
boringgame
Practice Tasks

English (ISC)

Boring Game
Alice and her little brother, Bob are playing a number guessing game.

Bob has selected a (hidden) integer S.

Alice can ask questions about the hidden number, which are of the following form: "Is the hidden
number at least x?" Bob answers her questions with "Yes" or "No". Unfortunately, after K ≥ 1

questions, Bob gets bored of the game, and from then on, he will give false answers to all
questions.

That is, Bob:

Answers "Yes" to the first K questions if and only if x ≤ S, and
After the K -th question, he answers "Yes" if and only if S < x.

Note that Bob always answers correctly to the first question and Alice does not know the value of
K .

Your task is to devise and implement a questioning strategy for Alice to identify the hidden
number. Your score is based on the number of questions asked - the fewer questions, the better
the score.

Implementation Details

You should implement the following procedure.

long long play_game()‎

This procedure is called at most T times for each test case.

The procedure should find and return the hidden number S by making calls to the following
procedure to ask questions about the hidden number:

bool ask(long long x)‎

x: the number specifying a question of Alice.
The value of x must be between 1 and 10 , inclusive.
The procedure returns a boolean value representing Bob's answer.

18​

boringgame (1 of 3)

The procedure can be called at most 150 times in each call to ‎play_game‎.

The behaviour of the grader is adaptive, meaning that in certain tests, the values of S and K are
not fixed before ‎play_game‎ is called. It is guaranteed that there exists at least one (S,K) pair for

which the grader's answers are consistent.

Constraints

1 ≤ T ≤ 1000
1 ≤ S ≤ 10
1 ≤ K ≤ 150

Scoring

If your solution does not adhere to the implementation details described above, or if the value
returned by ‎play_game‎ is incorrect for even a single call, your solution will receive a score of 0.

Otherwise, let C be the maximum number of questions your solution asks across all calls to
play_game‎. Your score is calculated according to the following table:

Condition Points

132 < C ≤ 150 20 ⋅

78 < C ≤ 132 20 + 20 ⋅

72 < C ≤ 78 40 + 30 ⋅

67 < C ≤ 72 70 + 30 ⋅

C ≤ 67 100

Example

Consider a scenario where the hidden integer is S = 2, and K = 1. The game begins with the call:

play_game()‎

Suppose that ‎play_game‎ first calls ‎ask(2)‎. As 2 ≤ S = 2 and Bob is telling the truth at this point,

the call returns ‎true‎.

Suppose ‎play_game‎ calls ‎ask(2)‎ again. Although the condition 2 ≤ S = 2 still holds, but Bob is

now lying (having already told the truth K = 1 time), so the call returns ‎false‎. Receiving

contradictory answers to the same question reveals that Bob will lie on all subsequent responses.

18​

(18
150−C​)2​

(54
132−C​)2​

(6
78−C​)2​

(5
72−C​)2​

boringgame (2 of 3)

Now suppose ‎play_game‎ calls ‎ask(3)‎. Since 3 ≤ S = 2 is false, and Bob is lying, the call returns

true‎. At this point, we can deduce that 2 ≤ S < 3, which implies S = 2.

Therefore, the procedure should return 2.

Sample Grader

The sample grader is not adaptive. It processes T scenarios, and in each case reads fixed values
of S and K from the input and answers questions accordingly.

Input format:

T

S[0] K[0]

S[1] K[1]

...

S[T-1] K[T-1]‎

Here, S[i] and K [i] (0 ≤ i < T) specify the hidden parameters for each call to ‎play_game‎.

Output format:

G[0] C[0]

G[1] C[1]

...

G[T-1] C[T-1]‎

Here G[i] (0 ≤ i < T) is the number returned by ‎play_game‎ when the hidden parameters are S[i]

and K [i], and C[i] is the number of questions asked during that call.

boringgame (3 of 3)

Boring Game

Alice and her little brother, Bob are playing a number guessing game.

Bob has selected a (hidden) integer S.

Alice can ask questions about the hidden number, which are of the following form: "Is the hidden number at least x?"
Bob answers her questions with "Yes" or "No".
Unfortunately, after $K \geq 1$ questions, Bob gets bored of the game, and from then on, he will give false answers to all questions.

That is, Bob:
* Answers "Yes" to the first K questions if and only if $x \leq S$, and
* After the K-th question, he answers "Yes" if and only if $S < x$.

Note that Bob always answers correctly to the first question and Alice does not know the value of K.

Your task is to devise and implement a questioning strategy for Alice to identify the hidden number.
Your score is based on the number of questions asked - the fewer questions, the better the score.

Implementation Details

You should implement the following procedure.

```
long long play_game()
```

* This procedure is called **at most T times** for each test case.

The procedure should find and return the hidden number S by
 making calls to the following procedure
 to ask questions about the hidden number:

```
bool ask(long long x)
```

* x: the number specifying a question of Alice.
* The value of x must be between 1 and 10^{18}, inclusive.
* The procedure returns a boolean value representing Bob's answer.
* The procedure can be called at most 150 times in each call to `play_game`.

The behaviour of the grader is **adaptive**, meaning that in certain tests, the values of S and K are not fixed
before `play_game` is called.
It is guaranteed that there exists at least one (S, K) pair for which the grader's answers are consistent.

Constraints

* $1 \leq T \leq 1000$
* $1 \leq S \leq 10^{18}$
* $1 \leq K \leq 150$

Scoring

If your solution does not adhere to the implementation details described above, or if the value returned by `play_game` is incorrect for even a single call, your solution will receive a score of 0.

Otherwise, let C be the maximum number of questions your solution asks across all calls to `play_game`.
Your score is calculated according to the following table:

Condition	Points
$132 \lt C \le 150$ | $20 \cdot \left(\frac{150-C}{18}\right)^2$
$78 \lt C \le 132$ | $20 + 20 \cdot \left(\frac{132-C}{54}\right)^2$
$72 \lt C \le 78$ | $40 + 30 \cdot \left(\frac{78-C}{6}\right)^2$
$67 \lt C \le 72$ | $70 + 30 \cdot \left(\frac{72-C}{5}\right)^2$
$C \le 67$ | 100

Example

Consider a scenario where the hidden integer is $S = 2$, and $K = 1$.
The game begins with the call:

```
play_game()
```

Suppose that `play_game` first calls `ask(2)`.
As $2 \leq S = 2$ and Bob is telling the truth at this point, the call returns `true`.

Suppose `play_game` calls `ask(2)` again.
Although the condition $2 \leq S = 2$ still holds, but Bob is now lying (having already told the truth $K=1$ time),
 so the call returns `false`.
Receiving contradictory answers to the same question reveals that Bob will lie on all subsequent responses.

Now suppose `play_game` calls `ask(3)`.
Since $3 \leq S = 2$ is false, and Bob is lying, the call returns `true`.
At this point, we can deduce that $2 \leq S < 3$, which implies $S = 2$.

Therefore, the procedure should return 2.

Sample Grader

The sample grader is **not adaptive**.
It processes T scenarios, and in each case reads fixed values of S and K from the input and answers questions accordingly.

Input format:

```
T
S[0]  K[0]
S[1]  K[1]
...
S[T-1] K[T-1]
```

Here, $S[i]$ and $K[i]$ ($0 \leq i < T$) specify the hidden parameters for each call to `play_game`.

Output format:
```
G[0]  C[0]
G[1]  C[1]
...
G[T-1] C[T-1]
```

Here $G[i]$ ($0 \leq i < T$) is the number returned by `play_game` when the hidden parameters are $S[i]$ and $K[i]$,
and $C[i]$ is the number of questions asked during that call.

