
{

Task Analysis for LGame

---- -------- --- -----

The obvious problem in this exercise is the large "dictionary" file.

It's too big to read into memory (unless you know how to use the

machine's extra memory). Since you have to output all the words and

combinations with highest score, the entire file has to be read at

least once. This extra requirement was in fact a small hint to help

you find the highest scoring word when no exact match can be found. As

reading a large file takes quite some time the obvious strategy is to

avoid reading the file more than once. The purpose of the exercise was

not, as some solutions seemed to suggest, to find a way to cram all the

words in memory, nor was it an exercise in making indexes or using

hashing procedures. The fact that the word list could vary from run to

run was meant as a hint that elaborate pre-processing of the list

should be avoided as it would be used only once. I shudder to think

what could have happened if the list we offered would not have been

sorted. Not that it mattered for this problem, but probably people

would have felt the need to sort it (exceeding the time limit). This

time limit was also a hint to put you on the right track, i.e., it

would be a waste of valuable time to process the word list more than

once. However, some of you were so obsessed by it that you deemed it

necessary to put a timer in the program, which, in some cases, let to

disaster.

After seeing some of the solutions you came up with I was quite amazed

to see how some of you can turn a perfectly simple problem (remember,

it was the first program on the second day, which tells you something

about its complexity (or more accurately lack of complexity) into

extremely complex programming. Still there remain several ways to find

the highest scoring word(s) or pair(s) of words given a set of 3 to 7

letters, but there are certain inherent conditions you can use to avoid

extra work.

- With an exact match (i.e. the letters in the wordlist-word match the

letters given) you will always score maximum points. Once you have

found 1 exact match you do not have to look at words with lesser

characters unless the number of letters given is 7 (then you have to

keep track of 4 and 3 letter words [sic]) or 6 (then you have to keep

track of 3 letter words).

- It's a waste of time and space to store all 3 and 4 letter words.

Only when necessary (see 1) you should store those 3 and 4 letter words

that match with the letters given. These words can be stored in

arrays. The number of unique combinations of 3 and 4 letters given a

set of 7 letters is 35 (for 3) and 35 (for 4). The words are not

unique so reserving 3*2*35 and 4*3*2*35 will cover all possibilities

amply (in fact this is far too much as they are actual words, and most

letterpermutitions do not yield grammatical words). After reading all

the words in the wordlist you can easily check for combinations. You

do not have to count their scores separately as they are exact matches

and therefore score maximum points.

- The fun starts when no exact match can be found. When 6 or 7 letters

were given finding a combination of 3+3 or 4+3 will again give maximum

score, but you can't know that a combination will be found so you have

to keep track of words of 5 letters as well.

- When no exact match can be found and no combinations can be found a

word with fewer letters can score more points than a word with more

letters.

- When no exact match can be found words with an equal number of

letters should be checked for highest score.

Possible solution:

The way you check is crucial. An alphabetic check will mean extra time

as each word has to be sorted and it only works with exact matches.

Generating all possible combinations from the set of letters and

matching against these takes less time and will ensure that all

possible words are found but it means that lacking an exact match each

word read from the word list has to be compared with at least 35 and at

most 95 combinations. A one-on-one check should therefore be

preferred. Eliminating the letters of the word read against those in

the set of letters seems to work best. Storing the highest scoring

word(s) so far, while processing the wordlist, will solves 3, 4 and 5

from the list above. That way you will always have a solution (at

least when a word can be found with the letters given).

How to speed up?

- read the word list only once

- use string operations when comparing

- use recursion when eliminating

- use dynamic data structures to store possible candidates and to store

3 and 4 letter words. That way you do not have to initialise arrays

and you can sort on value while storing and you do not have to figure

out, before hand, how much memory-space you have to reserve for the

arrays.

- do not check words unnecessarily (see above).

Connie Veugen

Scientific Committee IOI'95

}

program LGame;

{----- Solution using arrays, ample storage of variables -----}

{----- File is only read once and only valid candidates -----}

{----- are stored -----}

{----- Connie Veugen 7 6 95 -----}

const

 MaxWrdL = 7;

 MaxThree = 35*3*2; {35 unique possibilties * no of permutations}

 MaxFour = 35*4*3*2; {ibid, both are far more than a normal}

 {letter distribution would yield}

 MaxCand = 7*6*5; {possible candidates}

 {this margin is absurd as only the highest}

 {values will be stored}

type

 WrdType = string[MaxWrdL+1];

 Candid = record

 Wrd : WrdType;

 Pnt : word

 end;

 Ar3 = array[1..MaxThree] of WrdType;

 Ar4 = array[1..MaxFour] of WrdType;

 ArCan = array[1..MaxCand] of Candid;

var

 InFile,

 OutFile,

 WBook : text;

 Letters : WrdType;

 LengthThree : Ar3; {storage for 3 letter words}

 LengthFour : Ar4; {storage for 4 letter words}

 MaxValue, {highest score so far}

 CountThree, {number of 3 letter words}

 CountFour, {number of 4 letter words}

 CountCand : word; {number of possible candidates}

 Found : ArCan; {word(s) (pair(s)) with highest score so far}

 procedure Init;

 var I : byte;

 begin {Init}

 CountThree := 0;

 CountFour := 0;

 CountCand := 0;

 MaxValue := 0;

 for I := 1 to MaxCand do

 begin

 Found[I].Wrd := '';

 Found[I].Pnt := 0;

 end;

 assign(InFile, 'input.txt');

 assign(WBook, 'words.txt');

 assign(OutFile, 'output.txt');

 reset(InFile);

 reset(WBook);

 rewrite(OutFile)

 end; {Init}

 function Value(Wrd : WrdType) : byte;

 var

 Total, I : byte;

 begin {Value}

 Total := 0;

 for I := 1 to length(Wrd) do

 case upcase(Wrd[I]) of

 'E','I','S' : Total := Total + 1;

 'A','N','R','T' : Total := Total + 2;

 'L','O' : Total := Total + 3;

 'C','D','U' : Total := Total + 4;

 'B','G','H','M','P','Y': Total := Total + 5;

 'F','K','V','W' : Total := Total + 6;

 'J','Q','X','Z' : Total := Total + 7

 end {case};

 Value := Total

 end; {Value}

 function OK(Wrd1, Wrd2 : WrdType):boolean;

 {---}

 {checks if there are no 'illegal' letters in the inputline}

 {as only the letters from the set are alowed and they may }

 {only be used once. }

 {---}

 var

 Good : boolean;

 I : byte;

 begin {OK}

 {no more letters in inputline, so all matched}

 if length(Wrd1) = 0 then OK := true else

 {no more letters in set, so no match}

 if length(Wrd2) = 0 then OK := false else

 {illegal letter in inputline}

 if pos(Wrd1[1], Wrd2) = 0 then OK := false else

 begin

 {take the letter out of the set as it can

 only be used once}

 delete(Wrd2, pos(Wrd1[1],Wrd2), 1);

 {take the letter out of the inputline as

 it has already been processed}

 delete(Wrd1, 1, 1);

 {check what is left}

 OK := OK(Wrd1, Wrd2)

 end

 end; {OK}

 procedure ProcessWBook(Let : WrdType; var Max, Count, A3, A4 : word);

 {---}

 {read wordlist line by line and process each line as it is read }

 {do not proces lines that contain 'illegal' letters or that use a }

 {letter from the set more than once, only proces candidates with a }

 {higher or equal score than the maximum at the given moment, if the }

 {set was 7 letters then store possible 3 and 4 letter candidates }

 {if it was 6 then store 3 letter candidates only. }

 {---}

 var

 InputLine : WrdType;

 LengthInpL,

 LengthLet,

 ValueCand : byte;

 Higher : boolean;

 begin {ProcessWBook}

 while not eof(WBook) do

 begin

 readln(WBook, InputLine);

 Higher := false;

 {only check valid candidates}

 if OK(InputLine, Let) then

 begin

 ValueCand := Value(InputLine);

 LengthInpL := length(InputLine);

 LengthLet := length(Let);

 Higher := ValueCand >= Max;

 if Higher then Max := ValueCand;

 {only store those with maximum or

higher score}

 if (LengthInpL = LengthLet) or

Higher then

 begin

 inc(Count);

 Found[Count].Wrd

:= InputLine;

 Found[Count].Pnt

:= ValueCand

 end;

 if LengthLet = 7 then

 {check for possible 4}

 if LengthInpL = 4 then

 begin

 inc(A4);

 LengthFour[A4]

:= InputLine

 end;

 if LengthLet >= 6 then

 {check for possible 3}

 if LengthInpL = 3 then

 begin

 inc(A3);

 LengthThree[A3]

:= InputLine

 end;

 end

 end;

 close(WBook)

 end; {ProcessWBook}

 procedure StorePairs(Wrd1, Wrd2: WrdType; Score : word);

 {---}

 {valid word pairs have to be stored in a particular way }

 {for output. }

 {---}

 var

 I : byte;

 Bingo : boolean;

 begin {StorePairs}

 I := 1;

 Bingo := false;

 {do not store the same pair twice}

 while not Bingo and (I <= MaxCand) and (Found[I].Wrd <> '') do

 begin

 if (Wrd1 + ' ' + Wrd2 = Found[I].Wrd) or

 (Wrd2 + ' ' + Wrd1 = Found[I].Wrd) then

 Bingo := true

 else inc(I)

 end;

 if not Bingo then with Found[I] do

 begin

 Wrd := Wrd1 + ' ' + Wrd2;

 Pnt := Score

 end

 end; {StorePairs}

 procedure In3and4(var Count, MaxV : word; A3, A4 : word; Let : WrdType);

 {--}

 { when the letterset consists of 7 letters you have to check for pairs }

 { of 3 and 4 letters. }

 {--}

 var

 I, J, Score : word;

 Temp : WrdType;

 begin {In3and4}

 for I := 1 to A3 do

 for J := 1 to A4 do

 begin

 {make a dummy word out of the two candidates}

 Temp := LengthThree[I] + LengthFour[J];

 Score := Value(Temp);

 {check if no double letters are used and if

 this is a valid candidate scorewise}

 if (OK(Temp, Let)) and (Score >= MaxV) then

 begin

 inc(Count);

 if Score > MaxV then MaxV := Score;

 StorePairs(LengthThree[I],

LengthFour[J], Score)

 end;

 end

 end; {In3and4}

 procedure In3and3(var Count, MaxV : word; A3: word; Let : WrdType);

 {--}

 { when the set has 7 or 6 letters check for pais of 3 and 3 }

 { further comments see In4and3 }

 {--}

 var

 I, J, Score : word;

 Temp : WrdType;

 begin {In3and3}

 for I := 1 to A3 do

 for J := 1 to A3 do

 begin

 Temp := LengthThree[I] + LengthThree[J];

 Score := Value(Temp);

 if (OK(Temp, Let)) and (Score >= MaxV) then

 begin

 inc(Count);

 if Score > MaxV then MaxV := Score;

 StorePairs(LengthThree[I], LengthThree[J], Score)

 end;

 end

 end; {In3and3}

 procedure WriteOutput(Count, MaxV : word);

 var

 I : byte;

 Temp : WrdType;

 begin {WriteOutput}

 writeln(OutFile, MaxV);

 for I := 1 to Count do

 {as there are older "high-scoring" candidates

 write only those with actual MaxV}

 if Found[I].Pnt = MaxV

 then writeln(OutFile, Found[I].Wrd);

 close(OutFile)

 end;{WriteOutput}

begin {main}

 Init;

 readln(InFile, Letters);

 close(InFile);

 ProcessWBook(Letters, MaxValue, CountCand, CountThree, CountFour);

 if (length(Letters) = 7) and (CountThree <> 0) and (CountFour <> 0)

 then In3and4(CountCand, MaxValue, CountThree, CountFour, Letters);

 if (length(Letters) >= 6) and (CountThree <> 0)

 then In3and3(CountCand, MaxValue, CountThree, Letters);

 WriteOutput(CountCand, MaxValue)

end.

