
bitstrings
Practice Tasks

English (ISC)

Duplicated Binary Strings
Carlos spends his summer holiday studying duplicated binary strings. A duplicated binary string
is a non-empty string T such that:

T contains only the characters ‎0‎ and ‎1‎ (that is, T is a binary string).
T can be written in the form T = , where U is an arbitrary binary string and the
operation denotes the concatenation of the strings a and b (i.e., writing them one after
the other as a single string).

For example, ‎0000‎ and ‎011011‎ are duplicated binary strings, but ‎01‎, ‎0110‎, and ‎000‎ are not.

Define the strength of a binary string S as the number of distinct contiguous duplicated
substrings present in S. Two substrings are considered different if they differ in at least one
character.

This problem consists of two parts, with each subtask associated with either Part I or Part II. You
may solve the subtasks in any order; in particular, you are not required to complete all of Part I
before attempting Part II.

Part I

Carlos sends you a binary string S, and your task is to calculate its strength.

Implementation Details

You should implement the following procedure.

int count_duplicated(std::string S)‎

S: binary string of length N
This procedure is called exactly once for each test case.

The procedure should return an integer K , the number of distinct contiguous duplicated
substrings present in S.

​UU
​
​​

​ab
​
​​

bitstrings (1 of 5)

Constraints

4 ≤ N ≤ 100
S[i] is either ‎0‎ or ‎1‎ for each i such that 0 ≤ i < N .

Subtasks

Subtask Score Additional Constraints

1 6 N = 4

2 9 No additional constraints.

Examples

Example 1

Consider the following call.

count_duplicated("0101")‎

There is only one duplicated binary substring in S, which is 0101‎. Therefore the procedure should

return 1.

Example 2

Consider the following call.

count_duplicated("0000")‎

There are two duplicated binary substrings in S: ‎00‎ and ‎0000‎. Hence, the procedure should return

2.

Note that although the substring ‎00‎ appears three times in S, it is counted only once in the final

answer.

Part II

Carlos wonders what the minimum and maximum strength of a binary string S can be.

Your task is to construct binary strings of length 100 that contain as few or as many duplicated
substrings as possible. You will receive a score based on the number of duplicated substrings.

bitstrings (2 of 5)

Subtasks

This part consists of 2 output-only subtasks with partial scoring.

Subtask Score Constraint

3 25 Minimize the strength of S.

4 60 Maximize the strength of S.

Implementation Details

For each subtask, you should either

submit an output file consisting of a binary string of length 100, or
return a binary string in your program to a grader procedure call.

Each output file must be in the following format:

S‎

To construct the required binary strings in your solution program, you should implement the
following procedures.

std::string find_weakest()‎

If an output file for Subtask 3 is provided in your submission, this procedure will not be
called.
Otherwise, the procedure is called in Subtask 3 exactly once.

The procedure should return a binary string S of length N = 100 with minimum strength.

std::string find_strongest()‎

If an output file for Subtask 4 is provided in your submission, this procedure will not be
called.
Otherwise, the procedure is called in Subtask 4 exactly once.

The procedure should return a binary string S of length N = 100 with maximum strength.

Scoring

If your output does not conform to the constraints described in the implementation details, the
score of your solution for that subtask will be 0 (reported as ‎Output isn't correct‎ in CMS).

bitstrings (3 of 5)

Let K denote the strength of the string in your output for a given subtask.

In Subtask 3, your score is calculated according to the following table:

Condition Points

20 < K 0

4 < K ≤ 20 21 − K

K = 4 20

K = 3 25

In Subtask 4, your score is calculated according to the following table:

Condition Points

K ≤ 50 0

50 < K ≤ 80 K − 50

80 < K ≤ 83 30 + 5 ⋅ (K − 80)

K = 84 60

Sample Grader

Parts I and II use the same sample grader program, with the distinction between the two parts
determined by the first line of the input.

Input format for Part I:

1

S‎

Output format for Part I:

K‎

Input format for Part II:

2

T‎

Here, T is either the string ‎weakest‎ or the string ‎strongest‎.

bitstrings (4 of 5)

Output format for Part II:

S‎

Note that the output of the sample grader adheres to the required format for the output files in
Part II.

bitstrings (5 of 5)

Duplicated Binary Strings

Carlos spends his summer holiday studying **duplicated binary strings**.
A duplicated binary string is a non-empty string T such that:
* T contains only the characters `0` and `1` (that is, T is a **binary string**).
* T can be written in the form $T = \overline{UU}$, where U is an arbitrary binary string and the operation \overline{ab}
 denotes the concatenation of the strings a and b (i.e., writing them one after the other as a single string).

For example, `0000` and `011011` are duplicated binary strings, but `01`, `0110`, and `000` are not.

Define the **strength** of a binary string S as the number of **distinct** contiguous duplicated substrings present in S.
Two substrings are considered different if they differ in at least one character.

This problem consists of two parts, with each subtask associated with either **Part I** or **Part II**.
You may solve the subtasks in any order; in particular, you are not required to complete all of Part I before attempting Part II.

Part I

Carlos sends you a binary string S, and your task is to calculate its strength.

Implementation Details

You should implement the following procedure.

```
int count_duplicated(std::string S)
```

* S: binary string of length N
* This procedure is called exactly once for each test case.

The procedure should return an integer K, the number of distinct contiguous duplicated substrings present in S.

Constraints

* $4 \leq N \leq 100$
* $S[i]$ is either `0` or `1` for each i such that $0 \leq i < N$.

Subtasks

Subtask	Score	Additional Constraints
1	6	$N = 4$
2	9	No additional constraints.

Examples

Example 1

Consider the following call.

```
count_duplicated("0101")
```

There is only one duplicated binary substring in S, which is `0101`.
Therefore the procedure should return 1.

Example 2

Consider the following call.

```
count_duplicated("0000")
```

There are two duplicated binary substrings in S: `00` and `0000`.
Hence, the procedure should return 2.

Note that although the substring `00` appears three times in S, it is counted only once in the final answer.

Part II

Carlos wonders what the minimum and maximum strength of a binary string S can be.

Your task is to construct binary strings **of length 100** that contain as few or as many duplicated substrings as possible.
You will receive a score based on the number of duplicated substrings.

Subtasks

This part consists of 2 **output-only** subtasks with **partial scoring**.

Subtask	Score	Constraint
3	25	Minimize the strength of S.
4	60	Maximize the strength of S.

Implementation Details

For each subtask, you should either

* submit an output file consisting of a binary string of length 100, or
* return a binary string in your program to a grader procedure call.

Each output file must be in the following format:

```
S
```

To construct the required binary strings in your solution program, you should implement the following procedures.

```
std::string find_weakest()
```

* If an output file for Subtask 3 is provided in your submission, this procedure will not be called.
* Otherwise, the procedure is called in Subtask 3 exactly once.

The procedure should return a binary string S of length $N = 100$ with minimum strength.

```
std::string find_strongest()
```

* If an output file for Subtask 4 is provided in your submission, this procedure will not be called.
* Otherwise, the procedure is called in Subtask 4 exactly once.

The procedure should return a binary string S of length $N = 100$ with maximum strength.

Scoring

If your output does not conform to the constraints described in the implementation details, the score of your solution for that subtask will be 0 (reported as `Output isn't correct` in CMS).

Let K denote the strength of the string in your output for a given subtask.

In Subtask 3, your score is calculated according to the following table:

Condition	Points
$20 \lt K$ | 0
$4 \lt K \le 20$ | $21 - K$
$K = 4$ | 20
$K = 3$ | 25

In Subtask 4, your score is calculated according to the following table:

Condition	Points
$K \le 50$ | 0
$50 \lt K \le 80$ | $K - 50$
$80 \lt K \le 83$ | $30 + 5 \cdot (K - 80)$
$K = 84$ | 60

Sample Grader

Parts I and II use the same sample grader program, with the distinction between the two parts determined by the first line of the input.

Input format for Part I:

```
1
S
```

Output format for Part I:
```
K
```

Input format for Part II:

```
2
T
```

Here, T is either the string `weakest` or the string `strongest`.

Output format for Part II:

```
S
```

Note that the output of the sample grader adheres to the required format for the output files in Part II.

