
–
werewolf

Werewolf
There	are	 	cities	and	 	roads	in	Ibaraki	Prefecture,	Japan.	Cities	are	numbered	from
	through	 	in	the	increasing	order	of	their	population.	Each	road	connects	a	pair
of	distinct	cities,	and	can	be	traveled	in	both	directions.	You	can	travel	from	any	city	to
any	other	city	by	using	one	or	more	of	these	roads.

You	planned	 	trips,	numbered	from	 	through	 .	The	trip	 	()	 is	to
travel	from	the	city	 	to	the	city	 .

You	 are	 a	 werewolf.	 You	 have	 two	 forms:	 human	 form	 and	 wolf	 form.	 At	 the
beginning	of	each	trip	you	are	in	human	form.	At	the	end	of	each	trip,	you	must	be	in
wolf	 form.	During	 the	 trip	you	have	 to	transform	 (change	 from	human	 form	 to	wolf
form)	exactly	once.	You	can	transform	only	when	you	are	in	some	city	(possibly	 	or	
).

Living	as	a	werewolf	is	not	easy.	You	must	avoid	low-populated	cities	when	you	are	in
human	form,	and	avoid	highly-populated	cities	when	you	are	in	wolf	form.	For	each	trip
	 (),	 there	 are	 two	 thresholds	 	 and	 	 ()	 that
indicate	 which	 cities	 must	 be	 avoided.	 More	 specifically,	 you	 must	 avoid	 the	 cities	

	 when	 you	 are	 in	 human	 form,	 and	 must	 avoid	 the	 cities	
	when	you	are	in	wolf	form.	This	means	in	the	trip	 ,	you	can

only	transform	in	one	of	the	cities	 .

Your	task	is	to	determine,	for	each	trip,	whether	it	is	possible	to	travel	from	the	city	
to	the	city	 	in	a	way	that	satisfies	the	aforementioned	constraints.	The	route	you	take
can	have	an	arbitrary	length.

Implementation	details

You	should	implement	the	following	function:

int[]	check_validity(int	N,	int[]	X,	int[]	Y,	int[]	S,	int[]	E,	int[]
	L,	int[]	R)

N :	the	number	of	cities.
X 	and	 Y :	arrays	of	length	 .	For	each	 	(),	the	city	 X[j] 	is	directly
connected	to	the	city	 Y[j] 	by	a	road.
S ,	 E ,	 L ,	and	 R :	arrays	of	length	 ,	representing	the	trips.

Werewolf (1 of 3)

Note	that	the	values	of	 	and	 	are	the	lengths	of	the	arrays,	and	can	be	obtained	as
indicated	in	the	implementation	notice.

The	 function	 check_validity 	 is	 called	exactly	once	 for	each	 test	 case.	This	 function
should	return	an	array	 	of	integers	of	length	 .	The	value	of	 	()	must
be	 1 	 if	 the	 trip	 	 is	 possible	 while	 satisfying	 the	 aforementioned	 conditions,	 or	 0
otherwise.

Example

Let	 ,	 ,	 ,	 ,	 ,	 ,	
,	 ,	and	 .

The	grader	calls	 check_validity(6,	[5,	1,	1,	3,	3,	5],	[1,	2,	3,	4,	0,	2],
[4,	4,	5],	[2,	2,	4],	[1,	2,	3],	[2,	2,	4]) .

For	the	trip	 ,	you	can	travel	from	the	city	 	to	the	city	 	as	follows:

Start	at	the	city	 	(You	are	in	human	form)
Move	to	the	city	 	(You	are	in	human	form)
Move	to	the	city	 	(You	are	in	human	form)
Transform	yourself	into	wolf	form	(You	are	in	wolf	form)
Move	to	the	city	 	(You	are	in	wolf	form)

For	the	trips	 	and	 ,	you	cannot	travel	between	the	given	cities.

Hence,	your	program	should	return	 .

The	 files	 sample-01-in.txt 	 and	 sample-01-out.txt 	 in	 the	 zipped	 attachment
package	correspond	to	this	example.	This	package	also	contains	another	pair	of	sample
input/output	files.

Constraints

Werewolf (2 of 3)

For	each	

You	can	travel	from	any	city	to	any	other	city	by	using	roads.
Each	pair	of	cities	are	directly	connected	by	at	most	one	road.	In	other	words,	for
all	 ,	 	and	 .
For	each	

Subtasks

1.	 (7	points)	 ,	 ,	
2.	 (8	points)	 ,	 ,	
3.	 (34	points)	 	and	each	city	is	incident	to	at	most	 	roads	(the	cities	are

connected	in	a	line)
4.	 (51	points)	No	additional	constraints

Sample	grader

The	sample	grader	reads	the	input	in	the	following	format:

line	 :	
line	 	():	
line	 	():	

The	sample	grader	prints	the	return	value	of	 check_validity 	in	the	following	format:

line	 	():	

Werewolf (3 of 3)

