
Task Information for Cluedo 

Task Author: Gordon Cormack (CAN) 

 
 

This was intended to be a very easy task. The number of features to be determined (murderer, 

location, weapon), and the number of options for each feature were intentionally fixed, and not 

parameterized. 

Given that there are 6 candidate murderers, 10 candidate locations, and 6 candidate weapons, there 

is a total of 6*10*6=360 theories. 

Subtask 1 could be solved by trying each possible theory (three nested for loops). 

Because the response to a refuted theory will identify one feature for which a wrong option was 

guessed, the search can be expedited. All theories having that wrong option for that particular 

feature are now ruled out. 

Subtask 2 can be solved by a single loop, incrementing whichever feature was wrong (a monotonic 

search). The total number of options equals 6+10+6=22, and the last option not ruled out must be 

correct (it was given that there is exactly one correct theory). Therefore, at most 22-3=19 refuted 

calls to Theory are needed. One confirming call to Theory was required, so a total of 20 calls 

suffices. 

Here is a Pascal solution that can readily be generalized (the constant, type, and auxiliary function 

definitions could be eliminated, but they document the relevant concepts nicely): 

const 

  NFeatures = 3; { number of features } 

  Confirmed = 0; { result when theory is confirmed } 

 

type 

  TFeature = 1 .. NFeatures; 

  TOption = 1 .. MaxInt; { value for a feature } 

  TTheory = array [ TFeature ] of TOption; 

  TResult = Confirmed .. NFeatures; 

 

function TestTheory(T: TTheory): TResult; 

  begin TestTheory := Theory(T[1], T[2], T[3]) end; 

 

procedure Solve; 

  var 

    T: TTheory = (6, 10, 6); { candidate theory } 

    i: TResult; { result of TestTheory(T) } 

  begin 

    repeat 

      i := TestTheory(T) 

    ; if i <> Confirmed then { T refuted } T[i] := T[i] - 1 

    until i = Confirmed 

    { T confirmed } 

  end; 



In C, without constant and type definitions, it could look like this: 
void Solve() { 

   int T[] = {0, 6, 10, 6}; // candidate theory, ignore T[0] 

   int i; // result of Theory 

   do { 

     i = Theory(T[1], T[2], T[3]); 

     if (i != 0) --T[i]; 

   } while (i != 0); 

} 

  



Task Information for Hotter Colder 

Task Author: Gordon Cormack (CAN) 

 
 

This problem is an interesting variant of the well-known guessing game Higher-Lower, also 

featured in the demonstration task Guess. 

Higher-Lower is efficiently solved by the, also well-known, Binary Search algorithm. Binary 

Search maintains an interval of still possible numbers (candidates). Initially, this interval includes 

all numbers in the range. By comparing to the middle candidate, the interval can be halved by a 

single guess. Thus, the secret number can be determined in a logarithmic (to base 2) number of 

guesses. Or, to put it differently, if the range of allowed numbers is doubled, than the secret number 

can be determined with one additional guess. 

Subtask 1 

Doing a Linear Search, that is, successively calling Guess(i) for i from 1 to N, yields a solution 

requiring N calls to Guess, in the worst case. This solves Subtask 1. See below for a Pascal 

program. 

Analysis 

To get a better understanding of the Hotter-Colder problem, it helps to formalize the rules of this 

game. 

Let J be Jill's number, and let P be the most recent guess, that is, Guess(P) was called last. In that 

situation, Guess(G) will return 

    HOTTER if abs(G - J) < abs(P - J) 

    COLDER if abs(G - J) > abs(P - J) 

    SAME   if abs(G - J) = abs(P - J) 

Or in a single formula: sign(abs(P - J) - abs(G - J)). Letting M = (P + G)/2, this can be 

rephrased as 

  if P <= G then 

    HOTTER if J > M 

    COLDER if J < M 

    SAME   if J = M 

  else 

    HOTTER if J < M 

    COLDER if J > M 

    SAME   if J = M 

Or in a single formula: sign(G - P) * sign(J - M). 

Thus, we see that each Guess(G) effectively provides a high-low comparison to the midpoint M. In 

fact, sign(G - P) * Guess(G) = sign(J - M) offers a genuine high-low comparison. 



Unfortunately, due to the range restriction on G, we cannot make the midpoint M go wherever we 

want. So, a straightforward Binary Search is not going to work. 

Subtask 2 

Ignoring the results of all odd calls to Guess, we can extract one bit of information out of every 

successive pair of odd-numbered and next even-numbered call to Guess. This yields a solution that 

calls Guess at most W times, where W is the largest integer such that 2W/2≤N. That is, it makes at 

most log2 N2 (rounded up) calls to Guess. For N=500 (almost 29), this boils down to making at 

most 18 calls. 

Subtask 3 

By exploiting the fact that we actually do a high/low/equal comparison instead of a pure high/low 

(binary) comparison, we can gain almost one extra bit of information (taken over all guesses). 

Explanation: a complete binary tree with 2k leaves has 2k-1 internal nodes. So, the same number of 

high/low/equal guesses can reach twice the number of nodes minus one (compared to using just 

binary high/low guesses). 

A Pascal program is given below. 

Subtask 4 

The preceding approaches obviously throw away (ignore) valuable information. However, using 

this information requires careful tuning of the guesses. It helps to do some small cases by hand. 

• N=3 can obviously be done in 2 guesses, by straddling the middle, for 
example, Guess(1) followed by Guess(3) does a high/low/equal comparison to 2. 

• N=5 can be done in 3, but this already needs some care, because it does not work to set 
this up so that the first two guesses compare to the middle number 3. When, 
after Guess(1) Guess(5), or Guess(2) Guess(4), the result of the second guess is colder, you 
won't be able to solve the remaining problem in a single guess. 

You need to start with Guess(1) Guess(3) (or symmetrically Guess(5) Guess(3)). If the 

result of the second guess is same, Jill's number is 2; if the result is colder, only candidate 1 

remains and this must be Jill's number. If the result is hotter, candidates 3, 4, and 5 remain. 

Since 3 was the most recent guess, doing Guess(5) will compare to 4, and we are done. 

In general, it turns out to be possible to determine Jill's number in no more than log2 3*N = log2 3 + 

log2 N calls of Guess. 

We explain one such algorithm. Because of the nature of the guess (being a comparison), at any 

moment you have an interval of remaining candidate numbers. You can distinghuish two cases for 

the location of this interval with respect to the initial interval: 

1. either this interval of candidates contains 1 or N (is "against a wall"); 
2. or it contains neither 1 nor N (is "in the middle"). 



Furthermore, you know what the previous guess was, say P. 

If the interval of candidates is "in the middle", then you are home free (provided you are a bit 

careful), because now each guess can be made to reduce the interval sufficiently. In K more 

guesses, you can find Jill's number among 2K+1-1 candidates. [Details suppressed (for the time 

being)] 

If the interval of candidates is "against a wall", then you can always arrange it so that the interval is 

1 through P (or symmetrically on the other side). With two extra steps you can grow a solution that 

solves for P in K more guesses to one that solves for P+2K+2 in K+2 more guesses. 

The base cases are P=3, K=1 and P=7, K=2. 

The construction works like this. Consider the interval 

aaaabbbbbbdddddddddd 

where 

• aaaa is the interval 1 through P (and we assume that if the most recent guess was at P, then 
an additional K guesses can determine Jill's number in this interval); 

• bbbbbb is of length 2K+1-2; 
• dddddddddd is of length 2K+1+2; 
• the most recent guess was R = P+2K+2. 

Your next guess is G = P-2: 

aaaabbbbbbdddddddddd 

1G P      M        R 

This guess compares to M = (G+R)/2 = (P-2 + P+2K+2)/2 = P + 2K+1-2 + 1, that is, the first element of 

the d-labeled subinterval. Do a case distinction on the result of this guess: 

• Same: Jill's number is M; done. 
• Colder: the interval is reduced to M+1 through R; continue with a "middle game" 

on ddddddddd of length 2K+1+1; 
• Hotter: the interval is reduced to 1 through M-1: 
• aaaabbbbbb 

• 1G P      M 

Next, guess P, which boils down to comparing to (G+P)/2 = P-1. Do a case distinction on the 

result: 

o Colder: "wall game" on interval 1 through P (aaaa), which we assumed can be solved 
in K more guesses; 

o Hotter: "middle game" on abbbbbb of length 2K+1-1. 

A C program solving Subtask 4 can be found. 



Pascal program for Linear Search solving Subtask 1 
const 

  Colder = -1; 

  Same = 0; 

  Hotter = +1; 

 

type 

  TResult = Colder .. Hotter; 

 

function HC(N: Longint): Longint; 

  { returns secret number of Jill } 

 

  var 

    r: TResult;  { result of Guess } 

    G: Longint; { argument for Guess } 

   

  begin 

    if N = 1 then begin 

      HC := N 

    ; Exit 

    end { if } 

    { N >= 2 } 

  ; G := 1 

  ; r := Guess(G) { ignored } 

 

  ; repeat 

      { numbers >= G are remaining candidates; G < N } 

      G := G + 1 

    ; r := Guess(G) { compares to G - 0.5; r <> Same } 

    until (r = Colder) or (G = N) 

 

  ; case r of 

      Colder: HC := G - 1; 

      Hotter: HC := G; 

    end { case r } 

  end; 

Pascal program for wasteful Binary Search solving Subtask 3 
const 

  Colder = -1; 

  Same = 0; 

  Hotter = +1; 

 

type 

  TResult = Colder .. Hotter; 

 

function HC(N: Longint): Longint; 

  { returns secret number of Jill } 

 

  var 

    r: TResult;  { result of Guess } 

    a, b: Longint; { [a .. b] is interval of remaining candidates } 

   

  begin 

    if N = 1 then begin 

      HC := N 

    ; Exit 

    end { if } 

    { N >= 2 } 

     

  ; a := 1 

  ; b := N 

 



    { invariant: 1 <= a <= b <= N } 

  ; while a <> b do begin 

      r := Guess(a) { ignored } 

    ; r := Guess(b) { compares to (a+b)/2 } 

    ; case r of 

        Colder: b := (a + b - 1) div 2; { largest integer < (a+b)/2 } 

        Same: begin a := (a + b) div 2 ; b := a end; 

        Hotter: a := (a + b + 1) div 2; { smallest integer > (a+b)/2 } 

      end { case r } 

    end { while } 

    { a = b } 

 

  ; HC := a 

  end; 

  



Task Information for Quality of 

Living 

Task Author: Christopher Chen (AUS) 

 
 

This problem looks like many other grid tasks. Such problems have also appeared on some 

previous IOIs. Heavy range-search algorithms might seem to be useful, but actually a much 

simpler 100% solution exists. 

Let N = R*C measure the size of a problem instance. 

Subtask 1 

Subtask 1 can be solved by the most obvious brute force algorithm that considers each rectangle 

(there are (R-H+1)*(C-W+1) of these), quadratically sorts its contents ((H*W)2 steps), and directly 

picks out the median rank, and optimizes this. The worst case situation is obtained by H=R/2 and 

W=C/2. Therefore, this algorithm's time complexity is O(N3). 

Subtask 2 

Using any O(N log N) sort algorithm (these are well-known), the brute force algorithm can be 

improved to O(N2 log N). This solves subtask 2. 

Also, an O(N) sort (bucket sort) is possible, to obtain a simple O(N2) algorithm, but this does not 

suffice to solve Subtask 3. See below for a Pascal implementation. 

There are some obvious opportunities for improvement, such as exploiting the large overlap 

between certain rectangles when filling/emptying the array to be sorted. But these improvements do 

not affect the time complexity. 

Subtask 3 

O(N1.5 log N) algorithms are also possible and they solve Subtask 3. Here is one: say the vertical 

offset of the final rectangle is known [O(N0.5) possibilities]. Then scan across the row, using some 

efficient data structure to keep track of the median (think of incremental/sliding window, such as a 

range tree plus binary search, or a pair of heaps for values less/greater than the median). [Each 

value is added/subtracted from the data structure exactly once, for an O(N log N) scan length.] 

This is rather involved to code; see Subtask 5 for a simpler and better solution. 



Subtask 4 

This subtask accommodates possible O(N log N log N) algorithms, although we have not 

encountered them. 

Subtask 5 

Here is a O(N log N) solution. Observe that the program's output can be verified by some algorithm 

which answers the question "Does any rectangle have median ≤ X?" This query can be answered in 

O(n2) time. A rectangle has median ≤ X if and only if it contains more values ≤ X than otherwise. 

Assign all cells in the grid a 'value' according to a 'threshold' function: -1 if greater than X, 0 if 

equal to X, 1 if less than X. Using the well-known cumulative data structure for queries on 

rectangular sums, try all possible rectangle locations and return "yes" if the 'values' inside any sum 

to ≥ 0. We simply binary search values of X to find the minimum value for which the answer is 

"yes". 

N.B. An O(N log N) algorithm suffices for 100% score. 

Linear Solution 

Mihai Patrascu (ROM) found an O(N) solution with the following reasoning. 

Claim 1: 

Given a value X, one can identify in O(HW) time which rectangles have a median better 

than X. 

Proof: 

In linear time, build a partial-sums array: A[i][j] = #{elements in Q[0..i][0..j] better than X }. 

The number of elements better than X in any rectangle can now be found by combining 4 

values of A. The median of an H by W rectangle is better than X if and only if the number of 

elements better than X is less than HW/2. QED 

Claim 2: 

One can find the best median of K designated rectangles, in running time O(K2 log(HW) + 

HW). 

Proof: 

Compress everything to a KxK grid and binary search for the best median. In each step of 

the binary search, I need to go over the entire KxK grid, and a number of elements that is 

originally HW, but decreasing geometrically each time. QED 

Claim 3: 

One can find the best median of all rectangles in O(HW) time. 



Proof: 

By the above, one can set K = sqrt(HW) / log(HW) and still get linear time. Sample K 

rectangles; apply Claim 2. Apply Claim 1 to filter everybody with worse medians. One is left 

with HW/K rectangles. Do the same again, one is left with HW/K2 ≤ log(HW) rectangles. 

Now just apply Claim 2. QED 

O(N2) Solution for Subtask 2 in Pascal using bucket sort 
const 

  MaxDimension = 3000; 

  MaxRank = sqr(MaxDimension); 

   

type 

  TCoordinate = 0 .. MaxDimension - 1; 

  TRank = 1 .. MaxRank; 

  Qtype = array [ TCoordinate, TCoordinate ] of TRank; 

 

  TRankSet = array [ TRank ] of Boolean; 

 

var 

  sorttemp: TRankSet; { for bucket sorting and median finding, 

    kept global for speed } 

   

function rectangle(R, C, H, W: Longint; var Q: Qtype): TRank; 

  { returns best median of all HxW rectangles in RxC city Q } 

 

  function median(a, b: TCoordinate): TRank; 

    { returns median rank in rectangle with top-left corner at [a, b] } 

    var 

      i, j: TCoordinate; { traverses Q } 

      r: Longint; { traverses [ 0 ] + sorttemp } 

      c: Longint; { counts elements in sorttemp <= r } 

    begin 

      { insert elements from rectangle into the buckets } 

      for i := a to a + H - 1 do begin 

        for j := b to b + W - 1 do begin 

          sorttemp[ Q[i, j] ] := True 

        end { for j } 

      end { for i } 

       

      { determine the median by counting off half the elements } 

    ; r := 0 { r in [ 0 ] + sorttemp } 

    ; for c := 1 to (H * W) div 2 + 1 do begin 

        repeat r := r + 1 until sorttemp[r] 

      end { for c } 

    ; median := r 

 

      { restore invariant for sorttemp, by removing the elements } 

    ; for i := a to a + H - 1 do begin 

        for j := b to b + W - 1 do begin 

          sorttemp[ Q[i, j] ] := False 

        end { for j } 

      end { for i } 

    end; { median } 

 

  var 

    i: TRank; { traverses sortemp for initialization } 

    result: TRank; { best rank seen so far } 

    a, b: TCoordinate; { traverses all rectangles } 

    m: TRank; { median of rectangle with top-left corner at [a, b] } 



     

  begin 

    for i := 1 to R * C do sorttemp[i] := False 

  ; result := MaxRank; 

     

  ; for a := 0 to R - H do begin 

      for b := 0 to C - W do begin 

        m := median(a, b) 

      ; if m < result then result := m 

      end { for b } 

    end { for a } 

     

  ; rectangle := result; 

  end; { rectangle } 

  



Task Information for Language 

Task Author: Gordon Cormack (CAN) 

 

The nature of this problem is innovative within the IOI. Its purpose is to bring the field 

of information retrieval under the attention. This problem is discussed in detail in the 

book Information Retrieval: Implementing and Evaluating Search Engines by S. Büttcher, C.L.A. 

Clarke, and G.V. Cormack (MIT Press, to appear soon). Especially see Chapter 10 on Categorization 

and Filtering. 

One important observation is that excerpts from the same language version of Wikipedia will share 

some characteristics in a statistical sense. Because many random excerpts are offered, the 

variability between excerpts from the same language play a negligible role. It has been confirmed 

that the statistical resemblance between the provided test input and the official grader input is 

highly predictable. 

Note that because of the random re-coding of the language codes and symbol codes, there is no 

opportunity to hard code any specific (personal) language knowledge into a solution. 

There are many approaches possible. Rocchio's method, which was informally described in the task 

description, suffices to solve Subtask 1. 

For Subtask 2, one needs to do more than simply look at symbol frequencies. Collecting statistics 

on bigrams (pairs of neighboring symbols), trigrams (three consecutive symbols) will yield higher 

accuracies. 

  



Task Information for Memory 

Task Author: Gordon Cormack (CAN) 

 
 

This was intended to be another very easy task, though slightly more difficult than the one on Day 

1 when aiming for a full score. 

Turning each possible pair of cards face up in some sequence is guaranteed to obtain all 25 candies. 

There are 50-choose-2 = 50 * 49 / 2 = 1225 such pairs. Hence, doing 2450 card turns (that is, calls 

to faceup) suffices. This can be programmed with two nested for-loops, and it solves Subtask 1 

But it does not solve Subtask 2, where no more than 100 card turns are allowed. Note that the try-

all-pairs solution does not look at what is on the cards that are turned face up. That is, it does not 

make use of the values returned by faceup. By using these returned values, you can gather 

information that can be used later to reduce the number of cards turned up. 

In particular, taking this to an extreme, you can first turn all cards, in pairs, to discover and record 

where all the letters are, without caring about turning up equal pairs. In this first round, you might 

already obtain some candies by accident, but that is irrelevant. In the next round, you know where 

equal pairs are and you can flip them, in sequence, to obtain all remaining candies. 

The first round requires 50 turns (calls to faceup), and the second round another 50 turns. Thus, 

altogether 100 times a card is turned, and thereby Subtask 2 is solved. 

In the second round, you could skip equal pairs that were already identified in the first round. 

However, that will not improve the worst-case performance and it will complicate the coding. 

Here is a Pascal solution that can readily be generalized (the constant and type definitions could be 

eliminated, but they document the relevant concepts nicely): 

type 

  TCard = 'A' .. 'Y'; { which letters appear on the cards } 

   

const 

  NLetters = Ord(High(TCard)) - Ord(Low(TCard)) + 1; { number of letters } 

  NCardsPerLetter = 2; { number of cards per letter } 

  NCards = NCardsPerLetter * NLetters; { number of cards } 

  Unknown = 0; { when card index is unknown } 

 

type 

  TIndex = 1 .. NCards; { index of card } 

   

procedure play; 

 

  var 

    index: array [ TCard, 1 .. NCardsPerLetter ] of Unknown .. NCards; 

      { index[lt, k] = index of k-th card with letter lt } 

    lt: TCard; { traverses index } 



    k: 1 .. NCardsPerLetter; { traverses index } 

    i: TIndex; { traverses cards } 

    r: TCard; { result of faceup } 

 

  begin 

 

    { initialize index to Unknown } 

    for lt := Low(TCard) to High(TCard) do begin 

      for k := 1 to NCardsPerLetter do begin 

        index[lt, k] := Unknown 

      end { for k } 

    end { for lt } 

  ; 

    { first round: don't care about candy; discover where all letter are } 

    for i := 1 to NCards do begin 

      r := faceup(i) 

    ; k := 1 

    ; while index[r, k] <> Unknown do k := k + 1 

    ; index[r, k] := i 

    end { for i } 

  ; 

    { second round: now collect all (remaining) candies } 

    for lt := Low(TCard) to High(TCard) do begin 

      for k := 1 to NCardsPerLetter do begin 

        r := faceup( index[lt, k] ) { ignore result } 

      end { for k } 

    end { for lt } 

 

  end; 

In C, without constant and type defintions, it could be coded as follows: 

void play() { 

  // letters 'A' to 'Y' are converted to integers 0 to 24 

  int index[50][2]; // locations of cards; 0 = unknown 

  int lt, k; // traverses index 

  int i; // traverses cards 

  char r; // result of faceup 

 

  // initialize index 

  for (lt = 0; lt < 25; ++lt) { 

    for (k = 0; k < 2; ++k) { 

      index[lt][k] = 0; 

    } 

  } 

  // first round 

  for (i = 1; i <= 50; ++i) { 

    r = faceup(i); 

    lt = (int)(r) - (int)('A'); // int corresponding to char r 

    k = (index[lt][0]) ? 1 : 0; 

    index[lt][k] = i; 

  } 

  // second round 

  for (lt = 0; lt < 25; ++lt) { 

    faceup( index[lt][0] ); // result ignored 

    faceup( index[lt][1] ); // result ignored 

  } 

} 

  



Task Information for Traffic 

Congestion 

Task Author: Jorge Bernadas (VEN) 

 
 

This was (by intention) a fairly standard task. Though, it should be mentioned that graph problems 

always are a bit trickier than one might at first think because of the need to handle specific graph 

encodings. 

The information provided below will be expanded in the future, but for now should help in 

understanding what each subtask was expecting in the form of algorithms. 

• Subtask 1: Quadratic works. Because of the highly regular (linear) structure of the network 

graph, it is easy to try each city as location for the arena, calculate the worst congestions and 

pick out the location where this worst congestion is minimal. 

• Subtask 2: Requires linear algorithm, but because there are only two leaves and the graph 

representation is highly regular, it is easy to see that one sweep over the cities along the 

roads suffices to determine the optimum location. 

• Subtask 3: Quadratic works, but now the general graph must be handled. Again, as in 

Subtask 1, every city can be tried as arena location, the worst congestion can then be 

calculated, and best location can be found. 

• Subtask 4: This is the full problem. A linear traversal of the graph, accumulating congestion 

information appropriately, enables one to determine the optimal location of the arena in 

linear time. 

  



Task Information for Maze 

Task Authors: Monika Steinová (CHE/SWK), Michal Forišek (SWK) 

 
 

This is known to be a hard problem. No general polynomial algorithm is known for this problem, 

that is, no algorithm has been discovered that is guaranteed to solve each problem instance in a time 

polynomial in the size of the problem (area of the corn field). 

This is also the reason why this task was offered as an output-only task, where the contestants were 

given 10 specific instances (corn fields) to tackle. They could do this by hand, or write programs to 

analyze these mazes, and write yet other programs (potentially, a different program for each field) 

to produce a long(est) path. Note that the path need not be optimal; points could also be scored for 

(good) approximations. 

Here are some characteristics and results by Tor Myklebust (HSC member) for the 10 instances that 

the contestants had to tackle: 

 Characteristics Tor's result 

Instance Dimensions Obstructions Path length Score 

1 10x10 8 20 10.00 

2 100x100 1766 4026 10.15 

3 100x100 3216 3740 8.61 

4 100x100 2283 3733 8.58 

5 100x100 1357 4738 8.86 

6 11x11 0 54 10.00 

7 20x20 210 33 10.00 

8 20x20 122 95 10.00 

9 11x21 10 106 10.45 

10 200x200 15224 7506 9.17 

Total  95.82 

 

  



Task Information for Saveit 

Task Author: Mihai Patrascu (ROM) 

 

This task also is innovative for the IOI. In general, for most IOI tasks efficiency matters. However, 

in this case it is not execution time or memory usage but rather communication efficiency: how to 

represent some complex data in as few bits as possible, without losing information. 

This difference in focus makes the tasks possibly somewhat harder to understand. Furthermore, it is 

technically more complicated, because the contestant has to program two independent procedures 

that are inverses to each other. The communication format is not prescribed; all that matters is that 

the decoder programmed by the contestant can decode the data from the encoder that is also 

programmed by the contestant. The grading server then connects these two procedures to verify 

that the decoder can indeed "understand" what the encouder produced. 

Two things are important. First, find a way to encode adjacency information about Xedef's package 

transportation network. Second, to transmit that information with communication efficiency. 

Briefly stated, the subtasks could be tackled as follows: 

• Subtask 1: You can send the entire adjacency matrix "as is"; this information is naturally 

expressed in terms of bits, other encodings are imaginable as well. All that the encoder and 

decoder need to agree upon is the order of the bits. Since there are 1000 cities, this requires 

no more than 1000*1000=1 000 000 bits. Other approaches using more bits also work in this 

subtask. 

• Subtask 2: You can send the entire table with all hop counts directly. Since there are no more 

than 1000 cities, the maximum hop count is less than 1000, and thus can be encoded in 10 

bits. The size of the table is at most 1000*36=36 . Hence, not more than 360 000 bits are 

needed. 

• Subtask 3: One needs a new idea to improve the communication efficiency further. The crux 

is to come up with the idea of considering a spanning tree; any spanning tree will do. The 

distance from v1 to v2 is one of 

1. distance from parent(v1) to v2 

2. 1 + distance of parent(v1) to v2 

3. -1 + distance of parent(v1) to v2 

Then all one has to do is encode these possibilities with 2 bits each. 

• Subtask 4: Using two bits to record a one-of-three choice is excessive. It is possible to map 3 

ternary decisions (27 choices) to 5 bits (32 possibilities). This improves the communication 

further. 

 


