ﬁ()/Z%; BOLIVIAZOQ,S bo;irl:ggaT:;

37™ INTERNATIONAL OLYMPIAD IN INFORMATICS English (ISC)

Boring Game

Alice and her little brother, Bob are playing a number guessing game.
Bob has selected a (hidden) integer S.

Alice can ask questions about the hidden number, which are of the following form: "Is the hidden
number at least z?" Bob answers her questions with "Yes" or "No". Unfortunately, after K > 1
qguestions, Bob gets bored of the game, and from then on, he will give false answers to all
questions.

That is, Bob:

e Answers "Yes" to the first K questions if and only if x < S, and
* After the K-th question, he answers "Yes" if and only if S < .

Note that Bob always answers correctly to the first question and Alice does not know the value of
K.

Your task is to devise and implement a questioning strategy for Alice to identify the hidden
number. Your score is based on the number of questions asked - the fewer questions, the better
the score.

Implementation Details

You should implement the following procedure.
long long play game ()

* This procedure is called at most I’ times for each test case.

The procedure should find and return the hidden number S by making calls to the following
procedure to ask questions about the hidden number:

bool ask(long long x)

¢ z:the number specifying a question of Alice.
* The value of z must be between 1 and 10'8, inclusive.
* The procedure returns a boolean value representing Bob's answer.

boringgame (1 of 3)

* The procedure can be called at most 150 times in each call to play game.

The behaviour of the grader is adaptive, meaning that in certain tests, the values of S and K are
not fixed before play game is called. It is guaranteed that there exists at least one (S, K) pair for

which the grader's answers are consistent.

Constraints

e 1<T <1000
e 1<85<108
e 1<K <150

Scoring

If your solution does not adhere to the implementation details described above, or if the value

returned by play game is incorrect for even a single call, your solution will receive a score of 0.

Otherwise, let C' be the maximum number of questions your solution asks across all calls to
play game. Your score is calculated according to the following table:

Condition Points

132 <C <150 20- (189=C)7

— 00

78 < C <132 20+20,(3270)2

54

72<C<78 40+30- (&)
67 <C <72 70430 (<

2
)2
C <67 100

Example

Consider a scenario where the hidden integer is S = 2, and K = 1. The game begins with the call:
play_game ()

Suppose that play game first calls ask (2).As 2 < § = 2 and Bob is telling the truth at this point,

the call returns true.

Suppose play game calls ask (2) again. Although the condition 2 < S = 2 still holds, but Bob is
now lying (having already told the truth K =1 time), so the call returns false. Receiving

contradictory answers to the same question reveals that Bob will lie on all subsequent responses.

boringgame (2 of 3)

Now suppose play game calls ask (3). Since 3 < S = 2 is false, and Bob is lying, the call returns

true. At this point, we can deduce that 2 < S < 3, which implies § = 2.

Therefore, the procedure should return 2.

Sample Grader

The sample grader is not adaptive. It processes T’ scenarios, and in each case reads fixed values

of S and K from the input and answers questions accordingly.

Input format:

T
S[0] KI[O]
S[1] KI[1]

S[T-1] K[T-1]

Here, S[i] and K [i] (0 < ¢ < T)) specify the hidden parameters for each call to play game.

Output format:
G[O0] CI[0]
G[1] CI[1]

G[T-1] C[T-1]

Here G[i] (0 <1i < T)is the number returned by play game when the hidden parameters are S|i|

and K[i], and C|[i] is the number of questions asked during that call.

boringgame (3 of 3)

Boring Game

Alice and her little brother, Bob are playing a number guessing game.

Bob has selected a (hidden) integer S.

Alice can ask questions about the hidden number, which are of the following form: "Is the hidden number at least x?"
Bob answers her questions with "Yes" or "No".
Unfortunately, after $K \geq 1$ questions, Bob gets bored of the game, and from then on, he will give false answers to all questions.

That is, Bob:
* Answers "Yes" to the first K questions if and only if $x \leq S$, and
* After the K-th question, he answers "Yes" if and only if $S < x$.

Note that Bob always answers correctly to the first question and Alice does not know the value of K.

Your task is to devise and implement a questioning strategy for Alice to identify the hidden number.
Your score is based on the number of questions asked - the fewer questions, the better the score.

Implementation Details

You should implement the following procedure.

```
long long play_game()
```

* This procedure is called **at most T times** for each test case.

The procedure should find and return the hidden number S by
 making calls to the following procedure
 to ask questions about the hidden number:

```
bool ask(long long x)
```

* x: the number specifying a question of Alice.
* The value of x must be between 1 and 10^{18}, inclusive.
* The procedure returns a boolean value representing Bob's answer.
* The procedure can be called at most 150 times in each call to `play_game`.

The behaviour of the grader is **adaptive**, meaning that in certain tests, the values of S and K are not fixed
before `play_game` is called.
It is guaranteed that there exists at least one (S, K) pair for which the grader's answers are consistent.

Constraints

* $1 \leq T \leq 1000$
* $1 \leq S \leq 10^{18}$
* $1 \leq K \leq 150$

Scoring

If your solution does not adhere to the implementation details described above, or if the value returned by `play_game` is incorrect for even a single call, your solution will receive a score of 0.

Otherwise, let C be the maximum number of questions your solution asks across all calls to `play_game`.
Your score is calculated according to the following table:

Condition	Points
$132 \lt C \le 150$ | $20 \cdot \left(\frac{150-C}{18}\right)^2$
$78 \lt C \le 132$ | $20 + 20 \cdot \left(\frac{132-C}{54}\right)^2$
$72 \lt C \le 78$ | $40 + 30 \cdot \left(\frac{78-C}{6}\right)^2$
$67 \lt C \le 72$ | $70 + 30 \cdot \left(\frac{72-C}{5}\right)^2$
$C \le 67$ | 100

Example

Consider a scenario where the hidden integer is $S = 2$, and $K = 1$.
The game begins with the call:

```
play_game()
```

Suppose that `play_game` first calls `ask(2)`.
As $2 \leq S = 2$ and Bob is telling the truth at this point, the call returns `true`.

Suppose `play_game` calls `ask(2)` again.
Although the condition $2 \leq S = 2$ still holds, but Bob is now lying (having already told the truth $K=1$ time),
 so the call returns `false`.
Receiving contradictory answers to the same question reveals that Bob will lie on all subsequent responses.

Now suppose `play_game` calls `ask(3)`.
Since $3 \leq S = 2$ is false, and Bob is lying, the call returns `true`.
At this point, we can deduce that $2 \leq S < 3$, which implies $S = 2$.

Therefore, the procedure should return 2.

Sample Grader

The sample grader is **not adaptive**.
It processes T scenarios, and in each case reads fixed values of S and K from the input and answers questions accordingly.

Input format:

```
T
S[0]  K[0]
S[1]  K[1]
...
S[T-1] K[T-1]
```

Here, $S[i]$ and $K[i]$ ($0 \leq i < T$) specify the hidden parameters for each call to `play_game`.

Output format:
```
G[0]  C[0]
G[1]  C[1]
...
G[T-1] C[T-1]
```

Here $G[i]$ ($0 \leq i < T$) is the number returned by `play_game` when the hidden parameters are $S[i]$ and $K[i]$,
and $C[i]$ is the number of questions asked during that call.

