
magic
Practice Tasks

English (ISC)

Magic Trick
Alicia and Beatriz are preparing a magic trick for the IOI Talent Show. The trick works as follows:

A volunteer selects a permutation P of length N and places N cards on the table. The cards
are numbered from 0 to N −1, with card i displaying the value P [i].
Alicia enters the room, observes the cards, and selects K of them to flip face down, hiding
their values.
Beatriz then enters the room, sees the current arrangement of the cards (including which
ones are face down), and magically determines the values of all K hidden cards!

Your task is to devise and implement a strategy for Alicia and Beatriz. The more impressive the
trick, the better your score: the objective is to maximize K , the number of hidden cards Beatriz can
correctly reveal.

Implementation Details

The first procedure that you have to implement:

std::vector<int> Alicia(std::vector<int> P)‎

P : array of length N , representing the selected permutation.

This procedure should return an array Q of length N , representing the card flips Alicia performs.
For each index i (0 ≤ i ≤ N −1), the values in Q must be set as follows:

Q[i] = −1 if Alicia flips card i, and
Q[i] = P [i] otherwise.

The second procedure that you have to implement:

std::vector<int> Beatriz(std::vector<int> Q)‎

Q: array of length N , as returned by ‎Alicia‎. This array specifies the configuration of the
cards when Beatriz enters.

This procedure should return an array B of length N , representing the original permutation P ,
that is, B[i] = P [i] should hold for each i (0 ≤ i ≤ N −1).

magic (1 of 3)

In each test case, the two procedures are called exactly once, as follows:

During the first run of the program:
Alicia‎ is called with the original permutation P .
For the array Q returned by ‎Alicia‎:

If the array does not conform to the constraints described above, you receive an
Output isn't correct‎ verdict.
Otherwise, array Q is stored by the grading system.

During the second run of the program:
Beatriz‎ is called with the array Q.

Constraints

N = 256
1 ≤ P [i] ≤ N for each i such that 0 ≤ i < N .
All values in P are distinct.

Scoring

Let M be the minimum value of K for which your solution successfully performs the trick across
all test cases.

If M = 0 or your solution fails to correctly reconstruct the permutation P in any test case,
you receive 0 points.
Otherwise, your score is:

min(20 + 5 ⋅M , 100)

In particular, a full score is achieved if M = 16.

Example

Consider a scenario where N = 6 and P = [2, 4, 3, 1, 5, 6]. The procedure ‎Alicia‎ is called as:

Alicia([2, 4, 3, 1, 5, 6])‎

Suppose Alicia uses the following strategy: flip every card i such that P [i] = i +1. In this case, the
condition holds for i = 2,4, and 5. Hence, the procedure returns the array [2, 4,−1, 1,−1,−1].

Now, the procedure ‎Beatriz‎ is called as:

Beatriz([2, 4, -1, 1, -1, -1])‎

Knowing the strategy of Alice, she finds and returns the original array P = [2, 4, 3, 1, 5, 6].

magic (2 of 3)

In this case, K = 3, as three cards were flipped. However, if submitted, this strategy would receive
a score of 0, because there exist permutations where no index i satisfies P [i] = i +1.

Note that this example does not satisfy the constraint N = 256 and therefore will not be used
during grading. The downloadable attachment for this task includes a sample input for the grader
with N = 256. The same permutation P is used in Subtask 0 during evaluation.

Sample Grader

Input format:

N

P[0] P[1] ... P[N-1]‎

Output format:

S

Q[0] Q[1] ... Q[S-1]

T

B[0] B[1] ... B[T-1]‎

Here:

S is the length of the array Q returned by ‎Alicia‎.
T is the length of the array B returned by ‎Beatriz‎.

Note that while N = 256 holds for all testcases in this task, you may use the sample grader with
any value of N .

magic (3 of 3)

Magic Trick

Alicia and Beatriz are preparing a magic trick for the IOI Talent Show. The trick works as follows:

* A volunteer selects a permutation P of length N and places N cards on the table. The cards are numbered from 0 to $N-1$, with card i displaying the value $P[i]$.
* Alicia enters the room, observes the cards, and selects K of them to flip face down, hiding their values.
* Beatriz then enters the room, sees the current arrangement of the cards (including which ones are face down), and magically determines the values of all K hidden cards!

Your task is to devise and implement a strategy for Alicia and Beatriz.
The more impressive the trick, the better your score: the objective is to maximize K, the number of hidden cards Beatriz can correctly reveal.

Implementation Details

The **first** procedure that you have to implement:

```
std::vector&lt;int&gt; Alicia(std::vector&lt;int&gt; P)
```

* P: array of length N, representing the selected permutation.

This procedure should return an array Q of length N, representing the card flips Alicia performs.
For each index i ($0 \leq i \leq N-1$), the values in Q must be set as follows:
 * $Q[i] = -1$ if Alicia flips card i, and
 * $Q[i] = P[i]$ otherwise.

The **second** procedure that you have to implement:

```
std::vector&lt;int&gt; Beatriz(std::vector&lt;int&gt; Q)
```

* Q: array of length N, as returned by `Alicia`. This array specifies the configuration of the cards when Beatriz enters.

This procedure should return an array B of length N, representing the original permutation P, that is, $B[i] = P[i]$ should hold for each i ($0 \leq i \leq N-1$).

In each test case, the two procedures are called exactly once, as follows:
* During the first run of the program:
 * `Alicia` is called with the original permutation P.
 * For the array Q returned by `Alicia`:
 * If the array does not conform to the constraints described above, you receive an `Output isn't correct` verdict.
 * Otherwise, array Q is stored by the grading system.
* During the second run of the program:
 * `Beatriz` is called with the array Q.

Constraints

* $N = 256$
* $1 \leq P[i] \leq N$ for each i such that $0 \leq i < N$.
* All values in P are distinct.

Scoring

Let M be the minimum value of K for which your solution successfully performs the trick across all test cases.

* If $M = 0$ or your solution fails to correctly reconstruct the permutation P in any test case, you receive 0 points.
* Otherwise, your score is:
$$\min(20 + 5\cdot M, 100)$$

In particular, a full score is achieved if $M = 16$.

Example

Consider a scenario where $N = 6$ and $P = [2, 4, 3, 1, 5, 6]$.
The procedure `Alicia` is called as:

```
Alicia([2, 4, 3, 1, 5, 6])
```

Suppose Alicia uses the following strategy: flip every card i such that $P[i] = i+1$.
In this case, the condition holds for $i = 2, 4$, and 5.
Hence, the procedure returns the array $[2, 4, -1, 1, -1, -1]$.

Now, the procedure `Beatriz` is called as:

```
Beatriz([2, 4, -1, 1, -1, -1])
```

Knowing the strategy of Alice, she finds and returns the original array $P = [2, 4, 3, 1, 5, 6]$.

In this case, $K=3$, as three cards were flipped.
However, if submitted, this strategy would receive a score of 0, because there exist permutations where no index i satisfies $P[i] = i+1$.

Note that this example does not satisfy the constraint $N = 256$ and therefore will not be used during grading.
The downloadable attachment for this task includes a sample input for the grader with $N = 256$.
The same permutation P is used in Subtask 0 during evaluation.

Sample Grader

Input format:

```
N
P[0] P[1] ... P[N-1]
```

Output format:

```
S
Q[0] Q[1] ... Q[S-1]
T
B[0] B[1] ... B[T-1]
```

Here:
* S is the length of the array Q returned by `Alicia`.
* T is the length of the array B returned by `Beatriz`.

Note that while $N = 256$ holds for all testcases in this task, you may use the sample grader with any value of N.

