
Some information about task PALIN

A good method to solve this problem is to determine the length L

of a longest common subsequence (maximal matching) for the input and

its reverse. The answer then is N - L. An alternative approach is

to match a prefix of the string with the reverse of a postfix.

The length of a longest common subsequence can be determined

by dynamic programming. A triangular table can be constructed,

of which only two rows need to be stored. The complexity

is then O(N) space and O(N^2) time.

Note that constructing a witness (indicating where which characters

have to be inserted to make a palindrome) is computationally more

involved and is not asked.

For special inputs, other simpler methods may apply.

The 10 test cases have the following characteristics:

Case # N D A Kind of data

------ ---- -- ---- ------------

 1 62 62 61 Each allowed character exactly once

 2 4960 62 4801 80 repetitions of case #1

 3 5000 1 0 '9'^5000

 4 5000 2 2500 'A'^2500 ++ 'z'^2500

 5 5000 2 1 'PC'^2500

 6 100 48 79 Random

 7 3 2 1 'FFT'

 8 5000 2 919 Random with only characters 'O' and 'K'

 9 4999 10 2628 Random with only digits

 10 4999 20 88 'W'^4999 randomly perturbed in few places

where

 N = length of the string (input)

 D = number of distinct characters in input string

 A = correct answer

Some information about task CAR

The final state of the parking center can easily be determined by sorting the

input list of car types. This can be done in linear time (O(M+N)). O(N^2)

and N*log N methods may be too slow for larger N.

A greedy approach to construct successive rounds will work,

since in each round it can be guaranteed that at least W-1

cars are put into their final position. Hence, the number

of rounds needed by this greedy algorithm is D/(W-1) rounded up,

where D is the number of displaced cars in the initial state

for the input. In general, finding the minimum number of

rounds is NP-complete. Even reducing the number of rounds

for the greedy algorithm by just one round is, in general,

as hard as finding the minimum (compare to bin packing:

you need to find cycles that add up in length to W, for

otherwise one worker is not doing useful work).

The greedy algorithm can be implemented in O(N+M) space and

O(N) time. However, a more naive implementation may use O(N) space

and O(N^2) time. The test data has been designed to distinghuish

linear solutions from less efficient ones.

The 10 test cases have the following characteristics:

 # N M W Q D Min Max Kind of data

-- ----- -- -- ----- ----- --- --- ------------

 1 5 5 2 5 0 1 1 Sorted

 2 12 10 5 3 10 1 2 Manually designed

 3 30 30 6 6 30 1 1 Manually designed

 4 300 50 12 28 293 1 14 Random

 5 500 50 27 20 485 3 16 Random

 6 20000 50 5 5000 20000 400 400 4000 2-cycles, 4000 3-cycles

 7 20000 50 49 417 20000 400 400 400 50-cycles

 8 20000 50 2 20000 19595 368 439 Random

 9 20000 50 10 2223 443 393 406 Sorted, randomly perturbed

10 20000 50 50 409 19087 345 449 Random

where

 N = number of cars (input)

 M = number of car types (input)

 W = number of workers (input)

 Q = N / (W-1) rounded up

 D = number of displaced cars

 Min = minimum number of cars in a type, over all types

 Max = maximum number of cars in a type, over all types

Task MEDIAN

The 10 test cases for MEDIAN have been designed to detect performance

differences as exhibited by 16 different algorithms (also see below):

 OPE = Onion Peeling Eliminiation

 LISF = Linear Insertion Sort Using Full List

 LISH = Linear Insertion Sort Using Half List

 LISZ = Linear Insertion Sort Using Zoom List

 BISF = Binary Insertion Sort Using Full List

 BISH = Binary Insertion Sort Using Half List

 BISZ = Binary Insertion Sort Using Zoom List

 TISF = Ternary Insertion Sort Using Full List

 TISH = Ternary Insertion Sort Using Half List

 TISZ = Ternary Insertion Sort Using Zoom List

 TPFS = Ternary Partioning Find Using Straddled Pivots

 TPFF = Ternary Partioning Find Using First Pivots

 TPFP = Ternary Partioning Find Using Proportional Pivots

 TPFR = Ternary Partioning Find Using Random Pivots

 SLSB = Sorted List of Sorted Buckets

 HTSB = Heap-like Tree of Sorted Buckets

The next table shows how many calls each algorithm made for each test case

solved within the bound of 7777 calls. The rightmost column shows the score.

Case # | 1 2 3 4 5 6 7 8 9 10 |

 N | 5 177 577 975 1087 1267 1357 1415 1415 1499 |

 Cat | M R N R R R R R A R | Pts

Alg

==== + ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== + ===

OPE | 4 7744 | 20

==== + ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== + ===

LISF | 4 4062 619 | 30

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

LISH | 3 2590 598 | 30

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

LISZ | 3 2160 598 | 30

==== + ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== + ===

BISF | 4 861 4175 7051 | 40

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

BISH | 5 843 4108 6803 | 40

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

BISZ | 4 730 3621 6269 7078 | 50

==== + ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== + ===

TISF | 3 712 2918 5415 6143 7376 | 60

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

TISH | 3 669 2707 5349 6011 7103 7642 | 70

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

TISZ | 3 609 2537 4889 5540 6641 7191 7511 7572 | 90

==== + ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== + ===

TPFS | 3 517 1525 2842 3257 3531 2231 3218 | 80

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

TPFF | 4 395 2205 2378 3635 3601 2663 2493 | 80

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

TPFP | 5 331 848 3512 1705 2291 3093 2860 2863 2985 | 100

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

TPFR | 4 372 1778 2201 2507 2981 3377 3987 3279 3540 | 100

==== + ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== + ===

SLSB | 4 491 1954 3242 3605 4258 4578 4824 4149 5147 | 100

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

HTSB | 4 508 2218 3184 3902 4517 4862 5074 4389 5354 | 100

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

The 10 test cases belong to 4 categories:

 M = Manually designed

 R = Randomly generated

 N = Nearly sorted

 A = Alternating outside-to-inside (1 3 5 ... 6 4 2)

Here is a similar table showing the number of calls for cases where

the algorithm FAILS (does not stay within the bound). When the number

of calls exceeds 9999, only an approximate value in "scientific

notation" is given, where >XeY means that the number of calls

exceeds X*10^Y, but does not exceed (X+1)*10^Y. One extra column

has been added on the right. It indicates whether for N = 1499 and

under worst-case conditions (W), the algorithm stays within the bound

of 7777 (shown as <=) or not (shown as >). The library, however, is

not able to create such worst-case conditions dynamically.

Case # | 1 2 3 4 5 6 7 8 9 10 |

 N | 5 177 577 975 1087 1267 1357 1415 1415 1499 |1499

 Cat | M R N R R R R R A R | W

Alg

==== + ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== + ===

OPE | >8e4 >2e5 >2e5 >4e5 >4e5 >4e5 >4e5 >5e5 | >

==== + ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== + ===

LISF | >1e5 >1e5 >1e5 >2e5 >2e5 >2e5 >2e5 | >

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

LISH | >7e4 >8e4 >1e5 >1e5 >1e5 >1e5 >1e5 | >

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

LISZ | >5e4 >7e4 >1e5 >1e5 >1e5 >6e4 >1e5 | >

==== + ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== + ===

BISF | 7791 9532 >1e4 >1e4 >1e4 >1e4 | >

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

BISH | 7811 9414 >1e4 >1e4 >1e4 >1e4 | >

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

BISZ | 8537 9299 9803 >1e4 >1e4 | >

==== + ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== + ===

TISF | 7981 8386 8339 8993 | >

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

TISH | 7980 7946 8519 | >

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

TISZ | 8032 | >

==== + ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== + ===

TPFS | >7e4 >1e4 | >

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

TPFF | >5e4 >1e4 | >

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

TPFP | | >

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

TPFR | | >

==== + ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== + ===

SLSB | | <=

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

HTSB | | <=

---- + ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + ---

Information about the algorithms

OPE: Repeatedly eliminate the two extremes (min and max strength).

 This takes (N-1)^2 / 4 calls.

All Insertion Sort methods: Maintain a sorted list of objects

 investigated so far (sorted modulo up or down) and repeatedly

 insert a next object. The location to insert can be found

 by linear, binary, or ternary search. Linear insertion is

 quadratic in both worst and average cases, and linear in best cases.

 Binary and ternary insertion have N*log N complexity (ternary

 has smaller constant factor).

 Instead of maintaining the Full list (LISF, BISF, TISF) containing

 all the objects in the end, it is enough to limit the list to

 contain no more than half the number of objects (Half List: LISH,

 BISH, TISH). Reason: after having considered (N+1)/2 objects,

 the element at the end of the list cannot be the median,

 because more than (N-1)/2 objects are stronger/weaker than this

 object.

 In fact, both extremes in the sorted list can be eliminated

 once (N+1)/2 objects have investigated (Zoom List: LISZ, BISZ,

 TISZ). That way, the list increases in length during the

 first half, and descreases in length during the second half,

 until only one candidate remains (which then must be the median);

 it zooms out and then in on the median.

All Partitioning Find methods: Compare to median selection by

 partitioning (as in QuickSort, discarding the segment that is known

 not to contain the median). Only partitioning into three

 parts (based on choosing two pivot objects) have been considered.

 In general these methods are quadratic in worst case, but linear

 in average and best case. There are various ways to choose the

 pivots: one at each end (Straddled: TPFS), both at one end (First:

 TPFF), at one third and two thirds in the list (Proportional: TPFP),

 and Random (TPFR). For TPFS and TPFF, the sorted input is bad,

 but for TPFP and TPFR it is (very) good. TPFR has no specific

 worst case inputs. Worst case input for TPFP depends on details

 of rounding when choosing the proportional pivots.

SLSB: Maintains buckets of at most K objects (for some K; K=8 is a

 good choice). Each bucket is sorted (with respect to the order

 of two reference objects), and the list of buckets is sorted on

 the minimum of the buckets (w.r.t. the same reference objects).

 Compared to insertion sort into a list of single objects (Full,

 Half, or Zoom) this saves calls (over 2000 in the worst case

 of the task), because only a partial order instead of a total

 order is constructed. You can calculate the number of calls

 in the worst case for N=1499, and it is just below 7777. Average

 case behavior is better than worst case.

HTSB: This takes the idea of SLSB one step further by maintaining

 the buckets in a heap-like leaftree. The data structure is

 more complicated, and this method is not needed to obtain

 a perfect score. It shows that more advanced data structures

 can do even better, not only on average but also in the worst

 case. Note that the advantage is not visible for "small" N

 (such as 1499) on random cases.

Some information about task WALLS

A straightforward solution can be based on the dual graph

of the planar graph representing the map of towns and

connecting walls. The dual graph is obtained by viewing

the areas as nodes that are connected when they share a wall

(this can be a multigraph).

Traversing an edge in the dual graph corresponds to crossing

a wall, hence minimizing wall crossings corresponds to

selecting shortest paths in the dual graph.

A brute force approach tries each area (factor M) as a meeting

area and determines the best routes for each member (factor L)

by trying each starting area (factor <=N). Applying

Warshall's all-pairs shortest path algorithm on the dual graph,

provides all the information needed. This yields an

O(N^3+M*L*N) algorithm to solve the problem. The time limit is

chosen such that this solution is acceptable, even though the

complexity can be reduced by selecting a different algorithm

for determining all relevant distances.

The 10 test cases WALLS#.IN have the following characteristics:

 # M N L W WAn WAx ATn ATx Answer Kind of data

-- --- --- -- --- --- --- --- --- ------- ------------

 1 6 10 1 14 3 9 2 5 0 1* Manual, one member

 2 5 5 5 8 3 4 2 4 1 4 Manual, member in every town

 3 10 10 3 18 3 7 2 6 2 3 The example

 4 50 98 20 146 3 10 2 8 35 34 Random, medium size

 5 100 218 2 316 3 14 2 9 2 20* Random, many areas, few members

 6 200 231 30 429 3 7 2 14 94 67 Random, large size

 7 180 208 20 386 3 32 2 17 110 84 Random, large size

 8 100 225 10 323 3 10 2 7 33 23 Random, medium size

 9 200 247 30 445 3 14 2 16 51 99* Random, members close together

10 157 182 30 337 4 50 2 4 39 156 12x13 grid

where

 M = number of areas (input)

 N = number of towns (input)

 L = number of members (input)

 W = number of walls

 WAn = minimum number of walls around an area

 WAx = maximum number of walls around an area

 ATn = minimum number of areas (walls) touching a town

 ATx = maximum number of areas (walls) touching a town

 Answer = minimum crossing-sum, optimal meeting area (* if not unique)

Some information about task POST

The exact solution can be obtained by dynamic programming

based on a 2-dimensional table. The entire table must be

stored (O(P*V) space), and each entry can be computed in

O(V) time worst case. This yields an algorithm of O(P*V^2)

time complexity.

Many approximate solutions based on various heuristics exist

(spread post offices evenly or based on gap size between villages,

local search, simulated annealing, genetic programming, ...).

Because of the rules for partial credit these programs can

also score some points in some cases.

The 10 test cases POST#.IN have the following characteristics:

 # V P X1 XV Gn Gx Answer Kind of data

-- --- -- -- ---- -- ---- ------- ------------

 1 5 1 1 5 1 1 6 Manual, one post office

 2 10 2 1 10 1 1 12 Manual, small

 3 10 5 1 50 1 22 9 The example

 4 284 30 56 9985 1 209 18394 Random, large

 5 290 55 7 9897 1 162 24780 Random, large

 6 300 30 44 9249 1 202 18153 Random, largest

 7 300 1 1 9996 1 3700 1428420 Random, longint answer

 8 100 9 92 996 1 37 2134 Random, medium size

 9 259 15 2 9899 1 1701 3595 Random, villages in 10 clusters

10 19 3 1 6765 1 2584 5026 Villages at Fibonacci coordinates

where

 V = number of villages (input)

 P = number of post offices (input)

 X1 = smallest village X coordinate

 XV = greatest village X coordinate

 Gn = minimum gap between neighboring villages

 Gx = maximum gap between neighboring villages

 Answer = sum of distances for optimal post office locations

Some information about task BLOCK

A lower bound on the number of blocks in a decomposition is V/4

rounded up. Finding a minimal decomposition by simple backtracking

is slow because there are so many solutions with small blocks.

The technique of branch-and-bound can be used to reduce the running

time drastically. When a partial decomposition with T blocks

has been obtained, a lower bound for the number of blocks in

the complete decomposition is T + W/4 rounded up, where W is the

volume remaining to be decomposed. Thus, the recursion can be

stopped when T + W/4 exceeds the minimum obtained so far.

Each block type consists of at most 24 rotated blocks (the actual

number depends on the symmetries of the block). These rotations

can be precomputed (based on the rotation group of the cube,

which can be generated by two permutations). The translations

can be done on-the-fly during backtracking.

It can be expected that programs for this task are somewhat

longer than for the other tasks.

 # V M 1 2 3 4 5 6 Kind of data

-- -- -- -- -- -- - - - ------------

 1 4 1 . 4 Single 2x2 block

 2 22 6 4 2 10 6 . . Manual, a "chair"

 3 19 6 6 7 4 . . 2 Manual, a "tree"

 4 18 5 6 3 6 3 . . The example (a "horse")

 5 30 8 2 28 Manual, medium size

 6 30 8 . 20 8 2 . . Manual, medium size

 7 50 13 10 25 6 7 2 . Manual, largest size

 8 33 12 11 17 1 4 . . Manual, large size

 9 37 13 13 13 11 . . . Manual, large size

10 28 11 12 5 10 1 . . Manual, medium size

where

 V = volume (input)

 M = minimum number of blocks in decomposition

 1 = number of unit cubes with 1 neighbors (. means 0)

 2,3,4,5,6 = same for indicated number of neighbors

