.

Moving on, we have to deal with processing the usual requests. Commonly, these 
are about changing/adding photos or updating contact information. If there is a request 
to change contact information, requests are verified by checking a proposed link and 
its relevance to the addressee. In unclear cases if contact information is known, before 
approving, subject to the proposed changes or country representative is contacted. How-
ever, we periodically receive requests by e-mail (because these types of requests are not 
supported by the system). Most commonly, the request is to merge two of the profiles 
together because in reality it is the same person, which is usually quite easily verified.

Of course, not every request is legitimate and as such we have to struggle with hoax-
es and improper requests. Relatively often, there are requests to change information in 
an appropriate manner. For example, a request to add “contestant of team X” for the year 
where we are confident that we have complete data (even more if suggested name is 
like “Anonymous”). Or request to remove all contact information for some participant, 
which appears to be fake after consultation with the addressed person. Or adding an im-
proper photo like well-known Borat dressed in the green outfit (see Fig. 3). In general, 
almost all such requests seem to be malicious than just joyful. Finally, there is also an 
issue of dealing with spam. However, most of the work here is done automatically, and 
just most sophisticated cases pass through the spam filter.

For readers, it may be interesting to know how the moderation of requests submitted 
through the system looks from the inside. An example screenshot is shown in Fig. 3.

In the section “Administration” there is a possibility to clear spam, approve or reject 
a batch of requests according to submitter’s IP address. Note that we can also change 
the availability of the data for certain IOIs. This comes useful during the IOIs when the 
results can be entered in the database long before they become official (and they will 
not “leak” to the public), and we can then publish them with one click as soon as they 
become official. Section “Country Data” offers a possibility to change color code for the 
specified country in the main table of countries describing information completeness: 
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green – information complete, yellow – information almost complete (usually completed 
regarding contestants), red – essential part of the information is missed.

All requests must be approved (button “Grant”), rejected (“Reject” or “Spam”) or 
have the processing postponed (“Hold”). In the given example, both requests are real. 
The first one would like to add a Twitter profile to person’s requisites and, therefore, will 
be approved. The second one is obviously non-legitimate so that it would be rejected. It 
is worth noting that even if the photograph were of the person in question, it would still 
get rejected as we aim to have more passport-like photographs on the website (although 
this desire is not expressed clearly), where the head occupies a significant percentage of 
photo’s vertical space.

To conclude, in this Chapter, we have discussed the challenges encountered while 
maintaining the website. We feel that the most important issue is not to take accept-
ing any edit requests lightly. While it is understandable that occasionally some false 
information provided by the community might slip through, if this information is false, 
one would lose the reputation which is crucial if you want to be a source of credible 
information.

6. Launch and Steps to Becoming Official

The statistics website was launched during IOI 2012 after a presentation during the 
IOI Conference. The results of IOI 2012 itself were added about a week after it was 
finished. The website accumulated an average of 140 unique daily IP visits during first 
two months after launch. The appeal to obtain more information was also fruitful. In the 
period until the next IOI we have granted 1233 requests, whether they were submitted 

Fig. 3. Moderator interface screenshot (IP addresses are obfuscated).
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by the community entirely, or we have committed them ourselves based on the raw data 
submitted by the community.

Meanwhile, in the same period, we have received access to the official IOI website 
(IOI), which at the time was quite outdated. This meant that we could start to plan on 
how to move this project under the official domain. Initially, the idea was to incorporate 
essential information about IOI on the project and replace the original IOI website com-
pletely. However, this was later abandoned for cleaning up and maintaining the original 
website and hosting the statistics portal as a separate subdomain.

During IOI 2013, it was voted by the General Assembly (GA) to sponsor main-
tenance of the original IOI website and the development of this project from the IOI 
budget (IOI-2013-GA-MIN). This allowed us to fulfill the goal mentioned above and in 
April 2014 the website was moved to the place where it currently resides (IOI-STATS). 
While we were still supplementary to the official results published by the organizers, for 
IOI 2015 (IOI-2015) they did not do so and instead simply linked to our project, which 
we consider being a final step in becoming official.

One of the other aspects of becoming official outside of recognition is the ability to 
access parts of official data. This is best showcased by the process of releasing the list of 
participants before the IOI occurred. Usually, every year well in advance of IOI there ap-
pears a popular thread on Codeforces and TopCoder, where the community would share 
its knowledge on the upcoming IOI contestants, and that would be summarized, creating 
an unofficial IOI contestant list. The ability to display participant list was first added to 
the website for IOI 2013. At that stage, we did not have any access to the official data in 
the registration system (IOI-RS) and as such, we simply mirrored the thread on Code-
forces for that year. After the organizers had released the official list, the website’s data 
was modified to reflect that.

For IOI 2014, we decided to keep it official and did not take any data from the com-
munity, as some talks on accessing official data began already. Unfortunately, it did 
not reach the conclusion in time, and as such we have waited until the official data was 
released. Strangely enough, initially it got released exclusively on the mobile app for 
Android. Still, it was mirrored to the database and for some time, it was the only conve-
nient way to view contestant list if you do not have an Android device. Subsequently, we 
received the necessary data (name, surname, role, and country – note that we always re-
ceive information on per-need basis and do not receive unrelated and personal informa-
tion to the cause, like passport details, for obvious reasons, including the one of privacy) 
from the official IOI registration system, so we could add some additional delegation 
members (like guests, who were not displayed in an app). Also, we discovered a discrep-
ancy between the registration data and the data published by the organizers, which was 
then addressed and fixed.

In the meantime, this issue was discussed within IC to ensure that we could receive 
the data from the IOI registration system sooner. Additionally, the check mark was added 
to the system to allow us to publish the participants’ photographs as well. Because of 
these, for IOI 2015 we were able to publish the participant list soon after the registration 
deadline was over and we were the first resource to do so. We were able to publish 228 
photos, where we were given permission to do so. Extra effort was made to avoid ac-



cidental leaks of personal information, where some people uploaded a full passport copy 
instead of a photo. Even despite the fact the we shrink the photographs to 180 pixels in 
height, and it would be very unlikely that there would have been any leaks because of 
that, we still manually cropped those photographs.

Finally, the process of becoming official means that you receive a lot more cred-
ibility over time and as a result people start relying on and linking to your information. 
At the moment of writing this paper, there are over 9000 links to “stats.ioinformatics.
org” according to Google search. Some of them are not only simply linking to results or 
individual statistics, but also refer to actual statistics. For example, the post on Quora 
(Quora) was attempting to answer the question of the hardest IOI problem based on the 
average score per contestant available on the website. Of course, not all of the links are 
of the same level of importance. Moreover, there are incorrect ones. For example, link 
in the article (UG-RU, 2016) claims that there will be problems from the corresponding 
IOI where there is currently just statistical information about tasks.

Investigating pages with links, we found one, which may be the example why we 
cannot take any responsibility for the way how provided statistical information is used. 
For example, in the forum post (Apricity) photos from the IOI Statistics regarding Chil-
ean contestants are extracted and an attempt to evaluate demographics based on ethnicity 
was made, which is not something that we approve or imagined that would happen based 
on the data we released.

To conclude, in this Chapter, we have discussed the process the website took to ob-
tain an official status. Furthermore, some benefits of the official status were provided.

7. Future Work

One of the evergreen tasks is encouraging people to fill in missing parts of informa-
tion. Just as a reminder for potential submitters – information can be submitted in a 
few simple steps. First, consult the “People” page of the particular country to find the 
particular person whose information you would like to update. If such a person already 
exists there, follow the link under that person’s name and push “Edit” in the top-right 
corner of the page. After adding/changing appropriate information, click the “Submit” 
right after changed section. Be aware – there are four sections having separate “Sub-
mit” buttons, so if you want to edit information in multiple sections, you would need 
to submit multiple requests to the system! Only if you cannot find the person in the list 
of already known people, push “Add” and provide all known information about the 
particular person. In this case, “Submit” must be pushed just once at the very end. As a 
backup scenario, there is always a possibility to send all relevant information to us – we 
will add it by ourselves. The main principle – do not keep valuable information about 
former IOIs a secret! 

As far as the further development of the website is concerned, the current plan is to 
refactor the web server code completely. When it was created, not many efforts were 
put into making it maintainable and as the result the code became quite unreadable over 
time, and it is now quite challenging to add new features without accidentally break-
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ing something. After that, it would become feasible to considering open-sourcing this 
project so that other olympiads, like Regional ones, could use this platform to host their 
results. As well as that, perhaps some additional functionality could be contributed by 
the community then, as is currently happening with CMS (CMS), which is the competi-
tion system currently used at IOI.

8. Conclusions

In this paper, we have touched upon various aspects and challenges we have encountered 
in creating and maintaining a centralized place for collecting official IOI data. While it 
is not a small project and some International and Regional Science Olympiads might not 
have the resources to tackle this at the moment, we feel that it is still important to con-
sider our experience. While the project itself is hard work, many challenges that made it 
hard are solvable easily if they would have been considered at the time. So we hope that 
after reading our experience some Olympiads might pay a bigger attention to the issues 
discussed here and make it a lot easier to execute the project of this scale.
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Abstract. In this paper we present distributed tasks, a new task type that can be used at pro-
gramming competitions. In such tasks, a contestant is supposed to write a program which is then 
simultaneously executed on multiple computing nodes (machines). The instances of the program 
may communicate and use the joint computing power to solve the task presented to the contes-
tant. We show a framework for running a contest with distributed tasks, that we believe to be ac-
cessible to contestants with no previous experience in distributed computing. Moreover, we give 
examples of distributed tasks that have been used in the last two editions of a Polish programming 
contest, Algorithmic Engagements, together with their intended solutions. Finally, we discuss the 
challenges of grading and preparing distributed tasks.

Keywords: programming contests, distributed tasks.

1. Introduction

When looking at major programming competitions, it is easy to notice that a large num-
ber of them are very similar in design. To name a few, the IOI, the ACM ICPC, Google 
Code Jam, TopCoder’s algorithmic track, Facebook Hacker Cup, the CodeForces com-
petitions and many more, are all focused on small, self-contained tasks, with automated 
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judging based on testing a program on a judge-provided set of testcases and mostly 
algorithmic in nature.

This model seems attractive both to the organizers and the participants. The organiz-
ers appreciate the very clear, non-subjective mechanism of judging and the automation 
of judging, which means the competition can scale out easily to a larger number of 
competitors. The participants also appreciate the automated judging (which means fast 
results) and the objective judgment criteria (which makes the competition more fair); ad-
ditionally the entry barrier to such contests is pretty low, as the introductory-level tasks 
can be very simple.

If we consider programming competitions a way of educating future computer sci-
entists and professional programmers, the model has its strengths, but also weaknesses. 
Some of these weaknesses come from the very nature of the small, self-contained tasks 
(which are a large part of the model’s attractiveness): the participants do not learn about 
code maintainability and extensibility, they also do not learn anything about larger-scale 
system design. These weaknesses seem to be intrinsic to the model itself; and competi-
tions that abandon the model moving to larger or less clear-cut tasks are frequently less 
successful (for example, TopCoder’s Marathon Match track has over 10 times less reg-
istered participants than the Algorithm track).

However, there are also areas of programming expertise that the existing competi-
tions do not teach, which are less intrinsically tied to the model of these competitions. In 
particular, the focus on algorithmic problems is not crucial to the model of the competi-
tion itself. Indeed, multiple authors already explored extending this classical model of 
competitions to other fields of computer science, for example visualization and precom-
putation (Kulczyński et al., 2011), online algorithms (Komm, 2011), computer graphics 
and cryptography (Forišek, 2013).

1.1. Distributed Programming

Distributed (and cloud) computing has gained importance quickly in the recent years. 
The computing giants of today – Google, Amazon, Facebook and others – do not operate 
on the enormous mainframes that dominated computing in the past, but on networked 
farms of smaller servers. This is a model of computing that is not inherently in conflict 
with the algorithmic programming contest model, but is not taught by the dominant 
competitions of today; students that gained most of their programming skills through 
programming competitions will be totally unfamiliar with even the basic paradigms of 
distributed computing like the MapReduce framework (Dean and Ghemawat, 2008) or 
the CAP theorem (Fox and Brewer, 1999).

In this article we present a framework for running a contest focusing on distributed 
algorithms, developed by engineers in Google’s Warsaw office in collaboration with 
the University of Warsaw, and show sample problems used in the Algorithmic Engage-
ments (Potyczki Algorytmiczne in Polish) contest ran by the University of Warsaw. The 
same framework is used at the recently introduced Google’s Distributed Code Jam 
competition.



Distributed Tasks: Introducing Distributed Computing to ... 179

1.2. Designing a Distributed Programming Contest

The primary focus of our design was simplicity from the contestant’s point of view. The 
introduction of a new programming paradigm, likely unfamiliar to most participants, is 
clearly a challenge for the contestants, and we aimed at making the transition as smooth 
as possible.

Thus, the basic interface is similar to a programming contest like IOI. The participant 
submits a single program, which is compiled and executed by the framework. The same 
program is run on every node (computer) available to the participant.

Obviously, the nodes need to be able to communicate in order to collaborate in com-
puting. We decided on a protocol based on simple message-passing (“send this array of 
bytes to this node”). The message passing methods are available to the program through 
a library that is common for all problems, and provided by the framework.

We also considered using an RPC-style interface. This, however, is more complex on 
an API level. A standard approach to RPC is that the programmer has to declare an inter-
face (which will contain the remotely-callable methods). The server will just implement 
the methods of this interface. On the client side, the infrastructure needs to provide a way 
to generate a “stub” connected to some particular server; this stub will automagically have 
the method calls autogenerated. The language would have to provide some way to anno-
tate that the interface is to be treated as a “remote” interface, increasing the complexity of 
the infrastructure implementation, and meaning more “magic” happening under the hood, 
which – in our perception – decreases the comprehensibility of the system. For instance, 
the “stub implementation” would need to make a choice of deep versus shallow copying 
of the arguments, each choice potentially leading to confusion for the participants.

Let us now present the functions of our library, together with their declarations in 
C++.

First, the library provides a function that returns the number of nodes  on which 
the solution is running, and the index (in the range [0  −  1]) of the node on which 
the calling process is running.

int NumberOfNodes();

int MyNodeId();

The library maintains in each node a message buffer for each of the  nodes, which 
represents messages that are to be sent to this node. Messages are added to the buffer 
through the Put-methods.

// Append “value” to the message that is being prepared for
// the node with id “target”. The “Int” in PutInt is
// interpreted as 32 bits, regardless of whether the actual
// int type will be 32 or 64 bits.
void PutChar(int target, char value);

void PutInt(int target, int value);

void PutLL(int target, long long value);
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There is also a method that sends the message that was accumulated in the buffer for 
a given node and clears this buffer. This method is non-blocking, that is, it does not wait 
for the receiver to call Receive, but returns immediately after sending the message.

void Send(int target);

The following function is used for receiving messages.

int Receive(int source);

The library has a receiving buffer for each remote node. When you call Receive 
and retrieve a message from a remote node, the buffer tied to this remote node is over-
written. You can then retrieve individual parts of the message through the Get-meth-
ods. This method is blocking – if there is no message to receive, it will wait for the 
message to arrive.

You can call Receive(-1) to retrieve a message from any source, or set source 
to a number from [0  − 1] to retrieve a message from a particular source. Receive 
returns the number of the node which sent the message, which is equal to source, unless 
source is -1.

Finally, for reading the buffer of incoming messages, the following three methods 
are provided.

// The “Int” in GetInt is interpreted as 32 bits, regardless
// of whether the actual int type is 32 or 64 bits.
char GetChar(int source);

int GetInt(int source);

long long GetLL(int source);

Each of these methods returns and consumes one item from the buffer of the ap-
propriate node. You must call these methods in the order in which the elements were 
appended to the message (so, for instance, if the message was created with PutChar, 
PutChar, PutLL, you must call GetChar, GetChar, GetLL in this order). If you call 
them in a different order, or you call a Get-method after consuming all the contents of 
the buffer, the behaviour is undefined.

The serialization we decided to use is very basic, compared to models like Java’s 
serialization mechanisms, Python’s “pickle” or even Google’s protocol buffer language. 
Again, we preferred to err on the side of simplicity, to minimize the entry barrier – this 
simple language turns out to be easy enough for the simple concurrency required to solve 
our problems, and is more straightforward to understand, both in terms of “how big will 
be the serialized message”, and “what is actually serialized” (this, again, is the deep vs 
shallow copy question).

For correctness of execution, we chose what seemed the most natural model. The 
backend guarantees failure-less execution on all nodes, and requires all the instances of 
the program to execute correctly, within the specified time and memory limits. Note that 
the time used by the program is measured from the moment when the instances start until 
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all instances have finished execution. This assumption is justified with the following ex-
ample involving two machines. The first one spends second of CPU time and then sends 
a message to the second one. The second machine first waits for a message from the first 
machine and then uses one second of CPU time. The total time used by the solution is 
then roughly two seconds, although each instance used only one second of CPU time.

In most of programming competitions, the programs access the input data by read-
ing from standard input. (TopCoder’s Algorithm contest breaks out of this by providing 
the input as an argument to the function the contestant is supposed to write.) How-
ever, a large fraction of the interesting distributed problems admit a solution that runs in 
() time, where  is the size of the input, and  is the number of nodes available 
to the contestant. This implies, in particular, that no node can afford to read the whole 
input (since that alone would take () time). Standard input is only accessible in a 
linear fashion, so it is not feasible for providing very large input data.

The approach we chose is what is typically done for interactive tasks on competi-
tions like IOI (see, e.g., Chávez, 2015) – each problem with large inputs defines a set of 
input-access methods that are available to the program, similarly to the message-passing 
interface. These methods are guaranteed to return the same values on all nodes (so, each 
node has access to the same view of the input). Additionally, we provide upper bounds 
on the execution time of a single call to the input-providing methods.

Output is much simpler to handle (as it is often much smaller), so we went with the 
standard programming contest practice of expecting the output to be provided via stan-
dard output. We expect exactly one node to produce the output, while the others should 
not produce anything. This is a somewhat arbitrary decision (we could equally well 
have all the nodes output the exact same data to the standard output), however, as many 
solutions in practice have some sort of a “master” node that aggregates the work of the 
other nodes, it is convenient to the contestant to have one node output the result of the 
computation, and for the infrastructure not to prescribe which of the nodes it is.

As for the number of nodes we run the contestants’ solutions on, we chose  = 100. 
This is large enough that a speedup by a factor of  is big enough to offset the extra time 
needed for inter-node communication, and yet small enough that providing that many 
nodes for judging is actually feasible.

The final issue that needs to be considered is the amount of data sent during the 
communication between the nodes, both in terms of the number of individual messages 
sent, and the size of those messages. Obviously, the limits here will be dependent on the 
infrastructure we run the contest on. Benchmarks on our framework show that a single 
message will take roughly 3–5ms (split between the processing time in the sender, the 
actual network latency and the processing time on the receiver). This number will be 
constant for messages from negligible to tens of kilobytes, and start growing linearly 
when the message size goes into hundreds of kilobytes.

While in the end, to fine-tune a solution the contestant will need to understand these 
patterns (for this purpose we provided the results of a few benchmarks to the contes-
tants), we wanted the basic usecase not to require dealing with the calculations. To this 
end, we introduced an upper limit on the total number (around 1000) and size (a few 
megabytes) of messages a single node can send within the time limit, which roughly 
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corresponds to the total throughput it could achieve if it spent all its time on communica-
tion. This is a clear and concise way of informing the participants that if their solution 
stays well within those bounds, its performance should not be significantly affected by 
the communication overhead.

1.3. Distributed Contest Judging Infrastructure

From a research perspective, the most interesting challenge in preparing such a distribut-
ed programming contest is defining the exact programming model from the contestants’ 
point of view. However, when doing it in practice, there is also a considerable amount of 
engineering effort involved in providing the infrastructure to run such a contest.

In the process of preparing problems the most interesting new challenge is writing a 
library that provides the input data. While in a standard programming contest the input 
is just a text file, and can be generated offline in an arbitrary fashion and almost arbi-
trary time, in the distributed contests the requirements are much more strict. The input-
providing library needs to satisfy the following requirements:

Access to an arbitrary element.●●
Consistency across nodes, and across accesses.●●
Access times on the order of 100ns.●●
Ability to serve data with total size on the order of 10GB or more.●●

The requirements stem from the input model we chose. In particular, if we want to 
allow  ()-time solutions, with runtimes on the order of 1–5 seconds, we need the 
input read by one node to be on the order of at least 107 items (which means 109 items 
in total – if each item is, say, two 64-bit integers, we get a total of 16GB), and we need 
the node to be able to read these 107 items within 1 second (so that the input reading does 
not dominate the computation).

The access times coupled with the data size mean it is infeasible to pregenerate all 
the input data – 10GB is too much to conveniently store in memory, while disk ac-
cess (and even SSD access) is too slow. Thus, the input data is generated on the fly. 
This requires using pseudo-random generators that generate a sequence of numbers, and 
provide consistent and fast access to each element of the sequence (e.g., the CityHash 
family of functions).

In the judging system, the challenge is the scale. Judging a single testcase for a single 
solution requires, typically, 100 virtual machines. So, as an example, a deployment of 
900 virtual machines on Google Compute Engine were used as the backend for the 
Online Round of Google’s Distributed Code Jam. We think it is interesting that cloud 
computing, which is making distributed computing important as a topic of programming 
competitions, is also making distributed programming competitions much easier to or-
ganize: instead of buying physical hardware to support such a competition, it is easy to 
rent virtual machines and pay by the minute.

However, the real challenge in setting up a new competition type is in finding attrac-
tive problems: ones that challenge the contestants’ creativity and problem-solving skill, 
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without requiring significant domain knowledge (in this case – knowledge of distributed 
programming paradigms), and that are fun, but not tedious, to implement, once you have 
the correct set of ideas. In the rest of this paper, we provide examples of problems that – 
in our opinion – satisfy these requirements.

We start with a simple task which lets us demonstrate the basics of the framework 
from the contestant’s point of view. The remaining tasks were presented during the Al-
gorithmic Engagements contest; their authors are: Jakub Łącki, Jakub Wojtaszczyk (task 
“Workshop”); Jakub Łącki (task “Assistant”); Adam Karczmarz (task “Sabotage”).

2. Sample Task “Divisors”

In this task we are to count the number of divisors of a given positive integer   ≤ 1018.

Input
In this task the input data is provided via the standard input. The only line of the standard 
input contains .

Output
Your program should print exactly one line to the standard output containing one integer: 
the number of divisors of .

2.1. Solution

The easiest (sequential) solution that we can come up with is to check all candidates for a 
divisor  up to   and their counterparts of the form 


. A sample C++ code follows.

int main() {

  long long n;

  int divisors_num = 0;

  cin >> n;

  for (long long d = 1; d * d <= n; ++d) {

    if (n % d == 0) {

      ++divisors_num;

      if (n / d != d)

        ++divisors_num;

    }

  }

  cout << divisors_num << endl;

}

Probably this is not the fastest sequential solution for this problem. We will, however, 
focus on how to speed it up by performing the computations using  nodes (machines). 
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A natural idea is to partition the set of possible divisors and let each of the machines look 
through each of the parts.

One way of performing this partition is as follows: machine 0 gets to check the 
candidates 1 1 +  1 + 2     machine 1 gets to check the candidates 2 2 +  

2 + 2     etc. To make it work, it suffices to change the for-loop from the above 
code to:

for (long long d = 1 + MyNodeId(); d * d <= n; d +=

  NumberOfNodes()) {

In the end we need to aggregate the partial results. Let us select any of the machines 
(say, machine 0) as an aggregator. We just need to add code to be executed on each of 
the machines that sends the partial results from machines with positive numbers to the 
machine number 0.

  if (MyNodeId() > 0) {

    PutInt(0, divisors_num);

    Send(0);

  } else {  // MyNodeId == 0
    for (int node = 1; node < NumberOfNodes(); ++node) {

      Receive(node);

      divisors_num += GetInt(node);

    }

    cout << divisors_num << endl;

  }

}

The final solution works in  (   ) time, i.e., this is the maximum of the time 
complexities of the instances running on each of the machines.

3. Task “Workshop” (2014)

During an algorithmic workshop students are sitting in a circle and solving problems. 
Whenever someone comes up with a solution to a problem, he or she shares the idea with 
his or her two neighbours (which takes exactly one minute), and then they pass it to their 
neighbours (which also takes exactly one minute), and so on.

If Johny comes up with a brilliant solution at quarter to twelve, what time will Chris 
hear about it? How many minutes does it take for a solution to reach from Kate to Tom? 
That is the kind of queries your program has to answer.

Input
The input data is provided by an interactive library. Your program can call six functions 
from the library:



Distributed Tasks: Introducing Distributed Computing to ... 185

int ●● NumberOfStudents(): returns the number  of students participating in 
the workshop (3 ≤  ≤ 109). The students are numbered with consecutive integers 
from 1 to .
int ●● FirstNeighbour(int i): returns the number of the first neighbour of the 
-th student (1 ≤  ≤ ). The students have a hard time distinguishing left from 
right, therefore they prefer to call their neighbours in the order of their numbers. 
That is, the first neighbour of a given student always has a number smaller than his 
of her second neighbour.
int ●● SecondNeighbour(int i): returns the number of the second neighbour of 
the -th student (1 ≤  ≤ ).
int ●● NumberOfQueries(): returns the number  of queries your program has to 
answer (0 ≤  ≤ 200). The queries are numbered with consecutive integers from 
1 to .
int ●● QueryFrom(int i): for the -th query (1 ≤  ≤ ), returns the number of the 
student who came up with a solution.
int ●● QueryTo(int i): for the -th query (1 ≤  ≤ ), returns the number of the 
student willing to know when he or she is going to hear the solution.

Output
Your program should print exactly  lines to the standard output. The -th line should 
contain the answer to the -th query, i.e., the number of minutes it takes for a solution to 
reach from one student to the other.

3.1. Solution

In the problem a cycle is specified using an oracle which for a given vertex returns its 
two neighbours. The neighbours are returned in an order that is not necessarily con-
sistent with the order of the vertices on the cycle. A number of queries are given, each 
consisting of two vertices, and the task is to compute for each query the length of the 
shortest path between the two vertices.

The first step of the model solution is to select a subset of vertices, which we call 
checkpoints. The checkpoints include all the vertices which are part of any query and ad-
ditionally some number of randomly selected vertices. Later we discuss how to choose 
this number. After the checkpoints have been selected, each checkpoint is randomly as-
signed to some machine (node). All the random choices are made with a deterministic 
pseudorandom number generator so that all machines select the same checkpoints with-
out needing to communicate.

In the second step each machine processes the checkpoints assigned to it. Starting 
from a checkpoint the process running on the machine traverses the cycle in both direc-
tions until it reaches (at both ends) any other checkpoints (they might be assigned to a 
different machine). While traversing the cycle, the process counts the number of visited 
vertices. Finally, it sends to the first machine a list of statements of the following form: 
the distance between the checkpoints  and  equals  and there is no other checkpoint 
between them.
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The third step is run only on the first machine. First, it receives messages from all the 
other machines. Using information from the messages, the machine computes the order 
of checkpoints on the cycle and the distance between each two neighboring checkpoints. 
After linear-time processing of this information, it is easy to answer each query in con-
stant time.

We are left with the problem of choosing the number of checkpoints. Recall that  

denotes the number of machines. Each machine processes a random fraction of 1
 of the 

checkpoints which makes the expected running time of each machine  ( 


). However, 
from a theoretical point of view, this kind of a statement is worthless. Consider an imagi-
nary situation in which we need to perform computations that take £( ) total time, and 
we pick a random machine to perform all of it. Then each machine spends £( )  time 
with probability 1

 , which gives exactly  £( )  expected time for each machine, 
just like in the case of our solution. At the same time, we are interested in the running 
time of the slowest machine, which is clearly still £( ) .

For this reason, we study the performance of our solution experimentally. Luck-
ily, the running time depends mostly on the size of the input data, not on its structure. 
Our simulations show that with  randomly selected checkpoints, the longest running 
machine uses  ( lg 


) time, compared to  ( 

 ) expected time, which is consistent 
with a theoretical analysis in (David and Nagaraja, 2003, p. 135). It is possible to reduce 
the variation between machines by increasing the number of checkpoints. In practice, 
our solution which always selects 10 000 checkpoints is about 15–2 times faster than 
the one that selects  checkpoints.

3.2. Tests

It seems that virtually any nontrivial test is sufficient to distinguish solutions based on 
an incorrect algorithm. However, a bit more care is required to distinguish solutions 
that are correct but may be too slow – e.g. a variant of the model solution that selects 
as the checkpoints only the queries endpoints and the vertices 1 2      instead of 
randomly selected vertices. To make such solutions exceed the time limit we need to pay 
attention to keep large contiguous fragments of the cycle without any query vertex and 
leave a large fragment of the initial 1 2      cycle around the vertex 1 unaltered. 
The remaining part of the cycle is permuted either by performing a circular shift on the 
binary representations of vertex numbers or by xor-ing them with some fixed number. 
This method allows  (1)-time calculation of vertex neighbours and produces a cycle 
looking sufficiently random to make it difficult to come up with a clever incorrect solu-
tion exploiting this particular structure of the test.

4. Task “Assistant” (2014)

The life of an assistant is not easy. Not only did the professor order him to write a terribly 
long review, she also requested some corrections today.
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Pushing keys of a keyboard is very tiring, so the primary goal of the assistant is to 
push keys as few times as possible, while correcting the review. The keyboard that he is 
using with a single click allows him to delete a character in the review, change a charac-
ter to a different one or insert one character anywhere in the review.

To make things worse, the assistant has a very peculiar sense of esthetics. He likes 
letters from the beginning of the alphabet (like a, b or c), but is disgusted by the let-
ters from the end of the alphabet (in particular, y and z). Each time he presses a key 
and changes a letter that comes earlier in the alphabet to a letter that comes later (for 
example, m to p), he suffers an esthetic shock, which is devastating for him. Because of 
that, the secondary goal of the assistant is to minimize the number of such changes.

Input
The first line of the standard input contains two integers  and  (1 ≤   ≤ 100 000), 
that specify the lengths of the first and the second version of the review. The following 
two lines contain the two versions themselves. Each review consists only of lowercase 
letters.

Output
Your program should output a single line containing the minimal number of keyboard 
presses that the assistant has to perform in order to correct the review, followed by the 
minimal number of esthetic shocks that he will suffer.

4.1. Solution

The problem considered in this task is a variant of the well-known edit distance problem. 
Our solution will refer to the classical dynamic programming approach to this problem, 
which has been described in a number of textbooks (see, e.g., Cormen et al., 2009). The 
solution that we obtain can be easily extended with minimizing the number of esthetic 
shocks. In short words, it suffices to, instead of storing only the edit distances, store inte-
ger pairs that describe the edit distance and the number of esthetic shocks, and compare 
them lexicographically.

Denote by 1      the characters in the first version of the review and by  
1      the characters in the second version. Our goal is to compute a two dimen-
sional  £  matrix , where  ( ) contains the minimum number of changes that 
the assistant has to perform in order to change 1      into 1      . Just like 
in the edit distance problem, the values  (1 ·) and  (· 1) can be computed in a 
straightforward way, whereas for 2 ≤  ≤  and 2 ≤  ≤ ,  ( ) can be computed in 
constant time, given  ( − 1 ),  (  − 1) and  ( − 1  − 1).

Assume that the topmost row of matrix  contains elements  (1 ·) and the left-
most column contains  (· 1). Partition the matrix into  stripes consisting of  

consecutive columns (for simplicity, we assume that  is divisible by ), where  is the 
number of machines available. Each machine is responsible for filling in the entries of 
 in one stripe. Let the -th machine (for  2 f1     g) be responsible for the -th 
stripe from the left. See Fig. 1 for illustration.
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The first machine fills in the first (leftmost) stripe, starting from the topmost row. 
Consider the rightmost column in the first stripe. Observe that the contents of this col-
umn is everything the second machine needs to know, in order to fill in its stripe. The en-
tries in the rightmost column of the first stripe are filled in by the first machine from top 
to bottom, and as they are being computed, the first machine sends them to the second 
machine. The second machine then fills in its stripe and sends the contents of the cells in 
the rightmost column of its stripe to the third machine, and so on.

The correctness of this approach should be clear. However, we need to improve it a 
little bit, in order to make it efficient. Clearly, each machine requires  () time to 
fill in its cells. However, all machines (except for the last one) send  messages, each 
containing a single number. This may be very inefficient, but can be fixed easily, as a 
machine may send the contents of cells in batches, each containing  numbers, thus 
reducing the number of messages to de. This obviously does not impact the running 
time of each machine.

However, there is one more efficiency aspect that we should take care of. Namely, 
we need to assure that the machines do not wait long for the numbers they need to have 
in order to perform computation. If each machine sends the contents of the rightmost 
column after filling in its entire stripe (i.e. sends batches of  =  messages), then our 
solution becomes essentially sequential. On the other hand, we know that  = 1 is also 
not a good choice, for performance reasons.

Let us analyze how to pick a good value of . For the analysis, assume that all the 
machines are perfectly synchronized, that is, in each time unit a machine can fill in ex-
actly one cell of its stripe (or wait for the data it needs to continue working). Consider 
now a phase of exactly  time units. Since each stripe has width , the first ma-
chine sends the first message to the second machine exactly after the first phase. In the 
second phase, the second machine starts working (fills in the first  rows of its stripe) 
while the first one keeps on working on the following rows. From the second phase, the 
second machine no longer needs to wait, as it receives the necessary data exactly the 
moment when it needs it. In general, the -th machine starts to work in the -th phase 
after ( − 1)  =  () time units. Thus, the -th machine starts after  () 

time units and then works for  () time units. Hence, all the machines finish 
within  ( + ) time units and send  () messages each.

Assume that the topmost row of matrix D contains elements D(1, ·) and the
leftmost column contains D(·, 1). Partition the matrix into M stripes consisting
of l/M consecutive columns (for simplicity, we assume that l is divisible by M),
where M is the number of machines available. Each machine is responsible for
filling in the entries of D in one stripe. Let the i-th machine (for i ∈ {1, . . . ,M})
be responsible for the i-th stripe from the left. See Fig. ?? for illustration.

Figure 1: The process of computing the matrix D. Stripes assigned to different
machines have been marked with different shades of gray. The numbers inside
the matrix specify the phase number, when the respective part of the matrix is
computed (see below).

The first machine fills in the first (leftmost) stripe, starting from the topmost
row. Consider the rightmost column in the first stripe. Observe that the con-
tents of this column is everything the second machine needs to know, in order to
fill in its stripe. The entries in the rightmost column of the first stripe are filled
in by the first machine from top to bottom, and as they are being computed,
the first machine sends them to the second machine. The second machine then
fills in its stripe and sends the contents of the cells in the rightmost column of
its stripe to the third machine, and so on.

The correctness of this approach should be clear. However, we need to
improve it a little bit, in order to make it efficient. Clearly, each machine
requires O(kl/M) time to fill in its cells. However, all machines (except for the
last one) send k messages, each containing a single number. This may be very
inefficient, but can be fixed easily, as a machine may send the contents of cells
in batches, each containing b numbers, thus reducing the number of messages
to k/b. This obviously does not impact the running time of each machine.

However, there is one more efficiency aspect that we should take care of.
Namely, we need to assure that the machines do not wait long for the numbers
they need to have in order to perform computation. If each machine sends

12

Fig. 1. The process of computing the matrix . Stripes assigned to different machines have 
been marked with different shades of gray. The numbers inside the matrix specify the phase 
number, when the respective part of the matrix is computed (see below).
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By setting  = bc we assure that the waiting time is dominated by the computing 
time, which means that our solution parallelizes the single-machine solution in a perfect 
way. At the same time, the total number of messages sent is moderate ( ( 2)).

5. Task “Sabotage” (2015)

The city of Megabyteopolis was built upon a large lake and consists of a number of isles 
connected with bridges. The bridges may run above other bridges.

A group of saboteurs wants the current president Byteasar not to be reelected. They 
plan to impact the public opinion by exposing Byteasar’s administration’s helplessness 
in the case of a major emergency. Specifically, they decided to blow up one of the bridg-
es (they cannot afford blowing up more). The sabotage could be considered successful 
only if there was no other way between the isles previously connected by the destroyed 
bridge. Your task is to find the number of bridges that the saboteurs should consider 
when working out the details.

Input
int ●● NumberOfIsles(): returns  (1 ≤  ≤ 200 000) – the number of isles consti-
tuting the city of Megabyteopolis. The isles are numbered 0 through  − 1.
int ●● NumberOfBridges(): returns  (1 ≤  ≤ 108 ) – the number of bridges in 
the city. The bridges are numbered 0 through  − 1.
int ●● BridgeIntA(int i): returns the first isle connected by the bridge .
int ●● BridgeIntB(int i): returns the second isle connected by the bridge .

Output
The output should contain a single integer – the number of bridges whose blowup could 
result in the sabotage being considered successful.

5.1. Solution

In this task we are asked to solve a basic graph problem: for a given undirected graph 
 = ( ) we need to compute the number of bridges. A bridge is defined here as an 
edge of  whose removal results in an increase of the number of connected components 
of . Denote by  () the set of bridges of . A textbook algorithm (e.g., Sedgewick, 
2002) for computing  () is based on an extension of the depth-first search (DFS) al-
gorithm and runs in  ( + ) time. The number of vertices in our graph is quite small, 
i.e., the bound on the order of 105 is typical for graph tasks even in the traditional, non-
distributed setting. The number of edges  in our case can be, however, much larger.

Unfortunately, DFS is not an algorithm that can be parallelized easily. Nevertheless, 
we do not need to entirely abandon the idea of using DFS: our strategy is to use the mul-
tiple machines to reduce our problem instance to an instance with only  () edges. In 
such a reduced instance, we use DFS to find the bridges.
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Definition 1. Consider a graph  = ( ). We define a bridge certificate of  to be a 
set  ⊆   such that for any  ⊆   ×  ,  ((  [  )) =  ((  [  )).

As a result, replacing a subset of edges of  with its bridge certificate does not affect 
the set of bridges of . We are going to use the bridge certificates to detect and remove 
edges of . The following lemma describes a construction of a bridge certificate. For 
completeness we give its proof in the Appendix.

Lemma 1. Let  = ( ) and  = j j,  = jj. Then there exists a bridge certificate 
 of  such that jj ≤ 2 which can be computed in  (+) time.

By Lemma 1, we can take any subset  0 of edges of , find a bridge certificate  of 
(  0) and replace  0 in  with  ⊆   0 in  (+j 0j) time. We call this step a reduc-
tion with respect to  0.

It turns out that we can easily perform the reductions in a parallel fashion. For sim-
plicity, first assume that we have only two machines, i.e.,  = 2. We partition the 
edge set  into two sets 0 1 of roughly equal size. The machine , for  = 0 1, 
performs the reduction step on the set , obtaining a certificate  of size at most 2, 
in  (+jj) time. Next, machine 1 sends the set 1 to machine 0. In the last step, 
machine 0 runs DFS to find the set  (( 0 [ 1)). This, however, takes only  () 

time, as j0 [ 1j ≤ 4. By the definition of a certificate,

 () =  (( 0 [ 1)) =  (( 0 [ 1)) =  (( 0 [ 1))

This concludes that indeed this approach finds all the bridges of .
In order to develop a distributed algorithm using   2 machines, we perform 

multiple reduction phases. In the first phase, the set of edges is partitioned among the 
 machines, and each machine computes a certificate of the edges assigned to it. In 
the following phases the certificates are merged in pairs: two certificates produced in 
the previous phase are sent to a machine that takes their union and computes the cer-
tificate of the resulting graph.

Let us describe this process formally. Assuming that the machines are numbered 0 

through  − 1, we split the input edge set  arbitrarily into  parts 0      − 1, each 
of size  (). Our distributed algorithm runs in  = dlog2 e + 1 phases numbered 
0 through  − 1. In the -th phase ( = 0      − 1) only the machines with identifiers 
 divisible by 2 are active and actually do perform some work. With each active machine 
 we associate two sets  ,  ( 

 ⊆  ) whose contents depend on the phase number 
. Before the -th phase:

●●  is a bridge certificate of the graph

 = (  [ +1 [    [ +2 − 1)

In the above we set + = ; if  +  ≥ .
If ●●  = 0 then  =  . Otherwise, j j ≤ 4.

After the -th phase the set  is a bridge certificate of  and j j ≤ 2. Note that 
it follows that after the phase  − 1, 0 is a bridge certificate of  and j0j =  (). 
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At that point the machine 0 runs DFS on ( 0) to compute the set of bridges of  in 
 () time.

It remains to show how to implement the phases so that the invariants imposed on the 
sets   are satisfied. Before the first phase we set  =  . Assume that the phase 
− 1 has been completed. We perform a reduction of Lemma 1 on the set  in order to 
obtain the set  . This takes  ( + j j) time, which is  () for   0 and  ( + 

) if  = 0. The last step is to initialize the sets  before the next, ( + 1)-th phase. 
To do that, for each  divisible by 2+1, we set  =   [ +2 if  + 2   and 
  =  otherwise. As for all , jj ≤ 2, clearly we now have j j ≤ 4. To implement 
this step, the machine  + 2 sends the entire set +2 to the machine . This requires a 
single message of () bytes. Fig. 2 depicts the phases of our distributed algorithm.

In each phase every machine remains idle or sends  () bytes, or receives  () 

bytes. Consequently, the first phase takes  ( + ) time on each machine and 
each of the  − 1 remaining phases runs in  () time on each machine. Thus, the time 
complexity of this solution is  ( +  log).

5.2. Tests

The library providing the test data had to be robust enough to serve graphs with large 
edge sets and nontrivial 2-edge-connected components (i.e., connected components of 
 formed after removing all the bridges), given limited time and space. It seems that a 
hard test case is a graph with a maximum number of edges and possibly large number 
of bridges. In such a case at least some of the 2-edge-connected components should be 
very dense.
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Figure 2: The phases of the distributed algorithm when M = 7. In this case
K = 4 phases are performed. The blue arrows illustrate the communication
between the machines in the corresponding phases.

components of G formed after removing all the bridges), given limited time and
space. It seems that a hard test case is a graph with a maximum number of
edges and possibly large number of bridges. In such a case at least some of the
2-edge-connected components should be very dense.

The infrastructure for generating test graphs provided a general graph in-
terface along with a few specialized implementations (a vertex, a path, a cycle,
a clique, a pseudorandom graph, a set of loops) that could serve the edges in
O(1) time with constant space consumption, regardless of the graph size. As
an example, a cycle on n vertices numbered 0 through n− 1 can be represented
with a single integer n: when asked for the cycle’s i-th edge, we just return
(i, (i+ 1) mod n).

Such graphs could be then combined into larger and more sophisticated
graphs by unions and direct sums and also extended by adding specified edges,
which were typically used to ensure the desired structural properties of the
served graph. For example, this allowed to easily generate a tree of size 100
with each vertex replaced with a random 2-edge-connected graph with 1000
vertices and between 100 000 and 500 000 edges. Such a graph had on the order
of 107 edges in total, 99 bridges and could be represented with the number
of bytes on the order of 102. At the highest level, the vertices were assigned
random identifiers, whereas the list of edges was randomly permuted.

The size of the in-memory representation of each test cases was O(n) per
machine and the sophistication level of the served graphs was limited only by
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Fig. 2. The phases of the distributed algorithm when  = 7. In this case  = 4 phases are 
performed. The blue arrows illustrate the communication between the machines in the cor-
responding phases.
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The infrastructure for generating test graphs provided a general graph interface along 
with a few specialized implementations (a vertex, a path, a cycle, a clique, a pseudo-
random graph, a set of loops) that could serve the edges in  (1) time with constant 
space consumption, regardless of the graph size. As an example, a cycle on  vertices 
numbered 0 through  − 1 can be represented with a single integer : when asked for the 
cycle’s -th edge, we just return ( ( + 1) mod ).

Such graphs could be then combined into larger and more sophisticated graphs by 
unions and direct sums and also extended by adding specified edges, which were typi-
cally used to ensure the desired structural properties of the served graph. For example, 
this allowed to easily generate a tree of size 100 with each vertex replaced with a random 
2-edge-connected graph with 1000 vertices and between 100 000 and 500 000 edges. 
Such a graph had on the order of 107 edges in total, 99 bridges and could be represented 
with the number of bytes on the order of 102. At the highest level, the vertices were as-
signed random identifiers, whereas the list of edges was randomly permuted.

The size of the in-memory representation of each test cases was  () per machine 
and the sophistication level of the served graphs was limited only by the need to return 
the requested edge in time on the order of 100ns.

6. Conclusions

We described a novel format of programming competitions, aimed at familiarizing stu-
dents with an increasingly important area of computer science – design of distributed 
algorithms. While there is a considerable engineering effort involved in preparing the 
backend for such a competition, we hope that an increasing number of competitions 
(maybe including IOI in the future) will feature tracks or problems of a distributed na-
ture, to reflect the industry’s shift toward cloud-based and distributed computing.
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Appendix: Proof of Lemma 1

Lemma 1. Let  = ( ) and  = j j,  = jj. Then there exists a bridge certificate 
 of  such that jj ≤ 2 which can be computed in  (+) time.

Proof. We compute the set  in the following way. First, compute some spanning forest 
 (we identify it with a set of its edges) of  using any graph search algorithm. This 
takes  ( +) time. Then, compute some spanning forest  0 of  0 = (  n ). Fi-
nally, set  =  [  0. Clearly, jj ≤ 2 and  ⊆  .

We now prove that  is indeed a bridge certificate of . Let  ⊆   ×   . First, let 
us show that the graphs 1 = (  [  ) and 2 = (  [  ) have the same con-
nected components. Clearly, if there exists a path 
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Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F ). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y ) and H2 = (V,X ∪ Y ) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).
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 in 2 then a path 
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 exists 
in 1, as 2 is a subgraph of 1. Conversely, if  and  are connected in 1 by a path 
, then any edge ( ) 2  n  such that ( ) 2  n  can be replaced by a path 
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 contained entirely in  (recall that  is a spanning forest of ).
For a graph , define  −   as  with the edge  removed. Now assume that ( ) 
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 in 1 − ( ). As 
2 − ( ) is a subgraph of 1 − ( ), there is also no path 
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certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F ). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y ) and H2 = (V,X ∪ Y ) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).
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 in 2 − ( ). 
Moreover, 1 and 2 have the same connected components and thus ( ) 2  [  . 
Thus, ( ) 2  (2) and consequently  (1) ⊆   (2).

Finally, suppose that ( ) 2  (2). Then,  and  are connected in 2, but no 
path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F ). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y ) and H2 = (V,X ∪ Y ) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).
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 exists in 2 − ( ). As 2 is a subgraph of 1, ( ) 2  [  . Let us 
show that no path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F ). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y ) and H2 = (V,X ∪ Y ) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪ Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 exists in 1 − ( ). Assume the contrary and let  be such a 
path. If  ⊆   [  , then  would be a 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F ). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y ) and H2 = (V,X ∪ Y ) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).
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 path in 2 − ( ), which is not pos-
sible. Hence, there exists some edge ( ) 2  such that ( ) 2  n  n f( )g. 
As ( ) 2  and ( ) 2  0, there exist paths  and  0 from  to  in both spanning 
forests  and  0, correspondingly. At least one of these paths, say , does not contain 
( ). We may replace the edge ( ) with the path  ⊆  . By replacing all such 
edges ( ) with paths contained in , we obtain a path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F ). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y ) and H2 = (V,X ∪ Y ) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).
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 in 2 − ( ), a con-
tradiction. Thus, ( ) 2  (1) and, consequently,  (2) ⊆   (1).
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Abstract. Indonesia has been participating at IOI (International Olympiad in Informatics) since 
1995. This paper presents a result of qualitative study of Indonesian IOI participants. The sup-
porting data are obtained from a questionnaire distributed to the IOI 2006 – IOI 2015 partici-
pants, interviews, training database, journals, and reports from the national training program. 
Main objective of the study is to investigate the suitability of our training program to IOI ex-
pectations. From 35 distributed questionnaires, we obtained 24 respondents. Without having 
prior knowledge in Computer Science, solid mathematical foundation, and algorithmic problem 
solving in formal education, the national training curriculum can only give the participants a 
foundation for general problem solving which is not enough for IOI due to increase of creativ-
ity, complexity and difficulty of IOI tasks. That is why Indonesia achievement is stabilized in 
bronze. Almost all of Indonesian IOI alumni are working or studying in the domain of infor-
matics and still participating programming competitions after IOI. Most of all Indonesian IOI 
participants are studying in top universities and some of them are working in the worldwide 
prestigious IT companies. 

Keywords: Indonesian IOI training program, qualitative research, IOI tasks.

1. Background

Amongst its objectives, IOI has two main objectives for the contestants: to give recogni-
tion to young people who are exceptionally talented in the fields of informatics, and to 
foster international relationships among them. 

The first participation of Indonesia at IOI was in 1995, by the initiative of young 
lecturers of UI (Universitas Indonesia) who were studying in US. The training and se-
lection of Indonesian participants was informal and voluntary, it then found its shape as 
an organization in 2004, two years after the first Indonesian National Science Olympiad 
(OSN). The support and sponsorship from the Indonesian Ministry of Education for 
IOI and other International Olympiad is important. But the policy of the government 
that aims to catch the potential candidates from all provinces of Indonesia becomes a 
problem. Indonesia has more than 4 million high school students spread into more than 
17,000 islands, from remote area to big cities. The quality of education in remote area is 
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less in big cities like Java due to infrastructure gap. Students in big cities are more ad-
vantageous in education. Also, getting medals in OSN is considered prestigious and give 
good impact to the winners as well as to the school. Therefore, some schools in big cities 
(Jakarta, the capital, and some others province capitals) recognize the importance of the 
National Science Olympiad for their reputation, so that they are trying to get teachers 
or trainers. Most students who are interested in computer games became interested in 
programming, and by the support of their parents, they got private trainers for program-
ming. This situation causes a broader gap.

The national selection process should keep a balance between “potential candi-
dates” from remote areas and “ready to compete” candidates from the big cities. Up 
until now, Indonesia cannot be classified as a top performing country in the IOI. None-
theless, its performance is improving and become more stable in bronze medals (Yugo 
et al., 2014). The summary of Indonesian team achievement in IOI from 2006 to 2015 
is figured in Table 1.

This study was conducted with aim to reshape Indonesian national training program 
so that improvement can be achieved by being stable in silver medals. We gathered 
information from the past Indonesian IOI participants by giving a questionnaire. We 
investigate what Indonesian IOI participants are doing after their experience in IOI. It is 
important for the IOI community to know about their alumni after 9–10 years.

2. Related Works

Our work was inspired by the usage of qualitative research in computer science educa-
tion. Formerly, the qualitative research has been applied to social research. Applying it 
to science and technology is quite rare. Recently, this method became widely used for 
informatics in education. M. Knobelsdorf (2008) presented a research using qualita-
tive method in teaching of programming. A. Theodoraki and S. Xinogalos (2014) pre-
sented a qualitative study on student’s attitudes towards learning programming through 

Table 1
Indonesian Participant Medal Achievement at IOI 2006 – IOI 2015

Year Gold Silver Bronze

2006 0 1 0
2007 0 0 4
2008 1 0 3
2009 0 2 1
2010 0 2 1
2011 0 0 2
2012 0 1 2
2013 0 2 2
2014 0 0 4
2015 0 2 1
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games. Hazzan et al. (2006) wrote about qualitative research in computer education. He 
also wrote about teaching and learning qualitative research by conducting qualitative 
research (Hazzan, 2014). In our case, this method is applied to the training and selection 
program of Indonesian Olympiad participants.

A survey done and reported by Nedkov et al. (2012) concerning the selection, prepa-
ration and participation of IOI teams of Bulgaria, Croatia, Latvia, Poland, and Slovakia. 
Those countries are the leading countries in the IOI. According to this survey, factors 
contributed to the successful participation are traditions, strong emphasis on mathemat-
ics in national education, targeted extra-curricular activities, early start and gaining 
experience by participating in competitions, systematics management and dedicated 
people, motivation and rewards. 

3. Objectives

This study is conducted in order to obtain findings related to:
Factors that help the participants to get medal in IOI.a.	
Fitness of Indonesian training topics to IOI tasks.b.	
The influence of IOI to the career of IOI participants.c.	

The first questions are the most important since one of the main targets of IOI 
participation is to win the competition that is getting medals, and the Indonesian edu-
cation system has had bad results in mathematics in the PISA 2012 test. The Program 
for International Student Assessment (PISA) is a worldwide study by the Organization 
for Economic Cooperation and Development (OECD) in member and non-member na-
tions of 15-year-old school pupil’s scholastic performance on mathematics, science, 
and reading1. For winning a competition, a supporting curriculum is needed. The third 
question is trying to track the career of the Indonesian IOI participant, since life is go-
ing on after IOI.

4. Design Experiment 

This paper analyse the data obtained from Indonesian IOI participants from 2006 to 
2015. During these last ten years, Indonesia has sent 40 participants (IOI alumni), 5 of 
them have been participated twice. Therefore, we had 35 persons in the IOI during that 
period. From the 35 Indonesian IOI alumni, we obtained 24 responses in two weeks by 
contacting 3 alumni and asked them to contact the others. It makes over 70%. This is a 
proof that there is a close relation between the coaches and the alumni, as well as be-
tween alumni. Three years after IOI, they are still active in programming competition, as 
contestants in international competitions, Scientific Committee or Technical Committee 
on Indonesian National Training program and competition.

1	  http://www.oecd.org/pisa/keyfindings/pisa-2012-results.htm
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The data are obtained from the following sources: 
Indonesian National Training Program database, which are the participants, and a.	
also the training program archives (journal, schedule, report).
Questionnaires, via Google questionnaires as well as via email.b.	
Literature reviews for getting information about IOI tasks and solutions. c.	

5. Findings and Discussions 

Based on the questionnaire, we identify some findings, which are described in the fol-
lowing sections.

5.1. Effectiveness of the National Training Program

In the beginning, Indonesia did not have a systematics training program. Talented high 
school students surround university faculty members were trained only a few weeks 
before the IOI. Since 2002, the Ministry of Education of Indonesia has initiated the Na-
tional Science Olympiad (OSN), where programming is one of the competition subjects 
amongst 6 others (mathematics, physics, chemistry, economy, geology and astronomy). 
In OSN, 80 to 100 high school students that have passed the successive selection at the 
level of school, region, and then provinces are invited to come for a national competition 
held in one of the city in Indonesia. Each year, the scientific committee must run two 
concurrent programs: one for national selection (from school to OSN), while the other is 
a program for trainings and selections for the next IOI. 

One cycle of trainings and selections of IOI participants takes one year consists of 
four phases (I, II, III, IV) training camps. Between two successive camps, candidates 
must join on-line mentoring and challenge, and also participate in other informatics con-
tests. Thirty candidates of OSN winners enter the phase I. After three weeks of training, 
the scientific committee selects 16 top scorers to enter phase II. At the end of phase II, 
eight participants are selected for phase III. Finally, only four participants undergo phase 
IV becoming the official Indonesian IOI participants. 

The organization of the training is getting better by having more IOI alumni and 
their involvement. Most of the alumni are graduated in informatics and then they work 
in worldwide prestigious information technology and software companies. Their ex-
perience both in competition, education as well as in their professional works helps to 
improve the training and selection programs. Some of the IOI alumni participate volun-
tarily in the scientific committee as well as the technical committee for the two concur-
rent programs. They become mentors and problem setters in both programs. They also 
set up an alumni organization (IA-TOKI) and have a close relationship with the scientific 
committee, though they are scattered all over the world. They are developing a contest 
management system which is used for on-line training program and some other regional/
local programming competitions nowadays. The contribution of IA-TOKI to the na-
tional training program is significant. 
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Almost all of the respondents answer that the on-site training camps are very impor-
tant and more effective than the on-line training: 

They learn more from the mentors and from the peers during on-site training. Di-1.	
rect discussions are more effective than on-line learning. 
They can focus more during the on-site training, compared to on-line training. The 2.	
students in an on-site training are relieved from school so that they can fully con-
centrate on the IOI preparation. On the other hand, students must prioritize their 
school and daily tasks during on-line training. 
They have a competitive environment during on-site training, especially in simu-3.	
lation sessions. Simulation trains the students how to manage their stresses, and 
builds a competitive sense by the presence of other students.
Being together with peers during on-site training for weeks made the students know 4.	
each other better where they built a team spirit, and becomes friends. 
They have a better internet connection.5.	

There is one exception. One respondent stated that he prefer on-line training and 
self-studying, and learning from worldwide existing on-line competitions, books and 
on-line programming competition websites. It is then identified that his level is higher 
compared to his peers, so that he became bored during the on-site training, though he at-
tended and completed the whole on-site training programs. He was the one that achieved 
a gold medal in IOI 2008.

5.2. Other Contributing Factors

Other factors that contribute the medal achievement are self-exercise, reading books, 
on-line resources, and other competitions that made them regularly connect to the world 
of competition.

When they are not in a training camp, 54% of the respondents were exercising them-
selves more than 10 hours per week, 17% only between 5 to 10 hours per week, 17% at 
least 3 hours per week, and 13 % exercise irregularly. 

They also try to solve past IOI tasks, but not so much. 46% solve more than 10 tasks, 
17 % between 5 to 10 tasks, 25% less than 5 tasks, and 8% does not try to solve in past 
IOI tasks, and 4% did not comment. Trying past IOI tasks seems not so interesting be-
cause they know that IOI tasks are very creative.

The following two figures (Fig. 1 and Fig. 2) illustrate those findings.
Other learning resources (Fig. 3) are websites and competition sites. 75% of the 

respondents state that learning from the websites such as Topcoder, Usaco and SPOJ 
are useful. 71% of them state that participation in competition is useful as preparation 
for IOI. 

Learning from textbooks seems to be least favourite option for this young genera-
tion. Only 33% of the respondents were learning from textbooks. Only two textbooks 
are mentioned explicitly: Introduction to Algorithms (by Thomas H. Cormen, Charles E. 
And Leiserson), and Competitive Programming (by Steven Halim).
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Besides the national training program, all of the respondents participate regularly 
in the worldwide competitions, not only in the period of national training, but also few 
years after participating IOI. Competition becomes their hobbies, and they are getting 
more and more experience in that domain so that they become the national scientific 
members and trainers in a national training program or task contributors in prestigious 
international programming competitions. Their favourite competition websites are Top-
Coder, Codeforces, Usaco, APIO, COCI, CEOI, Joint, BEOI, Google Code Jam, ACM 
ICPC, and local competitions.

One of the alumni mentioned that the following ingredients are important for being 
successful in IOI: grit/ perseverance, time management and prioritization, attention to 
detail, creative thinking, the ability to recognize pattern on problems, experience with 
common tricks and avoiding common pitfalls, experience with a breadth of topics.
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5.3. Fitness of Training Topics to IOI Tasks

A curriculum of the training program is progressing continuously since 2006, in three 
periods. During the first period (2006–2010), most of the trainers are the university 
faculty members. IOI alumni participation in the second period (2011–2013) and the 
third period (2014–2015) brings new colour to the program. The ambiance of pro-
gramming competition becomes stronger. More than that, the creative problem solving 
exercises is introduced in addition to the classical training subject. The scientific com-
mittee is working together with IOI alumni closely for the training program subjects 
and tasks. 

In the beginning, the phase I of training is dedicated to assure the basic foundation 
of CS (programming, advanced topics, while phase III is dedicated to simulation and 
the selection of four IOI participants. Phase IV is the final preparation before going to 
the IOI. 

From one year to another, IOI tasks become more creative, unpredictable and dif-
ficult (Halim, 2013). All countries’ training program must anticipate these changes and 
shifted accordingly. As a consequence, Indonesia decides to shift the basic skill gradu-
ally from on-site to on-line training by providing on-line course material in Indonesian 
contest management systems. The students should develop their self-learning capabil-
ity. This solution works well for students living in big cities with good infrastructure 
as well as good internet reliability and availability, and good teachers are available. In 
addition to the shifting of basic skills in CS, exercise and simulations are designed to 
be harder and more challenging. Table 2 illustrates the different strategies of the three 
periods.

As illustrated above in Table 1, the achievement of Indonesian team is stabilized in 
Bronze medals. The year 2008 is a special year with one gold medal obtained by a prodi-
gious student. The year 2011 is also exceptional with only one bronze obtained because 
of two reasons: a transition of the training method and too much given exercises that are 
not in the IOI style. 

Table 2
Overview of Training Program Curriculum from 2006 to 2015

IOI year Training Phase I Training Phase II Training Phase III Training Phase IV

2006–2010 Basic programming
Basic Exercises
Simple simulation

CS topics, strategic prob-
lem solving
Simulation

Advance Topics and 
Simulation 

Final IOI preparation

2011–2013 Basic programming
CS Topics, strategic 
problem solving, 
simulation

Advanced Topics and ad-
vanced problem
Simulation

Advanced Topics and 
simulation

Final IOI preparation

2014–2015 CS Topics and
Advanced Topics & 
strategic problem 
solving, simulation

Special advanced topics
More Simulation

More Simulation, 
more ad-hocs problem

Final IOI preparation
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This part is a deeper look to the subjects covered during the training programs, con-
tains the analysis among the topics covered in the Indonesian training and IOI tasks. 

As mentioned above, the Indonesian high school curriculum does not cover com-
puter science as a compulsory subject, compared to other countries where the computer 
science concepts has been introduced since the earlier age, from 10–14 years (Dagienė 
and Futschek, 2010, Nedkov, 2012). Three phases of training, each lasts for 3 weeks 
can cover all the required topics suggested by IOI curriculum. However, topics such as 
strategic problem solving and thinking take time to be mastered. Many exercises are also 
needed in order to construct the pattern of problems as well as the pattern of solutions. 
These patterns are important for solving the creative IOI task. 

The national training program topics covered the last version of the IOI syllabus, 
obtained from the website2. National Training topics exclude basic computer science 
and mathematics listed in the IOI syllabus and respondents made remarks regarding the 
importance of those topics (Fig. 4) for IOI. 

In a questionnaire after IOI 2015, a list of topics is given. The country leaders were 
asked to rate the importance of them. In this study, we also try to explore the opinions 
of respondents regarding these topics, and we got the following results: Maximum flow, 
flow/cut duality theorem (67%); Strongly connected components, bridges and articula-
tion points (54%); Heavy-light decomposition and separator structures for static trees 
(25%); Data structures for dynamically changing trees and their use in graph algorithms 
(54%); Topics in number theory (33 %); String algorithms (54%).

Additionally, IOI tasks and solutions from IOI 2006 to IOI 2015 were analysed. 
The respondents are asked to mention the most interesting, the most difficult, and the 
most memorable IOI tasks. From these, we obtained 74 tasks. These tasks are then cross 
checked to the topics listed. 

2	  http://ksp.sk/~misof/ioi-syllabus/
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The summary of this cross check and analysis illustrate the applicability of our train-
ing topics for solving IOI tasks:

The importance of the topics ranked in figure Fig. 4 has high correlations with the ●●
technics needs to solve the IOI tasks.
Graph, DP, Greedy, sort and search are very important, but they alone are not ●●
enough, since the variation and specific condition of the graph can improve the 
algorithm.
Algorithm complexity is important for measuring the performance of algorithm in ●●
order to solve more difficult subtasks.

5.4. Influence of IOI to Participants Careers

IOI influences strongly to the Indonesian participants careers. By winning medals in IOI, 
they can enter easily to top Indonesian universities in Informatics, even entering the top 
universities in the world. All of the participants are studying in the fields of informatics 
as shown by the following graphics in Fig. 5. 

Most of the Indonesian alumni of IOI 2006–2008 have graduated from bachelor 
degree and now working or studying PhD level. Some of them are founders or CTO 
at top start-up Indonesian companies in the domain of software, offers internship and 
employees their juniors. Some medallists are working for prestigious companies in the 
US and UK as software developers. The younger alumni are now studying in bachelor 
or master program in informatics. Only 2 of 24 participants are studying in other do-
mains: one is studying in medical faculty, and another is studying in the first common 
year (he is intended studying in informatics). This finding shows that IOI is a starting 
point for their study and then their career in informatics. The IOI gave them motivation 
for studying and working abroad. IOI medal is a free ticket to enter top universities and 
obtaining scholarships.
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6. Conclusions

This paper presents a study of Indonesian IOI participants from 2006 to 2015, where 
the data come from questionnaire distributed to them, interviews, national training da-
tabase, journal of national training program, and from training reports. The study aimed 
to identify the appropriateness of our national training program to IOI participation, 
since we have only 1 gold in 2008, and in the last 4 years our achievement is stabilized 
in bronze. With the limitation of respondents, the findings from the pass IOI in this 
study will be used to reshape our strategy in the coming year, for moving at least to 
silver. We must also consider that IOI task is getting more unpredictable, difficult, and 
creative (Halim, 2013).

Without having computer science, solid mathematical foundation, and algorithmic 
problem solving in their formal education, three phases of training each last for three 
weeks on-site plus three weeks extra for final preparation are not enough for prepar-
ing IOI gold medallist, unless we can find a prodigious student. Bebras challenge3 is a 
potential way to bridge the gap in computational thinking since an early age. Indonesia 
will join Bebras (Dagienė & Stupurienė, 2014) during the coming year. Indonesia will 
remain participate actively in IOI since the outcome of the participation and achieve-
ment in IOI also improves the spirit of competition amongst Indonesian senior high 
school students which in turn also means improvement in quality of high school educa-
tion in Indonesia.

Last but not least, this paper highlights the difference of Computer Science, math-
ematics education in elementary, middle and high school of IOI countries. Formal ed-
ucation in Computer Science, mathematics and problem solving from an earlier age 
contributes to the success of the participants in IOI. One year, or more precisely four 
training camps three weeks each, is not enough to well prepare IOI participants unless 
we are lucky to find an extraordinary student.
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1. Introduction
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garia in 1989. The 2015 IOI, held in Almaty, Kazakhstan, saw participation by 83 coun-
tries and 322 contestants (each country can have up to four contestants). Participants are 
usually the winners of national competitions.

Here we first introduce oii-web, an interactive online training platform, based on 
the Contest Management System (CMS, http://cms-dev.github.io/ (Maggiolo 
and Mascellani, 2012; Maggiolo et al., 2014)), that is the grading system used in several 
programming competitions, including IOI. We built, around oii-web, three distinct, in 
both target audience and functionalities, web based platforms: one dedicated to students 
preparing for the Italian Olympiads in Informatics (OII), one for the teachers, with a 
complete course on programming and several resources available, and the third to sup-
port the selection and the training of the Italian team for the IOI. We believe that our 
online training system fills a gap, since there are several open source grading systems 
and several online training platform, but to the best of our knowledge there is no open 
source solution if one wants to host his own training platform.

We report on our experience with the three platforms, designed around the common 
core, oii-web, that allows to navigate through problems, propose solutions, and get 
feedback about it.

The overall system is already apt to be fruitfully used, with educational aims, as a 
tool for competitive programming. Yet we are pursuing its enrichment with aspects of 
personalization to trainees characteristics and needs, aiming to better help them enhance 
their abilities to deal with contest problems: this would be novel, to our knowledge. So, 
in the last part of the paper we discuss the requirements of such extension showing an 
initial modeling schema for problems, solutions, and ultimately trainees.

2. Related Work

Here we deal with various topics connected to programming competitions and, more 
generally, computer programming learning for secondary school students: a web training 
platform, the organization of national Olympiads in informatics, and our experience in 
broadening the participation to it.

On these topics a crucial information source is the Olympiads in Informatics journal, 
founded in 2007, providing “an international forum for presenting research and devel-
opments in the specific scope of teaching and learning informatics through Olympiads 
and other competitions”. Books such as (Skiena and Revilla, 2003) and (Halim and 
Halim, 2013) provide also essential material about algorithms, data structures, and heu-
ristics needed in programming contests.

The importance and the effectiveness of programming contests in learning program-
ming and, more generally, computer science has been observed and emphasized greatly 
in the literature: we mention the works of Dagienė (Dagienė, 2010) and Garcia-Mateos 
and Fernandez-Aleman (Garcia-Mateos and Fernandez-Aleman, 2009).

Various kinds of automated support to programming education are met in research since 
decades. The widest area of investigation seems to be related to introductory programming 
courses, where students learn to write programs, according to a programming language 
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syntax and semantics, and to solve problems. In this way students are trained on both ba-
sic algorithms and their coding. Programming errors are spotted basically in two phases: 
syntactic and static semantics errors are pointed out by the compiler, while logic/dynamic 
semantics erros are spotted by testing. So, program assessment is usually based on:

Static Analysis●● , that gathers information about the program and produce feed-
back without execution. In this family fall approaches based on compiler error 
detection and explanation (Hristova et al., 2003; Watson et al., 2012), structured 
similarity between marked and unmarked programs (Naudé et al., 2010), and also 
nonstructural analysis, keyword search and plagiarism detection (Khirulnizam 
and Md, 2007).
Dynamic Analysis●● , that tests the program on accurately chosen input datasets and 
compares actual and expected output. One important application of this program 
analyses is in competitive learning tools, used to manage programming contests, 
such as (Leal and Silva, 2003).

In Wang et al. (2011) combine the two approaches: first the program undergoes static 
analysis, for compilation errors and to check similarity with “model programs”. Then 
a dynamic testing is performed, and possibly the program adds in a set of model pro-
grams.

Grading systems such as CMS are mainly based on dynamic testing, and are many: 
amongst them are those used in ACM International Collegiate Programming Contest 
(ICPC), i.e. the proprietary Kattis1, and the open source PC2, available at http://pc2.
ecs.csus.edu/. Other open source grading systems are Open Judge System2 and 
DOMjudge3.

If we focus on online training platforms, amongst several high quality ones are UVa 
Online Judge4 and the more recent Sphere Online Judge5 (SPOJ). Besides these train-
ing platform, there are several well-known programming contests platforms, including 
Codeforces, USACO, COCI, TopCoder, Codechef, and Hackerearth, that run contests 
with different periodicity. There are also events based on programming contests, like 
the Google Code Jam and the Facebook Hacker Cup. A detailed survey of programming 
contests is in (Combéfis and Wautelet, 2014).

3. Italian Olympiads in Informatics

The International Olympiads in Informatics started in Bulgaria in 1989, patronised by 
Unesco. They are considered one of the most important programming competition in the 
world. Each country can have four contestants, and the competition is divided in two 
competition days. On each day contestants will be given three tasks to complete in five 
hours. Each task is worth 100 points and, since IOI 2010, it is divided into subtasks, each 

1	https://kth.kattis.com/
2	https://github.com/NikolayIT/OpenJudgeSystem
3	http://www.domjudge.org/
4	https://uva.onlinejudge.org/
5	http://www.spoj.com/
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worth a portion of the total points. There are time and memory limits for each subtask, 
and points are awarded only when all the tests in subtask yield correct results within the 
limits. There are also interactive tasks, like games, in which the contestant code alter-
nates moves against an adversary.

In Fig. 1 we can see a graphical representation of a task, taken from OII 2014 final. 
The task, taglialegna (lumberjack), can be summarized in the following way: there 
is a line of trees, with one meter of space between each of them. Each tree has a known 
height, in meters, and you can cut it aiming it toward its right or left. When an  meter 
tree falls, like in a domino game it forces the falling of its  − 1 close trees, and this in 
turn can force other tree to fall. You can decide which tree to cut, and for each of them 
you can choose in which direction it will fall. What is the minimum number of trees to cut 
in order to remove all the trees in the line? For this task, the subtasks were designed to 
distinguish algorithms of different computational costs: if we denote with  the number 
of trees in the line, all the points were awarded to a (definitely not trivial)  () solution, 
achieved by only one contestant, and decreasing points were assigned, respectively, to 
 ( log ),  (2), and  (3) solutions. 

Italy participated in IOI for the first time in 2000, and since 2001 it started a national 
competition, promoted by a joint effort of the Italian Ministry of Education, University 
and Research (MIUR) and the Italian Association for Informatics and Automatic Calcu-
lus (AICA, a non-profit organization). The Italian Olympiads in Informatics (OII) are 
divided into three phases:

1
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OII 2014 – Finale nazionale
Fisciano, 19 settembre 2014 taglialegna • IT

– Al termine della chiamata a Pianifica non tutti gli alberi sono caduti.
– Viene fatta una chiamata ad Abbatti con un indice o una direzione non validi.
– Viene fatta una chiamata ad Abbatti con l’indice di un albero già caduto, direttamente ad

opera degli operai o indirettamente a seguito dell’urto con un altro albero.

Esempi di input/output
input.txt output.txt
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2 3 2 1 4 2 1

4 0

5 1

6

3 1 4 1 2 1

0 1

Spiegazione
Nel primo caso d’esempio è possibile abbattere tutti gli alberi segando il quinto albero (alto 4 deca-
metri) facendolo cadere a sinistra, e il sesto albero (alto 2 decametri) facendolo cadere a destra. Il primo
albero tagliato innesca un effetto domino che abbatte tutti gli alberi alla sua sinistra, mentre il secondo
abbatte l’ultimo albero nella caduta.
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Nel secondo caso d’esempio tagliando il primo albero in modo che cada verso destra vengono abbattuti
anche tutti gli alberi rimanenti.
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Fig. 1. The graphical representation of the task taglialegna (lumberjack), from OII 2014 
final: an input instance (a) and a possible solution that uses two cuts (b).
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 1.	 First Selection (Schools, November): in this phase, in their own schools, ap-
proximately 20k students compete to solve, on paper, a test that involves math, 
logic, and programming abilities; in particular, there are some fragments of code 
(C/C++ or Pascal), and the students are asked to understand the behavior of the 
fragments.
 2.	 Second Selection (Regions, April): in this phase there are approximately 40 
venues, where approximately 1200 students, selected from the previous phase, 
compete by solving three programming tasks on the computer. In this phase 
points are awarded for solving the tasks, independently from the complexity of 
the solution.
 3.	 Third Selection (National Final, September): approximately 100 students are 
asked to solve efficiently three programming tasks on the computer. They compete 
for 5 gold, 10 silver and 20 bronze medals.

From the above description it should be clear how the required programming abili-
ties are varying through the different steps: we first ask students to be able to read code, 
then to write code, and finally efficiently write code. A more detailed picture of the OII 
organization is described in (Casadei et al., 2007).

The selection process does not end with the national final: the gold and silver medal 
winners, together with at most five bronze medal winners, selected by (young) age, form 
the group of IOI-candidates, and four of them will represent Italy in the next IOI (usu-
ally held in July or August). Thus, there is almost one year to train and select them, and 
this process is mainly done in four stages held nearby Volterra6. In each of the stages 
there are theoretical lessons, ranging from traditional algorithms and data structures to 
competitive programming tips and tricks, as well as programming contests. Besides the 
stages, there is a continuous on-line support for selfimprovement: the IOI-candidates are 
assisted by tutors (former IOI contestants) for assistance and guidance, and several train-
ing contest are organized, some of which focused on specific topics.

4. The Online Training System: oii-web

Our online training platform, oii-web, is based on the Contest Management System 
(CMS) (Maggiolo and Mascellani, 2012; Maggiolo et  al., 2014), the grading system 
used in several programming competitions, including IOI. CMS was designed and coded 
almost exclusively by three developers involved in the Italian Olympiads in Informatics: 
Italy hosted IOI 2012 and therefore, since 2010, it started the development of CMS, that 
was used/tested in the OII finals 2011 and, few month later, was the grading system of 
IOI 2012. CMS version 1.0 was released in March 2013, and since then has been used 
in both IOI 2013 and 2014, together with several other programming competitions in the 
world (Maggiolo et al., 2014).

6	 The small city of Volterra in Tuscany is nowadays world-wide popular due to the fact that in the novels and 
movies of the Twilight vampire saga it is the origin place of Volturi, “the largest and most powerful coven of 
vampires”.
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We began the development of oii-web during the preparation of the IOI-candidates 
for IOI 2012: why did we need an online training platform? The short answer is: in a pro-
gramming competition there are very few (usually from 3 to 7) problems, to be solved 
in a short frame of time; in order to train the IOI-candidates we needed a system that 
allowed us to give them more problems they can solve whenever they want, so the first 
version of oii-web was simply an instance of CMS with one competition running, with 
several problems and unlimited time. For training the IOI-candidates and, later, the two7 
Italian teams competing in IOI 2012.

Later, we started using it consistently, and our feature list was growing almost daily, 
both for the front-end and for the back-end of the system:

It would be nice to provide some information about each problem, so the student 1.	
can choose it without reading the whole description.
It would be nice to have a way to exchange messages, so students and tutors can 2.	
chat about the problems.
It would be nice to be have a way to show/hide problems, so we can use some of 3.	
them in contests to rank the students.
It would be nice to have stats about each problem, and who was able to solve it (in 4.	
a grading system there are these stats but not visible to contestants).

Thus, we decide to include all these above mentioned features, together with others, 
and build an online grading system, oii-web. We integrated the open source Discourse8 
to provide forum functionalities. The source code of the system is freely available9 in 
github and it is released under the GNU Affero General Public License10. Furthermore, 
it is also available11 as a “dockerized” app for docker12, an open platform to build, ship, 
and run distributed applications.

5. The Three Platforms

In this section we briefly describes the three platforms, based on oii-web, we devel-
oped, and their differences.

OII-training is the platform devoted to the students that are interested in OII. We can 
see a screenshot of the home page in Fig. 2 (a). In this platform there are approximately 
180 problems spanning several techniques and difficulties, ranging from regional con-
tests to IOI level. Furthermore, there are also the tests, from the first selection of OII 
(schools selection), available as interactive online forms. So far we did not advertise 
this platform in the schools, since we consider it in a beta testing phase. We allowed 

 7	The nation that hosts IOI can have two teams of four elements, but only one team is eligible for medals.
 8	 www.discourse.com
 9	 https://github.com/veluca93/oii-web/
10	 http://www.gnu.org/licenses/agpl
11	 https://registry.hub.docker.com/u/veluca93/oii-web/
12	 www.docker.com
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students to register freely, and so far we have approximately 1.500 users despite the lack 
of promotion.

DIGIT is the platform dedicated to teachers: we realized this platform in a project spon-
sored by the MIUR, where the aim was to build a self-paced online course of computer 
programming, focused on the Olympiads in informatics. The idea was to train the teach-

a

b
Fig. 2. The home pages of two of the platforms based on oii-web: the one for the teachers 

(a) and the one for the students (b).
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ers so they would be able to train their students. Thus, this platform is currently the rich-
est of the three, in terms of contents and functionalities. We can see a screenshot of the 
home page in Fig. 2 (b). There are video lectures on C/C++ and Pascal programming, 
Algorithms and Data structures, and some basic video tutorial as well including how 
to use the platform to submit a solution. There are also some lecture notes, and all the 
material can be distributed to students as well; the video lectures are also available on 
the OII channel on YouTube. The MIUR used this platform, since October 2013, in five 
distinct courses, with a sixth one scheduled to start in September 2016. So far approxi-
mately 3.000 teachers followed this course, and the effects on the OII were impressive: 
the participation of students in OII preliminary stages raised from 13k to 21k.

IOI-candidates is the last platform, and the only one not publicly available, since it is 
devoted to the IOI-candidates. This platform, as we mentioned before, has been the origi-
nal motivation to develop the whole oii-websystem. This platform has all the problems 
available to the other two platform, together with a reserved set of problems that we use 
in the contests to rank the students. The students are asked not to discuss these problems 
in public forum or social network, since we usually reuse them after few years.

6. Our Experience

The advantages of a training system are clear: without it, we need to give students, be-
sides the text of the problem: the input cases, the rules for counting the points, and, in 
some cases13, a code to check the correctness of the produced output. And the student 
has to: run its code against every input, run the checker against each input and matching 
output, check the time and memory limits, that can be a cumbersome operation for a be-
ginner. Furthermore, even if we automatize this task, for example by a script given to the 
student, there is still the problem of measuring the running times in different machines: 
students can have very different hardware and it is meaningless to state time limits with-
out knowing their hardware.

Our path began, as we mentioned before, with the needs of a training system able to 
assist us with the preparation of Italian IOI-candidates. We soon realized the advantages 
of such a system, as opposed to the use of an online platform like UVa Online Judge: 
we simply had more control, and this leads to a more effective teaching experience. We 
almost immediately decided to develop an online platform for the OII students as well, 
and we enriched our basic system with more features, in order to be able to deal with a 
much larger number of (averagely) less motivated students. In the beginning of 2013, the 
OII-training platform went online, in the form of a publicly available beta, as we were 
planning to add more features to make it more appealing for a larger audience. Almost 
concurrently, the MIUR asked us to design an online course for teachers, and we im-

13	To check the correctness of some problems is enough to check that the output produced by the student is the 
same as the output produced by the correct solution; in other cases, usually when there is more than a unique 
solution for a problem, like finding a path in a graph under some constraint, it is necessary to write a checker 
code that verifies the solution proposed for the given input.
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mediately decided to build it around our platform. So, in the next months, we adapted 
the system for the DIGIT platform, and realized the video lectures; in October 2013 we 
launched the first course: the MIUR opened a call for 250 teachers to be freely allowed 
to follow the course. The call was supposed to stay open for ten days, but we reached 
250 teachers in the first day, and we decided to admit more. In subsequent courses, since 
we observed that the server was working fine, we raised the number of teachers per 
course to 700. At the end of each course there is a programming contest, and the ones 
that perform above a threshold (solving three problems out of seven) are awarded with a 
certification. Note that once a teacher has access to the platform, (s)he is allowed to use 
it also after the end of the course. Many teachers reported us that they had fun using the 
platform, and that they plan to keep on using it.

Our experience shows that the engagement in having or not a training system is 
completely different: we witnessed this at all the learners’ levels; beginners were more 
involved, and advanced learners often joined the developers community (mostly made 
of tutors and former IOI contestants) to either contribute the system development or to 
propose new problems. The teachers were incredibly active in the forum, exchanging tips 
and solution strategies as well as mutual support. The IOI-candidates are literally eager to 
contribute to the system or in the design of new problems, maybe because they see the tu-
tors as a model, or simply because they enjoy it so much that they want to be part of it.

We also asked the IOI-candidates to “adopt a past IOI problem”: our goal is to have, 
in the system, all the problems from past IOIs, and therefore there is a (shrinking) list of 
the problems that need to be produced: in all the cases the text of the problem is available 
on the web, usually together with some solution, but we need to write input generators 
and fine-tune the time and space limits. Currently we have almost all the problems of 
the last ten IOIs.

7. Validation of the System: A Descriptive Analysis

In this section we discuss the results of a validation of the system; we performed our 
study by means of a survey technique, with a questionnaire as a tool. We focused on the 
users of the OII-training platform, and we report some stats in Table 1. With active user 
we denote a user that submitted at least one solution of a problem; with problem solved 
we denote the number of submission that completely solved a problem.

We sent the users of the platform the link of the questionnaire in May 2016; we 
had 171 users that answered, and this means almost half of the current active users. In 
Table 2 we report the questions and the statistics of the answers provided.

The experimental setup is based on the collection of general information about the 
respondents, and on scales aiming at Satisfaction, Usability, Effectiveness, Active lear-
ning, Fun.

Where possible we used a Likert scale, with five grades: two highest, two lowest, and 
an intermediate one. This allowed to separate clearly mainly positive judgements from 
mainly negative ones. Exceptions (questions Q6 and Q12) are motivated by their, less 
progressive nature.
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About the general satisfaction of the learners, we considered important the learner’s 
feeling about the actual “learning results”. In this respect it is quite satisfactory for us 
that 65% of the respondents selected mainly positive (the highest two) grades, while the 
mainly negative (lowest two grades) were chosen by a 65%.

Usability of the system was marked mainly positively by a 70%, with mainly nega-
tive scores below 4%.

Of course we were mainly interested in the effectiveness shown by the system, as 
witnessed by the higher number of questions dedicated to that topic. One main issue, in 
that respect, is the number of problems (meaning exercises) that the learner undertook/
solved. A second issue regards the perception of the learner about having fruitful and not 
tiresome sessions of use of the system.

The first above issue is met by questions Q3 and Q4. As it was expectable, there are 
more exercises “tried” than “solved”: the system is not a panacea. On the other hand, 
while only 1% of the respondents tried some exercises (probably between 1 and 5) with 
no success, data show that 56% of the students was able to give a try between 11 and 20 
problems (one third of this share) or more than 20 (two thirds of them), succeeding in 
quite a respectable 47% of the whole sample. In this respect we notice that 3 learners out 
of 4 that tried more than 20 exercises, succeeded in more than 20 exercises.

The second issue above (regarding fruitful and not tiresome sessions of work in the 
system), is cared by questions Q5 through Q8: to some extent Q7 helps focusing the re-
sult of Q5, while Q8 does the same for Q6. From Q5 and Q7 we clearly see that (at least 
the learner’s perception of) fruitfulness is high, with mainly negative results below 6% 
and 10%, respectively for Q5 and Q7. Q7 was indeed useful in pointing out one crucial 
aspect of fruitfulness (comprehension): its results sport a quite rewarding 61% of mainly 
positive marks. Finally, Q6 and Q8 tell us that there is scarce perception of a session of 
work in the system being tiresome or slow. 

The approach to learning sought by the system is coherent with the concept of active 
learning, so we thought it would be interesting to probe the perception of learners in 
that respect. Question Q9 is quite direct in that respect: the results show mainly positive 
response (73%, equidistributed between the two highest marks). Questions Q10 and Q11 
took a less direct route to the learner’s attitude toward the system: the former question 
wanted to reveal the induced engagement, and scores almost 64% of mainly positive 
answers, while the mainly negative feedback is limited to 8%.

Table 1
Some statistics about the OII-training platform

Number of registered users 1413
Number of active users in the period Jan. 2015 – May 2016   812
Number of active users Jan. 2016 – May 2016   399
Problems in the system   253
Problems solved by users in the period Jan. 2015 – May 2016 9754
Problems solved by users in the period Jan. 2016 – May 2016 6192
Average number of problems solved per user in the period Jan. 2015 – May 2016   ≈12
Average number of problems solved per user in the period Jan. 2016 – May 2016   ≈15,5
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Question Q11 tried to connect the work in the system with the perceived gain in 
terms of problem solving skills. In this case we have still more than half the sample 
showing mainly positive response (56%), with 11% mainly negative and a third of the 
sample set on the intermediate grade.

Since the use of systems like ours is not usual in the Italian School, we liked the idea 
to fetch some reactions in relation to the “fun” factor. Such an investigation would be 

Table 2
List of the questions we used in the evaluation of the system.

Satisfaction
Q1. Did you find the system useful to fulfill your learning goals?
A1. Very Much: 25.1%, Quite So: 39.8%, Enough: 28.7%, A few: 4.7%, Not at all: 1.8%

Usability
Q2. Is the system simple to use?
A2. Very Much: 24%, Quite So: 46.2%, Enough: 26.3%, A few: 1.8%, Not at all: 1.8%

Effectiveness
Q3. How many problems did you tackle in the system?
A3. 0: 1.8%, From 1 to 5: 18.1%, From 6 to 10: 24%, From 11 to 20: 18.7%, More than 20: 37.4%
Q4. How many problems were you able to solve satisfactorily in the system?
A4. 0: 2.9%, From 1 to 5: 29.2%, From 6 to 10: 21.1%, From 11 to 20: 18.1%, More than 20: 28.7%
Q5. According to your perception, your sessions using the system were fruitful?
A5. Very Much: 15.2%, Quite So: 42.1%, Enough: 36.8%, A few: 4.7%, Not at all: 1.2%
Q6. According to your perception, your sessions using the system were long enough (to be fruitful), but not too 
long (to be tiring)?
A6. Too long (tiring): 8.8%, Not so long (not tiring): 81.3%, Short (not tiring): 9.9%
Q7. By solving a problem, did you improve your comprehension of the algorithm or the technique involved?
A7. Very Much: 24%, Quite So: 36.8%, Enough: 29.8%, A few: 7.6%, Not at all: 1.8%
Q8. Is the system quick enough in providing response?
A8. Very Much: 25.7%, Quite So: 35.1%, Enough: 29.2%, A few: 6.4%, Not at all: 3.5%

Active Learning
Q9. I felt active in approaching the problems with the aid of the system
A9. Very Much: 35.7%, Quite So: 37.4%, Enough: 17%, A few: 8.2%, Not at all: 1.8%
Q10. The study of algorithms and related techniques is more interesting with this approach
A10. Very Much: 33.9%, Quite So: 29.8%, Enough: 28.1%, A few: 4.7%, Not at all: 3.5%
Q11. Due to the interaction with the system I have identified and trained upon central issues in the problem 
solving activity, and important concepts in the solution of problems
A11. Very Much: 17.5%, Quite So: 38%, Enough: 33.3%, A few: 9.4%, Not at all: 1.8%

Fun
Q12. Using the system I felt mainly: i) Motivated, ii) Happy iii) Curious, iv) Relaxed, v) Other
A12. Happy: 15.2%, Motivated: 52.6%, Relaxed: 4.1%, Curious: 24%, Other: 4.1%

General questions
Q13. Which institution are you currently enrolled?
A13. High School: 69%, University: 9.9%, Work: 17%, Other: 4.1%

Suggestions
Q14. What would you improve in the platform?
A14. See the text
Q15. Other ideas or suggestions
A15. See the text
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more proper in game based, or gamified, systems; however, since we actually plan to 
add gamified aspects (namely a badge feature), it seemed good to add a question whose 
response would be more useful in future comparisons.

With respect to the present state of the system, the results are surely quite good, with 
feelings of motivation (53%) and curiosity (24%) encompassing more than three quar-
ters of the sample’s feedback.

We conclude this section by discussing the suggestions we received in questions Q14 
and Q15. Question Q14 was What would you improve in the platform?, and users were 
allowed to choose one or more of the proposed answer, that are the directions we are 
working on. We report below the results (that were not mutually exclusive, as the other 
questions), in order of the expressed preferences:

77.2%  I would add a wiki with documentation about algorithms and related tech-
niques.

57.3%  I would add a system to help the user to choose the next problem to solve.
36.3%  I would add a badge system, to show achievements using distinct badges.
12.3%  I would add more problems involving Mojito, the JackRussell mascotte of 

OII.
From the first of the above results we gather the obvious: of course a repository of 

centralized information, about algorithms and techniques needed in the solution of the 
exercises, is highly attractive. Such a development is actually in our plans, needing basi-
cally quite a lot of wear and tear in order to structure and feed the wiki, and not much 
more in terms or research. Being it a wiki, however, we are planning to make it available 
to contributions coming from all the members, so to make of it another opportunity for 
social collaboration, and social-collaborative learning.

On the contrary, the second preferred choice (recommending system for the next 
problem to solve, that would be based on the student model) is a topic for further re-
search, met preliminary in the next section.

8. Further Developments

A work of Wang et al. (Wang et al., 2011) states the following requirements for a com-
prehensive program assessment system: 

 1)	Sufficiently extended testing, so to cover the various cases of computation.
 2)	Checking on the program structure, to see that the problem specification is met, 
and no cunning shortcuts bring to the correct output.
 3)	Accepting and reasonably assessing programs with static errors. 
 4)	Providing immediate and correcting feedback.

We think that the developments in the oii-web system should ultimately fulfill 
these requirements, while the present directions should deal closely with the present 
purposes of the system, that is to allow non novice students to train for the contests. So 
here we try and define a model to support:
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A static analysis stage where solution strategies (algorithm, data structure and their ●●
mutual feasibility) rather than syntactic/semantics errors, are considered.
An interactive communication between system and student, to help:●●

Developing one’s capability to select solution strategies, by giving feedback ●●
on the actual choice.
Planning a path of growth of one’s skills, by suggestions about next suitable ●●
problems to undertake.

(And dynamic testing in the usual form, as it is already done).●●
Problems (the exercises proposed in the various contests, yearly), Solutions (the pro-

grams proposed by the students), and ultimately the Students are modeled basing on a 
tagging mechanism. Tags are the names of problems (P), the algorithms (A) and data 
structures (DS) usable and/or used in the solutions (S) of problems, the contests (C), and 
levels of confidence (L) in the use of combinations of As and DSs.

Teachers in charge of the organization of a contest are named gurus; students that 
came out to be “exemplary” in a contest, and so “whose choices can count” when a 
solution to a problem is to be assessed, are called Exemplary Peers (EPs). EPs can be 
promoted as guru.

A problem is modeled as a family of strategy choices (A and DS), suitable for its 
solution. Differences in that suitability can be pointed out by a weight. The weight is 
computed basing on the frequency by which A/DS were chosen, and on the reputation of 
who performed that choice in the related contest. Notice that the reputation of the gurus 
and EPs is contextualized to the contest.

 = f   g

A solution submitted by a student is modeled by the strategy chosen for it:

 = f    g

where  is either a contest name or “training” (off contest).
This metadata is provided by the student, in order to allow for a timely feedback 

from the dynamic analysis. On the other hand that metadata might be inaccurate, so it is 
subject to scrutiny: when a check points out that the data was wrong, it is changed ac-
cordingly, or (in the extreme case) the solution is removed altogether.

This check is done by gurus. A more social kind of scrutiny has been devised, yet it 
can’t be applied, as the students solutions submitted to the system are not to be shown in 
public, at least for the time being.

A submitted solution is statically checked by comparing its specification S with that 
of the problem P. A feedback can be then given, about the appropriateness of the choice, 
its present weight, and possible better weighted alternatives.

The lightweight student model we can define in this framework define the skills 
shown by the student while solving problems in the system; it is a collection of “acquire-
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ments” each one expressing the fact that a given problem has been solved, how, how 
well and in what 

() = f    g

where level is a discrete variable in [1    5] associated to the outcome of the dynamic 
analysis of the solution submitted by the student on the problem.

The above modeling framework can be used during a contest, in order to collect 
problems models and data on students (for instance to compute students reputation and 
define the set of EPs for that contest).

However here we are also interested in the possible use of this framework in a social 
webbased settings, to foster training in view of a next contest. The CMS would be the 
place for such training, organized by the following protocol.

A 1.	 Target Skills is given. This is a set of triples designating the aim of the the train-
ing (at this stage for all the system):  = f  g. 
The trainee can access the set of problems available from previous contest, her/his 2.	
student model, and the TS.
While the trainee is entitled to select any problem and submit the related solu-3.	
tion, the system can provide a list of suggestions, for “best next problems to 
undertake” in order to enhance SM(trainee) towards coverage of TS. This list is 
done by:

defining the set of elements in TS that are close to be covered by tuples in SM (a)	
(Proximal Coverage – PC);
defining a set of problems, whose undertaking can bring to add elements in PC (b)	
to the student model.

Upon submission of a solution, the trainee provides its initial modeling (4.	  

).
The dynamic analysis of the solution establishes the 5.	 level value for the t-uple 

    

going to join the student model.
Notice that the trainee specification of the solution can be subject only to late 

evaluation (by guru), in order to allow for a timely feedback coming from the dy-
namic analysis. So the new element in the SM is sub-judice and it could be modi-
fied or, in the extreme cases, deleted.

9. Conclusions

In this paper we introduced oii-web, an online training system for programming con-
tests. The system is based on CMS, the grading system used currently in IOI competi-
tions and other programming contests as well. We developed three distinct platforms, 
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based on oii-web, aimed at three distinct user sets: students enrolled in OII, their teach-
ers, and IOI-candidates, i.e. the small set of students amongst which will be selected the 
four to represent Italy at IOI. We discussed briefly our experience, together with some 
current developments. We believe that, as happened in our case, the use of such a system 
can contribute to spread the algorithmic problem solving skills needed in programming 
contests.

We also believe that this tool can scale up toward being an educational support to 
refining students skills in “algorithm mastery”, and we have presented lines of develop-
ment in that direction.
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Abstract. While the number of contestants in the Dutch Olympiad in Informatics was declin-
ing, the number of participants in the Bebras contest grew rapidly. In order to reach these Bebras 
participants for joining the Olympiad, several steps were taken. We analyzed the differences be-
tween the contests. We offered Bebras contestants an introductory course in programming. And we 
changed he contest format of the first round of the Olympiad, introducing two new types of tasks. 
As a result, the number of contestants increased and girls returned to the Olympiad.

Key words: Bebras contest, Olympiad in Informatics.

1. Introduction

The Dutch Olympiad in Informatics was initiated in 1991 as a contest for selecting 
participants for the International Olympiad in Informatics. In the early years of its ex-
istence, the number of participants grew to just below 200. Since 2000 the number of 
contestants in the first round of the contest has varied, but it is proven to be hard to attract 
more pupils in high school for the Olympiad.

In 2005 the Netherlands was among the first countries to join Lithuania in the Bebras 
Challenge. Over the last 10 years the number of participants has grown rapidly to over 
21000. A lot of contestants of the Olympiad also participated in the Bebras contest. We 
started looking into how we could persuade other Bebras-contestants into joining the 
Olympiad as well.

Naturally, there are large differences between the Olympiad and the Bebras contest. 
It is a bit like comparing the contestants in a marathon run that are aiming for a national 
championship with the grand total of recreational runners; the participation of contes-
tants serves different goals. However, there are also similarities; both of our contests are 
about algorithmic and computational thinking, and they aim to challenge the participants 
to show what they are capable of.

In section 2 we will give a short history of the Olympiad and Bebras in the Nether-
lands and elaborate on the similarities and differences between the two contests. In sec-
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tion 3 we will show the measures we took to bridge the gap between these contests. In 
section 4 a sample problem in our new approach will be shown. In section 5 we will pres-
ent the first results of the new contest format and section 6 presents some discussion.

2. Olympiad and Bebras in the Netherlands

From 1999 till 2014 the Dutch Olympiad in Informatics (2016) had a fixed format with 
three stages. 

Three or four programming tasks for the first round are published on our website 
in September; the final task is to design a program that can enter a tournament. Con-
testants can register themselves and they are able to submit their solutions till January 
15th. Pupils are allowed, even encouraged, to co-operate. Our submission system is able 
to handle over 10 different programming languages; evaluation is also done by this 
system. However, all submissions that failed the test are inspected manually, and if the 
jury is able to fix a small bug, like an IO-format, the program is re-evaluated and a small 
amount of points will be subtracted (like 3 out of 100 for every fixed error). Contestants 
that score at least 50% of the maximum score are allowed to join the second round. All 
contestants that proceed to the second round get a certificate, and there are special prizes 
for early submitters and the winner of the game tournament (Codecup, 2016).

This second round is in March at a university; two or three problems with subtasks 
(van der Vegt, 2009) have to be solved and sometimes there are one or two more theo-
retical questions (van der Vegt, 2012). All languages that our system can handle are al-
lowed. Only in very rare cases the results of the automated evaluation are overruled. The 
best performing contestants are invited for a trainings course in April on algorithms and 
problem solving. They will need to switch to C++ or Pascal for the training course and 
to prepare themselves for the IOI. Finally, the third round in May or June with a limited 
number of contestants is used to determine the team for the next IOI.

Like in many countries, organizing the Bebras contest is done by the organizers of 
the Dutch Olympiad in Informatics. The Bebras Challenge was first held in Lithuania 
(Dagienė, 2006). The Netherlands started with a test contest in 2005. The contest grew 
rapidly, in 2015 over 1.3 million pupils from more than forty countries participated in 
their national Bebras. The questions used in these contests are chosen from an interna-
tional task pool. The contest is about computer science, algorithms, structures, infor-
mation processing and applications. No prior knowledge is required. Criteria for good 
Bebras tasks are formulated by Dagienė and Futchek (2008). Dagienė and Stupurienė 
(2016) give an overview of current research on Bebras.

Contestants compete in their own age division. In the Netherlands contestants have 
40 minutes to complete 15 tasks. These can be multiple choice questions, questions 
where an answer has to be given in the form of an integer or a short string, or interactive 
questions. The contest runs for a week; the best performing contestants for every age 
division are invited at a university for a second round (Beverwedstrijd, 2016).

All contestants in the second round get a certificate. In the IOI-style, 1/12 of them 
get a gold certificate, 1/6 a silver one and 1/4 bronze. The overall winner in each age 
category wins a gadget with a text inscription showing he or she was the winner of this 
year’s Bebras contest in a specific agegroup.
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Performing in the Olympiad takes a reasonable amount of time; our research sug-
gests that a typical contestant can use 20 to 80 hours to write the programs for the first 
round, tough experienced pupils can easily, within a few hours, create solutions that 
score well enough to proceed to the second round. A contestant in the Bebras contest 
does one round in 40 minutes.

The questions differ accordingly. Most of the tasks in the Olympiad require wri-
ting either a batch or a reactive program. So knowledge of a programming language is 
required. For Bebras, no prior knowledge is needed. The tasks however tend to test the 
perception of concepts of computer science and computational thinking. Barendsen et al. 
(2015) showed that it is possible to use Bebras tasks to assess the understanding of these 
concepts; in their research they focused especially on algorithms.

Another difference was the participation of girls. Until 2004 the Dutch delegation 
for the IOI used to be a mixed team (Maggiolo, 2015). In later years there was no pos-
sibility to create such a team, because the girls almost completely disappeared out of the 
contest. In Bebras we reached many girls, around 40% of the contestants every year. In 
the highest age group this is around 20%. 

3. Bridging the Gap

We decided to work on different changes to try to get more Bebras contestants in the 
Olympiad. Now we are connected with the contestants in Bebras, we can invite them as 
talented pupils to try the tasks of the Olympiad. But since most of them will not be able to 
write a program, we now offer a programming course for interested pupils. We give con-
testants a link to the Dutch translation of the Canadian Computer Science Circles (2016). 
This is an interactive website designed for student to learn programming in Python.

To give these newcomers a challenge, we had to add a series of tasks on a lower dif-
ficulty level. We call these tasks the A-tasks.

We also introduced a new kind of tasks in the first round of the Olympiad, tasks that 
have the look and feel of a Bebras task, but with a problem that we think will not be 
solved within a few minutes. You can solve the task without using a computer, but it 
could also be possible to write a computer program to help solving the problem for you. 
These tasks are called the B-tasks. 

The three tasks of the type we used to offer in the Olympiad are now the C- and D-
tasks. An overview is given in Table 1. So we still offer a few hard programming tasks, 

Table 1
Tasks in the first round of the Dutch Olympiad in Informatics

Task type Description Number of tasks Points per task Points per group

A Introductory programming tasks 5   40 200
B Theoretical, Bebras-like tasks 4   50 200
C Advanced programming tasks 2 100 200
D Game programming task 1 100 100
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but we want to attract new contestants in two ways: as starting programmers, after tak-
ing the course, solving A-tasks and getting curious about the other tasks we are offer-
ing, or as experienced Bebras-contestant, with a few challenging, more time consuming 
puzzles. We hope that this entices the pupils to try a few programming tasks.

When we started this approach in 2014, we had no clue how many contestants we 
would be able to attract. We stated in our contest description that the top 100 contestants 
with a certificate would be invited to the second round, tough the last year we had over 
100 contestants in the Olympiad was 2003. 

We decided to combine the certification system of Olympiad and Bebras, but we set 
boundaries in advance, so a contestant will know where to aim. We give every contestant 
that solved all A-tasks or all B-tasks bronze certificate. Performing well for both types is 
enough for silver. The boundaries are stated in Table 2.

4. Output only Problems: an Example

The Bebras-like theoretical tasks are like the output only tasks at the IOI. On the Wiki 
of the International Olympiad in Informatics (2016) this definition is given. “A task is 
of type ‘output only’ if the contestant is provided with the input files, and must only 
submit the corresponding output files. The contestant can solve each test case by hand 
or by writing one or more programs in the language of his choice, and doesn’t need 
to submit these programs.” In our contest we will not use input and output files; the 
contestant has to download the problem description and to submit the answer in our 
contest system. 

For the first tasks we used exercises that were based on the tasks Dungeon, Pal-
indromes and Cities from Burton (2010) and Coins from Kubica and Radoszewski 
(2010). Since there is a large period in time that these tasks can be solved in the first 
round, we could not simple use one instance of these tasks. So we decided to make 
these tasks personalized. The contest ID of a contestant was used as a random seed to 
create a problem instance. 

Two other restrictions were made:
For a full score (50 points) a submission had to be made within a week after the 1.	
problem statement was generated by the contest system. Each day of delay gives a 
penalty of 1 point.
To discourage guessing, submitting a wrong answer gives a penalty of 10 points. A 2.	
new submission is only allowed after 24 hours.

Table 2
Boundaries for certificates

Type of certificate Total score 

Bronze 200–399
Silver 400–599
Gold 600–700
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The header of a downloaded problem instance is shown in figure Fig. 1. It shows the 
date and time of production, as well as the username of the contestant.

For task B4: “Woorden leggen”, Crosswords, a contestant had to place six give 
words on a 10 by 10 grid, each letter in a different cell, in the way a crossword puzzle 
or a Scrabble board is filled. All words had to be connected and no unintended short 
words should appear. The number of cells in the smallest enclosing rectangle had to be 
submitted.

Four of the six given words were the same for all contestants. The other two were 
selected out of a dictionary; the total length of the two words was 13 and each of the 
words had at least a length of 5. If our program discovered that this problem instance had 
no valid solution, another one was created.

This is of course a tricky problem. There are many suboptimal solutions, so a con-
testant has to be really convinced before submitting. The average score for this task was 
much below that of other B-tasks, as shown in Table 3.

In our second round, we take one of the B-tasks of the first round and we extend it 
to a programming task with several subtasks. This way contestants are already familiar 
with the problem behind the task. In the second round in 2016 we had a programming 
task Crosswords with 6 subtasks. Input were a diagram with a filled in crossword and a 
dictionary file with allowed words.

Count the empty cells.A.	
Count the number of different letters used.B.	
Count the number of different words used.C.	
Make a list of all words, in a specific order.D.	

Table 3
Scores for B-tasks

ID Title No solution Incorrect <=20% <=50% <=100% 100% Average

2014–2015 B1 Maze 26 45 0 4 24   83 78,94%
2014–2015 B2 Palindromes 36 14 1 2 42   87 72,52%
2014–2015 B3 Cities 39   8 0 1 24 110 74,99%
2014–2015 B4 Coins 43   8 0 1 23 107 72,37%
2015–2016 B1 Radio mast 29 26 1 1 56 107 78,41%
2015–2016 B2 Connections 42 15 6 3 37 117 72,43%
2015–2016 B3 Subsequence 47 17 0 5 30 121 73,97%
2015–2016 B4 Crossword 63 53 8 3 56   37 53,11%

Fig. 1. Header of a problem instance.
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Make a list of all words in the dictionary that can be added in the diagram.E.	
Try to fill the diagram, minimizing the number of empty cells.F.	

A seventh subtask was output only: Produce a 10 by 10 diagram with only valid 
words, and minimize the number of empty cells.

5. Results

After applying these changes in the Olympiad, the number of participants grew rapidly. 
Fig. 2 shows the number of contestants that earned points with their submissions. 

The boundaries we used for giving certificates proved their value. A part of the par-
ticipants with a bronze certificate was invited to the second round. Table 4 provides an 
overview of certificates and participation.

In 2015 only 76 out of the 100 invitees competed in the second round, in 2016 we 
invited 124 pupils and 84 of them joined the contest.

The introductory course in programming was a success. Between 2011 and 2014 the 
average number of submissions using Python was 18%. In the last two contests it was 
45%. So a lot of the new participants use the language that they were trained in. Other 
contestants kept using the languages they knew already; we had submissions in C++, C#, 
Java, Pascal, PHP, Visual Basic and Haskell.

It was nice to see how some teachers use the A-tasks as part of their assessment for 
computer science education. We had at least three classes that submitted some of these 
tasks, with unique solutions for the participants. This is a form of collaboration that 
we encourage; we think that especially the A- and B-tasks should find their way to the 
classroom.

Some of the contestants started with the B-tasks. About 10 % of the contestants re-
stricted themselves to these tasks. Since the cut-off for the second round was 240 points 

Four of the six given words were the same for all contestants. The other two were selected out of a dictionary; the 
total length of the two words was 13 and each of the words had at least a length of 5. If our program discovered that 
this problem instance had no valid solution, another one was created. 
This is of course a tricky problem. There are many suboptimal solutions, so a contestant has to be really convinced 
before submitting. The average score for this task was much below that of other B-tasks, as shown in Table 3. 
 

Table 3. Scores for B-tasks 
 
ID Title No solution Incorrect <=20% <=50% <=100% 100% Average 
2014-2015 B1 Maze 26 45 0 4 24 83 78,94% 
2014-2015 B2 Palindromes 36 14 1 2 42 87 72,52% 
2014-2015 B3 Cities 39 8 0 1 24 110 74,99% 
2014-2015 B4 Coins 43 8 0 1 23 107 72,37% 
2015-2016 B1 Radio mast 29 26 1 1 56 107 78,41% 
2015-2016 B2 Connections 42 15 6 3 37 117 72,43% 
2015-2016 B3 Subsequence 47 17 0 5 30 121 73,97% 
2015-2016 B4 Crossword 63 53 8 3 56 37 53,11% 

 
In our second round, we take one of the B-tasks of the first round and we extend it to a programming task with 
several subtasks. This way contestants are already familiar with the problem behind the task. In the second round in 
2016 we had a programming task Crosswords with 6 subtasks. Input were a diagram with a filled in crossword and a 
dictionary file with allowed words. 

A. Count the empty cells 
B. Count the number of different letters used 
C. Count the number of different words used 
D. Make a list of all words, in a specific order 
E. Make a list of all words in the dictionary that can be added in the diagram 
F. Try to fill the diagram, minimizing the number of empty cells 

A seventh subtask was output only: Produce a 10 by 10 diagram with only valid words, and minimize the number of 
empty cells. 
 
5. Results 
 
After applying these changes in the Olympiad, the number of participants grew rapidly. Fig. 2 shows the number of 
contestants that earned points with their submissions.  
 

 
 

Fig. 2. Participation in the Olympiad before and after the new format 
 
The boundaries we used for giving certificates proved their value. A part of the participants with a bronze certificate 
was invited to the second round. Table 4 provides an overview of certificates and participation. 

Fig. 2. Participation in the Olympiad before and after the new format.
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in 2015 or 297 point in 2016, competing only with A- or with B-tasks could not get you 
an invitation for the second round. 

And the girls returned to the Olympiad! Between 2005 and 2014 we had only three 
girls in our contests. None of them performed well enough that we could consider to let 
them advance to the final round. Table 4 shows that we reach a reasonable number of 
girls in this contest, about 12% of the participants. Alas, last year only 2 of the girls actu-
ally joined the second round. One of them scored very reasonable, the other one is still 
young and has a lot of years ahead to improve.

6. Discussion

We changed the contest format for the Olympiad in order to attract more Bebras-con-
testants to the Olympiad. This turned out well. The number of participants was at least 
tripled, the girls returned to the Olympiad and we welcomed many newcomers in pro-
gramming, due to the introductory course. The certification method worked out well.

Which challenges remain?
We want to attract still more contestants. Given the discussions on the role of pro-1.	
gramming in education and the emphasis on computational thinking, both Bebras 
and the Olympiad offer possibilities to discuss tasks and backgrounds in a class-
room. In Bebras we have a good working relation with many teachers. Getting the 
computer science teachers involved in the Olympiad, using for instance A-tasks as 
part of the assessment, can attract more participants.
New forms of tasks will be needed in the near future. Informatics as a subject is 2.	
changing and developing all the time, for instance by introducing physical comput-
ing (Przybylla and Romeike, 2014) and the use of constructivists learning envi-
ronments (Weigend, 2014). The contest format of the Olympiad gives a focus on 
algorithms. Other topics need to find a place. So we need to keep experimenting 
with new question types.

Table 4
Results of the first round of the Olympiad

Results first round 2014–2015 2015–2016
Total Girls Total Girls

Gold   13  0   23  0
Silver   35  0   65  1
Bronze, proceed   54  9   36  9
Bronze, not proceed     9  2   25  6
No certificate   71 12   71  9

Total with score 182 23 220 25
No score   47 12   94 16

Total users 229 35 314 41
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The Olympiad is still mostly a man’s world. Finding partners, like focus groups 3.	
on girls and technology, is a condition to improve the participation of girls in the 
Olympiad.

The tasks we introduced in our new contest were based on the work of colleagues in 
the international community. We found ready-to-use ideas, that we only had to fit into 
our new approach.

Exchanging experiences within this community is and will be an important base for 
further improvements.
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Problem Solving, Presenting, and Programming: 
A Matter of Giving and Taking
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Abstract. Nim is a well-known two-person game, where players alternate taking items from one 
of multiple piles. Finding a winning strategy for such games is a nice exercise in problem solv-
ing. Typically, the winning strategy for classical nim is explained in terms of nim sums, involving 
binary notation of numbers. I explain how to understand and play a winning strategy without prior 
knowledge of binary notation, which is useful when presenting this strategy in primary school. 
Programming that strategy is also an interesting challenge. This can be done elegantly in a func-
tional language that supports patterns, such as the Wolfram Language. I conclude by giving you a 
variant of nim to work out yourself.

Keywords: impartial games, nim, functional programming.

1. Introduction of Problems to Solve

I teach enrichment classes in a primary school. The focus is on problem solving. One 
of the themes is puzzles and games that allow a mathematical analysis. Sometimes we 
work on ‘exotic’ (less known) puzzles and games, such as ‘the princess on a graph’, 
Perfect (2011), and others, Dore et al. (2010). But of course it is also important to ad-
dress the classics.

One of these all-time classics is the following two-person game, known as misère 
nim1, played as follows:

Start with several piles of items (go stones, pennies, toothpicks, etc.).●●
Players alternate turns.●●
At each turn, a player takes one or more items from one pile.●●
The player taking the last item loses.●●

Nim is an impartial game, in the sense that the set of available moves depends only on 
that state of the piles, and not on whose turn it is. The problem is to find a winning strategy: 
decide which positions are a win for the first player, and how to play in such positions.

1	https://en.wikipedia.org/wiki/Nim
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This can be formulated as a programming problem, where you need design and im-
plement a function to select a move for a given game position. It can also be offered as 
a reactive task, Verhoeff (2009).
However, the problem that I first want to address is how to present a winning strategy 
that does not require prior knowledge of binary notation, so that it can be explained to 
pupils in primary school.

2. Presenting a Simple Solution

Impartial games are mathematically well understood via the Sprague-Grundy Theo-
rem2, especially for normal play, where the player who cannot move loses. But in this 
article we use the misère rule: the player who cannot move wins, making it a bit more 
interesting.

When only piles of size 1 remain, it is easy to see how the game proceeds. When 
the number of size-1 piles is even, the player to move wins, and loses when it is odd. 
Therefore, when all piles except one have size 1, the player to move can win, viz. by 
taking away from the larger pile such that an odd number of piles of size 1 remain, i.e., 
by taking away all or all-but-one items from the larger pile.

What remains to analyze are game positions with at least two piles whose size is 
larger than 1. It turns out (some explanation will follow) that in this case we need to 
break each pile into distinct groups whose size is a power of  2. Traditionally, this is ac-
complished by writing the pile size in binary notation.

However, I felt that too complicated to explain in primary school. And then it struck 
me that there is an easy way to avoid binary notation. For each pile, we are going to form 
groups as follows:

Break the pile down into groups of size 1.1.	
Repeatedly combine two groups of equal size into one group.2.	
This terminates when all group sizes are different.3.	

Observe that it is an invariant of this process that the group sizes are powers 
of 2: Initially, in Step 1, the group sizes are  1 = 20, and in Step 2 the group size 
doubles:  2  ×  2 = 2+1. The number of groups is a suitable variant function, which 
decreases in each iteration of Step 2, proving loop termination. Note that this is a 
non-deterministic algorithm.

Once all piles have been broken down into such groups, proceed as follows:
For each group size, determine how often such groups occur.1.	
Consider the largest group size 2.	   that occurs an odd number of times.
If no such group exists, the position is lost; otherwise, proceed with Step 4.3.	
Start by removing already 1 item from a pile 4.	  that has a size- group.
Regroup the remaining items of that group as explained above.5.	
For all group sizes 6.	     in pile  , do the following:

2	https://en.wikipedia.org/wiki/Sprague?Grundy_theorem
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# size- groups
in  in total Remove from 

0 ... does not happen
1 even 0 size- groups
1 odd 1 size- group
2 even 2 size- groups
2 odd 1 size- group

After this move, all group sizes occur an 7.	 even number of times. Hence, it leaves a 
lost position.

Breaking down the group of size   − 1 = 2 − 1  in Step 5, you obtain    groups of 
all sizes  2  with    . Therefore, in Step 6 every group size      occurs at least 
once.

By the way, this also explains why these groups sizes, being powers of  2, are use-
ful. But do note that there is no need to know about powers of  2  to carry out these 
algorithms.

3. Programming the Simple Solution

In a functional programming language that supports patterns, the first algorithm, which 
splits a pile into groups, can be elegantly expressed. Here it is using the Wolfram Lan-
guage, Wolfram (2016):

(* Create groups of 1, given the pile size n *)

singletons[n_Integer] := Table[{1}, n];

(* Combine two equal groups, using a pattern *)

combine[{x___, a_, y___, a_, z___}] := {x, Join[a, a], y, z};

(* Do nothing if no equal groups are present *)

combine[list_List] := list;

(* Repeatedly combine equal groups until no more change *)

combineStar[list_List] := FixedPoint[combine, list];

(* Split a pile of size n *)

split[n_Integer] := combineStar @ singletons @ n;

(* Split all piles in a position *)

split[position_List] := Map[split, position];

Some examples:

singletons[5]

{{1}, {1}, {1}, {1}, {1}}

combine[{{1}, {1}, {1}, {1}, {1}}]

{{1, 1}, {1}, {1}, {1}}
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split[5]

{{1, 1, 1, 1}, {1}}

split[{3, 4, 5}]

{{{1, 1}, {1}}, {{1, 1, 1, 1}}, {{1, 1, 1, 1}, {1}}}

The second algorithm, which determines whether a position is won and how to move 
is equally elegant.

(* Reduce by removing a pair of equal groups *)

reduce[{x___, a_, y___, a_, z___}] := {x, y, z};

(* Do nothing if no equal groups are present *)

reduce[list_List] := list;

(* Repatedly reduce a list until no more change *)

reduceStar[list_List] := FixedPoint[reduce, list];

(* Determine the nimsum of a list *)

nimsum[list_List] := reduceStar @ Catenate @ list;

(* Determine whether a position is won *)

won[position_List] := nimsum @ split @ position != {};

(* Move to make, if position is won and

has at least two groups of size > 1 *)

move2[position_] :=

Block[{s, ns, mx, i},

s = split @ position;

ns = nimsum @ s;

(* Determine largest group in ns *)

mx = First @ MaximalBy[ns, Length];

(* Determine index of pile with group mx *)

i = First @ FirstPosition[s, mx];

(* Replace pile i with nimsum of that pile and ns *)

ReplacePart[position, i -> Total[nimsum @ {ns, s[[i]]}, 2]]

];

An example

nimsum @ split @ {3, 4, 5}]

{{1, 1}}

won[{3,4,5}]

True

move2[{3,4,5}]

{1, 4, 5}

Programming move1 that moves optimally when at most one group has a size greater 
than 1 is left as an exercise.

I admit that it takes some time to get acquainted with functional programming. But 
once you do, it does pay off.
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4. Conclusion

Finding a simple way for presenting a solution to a problem can in itself benefit from 
problem solving. I have applied this to presenting an optimal strategy for classical nim, 
a well-known taking game. Finally, I have shown how this strategy can be expressed in 
the Wolfram Language using functional programming.

Let me finish by giving you a new challenge. In classical nim, a player must take one 
or more items from exactly one pile. Here is a less well-known variant: at each turn, the 
player must take one or more items from one or two piles. Find the winning positions for 
the first player and how to determine a winning move.

While you are at it, the game Chomp3, is still unsolved, in the sense, that we do not 
know how to determine a winning move for the first player (although it has been proven 
that the first player can win).
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Abstract. The article describes technology used to teach programming and preparing for olympi-
ads in informatics. Remarkable feature is a balanced education of four age ranges (preschoolers, 
grades 1–4, grades 5–8, grades 9–11) in four directions – thinking, mathematics, programming, 
algorithmization – and permanent Internet competitions to improve motivation. Distance learning 
system DL.GSU.BY is the effective technical base of the teaching.

Keywords: programming teaching, olympiad in informatics, distance learning tools.

1. Introduction

The author has been training pupils of different ages for the in programming and prepa-
ring them for olympiads in informatics in Gomel School 27 since September of 1996 and 
with help of the Distance Learning system DL.GSU.BY (further DL) since September 
of 1999.

The primary goals and objectives of this process are as follows:
To develop in each child such properties as willingness to learn, analytical skills, ●●
self-dependence, and creativity.
To give each child the base computer literacy.●●
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To help each child to understand what is “programming” and to decide whether his/●●
her professional future will be with computer programming or without it.
To prepare everybody who invests sufficient time to reach medals of national and ●●
international olympiads in informatics.

The results of this work during 1996–2015 are reflected in the following achieve-
ments of pupils of Gomel and Gomel region (Performance Statistics, 2015):

More than one hundred pupils chosen programming as profession.●●
Dozens of pupils entered universities without exams.●●
189 diplomas and 32 honorable mentions from national Olympiad in Informatics ●●
of Belarus.
37 diplomas of international collegiate programming contests (Sankt-Petersburg, ●●
Russia).
8 gold, 11 silver and 8 bronze medal of International Olympiad in Informatics ●●
(IOI).

Table 1 below lists the medal results from IOI 1997–2015 of the teams of different 
regions of Belarus as well as Minsk team and team of the Lyceum of Belarus State Uni-
versity separately represented on national Olympiad in Informatics of Belarus.

Important hallmark of the Gomel training school for olympiads in informatics is the 
start of learning as early as possible. It provides earlier (grade 10 or earlier) successes in 
the olympiads including IOI (all from city of Gomel unless noted otherwise):

Aliaksei Danchanka (grade 9): 1998 – participation, 1999 – silver, 2000 – silver.●●
Mikhail Svarycheuvski (10): 2000 – silver, 2001 – bronze.●●
Raman Dzvinkouski (9): 2002 – bronze.●●
Uladzimir Miniailau (9): 2005 – silver, 2006 – gold, 2007 – silver.●●
Henadzi Karatkevich (5): 2006 – silver, 2007–2012 – gold.●●
Uladzislau Padtsiolkin (9): 2011 – silver, 2012 – silver, 2013 – bronze.●●
Siarhei Kulik (9, from Mozyr●● 1): 2001 – silver, 2012 – bronze, 2013 – gold.

1	  Mozyr – town in Gomel Region.

Table 1
Medals from the national olympiad

Region Total Gold Silver Bronze

Gomel region 28   9 11   8
Minsk region 11   1   5   5
Lyceum of BSU   9   1   3   5
Vitebsk region   7   0   3   4
Minsk   5   0   3   2
Grodno region   4   0   2   2
Brest region   1   0   0   1
Mogilev region   0   0   0   0

Total 65 11 27 27
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Adam Bardashevich (10, Mozyr): 2001 – silver, 2012 – gold.●●
Fedar Karabeinikau (8): 2014 – participation, the first under bronze cutoff.●●

Unconditionally, their success is based on their own hard work as well as their pa-
rents’ efforts on education and the creation of conditions for rapid growth. In addition, 
the success of Mozyr pupils is strongly connected to Alexey Borunov, Mozyr coach for 
programming contests. Nevertheless, the author believes that the education environment 
described in this paper essentially helped everybody mentioned above and many other 
medalists of national and international olympiads in informatics to achieve such remark-
able results.

The remainder of the paper is structured as follows: Chapter 2 represents the author’s 
educational principles; Chapter 3 describes the elaborated education courses, exercise 
packages and permanent Internet competitions; Chapter 4 contains the author’s educa-
tional strategy; Chapter 5 represents Gomel Regional Olympiad in Informatics; Chapter 
6 is devoted to newly elaborated “Accelerated Learning” approach to teaching; finally 
Chapter 7 contains conclusions.

2. The Author’s Educational Principles

This chapter describes the principles used by author to organize the teaching process.
Constancy. Lessons are held in informatics cabinet of Gomel School 27 every 

Wednesday and every Sunday, even on holidays (including summer). When the author is 
absent from Gomel, he gets somebody to fill in for him. The site DL.GSU.BY supports 
the education process around the clock, so everyone can study anytime and anyplace at 
their own convenience.

Inclusiveness. The author does not deny anyone who comes to learn. Now the les-
sons are organized in such a way that one can begin studying not only from the first 
grade of school but also from preschool ages – as young as 4 years (Dolinsky, 2013).

Efficiency. The main criteria of efficiency of lessons is the ratio of the study time 
to total usage time. The author tries to organize the study so that each pupil works 
hard each minute of each lesson, either learning something new or consolidating their 
skills.

Individuality. The author has for many years believed that efficiency in the sense 
described above can be achieved only through individual and differentiated instruction. 
That is, each pupil moves on at their own rate and accordingly at any given time all pu-
pils can be at different points of the learning process.

Self-dependence. Obviously such individuality can be achieved only though inde-
pendence of learning, since a teacher physically can’t immediately teach (to explain, to 
listen, etc.) all pupils simultaneously, particularly if the pupils work with different ma-
terials. Furthermore, the self-dependence is an important objective of the education. By 
and large, the author’s view is that teaching independence is even more important than 
teaching any specific knowledge. It is especially true in the area of programming where 
one needs to learn and relearn all professional life.
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Optimality (of material selection). The author tries to select the most useful mate-
rial and construct the process of studying it in the most effective system. The author 
can’t claim to have achieved perfection, but it is true that he does try to teach today better 
than yesterday and tomorrow better than today.

Demands (to comply with the rules). Unfortunately, the list of rules is ever expan-
ding, complicating the compliance: keep silence in the audience; know where the classes 
are held; bring the notebook and pen; come to class before lesson starts, leave when the 
lesson is over; do exercises himself, (don’t cheat); etc.

Using the site DL.GSU.BY. Since 1999, the author has headed the development 
of this project and actively used it for teaching. This approach has the following ad-
vantages:

Fast verification of solutions (from a few seconds to a few minutes) and as a result ●●
– multiplying the intensity of the teaching process.
Variety of task types – differentiating the study and keeping interest of students ●●
with different levels of preparing and motivation.
Automatic presentation of tasks and differential study (Dolinsky, 2012) – the tech-●●
nical basis for customized education.

Teacher activity. The author tries to organize the studying process in such a way that 
each student works independently as much as possible.

3. Educational Courses, Exercise Packages, and Permanent Competitions

The teaching process is based on using the distance learning system DL and includes the 
following learning and training courses: “Programming-professionals (individual)”, “Pro-
gramming-professionals (collegiate)”, “Programming-beginners”, “Programming-pro-
fessionals (individual) work on errors (W/E)”, “Programming-professionals (collegiate) 
W/E”, “Programming-beginners W/E”, “Preparing for IOI”, “Methods of algorithmiza-
tion”, “Basic programming”, “Start to program”, “Informatics”, and “Mathematics”.

The course “Programming-professionals (individual)” is open from beginning 
of December to middle of July/August – until IOI. It contains weekly Sunday 5-hour 
(9:00–14:00 GMT+3) individual contests – tasks from past olympiads of regional level 
until the first decade of January (when Gomel regional olympiad in informatics is held), 
then from olympiads of national level until end of March (when national olympiad in in-
formatics of Belarus is held), and from olympiads of international level until the close.

The course “Programming-professionals (collegiate)” is open from the middle of 
July/August (after IOI is finished) until the end of November, when Collegiate Program-
ming Contest in Sankt-Petersburg is held. It has weekly Sunday 5-hour (9:00–14:00 
GMT+3) contest with tasks from past collegiate contests.

So, the whole year (including holidays) every Sunday there is 5-hour individual or 
collegiate open on-line contest for all comers. Immediately after the olympiad is finished 
the tasks become available for practice in courses “Programming-professionals (in-
dividual) (W/E)” and “Programming-professionals (collegiate) W/E”, respectively. 
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For participants in informatics cabinet of Gomel School 27, there is additionally interac-
tive discussion of solutions.

Tasks are classified by themes and copied into appropriate branches of the course 
“Methods of algorithmization”. Thus, the latter is adjusted to the trends in the develop-
ment of competitions and provides targeted preparation for olympiads. In addition, the 
tasks that were not solved are copied to the course “Preparing for IOI”.

To activate self-study and practice in the courses “Methods of algorithmization” and 
“Preparing for IOI” we hold the permanent Internet competitions: Autumn Cup, Winter 
Cup, Spring Cup, Summer Cup, and Whole Year Prize. In the Cups we award the three 
the best pupils who solve most tasks for the season (autumn, winter, spring, summer). 
In the “Whole Year Prize” we awarded the one pupil who solves the most tasks for the 
whole year (autumn-winter-spring-summer). In the course “Preparing for IOI” it is in-
sufficient to solve one task, but in addition one needs to describe their solution in the DL 
forum corresponding to the subject of the task.

The courses “Programming-professionals (individual) (W/E)”, “Programming-pro-
fessionals (collegiate) W/E”, “Methods of algorithmization”, “Preparing for IOI”, fea-
ture “Tests grants”. That is, a pupil can get the test data (input data, model answer, and 
program-checker) on which their solution failed. There’s a special FAQ and a dedicated 
DL forum to support pupils in the situation “I got the right answer on my computer, but 
my solution was rejected”.

For individual contests (after their end) as well as for all the courses, there are perma-
nent result tables with links to solutions of all participants (as images to prevent copying 
and resubmitting).

The DL forums have links to authors’ systematic descriptions of solution as well as 
to descriptions by pupils of Gomel and university students.

The author elaborated a set of tutorials, two from them have been published as books 
in Sankt-Petersburg (Dolinsky, 2005, 2006).

Another important aspect is the joint participation of pupils and university students 
in the weekly Sunday olympiads where students are training for ACM ICPC (only for 
quarter-finals and semi-finals so far).

The weekly Sunday olympiads as well as practice in other weekdays is targeted 
towards medalists of national olympiad in informatics preparing for International Col-
legiate Programming Contests and IOI, as a rule pupils of grades 9–11.

For pupils of grades 5–8 preparing for regional olympiads is the course “Basic pro-
gramming” with possibilities of automatic task presentation and differential study. The 
exercise system has tree-like structure. Correct solution provides transition to the next 
exercise. Wrong solution or pressing the button “I don’t know” transitions the student 
into subtree teaching to solve the problem. Own teaching subtrees may be settled for any 
such teaching tasks. This way we provide individual differential teaching that adapts not 
only to the level of preparation of a pupil but also to their current emotional and physi-
cal state. Pupils who know more and are in better shape branch less and thus advance 
faster. The course “Basic programming” has exercise packages with differential tea-
ching on the following topics: introduction to programming, one-dimensional arrays, 
two-dimensional arrays, geometry, strings, sorting, queues. To increase the motivation 
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of beginners, there are weekly Sunday olympiads in the course “Programming-begin-
ners” from 7:00 to 20:00 (GMT+3). One can solve the same tasks for practice in the 
course “Programming-beginners W/E”.

For pupils in grades 1–4 there is the learning course “Start to program” that largely 
contains the same tasks as “Basic Programming”, but in essentially linear form. Most 
of teaching trees are reorganized into sequences of tasks for simpler learning. There are 
permanent Internet-competitions “Season Cups” and “Whole Year Prize” for learning 
courses “Basic Programming” and “Start to program”. Note that in the competitions the 
tasks from the learning subtrees are not counted. In the course “Start to Program” only 
pupils of grades 1–4 and in the course “Basic Programming” only pupils of grades 1–8 
are awarded.

The training course “Informatics” was created for pupils of grades 1–4 of Gomel 
School 27. Originally there was only one package of exercises: “Learning to think” 
(Dolinsky, 2013). But soon we started to copy exercises from “Start to Program” to 
for more advanced pupils in “Informatics”. Moreover, we re-open “Informatics” every 
academic year, which gives more possibilities to change it. So, now the course “Infor-
matics” has practically the same material as the course “Start to Program” has, but in 
a better methodological form. The course “Informatics” also has permanent Internet-
competitions “Season Cups” and “Whole Year Prize” where pupils of grades 1–4 are 
awarded.

The “Basic Programming”, “Start to program”, and “Informatics” courses are based 
on the Pascal programming language.

Finally, the course “Mathematics” contains different tasks in mathematics, inclu-
ding such exercise packages as flash tasks on mathematics of grades 1–5, tasks from the 
international mathematics contest “Kangaroo” (2001–2015, all grades), Canadian Math 
Contests (1998–2015, grades 7–11), “Math from informatics”. In the latter, the tasks 
are from the course “Programming-beginners”, but reformatted so that the pupil needs 
to manually enter the answer for given input data. The answers can be computed manu-
ally or using an appropriate program. For the course “Mathematics” there also are also 
permanent Internet-competitions “Season Cups” and “Whole Year Prize” where pupils 
of grades 1–8 are awarded.

Tables 2 and 3 represent participation statistics from 2008 to 2014.

Table 2

2008/09 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15

Mathematics – – – – 146   175   214
Informatics – – – 249 301   179   212
Start to program   22 182 142 118 174   189   300
Basic programming   10 263 205 159 290   309   468
Methods of algorithmization 205 269 340 332 491   425   441
Preparing for IOI   31   25     8     7   12     17       3

Total 237 739 695 820 1424 1294 1638
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Table 3

2008/09 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15

Programming-prof. (ind.) 98 116 128 165 157 141 133
Programming-prof. (col.) 51   59   73 101   55 113   71
Programming-beginners 77   67   59   89 108   69 211

4. The Educational Strategy

Currently we are providing education for four age ranges: preschoolers (from 4 years), 
junior school (grades 1–4), middle school (grades 5–8), and high school (grades 9–11), 
in four directions: thinking, mathematics, programming, algorithmization:

Thinking.●●  The author believes that development of thinking needs to be first 
to provide higher learning efficiency. For preschoolers and juniors the training 
course “Informatics” has special packages of exercises “Learning to think”, “Dif-
ferences”, “Analogy”, “Learning to Count”, and “Tangram”. The courses “Start to 
Program” and “Basic Programming” have embedded exercises for development 
of thinking.
Mathematics. ●● It is clear that knowledge of mathematics is important in itself, 
but it is more important that development of abilities to solve mathematical 
problems automatically develops effective thinking skills. On one hand, there 
is training course “Mathematics” containing different mathematical tasks for 
pupils from grade 1 to grade 11. On the other hand, training courses “Infor-
matics”, “Start to Program”, “Basic programming” have special packages of 
exercises where mathematics and programming are integrated. For example, 
the course “Informatics” has packages “Math (programs)” for grades 1–5. Each 
of them contains tasks from appropriate mathematics textbook, converted to 
programming tasks by parameterization. To solve the task, one need to solve 
it mathematically and then write the corresponding program. The course “Ba-
sic Programming” contains packages “Kangaroo grades 3–4” (2001–2008) and 
“Kangaroo grades 5–6” (2001–2009) where appropriate mathematics tasks are 
converted into programming tasks.
Programming. ●● We are using the Pascal programming language to teach pupils in 
grades 1–8. But the language is a means, not a goal. Special attention is given to 
debugging technology as well as structuring of program sources to improve their 
readability and understandability.
Algorithmization. ●● Best of all we are trying to develop skills for algorithm elabo-
ration. The second direction is study of standard algorithms. Both directions are 
supported by weekly olympiad solving as well as the following practice on un-
solved tasks and studying the needed theory. In addition, the course “Methods of 
algorithmization” is strongly structured around themes and subthemes and contains 
information about task sources (year, country, etc.).
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5. Regional Olympiads in Informatics

Since 2010 the tasks for the Gomel regional olympiad that qualifies 15 best participants 
to the national olympiad are created by the national Scientific Committee. But in Gomel 
region we have at least five olympiads whose tasks we prepare ourselves: in autumn two 
olympiads (school and city level) for grades 1–11 and in spring three olympiads (school, 
city, and regional level) for grades 1–9. For those five olympiads we introduce three age 
divisions: in autumn grades 1–4, grades 5–8, grades 9–11; and in spring grades 1–4, 
grades 5–7, grades 8–9. We use the tasks of olympiads for:

Targeted training for higher level olympiads.a.	
More accurate indication to students and teachers of what and how to learn.b.	

Tasks for grades 9–11 (in spring grades 8–9) include three groups of increasing 
complexity (note that each pupil needs to try solve all tasks from all groups):

First group (5 tasks)●●  – tasks on topics from the course “Basic Programming” (one-
dimensional arrays, two-dimensional arrays, geometry, strings, greedy (simple al-
gorithm based on sorting)).
Second group (5 tasks)●●  – tasks based on the course “Methods of algorithmiza-
tion”: queues, recursion, dynamic programming, graphs, and brute force.
Third group (2 tasks)●●  – tasks from the course “Preparing for IOI”, as a rule on the 
following topics (or their combinations): research, complex dynamic program-
ming, complex data structures, and complex problems on graphs.

This approach allows participation “with interest” for pupils who only began to study 
programming (first group of tasks). At the same time we can determine the preparation 
level of those who spent more time (second group of tasks) and point everyone to the 
topics that need more detailed work. Finally the third group of tasks provides engage-
ment for all 5-hours for the most prepared students, the strategic goal for whom is pre-
paring for international olympiad in informatics.

Tasks for grades 5–8 (in spring grades 5–7) also include three groups of increasing 
complexity:

First group (5 tasks)●●  – tasks on topics from course “Basic Programming”: intro-
duction to programming, one-dimensional arrays, two-dimensional arrays, geo-
metry, sorting.
Second group (3 tasks)●●  – strings, story problem, research task.
Third group (2 tasks)●●  – implementation task from a real olympiad, queues.

For the first group the simplest tasks from each topic are chosen. It is a way to check 
whether a pupil has studied the topic at all, because the task has a minimum of text and 
is standard for the topic.

The second group of tasks is to differentiate pupils (who have the preparation level 
to solve tasks from the first group) on the skills needed to solve the olympiad tasks. 
The first important such skill is development and debugging of own algorithms. The 
string processing task is one where the problem formulation is very simple and easy 
to understand. The main difficulty is to formulate the solution process (algorithm) in a 
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programming language. The second important skill for solving is the ability to read and 
understand the task text, to differentiate the important, minor, and insignificant things, to 
reformulate the problem in mathematical and programming terms. So our story problem 
is the task with detailed (or even cumbersome) formulation but with very simple solu-
tion. We use simplified versions of tasks from national olympiads. The third important 
skill is ability to research the solution space. The task statement may be very brief so 
that it is clear what needs to be done. The main problem is to invent a way to get the 
result. To get such tasks, we reformulate in programming terms tasks from international 
mathematics contest “Kangaroo” (grades 5–6).

Finally, the third group of tasks checks students’ readiness to solve original problems 
from real olympiads. First task is on implementation details from one the following to-
pics: one-dimensional arrays, two-dimensional arrays, geometry, strings. The second is 
an original task on queues.

Tasks for grades 1–4 also include three groups of increasing complexity:
First group (10 tasks)●●  includes tasks from “Introduction to programming” (three 
tasks on integers, one task on each of characters, strings, length of strings, num-
ber of characters in string) and three tasks on using Pascal standard subroutines 
DELETE, COPY, POS to delete and copy strings and to find position one string 
within another.
Second group (5 tasks)●●  includes tasks on one-dimensional arrays: sum of all ele-
ments, number of elements with some feature, minimal/maximal elements, search 
for the first element with some feature.
Third group (5 tasks)●●  is to differentiate more prepared students and includes the 
tasks on the following topics: two-dimensional arrays, geometry, strings, research 
(base on “Kangaroo” tasks for grades 2–3), and a story problem.

Systematic and purposeful development of tasks for regional olympiads is an impor-
tant means of improving the student and teacher preparation in the region.

Note that all five regional olympiads in all three age divisions are on-line events, so 
usually students from all over Belarus participate in them.

6. Accelerated Learning

To improve the teaching results, recently a few new packages of tasks and exercises 
were introduced:

“Accelerated course – 2013”●●  includes the following topics: introduction to pro-
gramming, one-dimensional arrays, two-dimensional arrays, geometry, sorting, 
strings, story problem, research task. Each topic includes three parts: theoretical 
minimum, tasks from Gomel olympiad for grades 1–4, tasks from Gomel olym-
piads for grades 5–8. Such approach allows the most capable pupils to move with 
maximal speed. At the same time pupils who encounter difficulties in this course 
can use the standard learning approach.
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“Olympiads grades 5–8 by topic” ●● includes tasks from corresponding Gomel 
olympiads, grouped by topics. It allows to see potential rating of each student and 
it definitely shows to him and to his teacher the areas for further work.
“Olympiads grades 9–11 by topic” ●● is similar to the above in composition and 
purpose. It includes additional topics such as recursion, dynamic programming, 
graphs, brute force, and more complex tasks (with complexity level corresponding 
to national and international olympiads).
“Belarus olympiads” ●● includes tasks from national olympiads of Belarus (qualifi-
cation and final stages) grouped by topic and in the order of increasing complexity. 
Note that we include in that course a special set of tasks with incomplete solutions. 
To get the full solution of such task one needs to know special theory as well as 
have good skills of developing and debugging complex algorithms. At the same 
time the olympiads up to IOI don’t demand full solutions for all tasks because win-
ners are defined by sum of points. So it is important to develop skills for solving 
tasks partially. We gather such tasks into special theme “Incomplete solutions” and 
remove the tests cases that can’t be solved by partial solutions. Despite the simpli-
city, such solution can get from 20 to 80 points and can essentially improve the 
final result of a contestant in an olympiad. Moreover such simplified solutions may 
be useful to verify full solution.

We believe that development of these courses is essential not only for preparing to 
olympiads but also to identify “flaws” in the education system with a view to their even-
tual elimination.

Note that the author has written and documented the solutions for all tasks (for medal 
minimum points) from the course “Belarus olympiad” and also for more complex tasks 
for courses “Olympiads grades 9–11 by topics” and “Olympiads grades 5–8 by topic”. 
So, if a pupil can’t solve some task there are two options: ask for help from somebody 
who already solved it or read the description of the author’s solution.

The shortest way for a pupil from grades 5–8 to reach the medal level of national 
olympiad in informatics of Belarus is: “Accelerated course”, “Olympiads 9–11”, “Be-
larus Olympiads”.

7. Conclusion

We represented the current state of the system for preparing students of Gomel and 
Gomel region for olympiads in informatics as well as strategic development direc-
tions.

Note that the system is also used by pupils outside of Gomel region. A remarkable 
feature is permanent monitoring of preparation state for all pupils as well as a balanced 
education of four age ranges (preschoolers, grades 1–4, grades 5–8, grades 9–11) in four 
directions: thinking, mathematics, programming, algorithmization.

To improve motivation for ongoing education, we organize the permanent Internet 
competitions (Autumn-Winter-Spring-Summer, Whole Year).
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1. IOI Participation

Armenia started participating in the IOI in 1996 in Hungary. Next year Armenian del-
egation could not go to the South Africa. Our students won first medal (bronze) in 2002. 
Since then they returned from an IOI with at least one medal. For us especially signifi-
cant are IOI’2005 when Vahe Musoyan won gold medal, and IOI’2014 when all four 
students won medals (2 silver and 2 bronze). Since now Armenia has 1 gold , 4 silver and 
20 bronze medals. You can find all details in the Statistics page (International Olympiad 
in Informatics – Statistics).

Medalists of an international olympiads may enter appropriate departments of uni-
versities of the country without exams and study for free.

In the first years, team leaders found sponsors for the trip expenses. For the last 15 
years, these costs are covered by the Ministry of Education.

Armenian students participate in International Zhautykov Olympiad (Iglikov et. al., 
2013) – 3 silver and 7 bronze medals, and APIO – 3 bronze medals.

2. National Olympiad Procedure

The National Olympiads among school student are held by the Ministry of Education 
and Science. Every year the schedule of Olympiads is made. The assignments and the 
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results of all the school Olympiads held in Armenia are placed in (School Olympiads) 
and in (Armenian Educational Portal) websites.

YSU Faculty of Informatics and Applied Mathematics is responsible for the National 
Olympiad of Informatics.

National Olympiad is held in three stages. There are no divisions according to the 
grade and age. The majority of the participants are students of grades 10–12, but there 
are also lower grade students. The first phase is the school stage and is held at schools 
in February. Until 2014–2015 school year, the schools conducted that stage indepen-
dently and chose their best students. Schoolteachers made the assignments themselves 
and held the competitions. Sometimes the content and form of their assignments did not 
correspond to the assignments of next rounds. There are no statistics on the number of 
participants of those years.

The second stage is regional and is held in early March. Armenia is divided into 10 
provinces. On this stage, the capital Yerevan is considered as a separate entity. The stu-
dents of the provinces gather on the same day and the same time. They solve the problems 
compiles by the Commission. Before 2014–2015 school year, the juries of every province 
checked the results according to the provided tests and chose the best students themselves. 
The biggest turnout was in Yerevan. Yerevan municipality and regional administrations 
reward the winners of their regions with diplomas. Each province and the capital have 
their quotas for the participation on the next stage. Yerevan has 20–25 seats and each of the 
provinces has 4–6 seats. However, some regions sent fewer students or did not send at all.

The third stage is the National. It is held in late March or early April in the computer 
center of YSU. In the last 10 years, the competition is held for 2 days. As a result, best 
students get rewards from the Ministry (diplomas, certificates). The Committee decides 
the number of diplomas. The students that got diplomas, form the selection group. 

3. New Format of Providing National Olympiads

In 2014, one of the participants of IOI’2013 made new contest management system. It is 
qualitatively higher than the previous system. The new system makes it possible to hold 
online contests, to put interactive problems and IOI – format (with subtasks) problems. It 
was decided to hold the competition of all three stages of the Olympiad with this system, 
and to hold the first two stages online. Any student mastering programming languages C, 
C++, Pascal can take part in the first stage, informing the school administration before-
hand. The list of the participants is published in the olymp.am according to the school 
information.

The second stage of Olympiad is held in certain places given by the regional admin-
istrations (in Yerevan the Municipality decides the place). The students with best results 
from the first stage take part in the second stage. According to the decision of the Orga-
nizing Committee, the school of the student is not taken into consideration.

The organizing committee also determines the list of participants of the third stage, 
based on the results of the second one. The quotas of the provinces have been eliminated. 
As a result, the number of students from Yerevan has been significantly increased.
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4. Selection Competitions and the Preparation for the IOI

The selection group is formed according to the results of the national stage of Olym-
piad. Theoretical and practical classes are held for the group. Then, according to three 
competitions, four students who will represent Armenia in IOI are determined. For the 
preparation for the IOI 1–2 week summer camp is held. Last years, not only the mem-
bers of IOI group take part in Summer Camp, but also the students of selection group, 
that still study at school. Not only the group leaders held the lessons but also previous 
years’ IOI medalists and participants. The Summer Camp is held at Camp “Ughetsir” of 
Quantum College, located in the mountain resort of Aghavnadzor, as well as in the YSU 
Rest House, Tsakhkadzor.

5. The Role of Online Competitions and the Online Judges

Under current conditions, it is impossible to succeed without systematic long-term stud-
ies. We think that online competitions held for the students are very useful.

Armenian National Olympiad problems can be solved in am.spoj.com. We are grate-
ful to Spoj team for this opportunity. During our training, we use other archives too. Ini-
tially, we use Michael Dolinski’s website (DOLINSKY, 2013). We would like to single 
out St. Petersburg cycle of online Olympiads (Olympiads in Informatics: St. Petersburg, 
Russia), USACO online contests (USA Computing Olympiad), Croatia online contests 
(Croatian Open Competition in Informatics). Thanks to the organizers for giving the 
Armenian translations of the competition assignments in their websites. Codeforces’ 
competitions (Codeforces) are useful, too. It also contains numerous resources (descrip-
tions of algorithms, virtual competitions), which are suitable for trainings.

6. Specifics of National Olympiads

Programming is a small part of School program of informatics. It is included in 11th 
grade program, and it has quite superficial presentation. Informatics is not among the 
examination subjects. Applicants for admission to university programming departments 
have to pass mathematics and physics or English. Only a few schools have Olympic 
circles of informatics.

In Armenia everything is concentrated in Yerevan: economy, science, culture, educa-
tion. One can say that Yerevan dominates the provinces. The population of the provinces 
is almost twice more than in Yerevan.

For last two years, it has become possible to get information about participation in 
first two stages due to the online competition of regional stage. We have the following 
statistics: Fig. 1, Fig. 2, Fig. 3.

The number of the participants from provinces has decreased especially in 3rd  stage.



V. Dumanyan, A. Andreasyan252

In the capital city there is majority of two schools. In the following chart you can see 
representations of schools in the republic stage of National Olympiads in 2016: Fig. 4.
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Physics and Mathematics Specialized School is founded in 1965 by academic Artash-
es Shahinyan. Every year students of the school represent Armenia in the international 
Olympiads on Informatics, Mathematics, Physics, Chemistry, Biology, Astronomy. In 
2015 students of the Phys-Math school got 14 medals from these International Olympi-
ads. Quantum Collage is the first private school and founded in 1991. This school also 
has good Olympic history and traditions. Until 2014, only 12 participants from each of 
these two schools were allowed to take part in the second Stage of Olympiads. Now this 
restriction is removed. The students representing Armenia in the IOI are mostly from 
those schools. 13 of Armenian 25 medals are of Quantum College and 8 of Physic-Math-
ematical School. 24 students from 52 participants from 2003 to 2015 were of Quantum 
College, and 20 students of Physic-Mathematical School. This is explained by the fact 
that both schools have Olympic groups that work throughout the school year.

However, we are sure that there are talented students in provinces, too, as there are 
exclusive precedents. School student from the second city of Armenia, Gyumri, won the 
first medal. In 2012, a student from the southern mountainous part of Armenia, Syunik, 
was involved in the group and won bronze medal in IOI. He gained his basic knowledge 
himself through the Internet.

Now we think to take measures to increase the interest and the participation of prov-
ince students, organize in these two strong schools some kind of distance lessons, online 
materials accessible for all students in the country. Also we consider switch to the two 
level contests opening second division for students up to 9-th grade like in Lithuania 
(Dagienė, Skupienė, 2007), Serbia (Ilić, 2012).

7. Conclusion

Armenia has been participating in IOI since 1995 and has achievements. In recent years, 
great work for the improvement of the quality of National Olympiads has been done. 
There are some problems with the promotion of the Olympiads. Measures should be 
taken to spread the necessary knowledge of Informatics and to involve more students 
and schools in the National Olympiads.

 

Fig. 4. Participants of 3rd stage of National Olympiads in 2016. 
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1. The History

Informatics was introduced into the undergraduate studies in 1985. From the beginning, the 
curriculum was oriented to systematic studying the basic computing concepts: the struc-
ture of information and the basic principles of programming. This allowed the placement 
of informatics in the science field. Consequently, the discipline has benefited from lots of 
opportunities of organizing school contests at various levels, as well as other sciences.

1.1. Year 1987

The first Olympiad at the national level was organized in 1987. At that time, the pre-
university educational institutions had practically no computers; first editions of the 
Olympiad were held based on theoretical examinations, as well as mathematical com-
petitions. Competition topics derived from various areas of applied mathematics, theo-
retical computer science, logic. From edition to edition, algorithmic component became 
more pronounced, the subjects were moving towards practical component – to identify 
computer models for problem solving in various fields.

The advent of computers in schools set the beginning of a qualitatively new stage 
in informatics competitions. It became possible to implement the theoretical solutions 
in a programming language and to test these solutions. The first automated evaluation 
systems appeared practically immediately.
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1.2. Year 1996

Since 1996, students from Moldova have participated in the International Olympiad in 
Informatics. This also imposed adjustments to the organizational model for the Republi-
can Olympiad in Informatics. The IOI is the reference point from which the development 
of all structural components of the national Olympiad flows: scientific component (com-
petition tasks, evaluation), organizational (cultural, communication, scientific sessions), 
technical (computer network).

During the same period, schools were implementing individual model of using com-
puters in labs (one student – one computer). This resulted in increase of the number of 
pupils fond of informatics and of programming in particular. The motivation of par-
ticipants at the Olympiad increased at both national and local level. The winners of 
the Olympiad got national testing facilities, preferential admission to universities in the 
country, various awards; and a chance to compete for participation in international com-
petitions.

1.3. Year 2000+

The organizational principles and scientific assessment were finalized, supported by 
rules and other normative acts of the Ministry of Education. The Olympiad “matured” 
and continued to develop in line with the national curriculum of the computer science 
and the Olympic principles promoted by the Organizing Committee of the IOI. In 2004 
Moldova became a member of the community of the Balkan Olympiad in Informatics 
and in 2007 hosted it for the first time.

In recent years the Republican Olympiad in Informatics has generated a number of 
local competitions organized by various educational institutions: individual and team 
programming competitions; online contests; ICT usage competitions; robotics competi-
tions, etc. So, the number of students fond of various fields of Computing is growing.

2. Moldavian Republican Olympiad in Informatics

2.1. The Organizational Model

The Olympiad is held annually during the academic year: from September to May. The 
National Olympic Committee, the composition of which is approved annually by the 
Minister of Education, organizes the Olympiad. The competition is conducted in three 
stages: local, regional, and national (Fig. 1).

On the local and regional stage, each grade is considered a separate age group. There 
are two age groups on the national stage: middle school (up to 9th grade) and high school 
(grades 10–12).
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Local Stage. There is a preparation period from September to December and internal 
competitions in educational institutions take place in January (p. 1.a and 1.b on Fig. 1).

Regional Stage. It is organized separately in each administrative unit. Teams of the edu-
cational institutions selected at the local stage participate on the regional level. Teams 
for the national stage are formed based on the results. To ensure more rigorous selection 
of the teams, the contest can take place in two rounds (p. 2.a and 2.b on Fig. 1).

National Stage. The participants are the teams selected in the previous stage and Na-
tional Olympiad winners from the previous year. The total number of contestants varies 
between 130 and 160. Traditionally a stage lasts four days, two of which are reserved 
for competition. Competition sessions last between 4 and 5 hours, depending on the age 
group (middle school, high school) and the difficulty of the problems. After finishing 
the contest session, the participants can attend a self-assessment session, where they 
check their own solutions. Any disputes that may appear are presented to the Scientific 
Committee of the Olympiad. After the completion of the competition tests and resolu-
tion of disputes, the official solutions are presented. In parallel with the contest, training 
sessions, book launches, meetings with representatives of software companies and other 
activities are organized for team leaders (Fig. 1).

Winners of the national stage form the Extended National Team from which the Na-
tional Team that participates in international competitions is selected (Fig. 1).

 

 

Local Stage (each school) 

Preparation Phase. Traning sessions, simulations  and internal contests,  on-line 
contests, seminars, etc. 

Contest Phase. School contests, teams selection, team trainings. 

Regional Stage (each region) 

Preparation Phase (for selected regional team). Traning sessions. 

Contest Phase. Regional contest (one or two days), team selection 

 National Stage 

Contest Phase.  
National contest 

IOI extended team 

Contest Phase. Team selection contests 

Regional International Contests (seleted teams) 
Summer School (all members) 

IOI 

National team 

 

  

 

2.a 

1.a 

1.b 

2.b 

3.a 

3.b 

Fig.1. Stages of Republican Olympiad in Informatics.
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2.2. Target Group

According to the curriculum, the study of software modules begins only in the 9th grade. 
However, taking into account the students’ interest in programming and the capacity of 
self-learning of the gifted and highly gifted pupils, also younger children are accepted in 
the competition. The youngest participant in the history of the National Olympiad was a 
6th grade pupil (13 years old)1.

Informatics teachers of junior grades try to identify the pupils with skills in com-
puter science through a variety of methods and techniques. In many cases the selection 
is performed by the teacher of Mathematics, in the 6th–7th grades. A study conducted by 
the authors in 20112 established a high degree of correlation between the performance in 
Mathematics and in Computer Science among the participants of the National Olympiad. 
Also, pupils who have good results in Physics (the study of this discipline begins in the 6th 
grade) show increased interest towards programming elements. Statistics compiled over 
the last 12 years (Fig. 2) indicate relative stabilization in the numbers of participants in the 
national stage in both categories: Senior (110 on average) and Juniors (40 on average).

2.3. Competition Topics

Competition topics are selected according to the National Curriculum in Computer 
Science. The problems for Local and Regional stages are prepared separately for each 
grade. The problems sets for the national stage are prepared separately for the two age 
groups. Usually 3–4 problems are proposed in each stage, to be solved by developing 
programs in Pascal, C, or C++. Six problems are proposed on the national stage, in two 
days of competition.

1	  Municipal Olympiad in Informatics, 2013
2	  Didactica Pro, Nr. 4 (68), September, 2011, p.46–49

Fig. 2. Number of participants at National Stage, 2004–2015, by age categories.
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Task topics include data structures, combinatorics, programming techniques, elements 
of analysis and design of algorithms, complexity, algorithms on graphs, elementary al-
gorithms of computational geometry, mathematical modeling, heuristics, etc. The degree 
of difficulty and statements match the contestants’ age.

Fig. 5. Distribution of tasks by domains (last 15 years, Seniors).

Fig. 4. Distribution of tasks by domains (last 15 years, Juniors).

Fig. 3. The extension model of tasks domains, based on competition stages. 
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Content of tasks is developed by complexity categories, to separate competitors accor-
ding to the efficiency of their solutions. The number of test cases per task ranges from 
5 (local and regional stages) to 10–20 (national stage). The tests check the accuracy 
and efficiency of the solutions by testing special cases and enforcing time limits. The 
proposed model of the problem selection allows reducing the share of participants who 
receive zero scores. Thus, after statistical analysis of the results of the past 10 years, a 
quantitative distribution of the problems depending on the complexity was established 
(Fig. 6, 7).

Evaluation: automatic, based on a local server. Participants are identified in the system 
based on user accounts, generated by the system. Human intervention in the evaluation 
process is excluded.

Fig. 7. Distribution of tasks by difficulty levels (last 10 years, Seniors).

Fig. 6. Distribution of tasks by difficulty levels (last 10 years, Juniors).
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3. Conclusions

The organizational model of the National Olympiad provides the opportunity to ●●
participate in the initial stage to all pupils who are interested in computer science, 
regardless of gender, locality, type of school, nationality.
Distributions of the competition stages allow teams time to prepare between com-●●
petitions.
The automatic evaluation is scalable in both directions. It was used to assess the ●●
results of international competitions and is used regionally for training and regional 
competitions3;
The organization of the post Olympiad activities provides qualitative preparation ●●
of National Team, as demonstrated by the results achieved by Moldova during the 
participation in IOI (22 bronze medals, 2 silver medals).
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Abstract. The International Olympiad in Informatics (IOI) is an annual international informatics 
competition for individual students at schools for secondary education from various invited coun-
tries, accompanied by social and cultural programmes. We present a report on the 27th Interna-
tional Olympiad in Informatics, July 26 – August 2, 2015, Almaty, Kazakhstan (IOI’15), organized 
by the Ministry of Education and Science of the Republic of Kazakhstan, Republican Scientific 
and Practical center “Daryn”, al-Farabi Kazakh National University and supported by Mayor of 
Almaty and Mayor of Almaty region. IOI’15 established a new IOI record with 322 contestants 
from 83 countries, participated in IOI’15 and awarded by 161 medals (27 gold, 55 silver and 79 
bronze), Jeehak Yoon from the Republic of Korea is absolute winner of IOI’15. At IOI’15 Java 
was first time introduced as IOI official programming language. In this report we pointed attention 
on issues happen as well as things that done well. 

Keywords: IOI, programming contest, International event organization and management.

1. Introduction

IOI is one of the world’s top level Olympiads for secondary schools students, among 
International Mathematical (since 1959) / Physics (since 1967) / Chemistry (since 1968) 
/ Biology (since 1990) Olympiads. Initiated by UNESCO and starting from 1989 in 
Pravetz, Bulgaria, IOI constantly develops, especially in the level of scientific and tech-
nical solutions. The IOI’s official site is http://ioinformatics.org, for general in-
formation on IOI we refer readers to the website and the following IOI documents: IOI 
Regulation1, IOI syllabus2 and the ITC/ITWG guidelines3. 

The President of the Republic of Kazakhstan, Dr. Nursultan Nazarbayev, made or-
der in 1996 on governmental support and development of secondary schools for gifted 
students, and in 1998 the Government of the Republic of Kazakhstan established a new 
state enterprise, Republican Scientific and Practical center “Daryn” with primary goal to 
discover, encourage and give recognition to gifted students by developing and supporting 

1	http://ioinformatics.org/rules/index.shtml
2	http://www.ioinformatics.org/a_d_m/isc/iscdocuments/ioi-syllabus.pdf
3	http://wiki.ioinformatics.org/wiki/HostingAnIOI



A.V. Iglikov, M.U. Kutybayev, B.T. Matkarimov264

special educational programs and activities. Kazakhstan hosted 36th International Mende-
leev Chemistry Olympiad in 2002, Almaty city. Kazakhstan subregion of the Northeastern 
European Regional Contest of the ACM International Collegiate Programming Contest 
was created in 2003. From 2004 in Almaty city was organized annual International Zhau-
tykov Olympiad on Mathematics, Physics and Computer Science (IZhO, n.d.), hosted by 
the Zautykov Republican Specialized Physics-Mathematics Secondary Boarding School 
for Gifted Students. Kazakhstan hosted 7th Asian Physics Olympiad in 2006, Almaty, and 
51st International Mathematical Olympiad in 2010, Almaty-Kokshetau-Astana. Based on 
these achievements, Kazakhstan applied to IOI Executive Director as IOI potential host in 
2010. At IOI’10 in Waterloo, Canada, Republic of Kazakhstan was selected by IOI Inter-
national Committee as IOI’15 future host. Before IOI’15 Kazakhstan hosted 46th Inter-
national Mendeleev Chemistry Olympiad in 2012, Astana city, http://mendeleev.kz/ 
and 45th International Physics Olympiad in 2014, Astana city http://ipho2014.kz/. 

2. IOI Host Committees

Steering Committee: Aslan Sarinzhipov, Minister of Education and Science, Chair-
man; Yessengazy Imangaliyev, Vice-Minister of Education and Science, Vice-Chairman; 
Galymkair Mutanov, Rector of the Al-Farabi Kazakh National University; Sholpan Kira-
bayeva, Director of the Republican Scientific and Practical center” Daryn”, Secretary; 
Akhmetzhan Yessimov, Mayor of Almaty city; Yerbolat Dossayev, Minister of National 
Economy; Tamara Duissenova, Minister of Health Care; Kalmukhanbet Kassymov, 
Minister of Internal Affairs; Asset Issekeshev, Minister of Investment and Development; 
Bakhyt Sultanov, Minister of Finance; Erlan Idrissov, Minister of Foreign Affairs.

Host Scientific and Technical Committee: Bakhyt Matkarimov, Adilet Zhaksybai, Ser-
gazy Kalmyrzayev, Ulugbek Adilbekov, Myrzakerei Miras – Nazarbayev University; 
Darkhan Akhmed-Zaki, Zhanl Mamykova, Natalya Surina, Erbolat Kalaman, Shyngyz 
Rabat, Pavel Chekanov, Askar Akshabayev – Al-Farabi Kazakh National University; 
Artem Iglikov, Azizkhan Almakhan, Madyar Aitbayev, Nurlan Zhussupov, Askar Ait-
zhan, Yesskendir Sultanov, Bektur Suleimenov – Kazakh-British Technical University; 
Mansur Kutybaev – International Information Technologies University; Fuad Hajiyev 
– ADA University, Azerbaijan; Georgiy Korneev, Nikolay Vedernikov, Gennady Ko-
rotkevich – ITMO University, Russia; Egor Kulikov, Elena Andreeva – Moscow State 
University, Russian Federation; Michael Mirzayanov – Saratov State University, Russia; 
Alexander Klenin – Far-Eastern State University, Russia; Ali-Amir Aldan – Massachu-
setts Institute of Technology, USA.

50+ staff specialists from involved organizations works full time during IOI’15 
week. 150+ volunteers selected from active members of the host University volunteers 
club (team guides, organization staff) and from former participants of IOI and other 
Olympiads (HSTC volunteers). 

IOI’15 was fully supported by the Government of the Republic of Kazakhstan. About 
2000K was reserved/allocated for IOI’15 from the Ministry of Education and Science of 
the Republic of Kazakhstan, $1556K was spent for the main event, including purchase 
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of facilities $652K and $97K for IT Infrastructure works/HSTC/Technical staff. In total, 
guest fee was $93K.

3. Preparatory and IOI Present Host Actions

IOI’15 website created in 2011 and general information with photos about Kazakhstan 
was first time distributed at IOI’11, Pattaya, Thailand. Initially IOI’15 was planned in 
the capital Astana, in 2014 Almaty city and al-Farabi Kazakh National University were 
announced as the host of IOI’15. Programming contest for 300+ onsite contestants and 
10000+ submits for evaluation with full feedback is a hard task, and IOI’15 was a first 
case in Kazakhstan. Previous to IOI Kazakhstan experience in programming contests 
organization was reported in (Iglikov et al., 2013). The following preparatory actions 
was crucial: 1) using IOI CMS (Mares and Blackham, 2012; Maggiolo et al., 2014) at 
national and international programming contests in Kazakhstan, Artem Iglikov recog-
nized as IOI CMS developer; 2) organization of Asian-Pacific Informatics Olympiad 
APIO’14, hosted by Kazakh-British Technical University, Almaty (APIO’14, 2014); 3) 
hosting all-Russia team Olympiad in programming for secondary schools in Almaty at 
K.Satpayev Kazakh National Technical University4. Programming language Java ac-
cepted as official programming language in various programming contests, including 
ACM ICPC. Martin Mares, ISC/ITWG, evaluated Java solutions for IOI’13 tasks, cre-
ated by Egor Kulikov, Pavel Mavrin and others, and reported to ISC at IOI’14, Taipei, 
Taiwan. ISC recommended Java as official IOI’15 programming language. In 2014 
Egor Kulikov accepted IOI’15 HSTC member invitation. In 2014–2015 IOI CMS de-
velopment team added full support for Java.

Communications with IOI countries representatives was by e-mail and private 
Google group “IOI 2015 Team Leaders”. List of country contact emails extracted from 
the IOI Registration system, managed by Eljakim Schrijvers https://ioiregistra-
tion.org/. All foreign participants, including IOI committees and Host scientific and 
technical committee (HSTC), were registered in IOI Registration system. IOI’15 invita-
tion letters was generated through IOI registration system, as well as various reports, e.g. 
list of participants with relevant information, including email, meals preferences, travel 
data, etc. For visa support procedures Host created forms and instructions, published on 
website and distributed by email two month before IOI, visa support procedures takes 
up to 30 days. Free of charge landing visa at Almaty International airport was organized 
for all teams who completed required procedures.

Call for tasks was made in December 2014 with submission deadline at January 31, 
2015. Contestants machines specifications and operation system image was published 
in June 2015. Significant changes in IOI’15 competition rules from previous IOI was 
Java as official programming language, allowing multi-threaded programs at the con-
test time, and limits on competition print job size. 3 practice session tasks published 2 
weeks before IOI’15. IOI’15 and 9th IOI conference programmes was published at the 
host website in July. 

4	http://neerc.ifmo.ru/school/russia-team/index.html
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4. IOI Committees Meeting

IOI IC/ISC committees meeting organized in Almaty at February 26 – March 2, 2015. 
All IC/ISC members participated this event, for newly created ITC committee Host de-
cided to organize meeting few days before IOI. IC inspected IOI’15 venue, making many 
objective suggestions with short checklist. IC minutes was published at IOI official web 
site. 43 unique tasks submitted for IOI’15, including 6 submissions from HSTC. HSTC 
rejected 11 submissions, due to various reasons, and 25 tasks shortlisted for selection 
by ISC. Finally, ISC selects 9 tasks for IOI’15, including 3 backup tasks: Scales, Eryk 
Kopczyński, Poland; Teams, Adam Karczmarz, Poland; Boxes with souvenirs, Monika 
Steinova, Slovakia; Towns, Bang Ye Wu, Taiwan (IOI’14 backup task); Sorting, Weidong 
Hu, China; Horses, Mansur Kutybayev, Kazakhstan; Liar, Ulugbek Adilbekov and Ser-
gazy Kalmurzayev, Kazakhstan (IOI‘15 backup task, opened at IZhO’16 (IZhO, n.d.)). 
Cultural programme of IOI committees meeting includes opera presentation Tosca and 
visit of Shymbulak mountain area.

5. IOI Organization

IOI’15 venue formed by nearly located al-Farabi Kazakh National University campus 
with newly built Student hotel (contestants), Atakent Park Hotel (team leaders) and Ritz-
Carlton Hotel (IOI committees, tasks authors, invited guests). Walking time between 
team leaders and contestant’s hotels is about 25 minutes. Student hotel was opened free 
of charge without meals for early arrived teams contestants from July 23. For IOI’15 
needs host University allocated al-Farabi library building, Director Kalima Tuenbayeva. 
Team’s registration was at al-Farabi library. Opening/Closing ceremonies performed in 
the U.Dzholdasbekov Palace of Students. Most of activities organized in Atakent Park 
Hotel for team leaders, and in host University campus for contestants. IOI Doctor (medi-
cal) room allocated in al-Farabi library and Student hotel, as well as host University 
medical center was ready to serve for IOI. At IOI’15 3 medical treatment cases reg-
istered. 10 air conditioning and climate control facilities was installed in competition 
hall (6) and Student hotel (4). We reserved at least two rooms/halls for any IOI activity, 
except single competition hall. IOI committees rooms, IOI office, translation session 
hall, GA meeting hall was allocated both in Atakent Park Hotel and al-Farabi library. 
Rooms in Student hotel was not identical, e.g. for 2 or 4 persons, mirrors was only on 1st 
floor, etc. Rooms for girls was allocated on the 1st floor, mixing contestants from differ-
ent countries, also we allocated contestants rooms starting from 1st floor based on IOI 
total medals rank of countries. In hotels for adult participants most of rooms was single, 
and we sorted participants by age to allocate rooms. Student cafeteria at host University 
campus was allocated for contestants and team guides. For leaders breakfast was on a 
residence, lunch and dinner was at Atakent Park Hotel. Lunches at contest days was 
organized for all participants at host University campus. Farewell party was at Atakent 
Park Hotel. Transportation was organized within IOI venue and for all excursions, for 
guest excursions two big busses was allocated. There was a shortage of minibuses, and 
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planned hourly shuttle at IOI venue was not implemented. Life stream translation was 
not at IOI’15, daily video distributed with YouTube by Azhar Rakhletova, easily found 
by search “IOI 2015”, also video/photo materials published at IOI’15 website. IOI’15 
schedule was traditional 8 days for IOI.

6. Cultural Programme

IOI’15 cultural programme includes two whole day excursions for all participants, two 
whole day and 3 Almaty city excursions for guests, various sport/entertainment events 
and invited lectures. Whole day guest excursions were to the Big Alma-Arasan gorge 
with Nursery “Sunkar”, and Kazakh aul “Huns”. Almaty city excursions were to the 
Central State Museum of Kazakhstan, «Kok Tobe» mountain park with panoramic view 
of Almaty city, Park of 28 Guardians of Panfilov’s division, Saint Ascension Cathedral, 
Ykhylas Museum of Folk Musical Instruments. Day 4 excursion was to the high-moun-
tain sports complex “Medeu”, including visit of Shymbulak glacier at 3000+ m above 
the sea level; and Kazakh State Circus 45 years anniversary presentation. Unfortunately, 
day 6 Turgen gorge mountains area excursion was canceled due to official emergency 
notification on flood flow, not happen actually, and excursion was limited to acquain-
tance with National customs and traditions. 	

IOI’15 Host organizing committee thanks to Chris Peterson from Massachusetts In-
stitute of Technology for lecture “How to apply to MIT (and other USA colleges)” at 
July 30 with various presents, e.g. books signed by MIT professors, including “Introduc-
tion to Algorithms” by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and 
Clifford Stein. Kazakhstan governmental program Bolashak supports education abroad 
and our students are very interested in presentations of this kind. We did not consider 
this presentation as a promotion of MIT, in fact we also invited lecturers from few other 
Universities and ICPC community, and only Chris Peterson comes to IOI’15. It would 
be better to make open announcement before IOI for similar activities. 

7. 9th IOI Conference

IOI conference traditionally organized in two days during contest time in parallel with 
Question/ Answers sessions at July 28–30, 2015. IOI conference program published at 
host website and includes 15 presentations with workshop on IOI CMS contest man-
agement system, moderated by Stefano Maggiolo, ITS member. Special session of IOI 
conference was organized for Kazakhstan teachers. 

8. Quarantine

During Quarantine time contestants allowed to enter Student hotel garden and IOI vol-
unteers organized Dance club / Entertainment programme.
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9. Translation Sessions

Translation sessions organized at Atakent Park Hotel. For translation we asked team 
leaders to bring their own laptops, and less than 10 laptops were requested from organiz-
ers. At IOI’15 was used IOI Translation system created in Taiwan for IOI’14 with minor 
modifications. At the first translation session a large printing queue was caused by inef-
ficiently organized printing procedures with operator intervention, this was improved 
for the second session. In the evening before contest day 2 a power outage happen in the 
hotel, causing one hour delay in GA meeting start time. Fortunately, both backup and 
central power recovered by power service engineers on duty, and we did not switch to 
the backup plan – translation hall at host University without coffee break. Translation 
nights continued up to 5 a.m. In total, 454 task statements with notices was prepared dur-
ing translation sessions and published at IOI’15 host and IOI official websites. 

10. Question/Answer Sessions

Question/Answer sessions organized at Atakent Park Hotel in parallel with IOI Confer-
ence. At IOI’15 clarification forms from contestants was scanned and distributed with-
in “IOI 2015 Team Leaders” Google group, being visible to all team leaders, and text 
translation from any team leader who knows question language was accepted. Most of 
contestant’s questions in fact were handled within IOI CMS, e.g. questions written in 
English or any other language, known by ISC members. Only six questions from contes-
tants were handled at Question/Answer sessions.

11. Contest Tasks

For IOI tasks preparation we used automated platform for creating programming con-
test problems Polygon5, developed at Saratov State University, Russia, by Michael 
Mirzayanov team from 2008. Polygon automates contest tasks preparation, organizing 
effective team work on tasks and preventing typical errors, and supporting user access 
management, version control, issue-tracking, integration with popular test systems, con-
test tasks archive compilation, long-time online backups, tasks search and classification 
capabilities. For security reasons separate instance of Polygon was installed by Michael 
Mirzayanov on our servers with two levels of authorization.

Boxes with souvenirs. Number of subtasks: 6. First two subtasks are easy and require 
basic knowledge of programming with simple logic. Third subtask could be solved by 
“brute force” algorithm. Starting from fourth subtask, contestants have to make simple 
observations about the structure of the problem. Fourth subtask has a lot of different 
solutions; the most popular one could be dynamic programming with 2 states. Subtask 5 
and 6 could be solved only with most important observation of the task. The difference 
is in implementation details of the algorithm which could give better performance. Tests 

5	https://polygon.codeforces.com
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development for this problem was relatively easy. Problem has special tests for checking 
correctness of solutions on important observations.

Scales. Number of subtasks: 1. This problems has no subtasks. Score for this problem 
depends on effectiveness of the algorithm. We used all the available tests for this prob-
lem, which could be easily generated and grouped by subtests. 56 different scores was 
on this task at IOI’15 competition. 

Teams. Number of subtasks: 4. First subtask could be easily solved by “brute force” 
algorithm. The second subtask needs knowledge of well-known sorting algorithms. 
Third and fourth subtasks need advanced geometry and data structure algorithms. A lot 
of tests were prepared for this problem, including all corner cases. Most of tests were 
prepared to test programs on time limits, which was crucial for this problem.

Horses. Number of subtasks: 5. First subtask very easy one. Starting from second 
subtask contestants should make observation about algorithm structure. Second one is 
just easy implementation of this algorithm. Third subtask needs another crucial observa-
tion, which helps to solve this subtask. Difference between third and second subtask is 
only in constraints. The last subtasks could be solved only with advanced data structures 
and programming techniques. Tests for this problem were quite tricky, because it consist 
of a huge amount of corner cases. And there is a lot of space to make some mistake in 
program. There are a lot of different tests that covers huge amount of occasions.

Sorting. Number of subtasks: 6. This problem has a lot of different subtasks, because 
it could be solved in many different ways. Of course not all of them are efficient enough. 
Most of the subtasks have some unique constraints which makes the problem easier 
than the problem itself. First three subtasks don’t require main observation to solve the 
whole problem. Difference between these subtasks is implementation difficulty. For the 
next three one needs observation about the problem structure to be successfully solved. 
Each time contestant needs to make more effort using additional technique or implement 
additional data structure. Problem needed only some restricted amount of tests, which 
was prepared using small test generators. They cover almost all cases, including corner 
cases, small cases and large testcases.

Towns. Number of subtasks: 6. This problem may be divided into more than 6 sub-
tasks, it was decided to fix the number of subtasks on 6. Each subtask could be treated as 
a different problem, because each of them has some specific constraint on some param-
eters. Depending on the contestant observations there might be slightly different algo-
rithm to solve with different score. The problem was divided by most interesting cases to 
solve. Tests preparation for this problem was hardest one in the contest, consisted from 
the algorithm which is hard to test with fixed amount of tests, because of the randomized 
solutions. Jury tried to prepare a lot of different tests that increase probability of failure 
of wrong solutions. Most of them were prepared depending on wrong solutions written 
by jury itself and by beta testers. 

When all task statements was completed we did not write tests verification programs, 
based on final constraints and separated from tests verificator, already created by tasks 
developers, this caused formally invalid test cases. Initially prepared graders was not 
enough secured to prevent attacks. IOI tasks analysis with test data published at IOI’15 
host and IOI official websites.
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12. IOI System

IOI system needs low feedback time and high availability/fault tolerance and high per-
formance/ throughput networking evaluation system, built on relatively low cost facili-
ties. All parts of IOI’15 system was reserved, 10% of laptops, 100+% of servers, 100% 
network core switches and trunk lines, and 10% of network switches and network cables 
to end-point devices. IOI’15 facilities were purchased in 2015 by open bid according 
to the laws of the Republic of Kazakhstan. Many kinds of facilities were provided by 
supporting organizations. IOI’15 facilities includes 1) uninterruptible power supplies: 
built-in with laptops, 20 new 2kVA UPS for every network switch, 1 new Fujitsu APC 
Online 20 kVA in server room, external 800kVA mobile power generator for competition 
building; 2) various facilities for installation of power network in competition hall; 3) 
415 HP ProBook 450 G2 laptops with external keyboard, mouse, mousepad as contes-
tants machines/grading system workers; 4) 30+ external monitors provided for contes-
tants by request; 5) servers: 4 new HP/ProLiant DL380Gen9, 6 new (6+) Fujitsu blade 
servers; 6) 1 new Fujitsu NetApp backup storage system; 7) 14 Alcatel-Lucent 48 port 
layer-2 network switches, supporting VLANs and 1 GigE Ethernet; 8) 4 Alcatel-Lucent 
layer-3 10 GigE switches at network concentration points; 9) Fujitsu rack; 10) network 
cables, testers, cable channels, telecommunication boxes, etc. for network installation; 
11) 5 new fast color printers; 12) 5 new (+5) fast black-white printers; 13) 3 new (+7) 
big Samsung monitors as information desks, network monitor, contest results online pre-
sentation, etc.; 14) 5+ projectors for presentations; 15) 10 new climate control facilities 
installed, 6 in competition hall, 4 in student hotel; 16) 1 audio system for announcements 
in competition hall; 17) various video/photo translation/publication facilities for public 
media coverage; 18) 6 mobile communications jammers for quarantine; 19) 1 voting 
system for GA meetings. 

ITC/HSTC report follows: Laptops was chosen to have more modern technical charac-
teristics than at previous IOI, and to maximize work time on battery, e.g. 15.6” display 
and Core i5 CPU, and to fit in the budget. 336 laptops were allocated for contest hall, 60 
for grading system, 19 for translation session and other needs. Host received similar (but 
not exact) laptops about 3 months before IOI, to prepare the system and test battery work 
time. The laptops arrived about 1 month before IOI. The network was not yet set up, 
so we couldn’t fully test the laptops at that time, we just checked that every laptop can 
successfully be turned on and boots the pre-installed system. The primary servers used 
for the contest were HP DL380 Gen9. Everything was installed on one server. Another 
server was a full copy of the main and had database was being replicated to it, so in case 
of problems we could switch to it in minutes (and nothing would be lost). Third server 
was used for live backups of contestant machines; we couldn’t do this on the first server 
due to high load on the file system. Fourth server was used for translation sessions. We 
also had blade servers and tower machines ready to use as a backup system. We used 10 
Gbps network interfaces on the server with 10 Gbps switches in the server room. Switch-
es in the contest hall all had 1 Gbps links to contestant’s laptops and 2 10 Gbps uplinks 
to the server room. All switches outside of the contest hall were backed up, so if any one 
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fails network would be still up. We had several spare switches for the contest hall and 
we could configure them in few minutes to replace any failed switch. All switches were 
managed remotely by university network administrator. Cable network built safely using 
dual camera cable raceways for both power and digital networks. Competition hall has 6 
video cameras to monitor from ISC/ITC rooms.

Contestant sample images preparation: once we had the IOI’15 laptops, we took 5 of 
them for setting up the contestant software. Initial software setup was performed using 
Ubuntu package-management software (APT). Basic software installation was scripted 
(INSERT REPO LINK). Some manual configuration had to be done for setting up help 
in some IDEs (INSERT MANUAL LINK). Also, several days before the IOI we up-
dated the image. Two versions of Eclipse 3.8 and 4.4 were provided. The 3.x branch 
considered to have better performance, while the 4.x branch has more features. After 
the installation of software following issues was detected 1) KWrite could not open any 
file for reading (fixed by installing missing KDE packages); 2) Default destination of 
Java API for Eclipse, NetBeans and IntelliJ IDEA points to Oracle internet site (JDK 
links was fixed in configuration); 3) Default C++ help files are 15 years old (replaced by 
actual StdLibC++ help files); 4) StdLibC++ help files are not complete (additional help 
files was download from http://en.cppreference.com/); 5) Free Pascal IDE has 
no help files (help files was downloaded and installed); 6) Free Pascal IDE fails on de-
bugging complex programs (not fixed); 6) Code::Blocks hangs when multiple instances 
started in short period of time (not fixed). For each Editor/IDE following requirements 
was checked: 1) It is possible to write, build, run and debug a programs solving “Search” 
practice session problem on all supported languages (a lot of minor misconfigurations 
found and fixed); 2) Help files are available for all supported languages (required help 
files was downloaded and configured); 3) It is possible to save/load files (failed by 
KWrite); 4) Printing are supported (printing is not implemented in Sublime Text edi-
tor and have bugs in Code::Blocks, to alleviate later issue contestants was instructed to 
use “Print to PDF” or use different IDE/Text editor for printing). Keylogging software 
(logkeys) was installed on contestants’ workstations. It allows monitoring contestant 
activity before and during the contest. Some of the contestants performed activity on 
theirs workstations before start of the contest (most of them – unintentionally, like sleep-
ing on keyboard) and was warned about that. The side-effect of the key logging was 
ability to determine times when a contestant computer was hang. It became possible due 
to timestamps that accompanies pressed keys and clear message of key logger restart. 
Therefore, it is possible to determine the time of last key press before the hang-up and 
first key press after it. So we have a good upper bound on hand-up time.

Imaging contestant machines: for imaging we follow Bernard Blackham report for 
IOI 2013 (Blackham, 2013). We have set up a dhcp boot server (dnsmasq), which for-
warded laptops to boot TinyCoreLinux from tftp server (atftpd). The imager script was 
being downloaded after TCL is booted, so we didn’t have to update TCL image each 
time we change the imager script. The imager script wipes the partition table, re-parti-
tions the drive, and starts udp-receiver to receive the main partition image. We were able 
to re-image up to 90 machines with the speed about 900 Mbps, which for 10 GB image 
took about 1–2 minutes. We tried to re-image all the machines at once, but this didn’t 
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work well (probably required some nicer setup). We decided not to lose time on this and 
reimaged the hall by 3–4 rows (each row was up to 25 machines). Even in this case it 
took about 10–15 minutes to reimage everything. We also didn’t bother on TCL image 
size and contestant image size and had no issues with it. During imaging the address-
ing was the following: all laptops in the VLAN 18 with addresses 10.18.row.place / 16. 
Server had one interface in VLAN 18 with address 10.18.0.1 / 16. During the contest the 
addressing was the following: each laptop in different VLAN (1600 + (row – 1) * 100 + 
place – 1) and address 10.row.place.2 / 24. Server had over 300 virtual interfaces with 
addresses 10.row.place.1 / 24.

All managing of contestant’s machines and workers was done remotely (after several 
tries). We could: turn on laptops remotely with wake-on-lan (which saved us from a lot 
of walking), selectively re-image laptops, start memtest or badblocks on all the laptops, 
do anything we want on the laptops during the imaging script is running (thanks to 
Bernard for embedding a backdoor), do anything we want on the laptops after imaging 
with SSH (laptop contained servers public SSH key) or NetAdmin. To control and moni-
tor contestant workstations we used Java-based NetAdmin tool by Georgiy Korneev. It 
monitors current state of each computer in the network several times per second and 
allows issuing control command to all workstations or selected part of them. There is 
a command queue for each workstation, so the command executes only when worksta-
tion is accessible and all previous commands has been finished successfully. NetAdmin 
allows issuing of server-side (local) and workstation-side commands (remote). Server-
side command executed on server by NetAdmin itself. For example, Copy contestant 
data command looks as follows: scp -r {day} {ip}:/home/ contestant, where 
{day} and {ip} are placeholders for current contest day (day0, day1, or day2) and IP-
address of the computer to copy data to. By default, command executes on all computers 
simultaneously, but this is not the case for Copy Contestant Data command – if you try 
to copy 100M simultaneously on 360 computers this will result in terrible network per-
formance. NetAdmin is able to throttle execution of such kind of commands to specified 
number of simultaneous executions. Workstations-side (remote) commands are executed 
by special remote execution service, installed on controlled workstations. Both remote 
execution service and NetAdmin server authorizes each other using TLS certificates. 
Another option is to use ssh command on server side. An example of client-side com-
mand is Reboot: reboot -fn. Notice, that there is no need to specify exact computer to 
reboot, as long as the command is run on that specific computer. NetAdmin support of-
fline commands that executes event when workstations are not accessible. Offline com-
mands are useful for wake-on-lan and similar scenarios. NetAdmin also has been used 
to monitor and control grading system invocation workstations.

During the competition, we performed backups of contestant home directory on each 
workstation. On days 1 and 2 backups scheduled to run each three minutes. During the 
practice session backups was performed each minute to test network throughput and to 
measure influence on contestants. Average backup of all contestant workstations took 
40–50 seconds, with peaks up to 60 seconds. Backups was performed using rsync in-
cremental backups (--link-dest), this allows to make snapshots of home directory, 
while preserving hard drive space and network throughput. Using this scheme the initial 
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backup of the single workstation has size of 300+MB. To reduce this size we imple-
mented cross-workstation incremental backups. In this scheme we took the full backup 
of only one «original» workstations (still 300+MB), while backups of the other worksta-
tions was made as incremental relative to «original». This allows us to reduce the size 
of the initial backup to 5MB/workstation. Most of this 5MB are files regenerated by 
Gnome/Unity after detection of new hardware ids after reimaging. New backup scheme 
allows us to dramatically reduce time and space required for the initial backup. Unfortu-
nately, the backup time of all workstations was 5–7 mins, even when there are no actual 
changes was made. Profiling shown than workstations CPU and network usage was 
almost negligible, while performance was capped by server hard disc. Further investiga-
tion shown, that most of the time is spend by rsync to create hard link to each unmodi-
fied file during backup. To alleviate this issue we switched from Ext4 to BTRFS that 
gave us 5 times boost. To speed up backups even more, we decided not to backup large 
amount of files that should (almost) never change or are regenerated on startup. This two 
tweaks combined reduced backup time of all workstations to 40–50 sec, while decreas-
ing workstation and network load. Test backup restore was performed several times, and 
no issue was found. Unfortunately, backup restore during day 1 analysis resulted in hang 
of heavily used workstations. After reboot all workstations become ok. Further inves-
tigations shown that hangs was due simultaneous update of Gnome configuration files 
and cache by both user and rsync. There are two scenarios to work around this issue: 1) 
Perform backup restore only when workstation is not in use. This is the main scenario in 
the case of unrecoverable contestant workstations failure. In this case, restore took about 
30 sec, which is small compared to time to try recovering workstation, and moving con-
testant to another one; 2) Restore backup to different directory. This scenario was used 
on day 2 result discussions, when backups were restored to dayX/backup directories.

We used master version of CMS (which has evolved greatly during the year before 
IOI’15) with some modifications. Main improvement of this year was testing a submis-
sion in parallel on all the workers on different test cases. So if there are some idle work-
ers, contestant would receive the result much faster than if it would be tested on one 
worker as it was before. This lead to an issue with ES performance, but it was solved 
by Stefano and Bernard before day 2. Proper patches for CMS will be posted in the of-
ficial repository. Other CMS modifications included: 1) specifying subtasks inclusion in 
dataset options (when subtask 2 can include all the test cases from subtask 1 according 
to the task statement, that could be specified in the dataset options, and results of evalu-
ation on test cases of subtask 1 will be included into results of evaluation on test cases 
of subtask 2; 2) displaying results was done in an aggregated form (for each appeared 
evaluation outcome we showed number of test cases and maximal used memory and 
time); 3) Oracle JDK support; 4) many improvements for Polygon importer. There were 
several problems with Java support: multi-threading, memory limit, time limit. Oracle 
JDK is multithreaded by nature. During testing we observed about 17 threads required 
to just start the program for Oracle JDK 8 on Ubuntu 15.10 x64. We had several choices: 
1) limit number of threads with the sandbox (this would be problematic, because JVM 
can start GC any moment on a separate thread); 2) limit the number of threads the con-
testant program is allowed to start (this should work with GC which is not being started 
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by contestant program, but there was a theoretical possibility that standard libraries used 
by the contestant could start some threads); 3) allow multi-threading. We have chosen to 
allow multi-threading and counted the execution time as the sum of execution times of 
all threads of the program. This lead to an interesting issue: if the program used amount 
of memory close to the JVM heap size, then JVM would start GC on a separate thread, 
and its working time will be added to the total execution time. To overcome this issue 
we raised memory limits and JVM heap size (both -Xmx and -Xms). Another problem is 
that standard data input classes (Scanner, BufferedReader) in Java are quite slow. With 
help of Egor Kulikov we re-wrote all graders to use the raw FileInputStream, buffering 
and parsing the input in the grader itself. After this, surprisingly, Java input become 
much faster than input on C++. So we had to rewrite C++ input procedures as well 
(reading number of bytes from the input and parsing them manually). After that the same 
technique was applied to FreePascal graders.

13. Competition

Day 1 and 2 contests were started at 9:00 as planned by schedule. IOI’15 CMS evalu-
ation statistics: 5762 solutions at competition day 1 evaluated in total on 325118 tests, 
8845 solutions at competition day 2 evaluated in total on 470563 tests. In total 371 print 
jobs from 114 contestants was executed, 9 pages was a maximum per single job. Sub-
mits statistics by tasks vs. programming languages with number of different contestants 
and submits presented in Table 1. C++ used by most of contestants, and Java usage 
approaches C/Pascal usage. Java perspectives may be only estimated locking usage dy-
namics on next IOI’s. 

ISC/ITC/HSTC reports on issues happen at contest time: Hardware setup, including 
servers, workstations and networking was very solid. There was no major issues was 
found, while several minor issues was fixed: 1) glitches on workstation screen when 
the lid is moving (2 contestant, workstations were replaced); 2) heavy glitches for few 

Table 1
Programming languages usage at IOI’15

 C++ Java Pascal C

day1 312 5278   5   90 5   81 4   58

boxes 308 2380   5   42 5   27 3   33
scales 281 1503   4   19 4   23 4   15
teams 263 1395   5   29 4   31 3   10

day2 312 8107 11 148 5 179 4 116

horses 305 3339 11   61 5   70 3   22
sorting 304 3006   6   66 4   72 4   93
towns 177 1762   4   21 2   37 1     1
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seconds when video mode is changed (probably bug in video card drivers, does not af-
fect contestants); 3) two contestants was provided with additional monitors (by request); 
4) no mouse pads on practice session (mouse pads were provided by request on days 1 
and 2; 5) workstation hang-ups (real origin is undetermined, 8 contestants was affected 
during day 1, and 4 during day 2).

Day 1:
At the beginning one of 12 CMS servers was not working properly due to misconfigura-
tion. As a result electronic statements and grading was unavailable for roughly 1/12 of 
all contestants. They could still read the hard copies. This was reported around 9:15 and 
fixed within ~5 minutes. 

Around 9:40, a cheating case was detected. In problem Scales a contestant managed 
to read the internal data of the grader. We fixed the grader, so that this type of hacking 
would be much more difficult. When doing that we faced a CMS bug, which resulted in 
grading not working for ~20 minutes. After that, the outstanding solutions were graded 
quickly. 

At 10:30 we discovered a problem in test data for task Teams. A task statement con-
dition was not satisfied in one test case, 2 students got affected. The first one was the 
one who reported the issue, so he added a workaround within few minutes. The second 
student submitted a solution that solved the incorrect test 13 minutes later after his incor-
rectly graded submission. Some other students already passed this test. A rejudge was on 
the way, but we realized that it would not finish before the end of the contest. Because of 
that, around 13:40 we have announced the details of the problem. 

Around 12:30 the same CMS bug has shown up. Before it got fixed, around 12:33 
we had a power problem with UPS on network switches, which caused the CMS server 
to be unavailable for everybody. It was fixed in about 10 minutes. During this time, the 
contestants could work on their computers. After few minutes the CMS bug was “fixed” 
(graders were restarted). Unfortunately, one contestant has to reboot his computer during 
power failure period. This reboot takes a lot of time, since DHCP server was inaccessible 
at this moment. It is recommended to pin dynamic IP addresses in future installations.

At 12:55 the allowed interval between submissions increased from 1 to 5 minutes 
(per task). This was dropped down to 1 for the last 8 minutes of the contest. During the 
second half of the contest the grading time was around 18 minutes. To the best of our 
knowledge, all grading results were reported within 25 minutes.

Several computers locked up during the contest and they had to be rebooted. We 
have analyzed the logs, but the reason remains mysterious (we are still investigating). 
In one case, it happened during the network outage, so the machine did not come up 
immediately. The student has lost about 5 minutes, so we decided to extend the contest 
by 5 minutes for him. However, additional analysis of log files revealed that some other 
machines could have been unusable for up to 13 minutes. They were rebooted by the 
volunteers, who did neither tell us nor recorded the details, and the contestants did not 
complain, so we cannot be sure how serious the problem was. The volunteers will re-
ceive better instructions for day 2.

A large number of clarification requests were received due to students not knowing 
how to compile their program in their preferred environment (mostly Code::Blocks). 



A.V. Iglikov, M.U. Kutybayev, B.T. Matkarimov276

They had included graderlib.c and grader.cpp into their project, which caused multiple 
symbols to be defined.

Public clarification actions: 1) In the beginning: Aman can give multiple souvenirs 
when he is in a section; 2) Graders read I/O from file; 3) Scales grader behavior for in-
correct queries; 4) Late: sample grader prints not only the sequence, but also the number 
of queries; 5) Late: Teams may give bad results.

8 machines froze and got rebooted incidents of rebooting from 3 to 15 minutes.
Questions received: 1) lots of technical questions – we assisted the students; 2) ques-

tions regarding the rules – we gave the full answered; 3) task related questions – often 
answered ANSWERED IN TASK DESCRIPTION or INVALID QUESTIONS. Excep-
tions: questions regarding something that was clarified – then we tried to provide a very 
helpful answer. Question/Answer translations worked fine.

Analysis of day 1 issues: 1) some cases of freezing computers may have been caused 
by Code::Blocks grabbing the keyboard and mouse and then locking. However, there 
may have been other causes, too; 2) There were 4 students affected by the regrade on 
Teams. To gather more information on sporadic hang-ups of contestant’s workstations, 
the remote syslog facility was set up. Syslog analysis allows attributing some of hang-
ups to Code::Blocks and finding the way to alleviate them. To test performance of re-
mote syslog workstations was simultaneously rebooted several times. No missing log 
messages or substantial network load was detected during reboots. 

Day 2:
During the day 2 all announcements were dubbed on the screen as popups using no-
tify-send.

There was a small issue in the sample grader for Towns. This was updated in CMS 
before the contest and pushed to the machines at 09:05. 09:11: E-1 report could not 
extract zip file, confirmed, using local versions for sorting at 09:15. Several issues rose 
about day 2 graders, first at 09:13. There were two versions of graders; both of them 
were the same. 09:32 clarifications notice that horse.out is 0/0. The .out files are results 
of running sample graders, announcements made at 09:46. 09:20 ranking issue: submis-
sions with ids from day 2 overwrote submissions from day 1. Fixed at 09:40. 11:40 
Found and fixed a typo in the announcement sorting.1.in –> sorting1.in. 13:07 another 
ranking issue: some scores became lower after refresh. Fixed in 2 minutes. This was 
likely caused by a faulty restart of one the ranking servers.

During the contest day 2, one more issue was found: the bug in Code::Blocks that 
caused UI to hand while debugging some programs. Two affected contestants were in-
structed to use pkill in such circumstances. Recorded issues at day 2: 1) L-5 hardware 
12:36–12:41; 2) G-15 multiple Code::Blocks freezes (~15 min total lost) caused by the 
contestant repeatedly trying the same thing; 3) J-10: 12:30–12:35; 4) I-13: 13:40–13:44 
Code::Blocks.

ITC investigated CMS issues and reported: After the ISC confirmed the problem on 
a test case for Teams, the ITC inserted new test dataset in CMS and started the back-
ground judging. The system handling the queue of submissions saw an increase in work-
load that exposed an application level deadlock causing frequent freezes. Therefore the 
background judging proceeded slowly, and eventually it was decided to switch to the 
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new dataset before its judging caught up. As the rate of submission increased, the dead-
lock was triggering again, requesting manual intervention each time. As judging became 
slower, contestants increased their submission rate as they could not wait for the (poten-
tially positive) previous results. This forced us to increase the minimum time between 
submissions to 5 minutes. The cause of the deadlock was found and fixed by Bernard 
between day 1 and day 2. In parallel to this, one reason for the higher than expected 
workload was CMS change to distribute each test case to a single worker, which has the 
advantage of giving much lower latency when the system is relatively free. The unex-
pected drawback of this change, in a setting with high number of workers such as the 
IOI, was that the system, handling the queue, was overwhelmed by the communication 
with the workers. This problem was patched by Stefano between day 1 and day 2 (where 
each evaluation was split in about half a dozen packets rather than one per test case). 

14. Award Ceremony

322 IOI’15 contestants awarded 161 medals, 27 gold (rounded up), 55 silver (rounded 
up) and 79 bronze. Jeehak Yoon from the Republic of Korea is single absolute winner of 
IOI’15 with perfect score 600 from 600, he was awarded IOI trophy. IOI Distinguished 
award was to Don Piele, USA, post mortem. Special presents were given to girls – 
IOI’15 contestants (Kazakhstan tradition).

15. Conclusion

In IOI’15 participated 83 Official Teams (77 teams with 4 contestants, 3 teams with 3 
contestants, 2 teams with 2 contestants, 1 team with 1 contestant), 0 Observing Countries, 
1 President, 1 ED, 10 IC, 8 ISC, 7 ITC, 24 HSTC; 322 Official Contestants, 161 Leaders/
Deputy Leaders, 62 Guests + 7 Invited Guests + 2 children. Hosting IOI is an exceptional 
event in a lifetime experience. Thank you very much IOI community for giving us the 
opportunity to show a small part of our beautiful country! Welcome Kazakhstan again!
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1. Introduction

There are about 565 high schools and 497 000 students in Mongolia (Purevjal and Al-
tantuya, 2013). Each year Mongolian National Informatics Olympiad is organized in 
four stages: School competition, District competition, City/Province competition and 
National competition. Fig. 1. shows the participant numbers for each stage. Students 
with top scores are admitted to the next level.

The first National Informatics Olympiad was organized in 1987. Mongolian In-
formatics Association is responsible for organizing whole annual national informatics 
Olympiads in cooperation with the Ministry of Education and Science, other universi-
ties and ICT companies. In 2015 we’ve started using CMS (Contest Management Sys-
tem) in our National Competition which reduced the time needed for judging and made 
it less human dependable (Maggiolo, Mascellani, and Wehrstedt, 2014). 

The first four winners of the national Olympiad participate in the International Olym-
piad in Informatics. The national winners receive scholarships to study IT at local uni-
versities (Choijoovanchig, Uyanga, and Dashnyam, 2007). 
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Professors from leading IT universities such as Mongolian National University of 
Education, Mongolian University of Science and Technology and National University 
of Mongolian, participate in trainings for IOI team.

Students solve 6 programming problems in two days for National competition. The 
maximum score at the competition is 300 or 600 points. Fig. 2 shows the total participant 
number and the percentage of the maximum score from absolute high score. 

Fig. 3. shows results of the Mongolian team participation in IOIs from 2011 through 
2015.

Fig. 1. Participants and structure of National Olympiad.

Fig. 2. Maximum score (in percentage from absolute high score) and participant number.
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2. Key Issues and Problems 

The following issues are the key challenges that hinder the success of Mongolian team 
at the international competition:

Weak English language. Due to language barriers students cannot fully understand 1.	
tasks, use online internet sources and participate in online contests. Regular par-
ticipation in online contests can be very useful for the development of students’ 
programming and algorithmic skills. 
In addition, online contest rankings show us the preparedness of our students at the 
international level.  
Lack of student’s skills and knowledge related to IOI syllabus. IOI syllabus gives 2.	
us list of knowledge that is required to solve most of the IOI problems. Lack of 
knowledge on IOI syllabus results badly planned training and subsequently lack of 
success at IOI. 
Lack of highly qualified teachers to train students. The most successive former IOI 3.	
participants are going abroad after graduation to study and work. Now they work 
for Google, Microsoft, Facebook, Amazon etc. This kind of “brain drain” takes 
most of our teachers away. If former IOI participants would share their experience 
with new participants it could help them much.

In the next section we will list how we have tried to improve students’ skills and 
knowledge of IOI. 

Fig. 3. Mongolian team results in IOI.
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3. Improvements

Most of the problems stated in the previous section related to English language skills. 
Though teaching English is not our main purpose we’ve started looking for websites, 
online contests, which can support Mongolian language. To solve a problem student 
must translate the problem into Mongolian. However, it takes a lot of time and in addi-
tion student can misunderstand the problem. 

There are many online contests organized almost every day on the internet. As most 
of our students are not strong in English we were interested in websites which allow us 
to add problems in Mongolian language and upload the tests or just translate the prob-
lems into Mongolian language. 

So far we’ve found following websites and contests:
Bebras. Last year our students were able to do the Bebras problems in their native 1.	
language and they were excited because there were enough problems to challenge 
themselves. In this contest we had wide choice for the easy and hard problems 
(Vegt, 2013). We think many high school students were stimulated to participate 
in informatics Olympiad after their Bebras participation.
SPHERE online judge (2.	 www.spoj.com). In 2008 one of our committee mem-
bers contacted Andrew Kosowski from Gdansk University, Poland and asked per-
mission to translate the problems on the website into Mongolian language. Now 
most of the basic level online problems in Mongolian language are on SPHERE. 
Now several teachers from Mongolian can add problems and organize contest on 
SPHERE servers.
Croatian Open Competition in Informatics (3.	 www.hsin.hr/coci). There are 7 
online contests in a year and the organizers allow translators from other countries 
to get the problems in English and translate into their native language before each 
online contest. 
Hackerrank. The website allows to its users to be problem setter and organize a 4.	
contest. 
USACO. One of our contestants contacted a personal from USACO and they 5.	
agreed him to get problems before the contest and translate them into Mongolian.
Asia-Pacific Informatics Olympiad. The Asia-Pacific Informatics Olympiad 6.	
(APIO) is an IOI-like competition for delegations within the South Asian / West-
ern Pacific region. 

All these websites and online resources became available for us thanks to interna-
tional cooperation. Therefore we think one of the best ways to improve quality of our 
national team is international cooperation.

As a result of a fruitful cooperation with Russian team we got their full syllabus for 
IOI preparation. Now we have translated the syllabus in Mongolian language and we 
hope this will help us to organize well-planned training. 

Recently some of the former contestants are coming back to Mongolia to share their 
experience with other contestants. That is a good way to share their knowledge with the 
next generation and this kind of feedback will help us to support continuous develop-
ment of Mongolian team. 
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Also we have a dedicated website for our National Olympiad in Informatics so we 
can save our results for later analysis (Mongolian National Olympiad NGO, 2015). 

4. Summary

Compared to Mongolian report in 2007 there were following main improvements:
We introduced full IOI syllabus to students.●●
We have an official website for National contest.●●
We started using IOI judge system in National contest (CMS).●●

Skills and knowledge of Mongolian students are improving each year and there are 
more and more students interested in Informatics Olympiad. To support them further we 
will need some text book in the future. 

Another future work for us is to develop international cooperation further so that our 
students can participate in many more online contests in their native language. We hope 
this way they can achieve good placements in IOI and become good specialists. 
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1. Introduction

In 2016 the XXIX Belarusian Olympiad in Informatics was held in Mogilev, Belarus. 
Belarusian team has taken part in IOI since 1990, when the II International Olympiad in 
Informatics was held in Minsk. For 26 years the Republic of Belarus was represented by 
63 members who were awarded by 79 medals (gold 14, silver 33, and bronze 32).1 

Participation in the International Olympiads is the final step of multi-stage competi-
tion among gifted students. Participants of the first selection and training camp are de-
termined during the final round of the national contest. In 30 days teams of the Republic 
of Belarus prepare for participation in IOI, IMO, IPhO, IChO, IBO. The national contest 
and the preparation for international competitions are provided by employees and stu-
dents of the leading universities 

National Olympiads are organized by the Ministry of education of the Republic of 
Belarus. 

The winners (Fig. 1) of the final stage of the competition have the opportunity to 
enroll in the state universities without exams.

1	http://stats.ioinformatics.org/countries/BLR
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2. National Belarusian Olympiad in Informatics 

National Olympiad in Informatics is held with the aim of identifying and improving the 
capabilities of the gifted students in the field of informatics and programming. The main 
goals of the National Olympiad are to increase interest in learning programming, to deep 
their theoretical knowledge and practical skills, to prepare students for participating in 
the international competitions. Participation in all stages of the Olympiad is free for 
students.

National Olympiad is held in each academic year in four stages: the first stage is the 
educational establishment level, the second stage is the district (city) level, the third 
stage is the regional competition, the fourth stage is the final national round.

Problems of three types are used at the stages of the National Olympiad in Informat-
ics; each of them requires developing an algorithm for the problem and implementing it 
in one of the available programming languages (C++ or Pascal). The problem of the first 
type is the classic one: contestant has to write a program that reads the input and pro-
duces the answer, i.e. the contestant doesn’t know which test data will be used to check 
his program. The problem of the second type is a question with open tests. In problems 
of this type participants have all input data, and it is necessary to provide the results of 
the solution for known test data.

Solution grading for the second type problems usually uses partial scoring, the solu-
tion is compared with the optimal or best solution among all participants of the contest. 
The problem of the third type is the interactive one. In problems of this type the source 
code of a participant interacts with unknown to him library. Solutions obtain input and 
the list of actions that should be performed using known protocol. These problems allow 

Fig. 1. The final stage of the Belarussian Olympiad in Informatics in 2016 – winners of the 1st 
degree diplomas. Head of Department of education of regional Executive Committee Vladi-
mir Ryzhkov is standing in the middle of the photo.
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using questions required processing of input data in real-time, games, tasks, “black box” 
interaction etc.

Between the stages of the Olympiad training camps are held to prepare students to 
participate in the future stages of the competition.

The winners of each round of the Olympiad are awarded with I, II, and III diplomas 
(Fig. 2). The number of winners at each stage of the contest does not exceed 45% of the 
number of participants. The number of I diplomas does not exceed 20% of the number 
of winners. Share of II diplomas is no more than 30%, III diplomas – no more than 50%. 
The actual number of winners at each stage is determined by the jury.

2.1. First and Second Stages

The first stage of the National Olympiad should be held not later than November of 
the current academic year and is an internal stage in each institution of the Republic of 
Belarus. At this stage all interested students take part in the competition. The best stu-
dents qualify to participate in the second stage of the Olympiad in accordance with the 
established quota. The problems preparation for this stage is not kept centrally so each 
institution determines the format and prepares questions independently.

The second stage is the city or district level. At this stage the contest is held no later 
than December of the current academic year and consists of one practical exam. The 
contest problems for the second stage of the Olympiad are prepared centrally by each 
regional department of education and contain usually only the classic problems. After 
the second stage of the Olympiad each district forms a team to participate in the third 
stage of the Olympiad.

Fig. 2. Awarding 3rd degree diplomas and medals to the holders of the final stage of the Be-
larussian Olympiad on Informatics 2016.
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2.2. Third Stage

The third stage of the National Olympiad is held in each region of the Republic of 
Belarus (7 in total). All participants compete on the same problem set prepared by the 
Ministry of education of the Republic of Belarus. The problem of the second type (open 
tests) adds to the classic problems at this stage. The competition is held in 2 practical 
exams, each of them requires solving 3–4 questions. The problem complexity is signifi-
cantly higher at this stage than at the previous one.

Each region forms a team of 15 students to perform at the final stage. In addition, the 
team may be expanded at the expense of the last year contest winners (final stage), who 
won diploma this year (third stage), but was not ranked in the top 15 in the region, as 
well as the winners of the International Zhautykov Olympiad (Kazakhstan).

In January/February each regional team receives additional training camp for 14 
days to prepare for the final stage. Students listen to the theoretical lectures on construct-
ing algorithms, how to use data structures in the efficient way, and various branches of 
mathematics and computer science. In addition to theoretical studies there are practical 
exams with analysis.

Team of the Lyceum of the Belarusian State University participates in addition to the 
seven regions of the Republic of Belarus in the final stage of the Olympiad.

2.3. Final Stage

The final stage of the National Olympiad is carried out by the Ministry of education 
within 5 days in one of the host cities in March/April (Table 1). The contest problems at 
this stage contain the interactive task in addition to the classical and open tests.

In the National Olympiad in Informatics all students shares a common rank list re-
gardless of grade (Table 2). About 50% of the participants of the final stage of the Olym-
piad are graduates of secondary schools, gymnasiums and lyceums. 

All students (grade 11) who won the final stage are eligible for admission to the state 
universities of the Republic of Belarus without exams.

3. Preparation for International Competitions

According to the results of the final stage of the National Olympiad the list of 10–12 
most successful students is formed for selection and preparation of the participants of 
the International Olympiad in Informatics. Camps are held in 2–3 phases with a total 
duration of 30 days.

At the first phase of the trainings participants compete in from 10 to 15 rounds, the 
complexity of the problems is close to the international level. After each round analy-
sis is provided by coaches. In addition, training sessions are conducted with rounds of 
solving different types of problems: object recognition, optimization problems, game 
problems, etc. The list of the International Olympiad in Informatics participants forms 



Belarusian Olympiad in Informatics 289

after the first camp. The team is approved by the Ministry of education of the Republic 
of Belarus.

During the next camps coaches make lectures with different topics based on the 
complex data structures and algorithms, usage of a contest system image provided by 
IOI organizers and other. Participants continue preparation solving the competitions 
from other countries and regions. The participation in training camps for students is 
free.The results of the team of the Republic of Belarus in IOI over the last 5 years are 
presented in Table 3.

In Belarus operates the high-tech Park, which includes more than 150 resident com-
panies. Every year, the resident companies of the Park of high technologies take part in 
rewarding winners of the final stage of the Olympiad in Informatics (Fig. 3). 

The winners of the final stage of the Republican Olympiad will be awarded with cash 
prize of the special Fund of the President of the Republic of Belarus for social support of 
gifted students and shall be included in a national data Bank of talented youth.

The winners of the international Olympiad receive the title of Laureate of the special 
Fund of the President of the Republic of Belarus for social support of gifted pupils and 
students.

The presence of this title gives the right to receive a number of social benefits.

Table 1 
Number of participants of the final stage in 2012–2016

2012 2013 2014 2015 2016

123 123 120 122 120

Table 2 
Distribution of participants of the final stage in 2012–2016

Grade 2012 2013 2014 2015 2016
Partici-
pants

winners Partici-
pants

winners Partici-
pants

winners Partici-
pants

winners Partici-
pants

winners

6–8   9   2   5   3   9   4   7   2   7   1
  9 14   5 18   6 14   4 22   8 19   7
10 43 21 35 12 32 15 29 12 43 22
11 57 28 65 34 65 31 64 32 51 24

Table 3 
Performance of the team of the Republic of Belarus in IOI in 2011–2015

2011 2012 2013 2014 2015

10 grade Gold 11 grade Gold 11 grade Gold 11 grade Bronze 11 grade Silver
10 grade Silver 11 grade Gold 11 grade Silver 10 grade Silver 11 grade Silver
 9 grade Silver 10 grade Silver 11 grade Bronze 10 grade Bronze 11 grade Bronze
 9 grade Silver 10 grade Bronze 11 grade Bronze   8 grade – 10 grade Bronze
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4. Conclusion

This article briefly describes the procedure for conducting the National Olympiad in 
Informatics in Belarus. Description of all four stages of the competition and the sched-
ule of training and selection camps are provided. In the Republic of Belarus National 
Olympiad in Informatics is an important and significant event. Belarusian students won 
lots medals at the international level.
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