¥ BOLIVIA202;5 _masic

37™ INTERNATIONAL OLYMPIAD IN INFORMATICS English (ISC)

Magic Trick

Alicia and Beatriz are preparing a magic trick for the IOI Talent Show. The trick works as follows:

* Avolunteer selects a permutation P of length NV and places N cards on the table. The cards
are numbered from 0 to N — 1, with card ¢ displaying the value P[i].

¢ Alicia enters the room, observes the cards, and selects K of them to flip face down, hiding
their values.

* Beatriz then enters the room, sees the current arrangement of the cards (including which
ones are face down), and magically determines the values of all K hidden cards!

Your task is to devise and implement a strategy for Alicia and Beatriz. The more impressive the
trick, the better your score: the objective is to maximize K, the number of hidden cards Beatriz can

correctly reveal.

Implementation Details

The first procedure that you have to implement:

std::vector<int> Alicia(std::vector<int> P)

e P:array of length N, representing the selected permutation.

This procedure should return an array @ of length N, representing the card flips Alicia performs.
For each index (0 < ¢ < N — 1), the values in Q2 must be set as follows:

* Qli] = —1if Alicia flips card 4, and
* Qi

P[i] otherwise.

The second procedure that you have to implement:
std: :vector<int> Beatriz (std::vector<int> Q)

e (: array of length N, as returned by Alicia. This array specifies the configuration of the
cards when Beatriz enters.

This procedure should return an array B of length N, representing the original permutation P,
that is, B[i] = P[i] should hold for each¢ (0 < < N —1).

magic (1 of 3)

In each test case, the two procedures are called exactly once, as follows:

* During the first run of the program:
o0 Alicia is called with the original permutation P.

o For the array) returned by Alicia:

= If the array does not conform to the constraints described above, you receive an
Output isn't correct verdict.
= Otherwise, array @ is stored by the grading system.
* During the second run of the program:
0 Beatriz is called with the array Q.

Constraints
e N =256

* 1 < P[i] < N foreachisuchthat0 <i < N.
* Allvalues in P are distinct.

Scoring

Let M be the minimum value of K for which your solution successfully performs the trick across
all test cases.

e If M = 0 or your solution fails to correctly reconstruct the permutation P in any test case,
you receive 0 points.
* Otherwise, your score is:

min(20 + 5 - M, 100)

In particular, a full score is achieved if M = 16.

Example

Consider a scenario where N = 6 and P = [2,4,3,1,5,6]. The procedure Alicia is called as:
Alicia([2, 4, 3, 1, 5, 6])

Suppose Alicia uses the following strategy: flip every card ¢ such that P[i] = ¢ + 1. In this case, the

condition holds for i = 2,4, and 5. Hence, the procedure returns the array [2,4,—1,1, -1, —1].

Now, the procedure Beatriz is called as:
Beatriz ([2, 4, -1, 1, -1, -11)

Knowing the strategy of Alice, she finds and returns the original array P = [2,4,3,1,5, 6].

magic (2 of 3)

In this case, K = 3, as three cards were flipped. However, if submitted, this strategy would receive

a score of 0, because there exist permutations where no index 7 satisfies P[i] =i + 1.

Note that this example does not satisfy the constraint N = 256 and therefore will not be used
during grading. The downloadable attachment for this task includes a sample input for the grader
with NV = 256. The same permutation P is used in Subtask 0 during evaluation.

Sample Grader

Input format:

P[O] P[1] ... P[N-1]
Output format:

S

Q[0] Q1] ... Q[s-1]

T

B[O] B[1] ... B[T-1]
Here:

e §Sisthe length of the array Q) returned by Alicia.
e Tisthe length of the array B returned by Beatriz.

Note that while N = 256 holds for all testcases in this task, you may use the sample grader with
any value of N.

magic (3 of 3)

Magic Trick

Alicia and Beatriz are preparing a magic trick for the IOI Talent Show. The trick works as follows:

* A volunteer selects a permutation P of length N and places N cards on the table. The cards are numbered from 0 to $N-1$, with card i displaying the value $P[i]$.
* Alicia enters the room, observes the cards, and selects K of them to flip face down, hiding their values.
* Beatriz then enters the room, sees the current arrangement of the cards (including which ones are face down), and magically determines the values of all K hidden cards!

Your task is to devise and implement a strategy for Alicia and Beatriz.
The more impressive the trick, the better your score: the objective is to maximize K, the number of hidden cards Beatriz can correctly reveal.

Implementation Details

The **first** procedure that you have to implement:

```
std::vector&lt;int&gt; Alicia(std::vector&lt;int&gt; P)
```

* P: array of length N, representing the selected permutation.

This procedure should return an array Q of length N, representing the card flips Alicia performs.
For each index i ($0 \leq i \leq N-1$), the values in Q must be set as follows:
 * $Q[i] = -1$ if Alicia flips card i, and
 * $Q[i] = P[i]$ otherwise.

The **second** procedure that you have to implement:

```
std::vector&lt;int&gt; Beatriz(std::vector&lt;int&gt; Q)
```

* Q: array of length N, as returned by `Alicia`. This array specifies the configuration of the cards when Beatriz enters.

This procedure should return an array B of length N, representing the original permutation P, that is, $B[i] = P[i]$ should hold for each i ($0 \leq i \leq N-1$).

In each test case, the two procedures are called exactly once, as follows:
* During the first run of the program:
 * `Alicia` is called with the original permutation P.
 * For the array Q returned by `Alicia`:
 * If the array does not conform to the constraints described above, you receive an `Output isn't correct` verdict.
 * Otherwise, array Q is stored by the grading system.
* During the second run of the program:
 * `Beatriz` is called with the array Q.

Constraints

* $N = 256$
* $1 \leq P[i] \leq N$ for each i such that $0 \leq i < N$.
* All values in P are distinct.

Scoring

Let M be the minimum value of K for which your solution successfully performs the trick across all test cases.

* If $M = 0$ or your solution fails to correctly reconstruct the permutation P in any test case, you receive 0 points.
* Otherwise, your score is:
$$\min(20 + 5\cdot M, 100)$$

In particular, a full score is achieved if $M = 16$.

Example

Consider a scenario where $N = 6$ and $P = [2, 4, 3, 1, 5, 6]$.
The procedure `Alicia` is called as:

```
Alicia([2, 4, 3, 1, 5, 6])
```

Suppose Alicia uses the following strategy: flip every card i such that $P[i] = i+1$.
In this case, the condition holds for $i = 2, 4$, and 5.
Hence, the procedure returns the array $[2, 4, -1, 1, -1, -1]$.

Now, the procedure `Beatriz` is called as:

```
Beatriz([2, 4, -1, 1, -1, -1])
```

Knowing the strategy of Alice, she finds and returns the original array $P = [2, 4, 3, 1, 5, 6]$.

In this case, $K=3$, as three cards were flipped.
However, if submitted, this strategy would receive a score of 0, because there exist permutations where no index i satisfies $P[i] = i+1$.

Note that this example does not satisfy the constraint $N = 256$ and therefore will not be used during grading.
The downloadable attachment for this task includes a sample input for the grader with $N = 256$.
The same permutation P is used in Subtask 0 during evaluation.

Sample Grader

Input format:

```
N
P[0] P[1] ... P[N-1]
```

Output format:

```
S
Q[0] Q[1] ... Q[S-1]
T
B[0] B[1] ... B[T-1]
```

Here:
* S is the length of the array Q returned by `Alicia`.
* T is the length of the array B returned by `Beatriz`.

Note that while $N = 256$ holds for all testcases in this task, you may use the sample grader with any value of N.

