
nile
Day 1 Tasks

English (ISC)

Nile
You want to transport N artifacts through the Nile. The artifacts are numbered from 0 to N − 1.
The weight of artifact i (0 ≤ i < N) is W [i].

To transport the artifacts, you use specialized boats. Each boat can carry at most two artifacts.

If you decide to put a single artifact in a boat, the artifact weight can be arbitrary.
If you want to put two artifacts in the same boat, you have to make sure the boat is balanced
evenly. Specifically, you can send artifacts p and q (0 ≤ p < q < N) in the same boat only if
the absolute difference between their weights is at most D, that is ∣W [p] −W [q]∣ ≤ D.

To transport an artifact, you have to pay a cost that depends on the number of artifacts carried in
the same boat. The cost of transporting artifact i (0 ≤ i < N) is:

A[i], if you put the artifact in its own boat, or
B[i], if you put it in a boat together with some other artifact.

Note that in the latter case, you have to pay for both artifacts in the boat. Specifically, if you decide
to send artifacts p and q (0 ≤ p < q < N) in the same boat, you need to pay B[p] +B[q].

Sending an artifact in a boat by itself is always more expensive than sending it with some other
artifact sharing the boat with it, so B[i] < A[i] for all i such that 0 ≤ i < N .

Unfortunately, the river is very unpredictable and the value of D changes often. Your task is to
answer Q questions numbered from 0 to Q − 1. The questions are described by an array E of
length Q. The answer to question j (0 ≤ j < Q) is the minimum total cost of transporting all N
artifacts, when the value of D is equal to E[j].

Implementation Details

You should implement the following procedure.

std::vector<long long> calculate_costs(

 std::vector<int> W, std::vector<int> A,

 std::vector<int> B, std::vector<int> E)

W , A, B: arrays of integers of length N , describing the weights of the artifacts and the costs
of transporting them.

nile (1 of 3)

E: an array of integers of length Q describing the value of D for each question.
This procedure should return an array R of Q integers containing the minimum total cost of
transporting the artifacts, where R[j] gives the cost when the value of D is E[j] (for each j
such that 0 ≤ j < Q).
This procedure is called exactly once for each test case.

Constraints

1 ≤ N ≤ 100 000
1 ≤ Q ≤ 100 000
1 ≤ W [i] ≤ 10 for each i such that 0 ≤ i < N

1 ≤ B[i] < A[i] ≤ 10 for each i such that 0 ≤ i < N

1 ≤ E[j] ≤ 10 for each j such that 0 ≤ j < Q

Subtasks

Subtask Score Additional Constraints

1 6 Q ≤ 5; N ≤ 2000; W [i] = 1 for each i such that 0 ≤ i < N

2 13 Q ≤ 5; W [i] = i + 1 for each i such that 0 ≤ i < N

3 17 Q ≤ 5; A[i] = 2 and B[i] = 1 for each i such that 0 ≤ i < N

4 11 Q ≤ 5; N ≤ 2000

5 20 Q ≤ 5

6 15 A[i] = 2 and B[i] = 1 for each i such that 0 ≤ i < N

7 18 No additional constraints.

Example

Consider the following call.

calculate_costs([15, 12, 2, 10, 21],

 [5, 4, 5, 6, 3],

 [1, 2, 2, 3, 2],

 [5, 9, 1])

In this example we have N = 5 artifacts and Q = 3 questions.

In the first question, D = 5. You can send artifacts 0 and 3 in one boat (since ∣15 − 10∣ ≤ 5) and
the remaining artifacts in separate boats. This yields the minimum cost of transporting all the
artifacts, which is 1 + 4 + 5 + 3 + 3 = 16.

9
9

9

nile (2 of 3)

In the second question, D = 9. You can send artifacts 0 and 1 in one boat (since ∣15 − 12∣ ≤ 9) and
send artifacts 2 and 3 in one boat (since ∣2 − 10∣ ≤ 9). The remaining artifact can be sent in a
separate boat. This yields the minimum cost of transporting all the artifacts, which is
1 + 2 + 2 + 3 + 3 = 11.

In the final question, D = 1. You need to send each artifact in its own boat. This yields the
minimum cost of transporting all the artifacts, which is 5 + 4 + 5 + 6 + 3 = 23.

Hence, this procedure should return [16, 11, 23].

Sample Grader

Input format:

N

W[0] A[0] B[0]

W[1] A[1] B[1]

...

W[N-1] A[N-1] B[N-1]

Q

E[0]

E[1]

...

E[Q-1]

Output format:

R[0]

R[1]

...

R[S-1]

Here, S is the length of the array R returned by calculate_costs .

nile (3 of 3)

