Comparing Plants (plants)

Hazel the botanist visited a special exhibition in the Singapore Botanical Gardens. In this exhibition, \(n \) plants of distinct heights are placed in a circle. These plants are labelled from 0 to \(n - 1 \) in clockwise order, with plant \(n - 1 \) beside plant 0.

For each plant \(i \) (\(0 \leq i \leq n - 1 \)), Hazel compared plant \(i \) to each of the next \(k - 1 \) plants in clockwise order, and wrote down the number \(r[i] \) denoting how many of these \(k - 1 \) plants are taller than plant \(i \). Thus, each value \(r[i] \) depends on the relative heights of some \(k \) consecutive plants.

For example, suppose \(n = 5 \), \(k = 3 \) and \(i = 3 \). The next \(k - 1 = 2 \) plants in clockwise order from plant \(i = 3 \) would be plant 4 and plant 0. If plant 4 was taller than plant 3 and plant 0 was shorter than plant 3, Hazel would write down \(r[3] = 1 \).

You may assume that Hazel recorded the values \(r[i] \) correctly. Thus, there is at least one configuration of distinct heights of plants consistent with these values.

You were asked to compare the heights of \(q \) pairs of plants. Sadly, you do not have access to the exhibition. Your only source of information is Hazel's notebook with the value \(k \) and the sequence of values \(r[0], \ldots, r[n - 1] \).

For each pair of different plants \(x \) and \(y \) that need to be compared, determine which of the three following situations occurs:

- Plant \(x \) is definitely taller than plant \(y \): in any configuration of distinct heights \(h[0], \ldots, h[n - 1] \) consistent with the array \(r \) we have \(h[x] > h[y] \).
- Plant \(x \) is definitely shorter than plant \(y \): in any configuration of distinct heights \(h[0], \ldots, h[n - 1] \) consistent with the array \(r \) we have \(h[x] < h[y] \).
- The comparison is inconclusive: neither of the previous two cases applies.

Implementation details

You should implement the following procedures:

```c
void init(int k, int[] r)
```

- \(k \): the number of consecutive plants whose heights determine each individual value \(r[i] \).
- \(r \): an array of size \(n \), where \(r[i] \) is the number of plants taller than plant \(i \) among the next \(k - 1 \) plants in clockwise order.
- This procedure is called exactly once, before any calls to compare_plants.
int compare_plants(int x, int y)

- \(x, y\): labels of the plants to be compared.
- This procedure should return:
 - 1 if plant \(x\) is definitely taller than plant \(y\),
 - \(-1\) if plant \(x\) is definitely shorter than plant \(y\),
 - 0 if the comparison is inconclusive.
- This procedure is called exactly \(q\) times.

Examples

Example 1

Consider the following call:

```
init(3, [0, 1, 1, 2])
```

Let's say the grader calls `compare_plants(0, 2)`. Since \(r[0] = 0\) we can immediately infer that plant 2 is not taller than plant 0. Therefore, the call should return 1.

Let's say the grader calls `compare_plants(1, 2)` next. For all possible configurations of heights that fit the constraints above, plant 1 is shorter than plant 2. Therefore, the call should return \(-1\).

Example 2

Consider the following call:

```
init(2, [0, 1, 0, 1])
```

Let's say the grader calls `compare_plants(0, 3)`. Since \(r[3] = 1\), we know that plant 0 is taller than plant 3. Therefore, the call should return 1.

Let's say the grader calls `compare_plants(1, 3)` next. Two configurations of heights \([3, 1, 4, 2]\) and \([3, 2, 4, 1]\) are both consistent with Hazel's measurements. Since plant 1 is shorter than plant 3 in one configuration and taller than plant 3 in the other, this call should return 0.

Constraints

- \(2 \leq k \leq n \leq 200\,000\)
- \(1 \leq q \leq 200\,000\)
- \(0 \leq r[i] \leq k - 1\) (for all \(0 \leq i \leq n - 1\))
- \(0 \leq x < y \leq n - 1\)
- There exists one or more configurations of distinct heights of plants consistent with the array
Subtasks

1. (5 points) $k = 2$
2. (14 points) $n \leq 5000$, $2 \cdot k > n$
3. (13 points) $2 \cdot k > n$
4. (17 points) The correct answer to each call of `compare_plants` is 1 or -1.
5. (11 points) $n \leq 300$, $q \leq \frac{n(n-1)}{2}$
6. (15 points) $x = 0$ for each call of `compare_plants`.
7. (25 points) No additional constraints.

Sample grader

The sample grader reads the input in the following format:

- line 1: n k q
- line 2: $r[0]$ $r[1]$... $r[n-1]$
- line $3 + i$ ($0 \leq i \leq q - 1$): x y for the i-th call to `compare_plants`

The sample grader prints your answers in the following format:

- line $1 + i$ ($0 \leq i \leq q - 1$): return value of the i-th call to `compare_plants`.