
PROBLEM 1.

Each watchman in a certain art gallery is on duty during

some continuous time period. The Guard Schedule is

defined to be a set of pairs [T1(i),T2(i)] - the starting

and the ending times of the i'th watchman's duty. Given a

Guard Schedule you are required:

(a) To check whether there are at least two watchman in

 the gallery at each moment of the period [0, EndTime].

 If the condition (a) is not fulfilled,

(b) Determine all the periods when the guard is

 insufficient (less then two watchmen on duty).

(c) Find the minimal number of additional watchmen with

 duties of a prescribed equal length needed to obtain a

 valid Guard Schedule, i.e. one with condition (a)

 fulfilled.

INPUT:

 (All times are given in integer minutes.)

 EndTime - the time when the guard is over, i.e. the

 gallery should be guarded within the period [0, EndTime].

 N - the number of watchmen.

 T1[i]. T2[i], i=1, ..., N - the starting and the

 ending times of the i'th watchman's duty.

 Length - the prescribed length of the duty for each

 additional watchman.

OUTPUT:

 (1) The answer for point (a) in the form "Yes/No".

 (2) If the previous answer is "no", the list of pairs

 (k,1) - the beginnings and the ends of all time periods

 with insufficient guard, and the number of watchmen in

 each (0 or 1).

 (3) The number of additional watchmen and the list of

 starting and ending times of every additional watchman's

 duty.

PROBLEM 2.

N segments are given on the plane by the co-ordinates of

their endpoints, N>0. Endpoints of segment are specified

by two pairs (x1[i], y1[i]), and (x2[i], y2[i]), 1<=i<=N.

The endpoints of any segment are belong to it.

You are required:

1. To organize inputting the data in the form kind of

 <Enter N -- the number of segments :>

 <Enter co-ordinates of i'th segment:>

 x1[1]--> y1[1]-->

 x2[1]--> y2[1]-->

 ::: :::

2. To find a straight line which has common points with

 as many segments as possible. Any of the common points is

 allowed to be an endpoint of a segment. To output in

 increasing order the number of the segments that have

 common points with found straight line.

***PROBLEM 3.

Nodes numbered by 1, 2, ..., N (N<=50) are connected by a

network of roads, each of which is of length 1. The roads

are going at different heights and are intersected at the

nodes only. At the initial moment 0 there are robots in

some of the nodes. The total number of the robots is M (M

= 2 or 3). The robots keep moving continuously from one

node to another independently and can change the

direction of their moving at the nodes only. The robots

are not allowed to stop. The speed of the i'th robot

equals speed[i] (speed[i] = 1 or 2). The robots are being

controlled in such way as to minimize the time all of the

robots need to get together at the same place.

You are required to find the minimal time T after which

the meeting of all the robots at the same place can occur

and to indicate this time T, or else to determine that

the meeting of all M robots at the same place is

impossible at any time t>=0.

The form of the input should be:

<Input N:>

<Input number of roads K:>

<Road 1 connects points:>

 ...

<Road K connects points:>

 (pairs are input as I J)

<Input number of robots M:>

<Input speed of robot 1:>

 ...

<Input speed of robot M:>

<Input initial position of robot 1:>

 ...

<Input initial position of robot M:>

 (All numbers above must be non-negative integers.)

The form of output is

<Time = ...>

PROBLEM 4.

All streets in a certain rectangular-shaped city situated

in an uneven area are going either from south to north (N

streets) or from west to east (M streets), so that the

city is divided into square blocks with sides equal to 1.

Every segment of a street enclosed between two

neighbouring crossings goes either only down or only up,

or else it may be horizontal.

Matrix K[y,x] (with dimension MxN) contains the heights

of the crossings above the sea level.

 /\ Y

 |

M +---+---+---+---+---+---+

 | | | | | | |

 +---+---+---+---+---+---+

. | | A | | | | |

. +---+---o---+---+---+---+

. | | | | | | |

 +---+---+---+---+---+---+

 | | | | | B | |

2 +---+---+---+---*---+---+

 | | | | | | |

1 +---+---+---+---+---+---+--------->X

 1 2 ... N

You are required to write a program that:

1. Inputs dimension of matrix - M and N.

2. Inputs the matrix elements H[i,j]. i=1,M , j=1,N.

3. Inputs the coordinates of two crossings - A and B.

4. Reports the answer to the question whether it is

 possible to move from A to B or from B to A, going down

 all the time.

 If the answer to the question from P.3 proves to be

 affirmative, the program also

5. Determines at least one such path and displays the

 coordinates of the crossings involved on the screen.

6. Determines all paths of this kind.

