
Task Information for Cluedo

Task Author: Gordon Cormack (CAN)

This was intended to be a very easy task. The number of features to be determined (murderer,

location, weapon), and the number of options for each feature were intentionally fixed, and not

parameterized.

Given that there are 6 candidate murderers, 10 candidate locations, and 6 candidate weapons, there

is a total of 6*10*6=360 theories.

Subtask 1 could be solved by trying each possible theory (three nested for loops).

Because the response to a refuted theory will identify one feature for which a wrong option was

guessed, the search can be expedited. All theories having that wrong option for that particular

feature are now ruled out.

Subtask 2 can be solved by a single loop, incrementing whichever feature was wrong (a monotonic

search). The total number of options equals 6+10+6=22, and the last option not ruled out must be

correct (it was given that there is exactly one correct theory). Therefore, at most 22-3=19 refuted

calls to Theory are needed. One confirming call to Theory was required, so a total of 20 calls

suffices.

Here is a Pascal solution that can readily be generalized (the constant, type, and auxiliary function

definitions could be eliminated, but they document the relevant concepts nicely):

const

 NFeatures = 3; { number of features }

 Confirmed = 0; { result when theory is confirmed }

type

 TFeature = 1 .. NFeatures;

 TOption = 1 .. MaxInt; { value for a feature }

 TTheory = array [TFeature] of TOption;

 TResult = Confirmed .. NFeatures;

function TestTheory(T: TTheory): TResult;

 begin TestTheory := Theory(T[1], T[2], T[3]) end;

procedure Solve;

 var

 T: TTheory = (6, 10, 6); { candidate theory }

 i: TResult; { result of TestTheory(T) }

 begin

 repeat

 i := TestTheory(T)

 ; if i <> Confirmed then { T refuted } T[i] := T[i] - 1

 until i = Confirmed

 { T confirmed }

 end;

In C, without constant and type definitions, it could look like this:
void Solve() {

 int T[] = {0, 6, 10, 6}; // candidate theory, ignore T[0]

 int i; // result of Theory

 do {

 i = Theory(T[1], T[2], T[3]);

 if (i != 0) --T[i];

 } while (i != 0);

}

Task Information for Hotter Colder

Task Author: Gordon Cormack (CAN)

This problem is an interesting variant of the well-known guessing game Higher-Lower, also

featured in the demonstration task Guess.

Higher-Lower is efficiently solved by the, also well-known, Binary Search algorithm. Binary

Search maintains an interval of still possible numbers (candidates). Initially, this interval includes

all numbers in the range. By comparing to the middle candidate, the interval can be halved by a

single guess. Thus, the secret number can be determined in a logarithmic (to base 2) number of

guesses. Or, to put it differently, if the range of allowed numbers is doubled, than the secret number

can be determined with one additional guess.

Subtask 1

Doing a Linear Search, that is, successively calling Guess(i) for i from 1 to N, yields a solution

requiring N calls to Guess, in the worst case. This solves Subtask 1. See below for a Pascal

program.

Analysis

To get a better understanding of the Hotter-Colder problem, it helps to formalize the rules of this

game.

Let J be Jill's number, and let P be the most recent guess, that is, Guess(P) was called last. In that

situation, Guess(G) will return

 HOTTER if abs(G - J) < abs(P - J)

 COLDER if abs(G - J) > abs(P - J)

 SAME if abs(G - J) = abs(P - J)

Or in a single formula: sign(abs(P - J) - abs(G - J)). Letting M = (P + G)/2, this can be

rephrased as

 if P <= G then

 HOTTER if J > M

 COLDER if J < M

 SAME if J = M

 else

 HOTTER if J < M

 COLDER if J > M

 SAME if J = M

Or in a single formula: sign(G - P) * sign(J - M).

Thus, we see that each Guess(G) effectively provides a high-low comparison to the midpoint M. In

fact, sign(G - P) * Guess(G) = sign(J - M) offers a genuine high-low comparison.

Unfortunately, due to the range restriction on G, we cannot make the midpoint M go wherever we

want. So, a straightforward Binary Search is not going to work.

Subtask 2

Ignoring the results of all odd calls to Guess, we can extract one bit of information out of every

successive pair of odd-numbered and next even-numbered call to Guess. This yields a solution that

calls Guess at most W times, where W is the largest integer such that 2W/2≤N. That is, it makes at

most log2 N2 (rounded up) calls to Guess. For N=500 (almost 29), this boils down to making at

most 18 calls.

Subtask 3

By exploiting the fact that we actually do a high/low/equal comparison instead of a pure high/low

(binary) comparison, we can gain almost one extra bit of information (taken over all guesses).

Explanation: a complete binary tree with 2k leaves has 2k-1 internal nodes. So, the same number of

high/low/equal guesses can reach twice the number of nodes minus one (compared to using just

binary high/low guesses).

A Pascal program is given below.

Subtask 4

The preceding approaches obviously throw away (ignore) valuable information. However, using

this information requires careful tuning of the guesses. It helps to do some small cases by hand.

• N=3 can obviously be done in 2 guesses, by straddling the middle, for
example, Guess(1) followed by Guess(3) does a high/low/equal comparison to 2.

• N=5 can be done in 3, but this already needs some care, because it does not work to set
this up so that the first two guesses compare to the middle number 3. When,
after Guess(1) Guess(5), or Guess(2) Guess(4), the result of the second guess is colder, you
won't be able to solve the remaining problem in a single guess.

You need to start with Guess(1) Guess(3) (or symmetrically Guess(5) Guess(3)). If the

result of the second guess is same, Jill's number is 2; if the result is colder, only candidate 1

remains and this must be Jill's number. If the result is hotter, candidates 3, 4, and 5 remain.

Since 3 was the most recent guess, doing Guess(5) will compare to 4, and we are done.

In general, it turns out to be possible to determine Jill's number in no more than log2 3*N = log2 3 +

log2 N calls of Guess.

We explain one such algorithm. Because of the nature of the guess (being a comparison), at any

moment you have an interval of remaining candidate numbers. You can distinghuish two cases for

the location of this interval with respect to the initial interval:

1. either this interval of candidates contains 1 or N (is "against a wall");
2. or it contains neither 1 nor N (is "in the middle").

Furthermore, you know what the previous guess was, say P.

If the interval of candidates is "in the middle", then you are home free (provided you are a bit

careful), because now each guess can be made to reduce the interval sufficiently. In K more

guesses, you can find Jill's number among 2K+1-1 candidates. [Details suppressed (for the time

being)]

If the interval of candidates is "against a wall", then you can always arrange it so that the interval is

1 through P (or symmetrically on the other side). With two extra steps you can grow a solution that

solves for P in K more guesses to one that solves for P+2K+2 in K+2 more guesses.

The base cases are P=3, K=1 and P=7, K=2.

The construction works like this. Consider the interval

aaaabbbbbbdddddddddd

where

• aaaa is the interval 1 through P (and we assume that if the most recent guess was at P, then
an additional K guesses can determine Jill's number in this interval);

• bbbbbb is of length 2K+1-2;
• dddddddddd is of length 2K+1+2;
• the most recent guess was R = P+2K+2.

Your next guess is G = P-2:

aaaabbbbbbdddddddddd

1G P M R

This guess compares to M = (G+R)/2 = (P-2 + P+2K+2)/2 = P + 2K+1-2 + 1, that is, the first element of

the d-labeled subinterval. Do a case distinction on the result of this guess:

• Same: Jill's number is M; done.
• Colder: the interval is reduced to M+1 through R; continue with a "middle game"

on ddddddddd of length 2K+1+1;
• Hotter: the interval is reduced to 1 through M-1:
• aaaabbbbbb

• 1G P M

Next, guess P, which boils down to comparing to (G+P)/2 = P-1. Do a case distinction on the

result:

o Colder: "wall game" on interval 1 through P (aaaa), which we assumed can be solved
in K more guesses;

o Hotter: "middle game" on abbbbbb of length 2K+1-1.

A C program solving Subtask 4 can be found.

Pascal program for Linear Search solving Subtask 1
const

 Colder = -1;

 Same = 0;

 Hotter = +1;

type

 TResult = Colder .. Hotter;

function HC(N: Longint): Longint;

 { returns secret number of Jill }

 var

 r: TResult; { result of Guess }

 G: Longint; { argument for Guess }

 begin

 if N = 1 then begin

 HC := N

 ; Exit

 end { if }

 { N >= 2 }

 ; G := 1

 ; r := Guess(G) { ignored }

 ; repeat

 { numbers >= G are remaining candidates; G < N }

 G := G + 1

 ; r := Guess(G) { compares to G - 0.5; r <> Same }

 until (r = Colder) or (G = N)

 ; case r of

 Colder: HC := G - 1;

 Hotter: HC := G;

 end { case r }

 end;

Pascal program for wasteful Binary Search solving Subtask 3
const

 Colder = -1;

 Same = 0;

 Hotter = +1;

type

 TResult = Colder .. Hotter;

function HC(N: Longint): Longint;

 { returns secret number of Jill }

 var

 r: TResult; { result of Guess }

 a, b: Longint; { [a .. b] is interval of remaining candidates }

 begin

 if N = 1 then begin

 HC := N

 ; Exit

 end { if }

 { N >= 2 }

 ; a := 1

 ; b := N

 { invariant: 1 <= a <= b <= N }

 ; while a <> b do begin

 r := Guess(a) { ignored }

 ; r := Guess(b) { compares to (a+b)/2 }

 ; case r of

 Colder: b := (a + b - 1) div 2; { largest integer < (a+b)/2 }

 Same: begin a := (a + b) div 2 ; b := a end;

 Hotter: a := (a + b + 1) div 2; { smallest integer > (a+b)/2 }

 end { case r }

 end { while }

 { a = b }

 ; HC := a

 end;

Task Information for Quality of

Living

Task Author: Christopher Chen (AUS)

This problem looks like many other grid tasks. Such problems have also appeared on some

previous IOIs. Heavy range-search algorithms might seem to be useful, but actually a much

simpler 100% solution exists.

Let N = R*C measure the size of a problem instance.

Subtask 1

Subtask 1 can be solved by the most obvious brute force algorithm that considers each rectangle

(there are (R-H+1)*(C-W+1) of these), quadratically sorts its contents ((H*W)2 steps), and directly

picks out the median rank, and optimizes this. The worst case situation is obtained by H=R/2 and

W=C/2. Therefore, this algorithm's time complexity is O(N3).

Subtask 2

Using any O(N log N) sort algorithm (these are well-known), the brute force algorithm can be

improved to O(N2 log N). This solves subtask 2.

Also, an O(N) sort (bucket sort) is possible, to obtain a simple O(N2) algorithm, but this does not

suffice to solve Subtask 3. See below for a Pascal implementation.

There are some obvious opportunities for improvement, such as exploiting the large overlap

between certain rectangles when filling/emptying the array to be sorted. But these improvements do

not affect the time complexity.

Subtask 3

O(N1.5 log N) algorithms are also possible and they solve Subtask 3. Here is one: say the vertical

offset of the final rectangle is known [O(N0.5) possibilities]. Then scan across the row, using some

efficient data structure to keep track of the median (think of incremental/sliding window, such as a

range tree plus binary search, or a pair of heaps for values less/greater than the median). [Each

value is added/subtracted from the data structure exactly once, for an O(N log N) scan length.]

This is rather involved to code; see Subtask 5 for a simpler and better solution.

Subtask 4

This subtask accommodates possible O(N log N log N) algorithms, although we have not

encountered them.

Subtask 5

Here is a O(N log N) solution. Observe that the program's output can be verified by some algorithm

which answers the question "Does any rectangle have median ≤ X?" This query can be answered in

O(n2) time. A rectangle has median ≤ X if and only if it contains more values ≤ X than otherwise.

Assign all cells in the grid a 'value' according to a 'threshold' function: -1 if greater than X, 0 if

equal to X, 1 if less than X. Using the well-known cumulative data structure for queries on

rectangular sums, try all possible rectangle locations and return "yes" if the 'values' inside any sum

to ≥ 0. We simply binary search values of X to find the minimum value for which the answer is

"yes".

N.B. An O(N log N) algorithm suffices for 100% score.

Linear Solution

Mihai Patrascu (ROM) found an O(N) solution with the following reasoning.

Claim 1:

Given a value X, one can identify in O(HW) time which rectangles have a median better

than X.

Proof:

In linear time, build a partial-sums array: A[i][j] = #{elements in Q[0..i][0..j] better than X }.

The number of elements better than X in any rectangle can now be found by combining 4

values of A. The median of an H by W rectangle is better than X if and only if the number of

elements better than X is less than HW/2. QED

Claim 2:

One can find the best median of K designated rectangles, in running time O(K2 log(HW) +

HW).

Proof:

Compress everything to a KxK grid and binary search for the best median. In each step of

the binary search, I need to go over the entire KxK grid, and a number of elements that is

originally HW, but decreasing geometrically each time. QED

Claim 3:

One can find the best median of all rectangles in O(HW) time.

Proof:

By the above, one can set K = sqrt(HW) / log(HW) and still get linear time. Sample K

rectangles; apply Claim 2. Apply Claim 1 to filter everybody with worse medians. One is left

with HW/K rectangles. Do the same again, one is left with HW/K2 ≤ log(HW) rectangles.

Now just apply Claim 2. QED

O(N2) Solution for Subtask 2 in Pascal using bucket sort
const

 MaxDimension = 3000;

 MaxRank = sqr(MaxDimension);

type

 TCoordinate = 0 .. MaxDimension - 1;

 TRank = 1 .. MaxRank;

 Qtype = array [TCoordinate, TCoordinate] of TRank;

 TRankSet = array [TRank] of Boolean;

var

 sorttemp: TRankSet; { for bucket sorting and median finding,

 kept global for speed }

function rectangle(R, C, H, W: Longint; var Q: Qtype): TRank;

 { returns best median of all HxW rectangles in RxC city Q }

 function median(a, b: TCoordinate): TRank;

 { returns median rank in rectangle with top-left corner at [a, b] }

 var

 i, j: TCoordinate; { traverses Q }

 r: Longint; { traverses [0] + sorttemp }

 c: Longint; { counts elements in sorttemp <= r }

 begin

 { insert elements from rectangle into the buckets }

 for i := a to a + H - 1 do begin

 for j := b to b + W - 1 do begin

 sorttemp[Q[i, j]] := True

 end { for j }

 end { for i }

 { determine the median by counting off half the elements }

 ; r := 0 { r in [0] + sorttemp }

 ; for c := 1 to (H * W) div 2 + 1 do begin

 repeat r := r + 1 until sorttemp[r]

 end { for c }

 ; median := r

 { restore invariant for sorttemp, by removing the elements }

 ; for i := a to a + H - 1 do begin

 for j := b to b + W - 1 do begin

 sorttemp[Q[i, j]] := False

 end { for j }

 end { for i }

 end; { median }

 var

 i: TRank; { traverses sortemp for initialization }

 result: TRank; { best rank seen so far }

 a, b: TCoordinate; { traverses all rectangles }

 m: TRank; { median of rectangle with top-left corner at [a, b] }

 begin

 for i := 1 to R * C do sorttemp[i] := False

 ; result := MaxRank;

 ; for a := 0 to R - H do begin

 for b := 0 to C - W do begin

 m := median(a, b)

 ; if m < result then result := m

 end { for b }

 end { for a }

 ; rectangle := result;

 end; { rectangle }

Task Information for Language

Task Author: Gordon Cormack (CAN)

The nature of this problem is innovative within the IOI. Its purpose is to bring the field

of information retrieval under the attention. This problem is discussed in detail in the

book Information Retrieval: Implementing and Evaluating Search Engines by S. Büttcher, C.L.A.

Clarke, and G.V. Cormack (MIT Press, to appear soon). Especially see Chapter 10 on Categorization

and Filtering.

One important observation is that excerpts from the same language version of Wikipedia will share

some characteristics in a statistical sense. Because many random excerpts are offered, the

variability between excerpts from the same language play a negligible role. It has been confirmed

that the statistical resemblance between the provided test input and the official grader input is

highly predictable.

Note that because of the random re-coding of the language codes and symbol codes, there is no

opportunity to hard code any specific (personal) language knowledge into a solution.

There are many approaches possible. Rocchio's method, which was informally described in the task

description, suffices to solve Subtask 1.

For Subtask 2, one needs to do more than simply look at symbol frequencies. Collecting statistics

on bigrams (pairs of neighboring symbols), trigrams (three consecutive symbols) will yield higher

accuracies.

Task Information for Memory

Task Author: Gordon Cormack (CAN)

This was intended to be another very easy task, though slightly more difficult than the one on Day

1 when aiming for a full score.

Turning each possible pair of cards face up in some sequence is guaranteed to obtain all 25 candies.

There are 50-choose-2 = 50 * 49 / 2 = 1225 such pairs. Hence, doing 2450 card turns (that is, calls

to faceup) suffices. This can be programmed with two nested for-loops, and it solves Subtask 1

But it does not solve Subtask 2, where no more than 100 card turns are allowed. Note that the try-

all-pairs solution does not look at what is on the cards that are turned face up. That is, it does not

make use of the values returned by faceup. By using these returned values, you can gather

information that can be used later to reduce the number of cards turned up.

In particular, taking this to an extreme, you can first turn all cards, in pairs, to discover and record

where all the letters are, without caring about turning up equal pairs. In this first round, you might

already obtain some candies by accident, but that is irrelevant. In the next round, you know where

equal pairs are and you can flip them, in sequence, to obtain all remaining candies.

The first round requires 50 turns (calls to faceup), and the second round another 50 turns. Thus,

altogether 100 times a card is turned, and thereby Subtask 2 is solved.

In the second round, you could skip equal pairs that were already identified in the first round.

However, that will not improve the worst-case performance and it will complicate the coding.

Here is a Pascal solution that can readily be generalized (the constant and type definitions could be

eliminated, but they document the relevant concepts nicely):

type

 TCard = 'A' .. 'Y'; { which letters appear on the cards }

const

 NLetters = Ord(High(TCard)) - Ord(Low(TCard)) + 1; { number of letters }

 NCardsPerLetter = 2; { number of cards per letter }

 NCards = NCardsPerLetter * NLetters; { number of cards }

 Unknown = 0; { when card index is unknown }

type

 TIndex = 1 .. NCards; { index of card }

procedure play;

 var

 index: array [TCard, 1 .. NCardsPerLetter] of Unknown .. NCards;

 { index[lt, k] = index of k-th card with letter lt }

 lt: TCard; { traverses index }

 k: 1 .. NCardsPerLetter; { traverses index }

 i: TIndex; { traverses cards }

 r: TCard; { result of faceup }

 begin

 { initialize index to Unknown }

 for lt := Low(TCard) to High(TCard) do begin

 for k := 1 to NCardsPerLetter do begin

 index[lt, k] := Unknown

 end { for k }

 end { for lt }

 ;

 { first round: don't care about candy; discover where all letter are }

 for i := 1 to NCards do begin

 r := faceup(i)

 ; k := 1

 ; while index[r, k] <> Unknown do k := k + 1

 ; index[r, k] := i

 end { for i }

 ;

 { second round: now collect all (remaining) candies }

 for lt := Low(TCard) to High(TCard) do begin

 for k := 1 to NCardsPerLetter do begin

 r := faceup(index[lt, k]) { ignore result }

 end { for k }

 end { for lt }

 end;

In C, without constant and type defintions, it could be coded as follows:

void play() {

 // letters 'A' to 'Y' are converted to integers 0 to 24

 int index[50][2]; // locations of cards; 0 = unknown

 int lt, k; // traverses index

 int i; // traverses cards

 char r; // result of faceup

 // initialize index

 for (lt = 0; lt < 25; ++lt) {

 for (k = 0; k < 2; ++k) {

 index[lt][k] = 0;

 }

 }

 // first round

 for (i = 1; i <= 50; ++i) {

 r = faceup(i);

 lt = (int)(r) - (int)('A'); // int corresponding to char r

 k = (index[lt][0]) ? 1 : 0;

 index[lt][k] = i;

 }

 // second round

 for (lt = 0; lt < 25; ++lt) {

 faceup(index[lt][0]); // result ignored

 faceup(index[lt][1]); // result ignored

 }

}

Task Information for Traffic

Congestion

Task Author: Jorge Bernadas (VEN)

This was (by intention) a fairly standard task. Though, it should be mentioned that graph problems

always are a bit trickier than one might at first think because of the need to handle specific graph

encodings.

The information provided below will be expanded in the future, but for now should help in

understanding what each subtask was expecting in the form of algorithms.

• Subtask 1: Quadratic works. Because of the highly regular (linear) structure of the network

graph, it is easy to try each city as location for the arena, calculate the worst congestions and

pick out the location where this worst congestion is minimal.

• Subtask 2: Requires linear algorithm, but because there are only two leaves and the graph

representation is highly regular, it is easy to see that one sweep over the cities along the

roads suffices to determine the optimum location.

• Subtask 3: Quadratic works, but now the general graph must be handled. Again, as in

Subtask 1, every city can be tried as arena location, the worst congestion can then be

calculated, and best location can be found.

• Subtask 4: This is the full problem. A linear traversal of the graph, accumulating congestion

information appropriately, enables one to determine the optimal location of the arena in

linear time.

Task Information for Maze

Task Authors: Monika Steinová (CHE/SWK), Michal Forišek (SWK)

This is known to be a hard problem. No general polynomial algorithm is known for this problem,

that is, no algorithm has been discovered that is guaranteed to solve each problem instance in a time

polynomial in the size of the problem (area of the corn field).

This is also the reason why this task was offered as an output-only task, where the contestants were

given 10 specific instances (corn fields) to tackle. They could do this by hand, or write programs to

analyze these mazes, and write yet other programs (potentially, a different program for each field)

to produce a long(est) path. Note that the path need not be optimal; points could also be scored for

(good) approximations.

Here are some characteristics and results by Tor Myklebust (HSC member) for the 10 instances that

the contestants had to tackle:

 Characteristics Tor's result

Instance Dimensions Obstructions Path length Score

1 10x10 8 20 10.00

2 100x100 1766 4026 10.15

3 100x100 3216 3740 8.61

4 100x100 2283 3733 8.58

5 100x100 1357 4738 8.86

6 11x11 0 54 10.00

7 20x20 210 33 10.00

8 20x20 122 95 10.00

9 11x21 10 106 10.45

10 200x200 15224 7506 9.17

Total 95.82

Task Information for Saveit

Task Author: Mihai Patrascu (ROM)

This task also is innovative for the IOI. In general, for most IOI tasks efficiency matters. However,

in this case it is not execution time or memory usage but rather communication efficiency: how to

represent some complex data in as few bits as possible, without losing information.

This difference in focus makes the tasks possibly somewhat harder to understand. Furthermore, it is

technically more complicated, because the contestant has to program two independent procedures

that are inverses to each other. The communication format is not prescribed; all that matters is that

the decoder programmed by the contestant can decode the data from the encoder that is also

programmed by the contestant. The grading server then connects these two procedures to verify

that the decoder can indeed "understand" what the encouder produced.

Two things are important. First, find a way to encode adjacency information about Xedef's package

transportation network. Second, to transmit that information with communication efficiency.

Briefly stated, the subtasks could be tackled as follows:

• Subtask 1: You can send the entire adjacency matrix "as is"; this information is naturally

expressed in terms of bits, other encodings are imaginable as well. All that the encoder and

decoder need to agree upon is the order of the bits. Since there are 1000 cities, this requires

no more than 1000*1000=1 000 000 bits. Other approaches using more bits also work in this

subtask.

• Subtask 2: You can send the entire table with all hop counts directly. Since there are no more

than 1000 cities, the maximum hop count is less than 1000, and thus can be encoded in 10

bits. The size of the table is at most 1000*36=36 . Hence, not more than 360 000 bits are

needed.

• Subtask 3: One needs a new idea to improve the communication efficiency further. The crux

is to come up with the idea of considering a spanning tree; any spanning tree will do. The

distance from v1 to v2 is one of

1. distance from parent(v1) to v2

2. 1 + distance of parent(v1) to v2

3. -1 + distance of parent(v1) to v2

Then all one has to do is encode these possibilities with 2 bits each.

• Subtask 4: Using two bits to record a one-of-three choice is excessive. It is possible to map 3

ternary decisions (27 choices) to 5 bits (32 possibilities). This improves the communication

further.

