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1 Combo

In this problem there is a secret string .S of length N which consists of four
characters (namely A, B, X and Y). We also know that the first character
of the string never reappears in it. Our task is to determine the string by
using at most IV + 2 guesses. In each guess we specify a string G of length
at most 4N consisting of above four characters, and we get the maximum
length of a prefix of S which is a substring of G.

Let’s try some sample. Suppose that N = 3, and we make our first guess
of G = ABX. Let’s see what answers we could get. If the answer is 3, then
it means we are lucky — there is only one substring in G of length 3 (the
whole string) and it is a prefix of S, so S = ABX and we are done. But
probably we won’t be so lucky in our first guess. If the answer is 2, then it
means that either AB or BX is a prefix of S, thus S = AB? or S = BX?.
If the answer is 1, then it means that either A, B or X is a prefix of .S, so
we know that the first letter of S is either A, B or X. Finally, if the answer
is 0, that means that the first letter of S must be Y.

1.1 First attempt — guessing exactly one prefix

It’s hard to guess the whole string, but we can start small, and try to guess
some shorter prefix of S — maybe just one letter? In order to do that, we can
ask 4 guesses: G = A, G = B, G =X and G =Y. Exactly one of them will
give us answer 1, and this will be the desired letter; suppose that it was B.
Then we can guess the second letter, by asking similar 4 guesses: G = BA,
G =BB,G=BX and G = BY.

This idea leads to a solution in which we guess letters one by one from
the beginning. Suppose that we already guessed the first i letters, which
form a prefix P of length i. To guess the (i + 1)-th letter we use 4 guesses,
in each guess we append another letter to this prefix, thus we have guesses
G =PA, G=PB,G=PX and G = PY. Exactly one of such guess will
return ¢ + 1 (the others will return ). Therefore we will use exactly 4N
guesses, which guarantees us a positive score for the problem. The code is
quite simple:

#include <bits/stdc++.h>

#include "combo.h"

using namespace std;

#define REP(i, n) for (int i = 0; i < (n); i++)

const int M = 4;
const char LET[] = "ABXY";

string guess_sequence(int N) {
int len[M];



string s;

REP(i, N) {
REP(j, M) {
len[j] = press(s + LET[jl);
}
REP(j, M) {
if (len[j] == i+1) {
s += LET[j];
break;
}
}
}

return s;
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This code can be easily optimized. If any call to function press returns
with 74 1, we can immediately break, since we know that we have found the
next letter. This could help us in some cases, but we wouldn’t gain anything
in the worst case when S = YYY ...Y. But if the first 3 guesses G = PA,
G = PB and G = PX returned i, we are sure that the next letter is not A,
nor B, nor X, so it definitely must be Y and we don’t need the fourth guess
to confirm this. So it is enough to make 3N guesses:

string guess_sequence(int N) {
string s;

REP(i, N) {
REP(j, M-1) {
int len = press(s + LET[j]);
if (len == i+1) {
s += LET[j]1;
break;
}
}
if (s.size() != i+1) {
s += LET[M-1];
}
}

return s;

}



1.2 Interlude — worst-case and average-case

This reasoning is about the worst case — we will never make more than 3V
guesses. But the exact number of guesses depends on the test case — for
some test cases we could do fewer number of guesses. If we test letters in
order A, B, X, Y, then for a test case S = AAA... A we would use N
guesses, for test case S = BBB ... B we would use 2N guesses, but for cases
S=XXX...X and S =YYY...Y we would use 3N guesses. And no
matter what order of letters we use, the judges will test our program on all
such cases, and for at least one of them we will use 3N guesses.

But suppose that the test case was random, i.e. each letter would be ran-
domly generated with probability 1/4. What would be the average number
of guesses then?

We have 1/4 chances that the first letter is A, so we would guess it on
the first try. We have also 1/4 chances that it is letter B, so we would guess
it on the second try. Otherwise we need to use third guess. So on average
number of needed guesses is 1/4-1+1/4-2+1/2-3=9/4 = 2.25.

But test cases don’t have to be random, and for sure there will be some
non-random test cases prepared by the judges. But there are some tech-
niques, gathered in a general name of randomization, which when correctly
applied, allows us to treat input data as random.

And we can apply such a technique in our case. Rather than choosing
fixed order of testing letters, we will choose this order independently for each
letter, and every time we will do it randomly. In this case the reasoning is as
follows: the letter to guess is fixed, but we have 1/4 chances that it will be
the same as the first letter in our random order, we have 1/4 chances that it
will be the same as the second letter in our random order, and so on. With
this approach we would get 2.25N guesses on average (but still 3N guesses
tops if we are extremely unlucky):

string guess_sequence(int N) {
int idx[M];
REP(i, M) { idx[i] = 1i; }
string s;

REP(i, N) {
random_shuffle(idx, idx+M);
REP(j, M-1) {

int len = press(s + LET[idx[j]1);
if (len == i+1) {
s += LET[idx[j11;
break;
}
}
if (s.size() != i+1) {
s += LET[idx[M-1]1];



return s;
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In the above code we don’t test letters in fixed order, but we use the per-
mutation stored in array idx. For every letter this permutation is randomly
shuffled using function random_shuffle from C++ standard library.

1.3 Dealing with the first letter separately

So far we have not used the fact which was written in bold in task statement,
namely that the first character never reappears in the string. That means
that only for the first letter we have 4 possibilities, and if we determine it,
for each remaining letter we have only 3 possibilities.

That means that we can test for the first character using only 3 guesses,
and for the rest of characters we need only 2 guesses. Therefore we need in
total 3+ 2(N — 1) = 2N + 1 guesses. This will give us 30 points.

Improving our randomization approach we would have on average 1/3 -

1+2/3-2=15/3 guesses, so in total 3+ 5/3(N — 1) = 5/3N + 4/3 guesses.

1.4 Guessing more than one prefix at once

So far we have only asked for one prefix, so the strings we were guessing
were limited to N in length. But we are allowed to ask for strings of length
up to 4N. Can we use this to reduce the number of guesses?

We somehow need to ask for more than one prefix in one guess. Let’s
try to do this for the first letter. Suppose that we guess G = AB. If we
get the answer of 1 or 2, we know that either A or B is the first letter of
the string. Otherwise we get 0, and we know that either X or Y is the first
letter of the string. In both cases after one guess we limited the number of
possibilities for the first letter to two characters. It is easy to see that by
asking G = A or G = X in the second guess allows us to determine the
first letter in exactly two guesses. (That allows us to improve the previous
algorithm to 2N guesses.)

We can try to utilize this trick for subsequent letters. So suppose we
have already guessed the prefix P of length ¢ and we are trying to determine
letter on position i + 1. We could try a guess G = PAPB of length 2(i + 1)
in hope that getting answer of i + 1 means that either A or B is at position
v+ 1.

But we must be careful here. Suppose that P = XAX and we asks for
G = XAXAXAXB. Then prefix P appears in G not two times (as we
intended), but three. Luckily, this additional occurrence is also followed by
letter A, so no harm would be done here, but should it was followed by letter
X, we could get answer ¢ + 1 even if S starts with PX.



Lucky enough, we can prove that this could not happen, that is all addi-
tional occurrences of P must be followed by A. Thanks to this, after question
G = PAPB we can establish whether the next letter is in set {4, B} or in
set {X,Y}, and then we can ask another question G = PA or G = PX.
That gives us an alternative algorithm for 2V guesses, which can be written
quite compactly:

string guess_sequence(int N) {
string s;

REP(i, N) {
int len = press(s + LET[0] + s + LET[1]);
int idx = 2*(len < i+1);
len = press(s + LET[idx]);
idx += (len < i+1);
s += LET[idx];
}

return s;

}

What if we use once more the fact that the first letter cannot reappear
in the string S? Then for every position except the first we have only three
possibilities. Suppose that Y is the first letter. Then the answer to guess
G = PAPB gives us exactly the same information as answer to guess G =
PX. Thus we are in no better shape than the algorithm we have used
previously that asks two questions per position.

Now for every question we get a binary answer: either ¢ or ¢ + 1. If we
want to guess a letter using only one question, and we have three possibilities
for a letter, we need another possibility for an answer. Let’s try to make a
guess in which we could get ¢ + 2 for the answer.

That means that G must contain prefix P followed by letters in positions
i1+ 1 and i+ 2 in string S. But does it mean that in order to guess the letter
in position 7+ 1 we need to know the letter in position ¢+ 2?7 Not necessarily.
Look at the following guess: G = PAAPABPAX. If the letter in position
1+ 11is A, the answer would be ¢ 4+ 2, since all possible extensions of PA
(namely PAA, PAB and PAX) are present in G. Note that since the letter
Y appears at the beginning of P and only there, the prefix P will appear
exactly three times in G, as intended by us.

Therefore we will ask guess G = PAAPABPAXPB. If the answer is
1+ 2, we know that the next letter is A. If the answer is ¢ + 1, we know
that the next letter is B. Finally, for answer i, we know that it is X. Such
question will give us the next letter in one guess.

We must be a little bit careful though. First, let’s check whether the
length of the guess stays within 4N limit. If P is of length 4, the guess is



of length 4 4 7, which is fine up to the penultimate position, for which we
have 4(N — 2) + 7 = 4N — 1. For the last position the length would be too
big, but we could not use this method for the last position anyhow, since
there is no additional letter after it. Thus we will use standard method of 2
guesses for the last position.

Therefore we will use 2 4+ (N —2) + 2 = N + 2 guesses, that will give us
perfect points:

int guess_one(const string& s) {
int len = press(s + LET[0] + s + LET[1]);
int idx = 2*(len < s.length()+1);
len = press(s + LET[idx]);
idx += (len < s.length()+1);
return idx;

}

string guess_sequence(int N) {
int idx[M];
REP(i, M) { idx[i] = i; }
string s;

// First letter

{

int id = guess_one(s);

s += LET[id];

swap (idx[id], idx[M-11);
}

// Almost rest
REP(i, N-2) {
string z;
REP(j, M-1) {
z += s + LET[idx[0]] + LET[idx[j]];
}
z += s + LET[idx[1]];
int len = press(z);
if (len == i+3) {
s += LET[idx[0]];
} else if (len == i+2) {
s += LET[idx[1]];
} else {
s += LET[idx[2]];
}
}



// Last letter

if (W > 1) {
int id = guess_one(s);
s += LET[id];

}

return s;

At the end, we have a question for the interested readers. Modify the
model solution a little bit to get an algorithm that will use on average strictly
less than one guess per position.



2 Werewolf

In this problem we are given a connected undirected graph with N vertices
and M edges. The vertices are numbered from 0 to N — 1. We must answer
@ queries. Each query is represented by four integers (S, E, L, R). We must
find a path vg, vy, ..., vg in a graph starting in vertex S (thus vy = S), ending
in vertex E (thus vy = FE), with some switch verter in the middle vy (for
0 < s < k). All vertices up to the switch vertex (inclusive) must have big
numbers (L < wvg,v1,...,vs) and all vertices after switch vertex (inclusive)
must have small numbers (vs, Vs11, ..., < R).

2.1 Solving queries independently

In problems that involves queries, it is usually a good idea to develop a
solution for a single query. This is often much easier, gives us some intuition
about the problems, and also allows us to write a slow solution for partial
points, that handles queries independently one by one.

The first idea is to simulate exactly what is given in the problem state-
ment. In order to find a path from S to F with some switch vertex, we can
iterate over all possible choices for this switch vertex v, and then find a path
from S to v using only vertices in range [L, N — 1] and find a path from v to
E using only vertices in range [0, R]. The C++ code for this idea can look
like this:

vector<int> check_validity(int N,
vector<int> X, vector<int> Y,
vector<int> S, vector<int> E,
vector<int> L, vector<int> R) {

int Q = S.size();
vector<int> A(Q);

// Construct the graph
vector<vector<int> > adj(N);
int M = X.size(Q);

REP(i, M) {
adj[X[il].push_back(Y[i]);
adj[Y[i]] .push_back(X[il);

}

REP(i, Q) {
// Compute the i-th query

REP(v, N) {

// Try switch vertex
bool reach_S = reachable(adj, N, S[i], v, L[i], N-1);
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bool reach_E = reachable(adj, N, v, E[i], 0, R[il);
A[i] |= reach_S && reach_E;
}
}

return A;

}

To implement function reachable we can use any graph-traversal algo-
rithm, but we must only visit vertices which are in a certain range. Here we
use BFS:

bool reachable(vector<vector<int> >& adj, int N,
int start, int end, int lo, int hi) {
// Can we go from start to end using vertices in range [lo, hi]?
queue<int> que;
vector<bool> vis(N);
if (lo <= start &% start <= hi) {
que.push(start) ;
vis[start] = true;

}

while (!que.empty()) {
int v = que.front(Q);
que.pop();
for (int u : adjlv]) {
if (lo <= u && u <= hi && !vis[ul) {
que.push(u);
vis[u] = true;
}
}
}

return vis[end];

}

Time complexity of function reachable depends linearly on the size of
the graph, thus it is O(N + M). For each @ queries and for each N choices
of switch vertex we run it twice, so the total time complexity of this solution
is O(QN(N + M)) and it’s enough to solve subtask 1.

Let’s look at calls to reachable for a fixed query. Note that we make
multiple calls to the same starting vertex .S; and various end vertices. But in
order to check reachability from S; to given vertex the function reachable
calculates array vis which stores reachability from S; to any other vertex,
and then examines one cell of this array.

11



It is not very wise to repeat calculations for array vis. It’s better to
calculate it once, and then reuse it for all choices of switch vertex. Note
that we can do the same with calls to the same ending vertex FE;, since in
undirected graph we can reach F; from v if and only if we can reach v from
FE;. New code looks like this:

vector<bool> reachable(vector<vector<int> >& adj, int N,
int start, int lo, int hi) {
// Where can we go from start using vertices in range [lo, hi]?
//

return vis;

3

vector<int> check_validity(int N,
vector<int> X, vector<int> Y,
vector<int> S, vector<int> E,
vector<int> L, vector<int> R) {

//

REP(i, @) {
// Compute the i-th query

vector<bool> reach_S
vector<bool> reach_E

reachable(adj, N, S[i], L[i], N-1);
reachable(adj, N, E[i], 0, R[i]);

REP(v, N) {
// Try switch vertex
A[i] |= reach_S[v] && reach_E[v];
}
}

return A;

3

We can think of reach_S as a set of vertices that are reachable from S
using vertices with big numbers and reach_E as a set of vertices reachable
from E using vertices with small numbers. Finding existence of a switch
vertex is just checking whether these two sets intersect. For each query we
run reachable twice and iterate over switch vertices in time O(N + M), so
the total complexity is O(Q(N + M)) and solves subtasks 1 and 2.

We can do an alternative solution which solves query independently. We
can traverse the graph looking for a path from S to F, but now instead of
explicitly finding switch vertex, we can track in which part of the path we
are. Therefore we will create a new graph with 2N vertices. For every vertex
v in the original graph we have two vertices (v,0) and (v, 1) in the new graph:
the second coordinate specifies whether we are before or after switch vertex.

12



Thus for every edge vu in the original graph we have edges (v,0)(u,0) and
(v,1)(u, 1) in the new graph which specify normal move along the path. But
we also have edges (v,0)(v,1) which specify situations in which we select
switch vertex. Now all we need to do is find a path in this new graph from
(S,0) to (E,1). This path will have form

(vo,0), (v1,0),...,(vs,0), (vs, 1), (Vs31,1), ..., (Vk, 1),

with vg = S and vy, = E and vertex v, will be the switch vertex. The code
is as follows:

vector<int> check_validity(int N,
vector<int> X, vector<int> Y,
vector<int> S, vector<int> E,
vector<int> L, vector<int> R) {

//

REP(i, Q) {
// Compute the i-th query
int start = S[i]*2;
int end = E[i]*2 + 1;
queue<int> que;
vector<bool> vis(2xN);
que.push(start) ;
vis[start] = true;

while (!que.empty()) {
int v = que.front();
que.pop();
int vert = v/2, form = v/2;

// Move
for (int u : adjlvert]) {
if ((form == 0 && u >= L[i]) || (form == 1 && u <= R[i])) {
int uu = u*2 + form;
if (Mvis[uu]) {
que.push(uu) ;
vis[uu] = true;
}
}
}

// Change form

if (form == 0 && vert <= R[i]) {
int uu = vert*2 + 1;
if (Mvis[uul) {

13



que.push(uu) ;
vis[uul] = true;
}
}
}

A[i] = visl[end];

return A;

}

We have used an implementation trick: we represent node (v,i) as an
integer 2v+i. Now for every query we do a single BFS in a graph with O(N)
vertices and O(M+N) edges, thus the total time complexity is O(Q(N+M)).

2.2 Solving problem on a line graph — the first approach

Another simplification we can do when solving a problem on a graph, is to
make this graph simpler. One idea would be to try to solve the problem on
a tree, or even on a line graph (in which all vertices are connected in a line).
Since this is what subtask 3 is about, it definitely is worth trying.

Why the problem on the line is simpler? Recall that we can solve the
problem by calculating a set V7, of vertices that are reachable from S using
vertices with numbers at least L and a set Vg of vertices that are reachable
from E using vertices with numbers at most R. The answer to the query is
positive, if sets Vi, and Vg intersect. These sets looks kind of arbitrary, and
to calculate them and their intersection we spend O(N + M) time.

However, in a line graph, every such set forms a continuous range, thus it
can be described by two numbers: the position of the first and the last vertex
in the range. And we can calculate intersection of such ranges in constant
time. Indeed, if we store a range as a pair of numbers, the intersection code
is as follows:

bool ranges_intersect(const pair<int,int>& a,
const pair<int,int>& b) {
return ! (a.second < b.first || b.second < a.first);

}

The first thing we need to do is to calculate for each vertex its position
on the line, i.e. its distance from the first vertex on the line. We can do it
by selecting one of the two vertices with degree 1, and traversing the line,
every time going to a neighbour not yet visited:

vector<int> position(N);
int v = 0, prev = -1;
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REP(i, N) {
if (adjl[i].size() == 1) { v =1; }
}
REP(i, N) {
position[v] = i;
int idx = (adj[v] [0] == prev);
prev = v;
v = adjlv] [idx];
}

Now we need to think how to calculate the sets Vi, and Vi. The set V7,
is the maximal range on the line that contains vertex S and constitutes of
vertices with numbers from range [L, N — 1]. That boils down to slightly
more general problem: having a line with numbers, and a certain position
x, calculate the maximal range that contains x and constitutes of positions
with numbers from certain range [lo, hi].

We can independently find the left end and the right end of this range.
So let’s focus on the left end. We start from a range containing only position
x, and increase it to the left one element at a time, until we hit an element
whose value is outside the range [lo, hi]. That suggests that we can use
binary search to find the left endpoint, if we can quickly calculate minimum
and maximum values in ranges on a line:

int 1b = 0, ub = x;
while (1b != ub) {
int s = (1b+ub) / 2;
int mi = minimum_on_range(s, x);
int ma = maximum_on_range(s, x);
if (lo <= mi && ma <= hi) { ub = s; }
else { 1b = s+1; }
}

return 1b;

Calculating minimums (or maximums) in ranges is a classic problem
called RMQ (Range Minimum Query). One solution to this problem is to
use segment tree. Then each query can be calculated in O(log N) time. For
completeness we include here one implementation of such a tree:

struct tree_t {
vector<int> mins, maxs;
int base;
int n;

tree_t (const vector<int>& vals) {

n = vals.size();
base = 1;

15



while (base < n) { base *= 2; }
mins.resize(2x*base) ;
maxs.resize(2x*base) ;
REP(i, n) {
mins[base + i] = maxs[base + i] = vals[i];
}
for (int i = base-1; i >=1; i--) {
mins[i] = min(mins[2*i], mins[2*i+1]);
maxs[i] = max(maxs[2*i], maxs[2*i+1]);
}
}

pair<int,int> query(int x1, int xr) {
// Returns (min, max) on range [x1, xr]
x1 += base;
Xxr += base;
int mi = min(mins([x1], mins[xr]);
int ma = max(maxs[x1], maxs[xr]);
while (x1/2 !'= xr/2) {
if (Cx1&1) {
mi = min(mi, mins([x1+1]);
ma = max(ma, maxs[x1+1]);
}
if (xr&l) {
mi = min(mi, mins[xr-1]);
ma = max(ma, maxs[xr-1]);

}
x1 /= 2;
xr /= 2;
}
return make_pair(mi, ma);

}
};

Since range query works in O(log N) time, the binary search function
for finding the left end of the set range works in O(log2 N) time. Here we
present the code to the function; it is a good exercise to complete it with
code calculating the right end of the set range:

pair<int,int> calculate_range(tree_t& tree, int N,
int x, int lo, int hi) {
// Calculate maximal range of positions that contains position x
// and elements are in range [lo, hi].
pair<int,int> ans;

int 1b = 0, ub = x;
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while (1b != ub) {
int s = (1b+ub) / 2;
pair<int,int> mima = tree.query(s, x);
if (lo <= mima.first && mima.second >= hi) { ub = s; }
else { 1b = s+1; }
}

ans.first = 1b;
// ... (calculate ans.second)

return ans;

Finally we only need to construct the tree, based on numbers of vertices
along the line, and use calculate_range function to proceed queries:

// Construct segment tree
vector<int> numbers(N) ;
REP(i, N) {

numbers [position[i]] = i;
}

tree_t tree(numbers);

REP(i, Q) {
// Compute the i-th query
pair<int,int> Lrange = calculate_range(tree, N,
position([S[il], L[i], N-1);
pair<int,int> Rrange = calculate_range(tree, N,
position[E[i]], O, R[i]);
A[i] = ranges_intersect(Lrange, Rrange);

}

The time complexity of determining positions of vertices along the line
and constructing the segment tree is O(NN), and time complexity of each
query is O(log® N), so the total time complexity is O(N 4 Qlog? N).

It turns out that we can improve the time of calculate_range function.
Instead of making binary search, we can calculate the left end directly on
segment tree. We start in a leaf of the tree corresponding to the position x,
and we go upwards the tree. The first time we find a node which has a left
sibling y and the range of numbers in the segment of y is not contained in
[lo, hi], we know that the left end must be inside this segment. So we can
now go downwards the tree, finding the last position in this segment that
violates [lo, hi] constraint. The code is as follows:

int range_left(int x, int lo, int hi) {
X += base;
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while (x > 1 && ("x&1 || x—— && lo <= mins[x] && maxs[x] <= hi)) {
x /= 2;

}

if (x == 1) { return 0; }

while (x < base) {
if (lo <= mins[2*x+1] && maxs[2*x+1] <= hi) { x = 2*x; }
else { x = 2*x+1; }

}

return x+1 - base;

}

Thus the complexity of each query reduces to O(log N) and the complex-
ity of the whole program to O(N + Qlog N).

2.3 Solving problem on a line graph — the second approach

There is another approach for the line graph. But in this approach, before
answering any queries, we will do some preprocessing.

Suppose we process query (S, E, L, R) and we want to find a set V7, so the
set all vertices reachable from S, but we can only go through vertices with
numbers in range [L, N — 1]. We can construct a new graph that contains
the same set of vertices, but contains only edges between vertices in range
[L, N — 1]. In this new graph set V, is the connected component containing
vertex S.

To calculate connected components we can simply use any graph-traversal
algorithm. But there is another solution, using disjoint set union data struc-
ture, that allows us to solve dynamic version of this problem, in which we
add edges to a graph.

Why is it interesting? Well, we can sort all our queries in non-increasing
order based on values L;. We start from a graph without any edges, and
we iterate over queries in this order. For a given query we add to the graph
all the edges that connects vertices with numbers in range [L;, N — 1] and
has not been added yet. We maintain DSU structure in which we track all
connected components, and for each component we remember the positions
of left-most and right-most vertex from the component. Therefore we can
quickly query the range for the vertex S and store it.

The DSU structure will be located in array fu which stores parents of
DSU trees. For roots we have fu[i] = -1 and in this case arrays pos_sml [i]
and pos_big[i] will store left-most and right-most vertices of the compo-
nent. Here are two functions of DSU structure to find the root of the com-
ponent and join two components:

int fufind(vector<int>& fu, int x) {
return fulx] < 0 ? x : fulx] = fufind(fu, fulx]);
}
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void fujoin(vector<int>& fu,

vector<int>& pos_sml, vector<int>& pos_big,
int x, int y) {

x = fufind(fu, x);

y = fufind(fu, y);

if (x '=y) {
fulyl = x;
pos_sml[x] = min(pos_sml([x], pos_sml[yl);
pos_bigl[x] = max(pos_big[x], pos_biglyl);

}

The following code process the queries:

vector<int> idx(Q);
vector<int> fu(N), pos_sml(N), pos_big(N);
vector<pair<int,int> > Lrange(Q);

// Sort queries
REP(i, Q) { iax[i] = i; }
sort(idx.begin(), idx.end(),
[&L] (int i, int j) { return L[i]l > L[jl; B;

REP(i, N) {

fuli] = -1;

pos_sml[i] = pos_bigl[i] = position[i];
}

int next = N-1;

REP(i, @ {
int limit = L[idx[il];
for ( ; next >= limit; next——) {
// Try to join vertex next
for (int u : adjlnext]) {
if (u >= limit) {
fujoin(fu, pos_sml, pos_big, next, u);
}
}
}
int lead = fufind(fu, S[idx[ill);
Lrange[idx[i]] = make_pair(pos_sml[lead], pos_big[lead]);
}

We leave calculating sets Vi as an exercise — the code is symmetrical to
the above. The sorting of vertices works in O(Q log Q) time (but since we
are sorting numbers smaller than N we can replace it with counting sort
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working in O(Q + N) time). Invoking fujoin function O(N) times runs in
O(Nlog™ N) time. Therefore the whole solution runs in O(Nlog™ N + Q)
time.

2.4 Solving general problem

Let’s try to solve the full problem, using some ideas we have developed when
solving the simplified version on a line. The crucial idea was the fact that
each set of reachable vertices could be represented as a single range. It turns
out that we can reorder the vertices of our graph in such a way that each
connected component that was ever created during the process of adding
edges to the graph, will consist of vertices whose numbers are from a single
range.

How to do this? The idea is to keep track of all joins performed in the
DSU structure. We create a binary tree with NV leaves representing all single-
vertex components at the beginning of the algorithm. Each internal node v
represents a component created by joining components represented by two
children nodes. Thus leaves in the subtree rooted in v correspond to vertices
in the component represented by node v.

Having such a tree we can traverse it using DFS, and assign integers from
0 to N — 1 to the leaves in DFS order. Thanks to that for every subtree
numbers assigned to leaves in this subtree will have consecutive numbers,
thus can be represented by a single range.

To implement this we will extend our DSU structure. Indices smaller
than IV in fu array represent single-vertex components, and indices from N
to 2N — 2 represent bigger components. Apart from that we have array tree
in which tree[v] contain left and right children of node v:

void fujoin(vector<int>& fu,
vector<pair<int,int> >& tree, int x, int y) {

x = fufind(fu, x);
y = fufind(fu, y);
if (x !=y) {

int p = fu.size();

fulyl = p;

fulx] = p;

fu.push_back(-1);
tree.push_back(make_pair(y, x));

During the DFS traversal we replace values of tree[v] by the minimal and
maximal number of leaf in the subtree. Thus after the traversal, treefv] will
denote the range representing component of node v:

pair<int,int> dfs(vector<pair<int,int> >& tree,
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int v, int N, int& k) {

if (v < N) {
treelv] .first = treel[v].second = k;
k++;

} else {

A = dfs(tree, treel[v].first, N, k);
pair<int,int> B = dfs(tree, treel[v].second, N, k);
treel[v] .first = min(A.first, B.first);
tree[v] .second = max(A.second, B.second);
}

return make_pair(tree[v].first, treel[v].second);

pair<int,int>

As in the algorithm on a line, we sort the queries, and iterate over them
in certain order. After finding the component for vertex S; we store cor-
responding tree node in array leads[i]. Then we perform DFS and gather
information about sets V7, for all queries:

int k = 0;
dfs(tree, tree.size()-1, N, k);

REP(i, Q) {
Lrange[i] = tree[leads[i]];
}

We can do the symmetrical algorithm for sets V. Unfortunately, to an-
swer a query we cannot simply intersect ranges for corresponding sets V7,
and Vi. The problem is that the reordering of the vertices we did creat-
ing ranges V7, is different than the reordering of the vertices for ranges Vi.
Thus each vertex ¢ in the graph has two numbers: number z; which comes
from the first reordering, and number y; which comes from the second re-
ordering. Therefore, we can represent each vertex as a point (z;,y;) on a
two-dimensional plane:

REP(i, M) {
points[i] .first = tree[i].first;

}

In this setting each query is a question: is there any point on a plane
whose = coordinate belongs to range V; and whose y coordinate belongs
to range Vgi. Suppose that we have a data structure tree_2d_t that can
answer such queries about points in rectangles. Then the final code is easy:

tree_2d_t tree_2d(points);

// Answers
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REP(i, Q {
A[i] = tree_2d.query(Lrange[i].first, Lrange[i].second,
Rrange[i] .first, Rrangel[i].second) > 0O;

}

So how to implement a data structure for locating points on a two-
dimensional plane? There are N points represented by coordinates (x,y),
and we need to answer queries of form: how many points are located in a
rectangle [z, zr] X [y, yr]? The idea is to build a segment tree that allows
for querying over the first dimension (x coordinates), creating in each node
of this tree a nested data structure that allows for querying over the second
dimension (y coordinates).

Each node of a segment tree corresponds to some range [z, x| over the
first dimension and the nested data structure will be a sorted array that
contains y coordinates of all points with = coordinates in range [z, zR].
Then querying in the nested structure boils down to two binary searches in
time O(log N). Therefore full query takes O(log® N) time.

Initialization of the data structure requires sorting the points along x
coordinates, putting them into the leaves of the segment tree, and performing
a merge-sort-like algorithm to populate arrays in the inner nodes. This
requires O(N log N) time. The full code is as follows:

struct tree_2d_t {
vector<pair<int,int> > pts;
vector<vector<int> > nodes;
int base;
int n;

tree_2d_t(const vector<pair<int,int> >& points) {
pts = points;
sort(pts.begin(), pts.end());
n = pts.size();
base = 1;
while (base < n) { base *= 2; }
nodes.resize(2*base) ;
REP(i, n) {
nodes[base + i].push_back(pts[i].second);
}
for (int i = base-1; i >=1; —-i) {
merge (nodes[2*i] .begin(), nodes[2*i].end(),
nodes [2*i+1] .begin(), nodes[2*i+1].end(),
back_inserter(nodes[i]));
}
}

int query(int x, int yl, int yr) {
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yl = lower_bound(nodes[x] .begin(),
nodes[x].end(), yl) - nodes[x].begin();
yr = lower_bound(nodes[x].begin(),
nodes [x] .end(), yr+1) - nodes[x].begin();
return yr - yl;

}

int query(int x1, int xr, int yl, int yr) {
// Returns number of points in rectangle [x1, xr) x [yl, yr)
x1 = lower_bound(pts.begin(),
pts.end(), make_pair(xl, -1)) - pts.begin();
xr = lower_bound(pts.begin(),
pts.end(), make_pair(xr+l, -1)) - pts.begin();
int cnt = 0;
x1 += base;
Xr += base-1;
cnt += query(xl, yl, yr);
if (x1 '= xr) {
cnt += query(xr, yl, yr);
}
while (x1/2 != xr/2) {
if ("x1&1) { cnt += query(xl+1l, yl, yr); }
if (xr&1) { cnt += query(xr-1, yl, yr); }

x1 /= 2;
xr /= 2;
}
return cnt;
}
}s;

Thus the total complexity of the algorithm is O(Nlog N + Qlog® N).
This is enough to solve all subtasks.
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3 Seats

We are given a rectangular grid of size H x W in which all numbers from 0
to HW —1 are written. We say that a subrectangle of area k is beautiful, if it
contains all numbers from 0 to & — 1 inside. We must calculate the number
of beautiful subrectangles after each of @ queries. Every query swaps two
numbers in the grid.

Function give_initial_chart will be called exactly once at the begin-
ning of our program, to give us a chance to inspect the initial grid. We
just store all arguments in global variables. We can use the same names for
global variables as for function arguments, by using C++ global namespace
prefix ::.

int H, W;
vector<int> R, C;

void give_initial_chart(int H, int W,
vector<int> R, vector<int> C) {
::H=H; ::W=W;
::R=R; ::C = C;

Number ¢ in the grid is placed in row R[i] and column C[i].

3.1 The first approach — maintaining bounding boxes

As usual, a good idea is to simplify the problem and see how to solve it
independently for each query. A query swaps numbers a and b, so we can
just swap their rows R[a] and R[b], as well as their columns Cfa] and C[b)].
We can try two different approaches. Since we are looking for rectan-
gles containing consecutive numbers staring from 0, we can either iterate
through all rectangles and see whether they contain correct numbers or iter-
ate through all prefixes of numbers and see whether they form a rectangle.
For the latter approach let’s say that we have selected numbers from 0
to k. How to test if they form a rectangle? A rectangle can be described by
four values Rin, Rmazs; Cmin and Crya. as the set of cells (r, ¢) that satisfies
Roin <7 < Ripaz and Cryin < ¢ < Chuge- 1t is easy to calculate candidates
for these four values: we can iterate over numbers, and for each number 7
update the bounds to ensure that cell R[i], C[i] is contained within bounds:

min(R_min, R[i]); R_max = max(R_max, R[i]);
min(C_min, C[i]); C_max = max(C_max, C[i]);

R_min
C_min

That’s how we find the tightest bounds that contain all cells. Now we
must check if no number bigger than k is inside these bounds. If not, we have
found beautiful rectangle and we can increase the counter. We are ready for
our first code:
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int swap_seats(int a, int b) {
swap(R[al, R[bl);
swap(C[al, C[bl);
int ans = 0;
REP(k, H*W) {
int R_min = R[0], R_max = R[0];
int C_min = C[0], C_max = C[0];
REP(i, k+1) {
R_min = min(R_min, R[i]); R_max
C_min = min(C_min, C[i]); C_max
}
bool ok = true;
for (int i = k+1; i < H*xW; i++) {
if (R_min <= R[i] && R[i] <= R_max &&
C_min <= C[i] && C[i] <= C_max) {
ok = false;
break;
}
}
if (ok) {
ans++;

}

max(R_max, R[i]);
max (C_max, C[il);

}
return ans;

3

For each of @ queries we test each prefix (we have HW of them) and
for this prefix we go through all HW numbers. Thus the time complexity is
O(QH?W?), which is enough to pass subtask 1.

Note, however, that we make a lot of unnecessary work. For each prefix
we calculate bounds from scratch, and since we add numbers one by one,
it’s better to update the previous bounds by comparing them with current
RJi], C[i]. The second observation is that we don’t need to check the numbers
bigger than k. We want to know if numbers from 0 to k form a rectangle of
given bounds. From the bounds we can calculate the size of this rectangle,
which is

S = (Rmaz +1- Rmin)(cmaz +1- Cmin)

Thus the rectangle contains exactly S cells, so if they are filled only with
numbers from 0 to k£ we must have k+1 = 5.

int swap_seats(int a, int b) {
swap(R[al, R[b]);
swap(C[al, C[bl);
int ans = 0;

int R_min = R[0], R_max = R[0];
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int C_min = C[0], C_max = C[0];

REP(i, HxW) {
R_min = min(R_min, R[i]); R_max = max(R_max, R[il);
C_min = min(C_min, C[i]); C_max = max(C_max, C[i]);
int Size = (R_max + 1 - R_min) * (C_max + 1 - C_min);
if (i+1 == Size) {

ans++;

}

}

return ans;

The time complexity is reduced to O(HW') work per query, so O(QHW)
work in total. This passes subtasks 1 and 2.

This approach can also be extended to solve subtask 4, in which the
distance between a and b in each query is smaller than some D. Assume
that a < b. Note that if we swap positions of numbers a and b, all numbers in
the prefix of length a stay the same, so the beautiful rectangles for numbers
in this prefix will stay the same. Beginning with number i = a, the following
rectangles may differ, but then again after number i = b will again stay
the same (since the set of numbers in range [a, b] did not change, only their
order). Thus we only need to recalculate beautiful rectangles in this [a, b]
range of length O(D).

The easiest way to do this is to save all the values of Ry,in, Rmazs Cmin
and C),q, for all the indices, together with information whether the rectangle
for such index was beautiful. We will also keep track of total number of
beautiful rectangles, and every time we recalculate certain value, we update
this number:

vector<int> R_mins, R_maxs;
vector<int> C_mins, C_maxs;
vector<bool> beaut;

int total;

void update_maxmin(int i) {
R_mins[i+1] = min(R_mins[i], R[i]);
R_maxs[i+1] max (R_maxs[i], R[i]);
C_mins[i+1] min(C_mins[i], C[i]);
C_maxs[i+1] = max(C_maxs[i], C[il]);
int Size = (R_maxs[i+1] + 1 - R_mins[i+1]) *
(C_maxs[i+1] + 1 - C_mins[i+1]);
if (i+1 == Size && 'beaut[i+1]) {
beaut [i+1] = true;
total++;
} else if (i+1 !'= Size && beaut[i+1]) {
beaut [i+1] = false;
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total—--;

In function give_initial_chart we initialize all values:

R_mins.assign(HxW+1, H*W);
R_maxs.assign(HxW+1, -1);
C_mins.assign(H*W+1, H*W);
C_maxs.assign(H*W+1, -1);
beaut.assign(H*W+1, false);

REP (i, H*W) {
update_maxmin(i);

}

Finally, the code for the query is very simple. We just need to update
the values in range [a, ]:

int swap_seats(int a, int b) {
swap(R[a], R[b]);
swap(C[al, C[bl);
for (int i = min(a,b); i <= max(a,b); i++) {
update_maxmin(i) ;
}
return total;

}

This code has time complexity of O(HW + QD) and it passes subtask 4
(and also subtasks 1 and 2, since obviously D < HW).

3.2 The second approach — limited sizes of a grid

How to speed up the above solution? For every query we iterate over all
HW numbers to find which prefixes form beautiful rectangles. But how
many beautiful rectangles can we have? Well, every rectangle must contain
the previous one, therefore it must be bigger. That means that the sum of
its dimensions (width plus height) must be larger. And since the sum of
dimensions of a subrectangle is limited by H + W, there are at most H + W
beautiful rectangles.

Let’s take a look at constraints of subtask 3. Although the grid in this
subtask can be quite big, both dimensions H and W are limited, thus H+W
also. But how to iterate over only beautiful rectangles?

Suppose that after investigating number ¢ we found that our candidate is
given by boundaries Rin, Rmaz, Cmin and Ciee. If it satisfy our condition
for beautiful rectangle (i.e. its size calculated from boundaries is equal to
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i+ 1), then the next number ¢ + 1 will be outside, thus it will generate a
new candidate. But if the condition is not satisfied, then it’s possible that
some subsequent numbers will be inside the rectangle still not satisfying
the condition. Actually, if the size of candidate is S, then any number
smaller than S — 1 will certainly not satisfy the condition. Therefore we can
immediately jump to number S — 1.

Either the condition for this number is satisfied (that means we have
a beautiful rectangle, and number S will generate a bigger candidate), or
the condition is not satisfied, which means that the candidate generated by
number S —1 is already bigger. Either way, after a jump we generate a bigger
candidate. Thus maybe not all candidates we iterate over are beautiful, but
still we have only O(H + W) candidates.

The question is how to quickly test if the boundaries for all numbers
between 0 and k satisfy the condition. It’s enough to calculate minimums
and maximums for rows and columns for a prefix of length k 4+ 1. Once
again we can use here RMQ data structure, e.g. segment tree (see problem
Werewolf). Now we need to extend the tree_t structure with operation of
updating the value in a cell at position x. This operation runs in O(logn)
time, where n is number of cells in the structure:

void update(int x, int val) {

X += base;

mins[x] = maxs[x] = val;

while (x > 1) {
x /= 2;
mins[x] = min(mins[2*x], mins[2*x+1]);
maxs [x] max (maxs[2*x], maxs[2*x+1]);

}

}

We create two trees: one tree for querying minimums and maximums of
values RJ[i], and the other one for minimums and maximums of values C[i].
We declare two global variables:

tree_t* rows_tree;
tree_t* cols_tree;

and initialize them in give_initial_chart function:

rows_tree = new tree_t(R);
cols_tree = new tree_t(C);

Now at the beginning of each query we must update the cells a and b of
both trees. Then we iterate over the candidates just the way we described
before:
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int swap_seats(int a, int b) {
swap(R[al, R[bl);
swap(C[al, C[bl);
rows_tree->update(a, R[al); cols_tree->update(a, Clal);
rows_tree->update(b, R[b]); cols_tree->update(b, C[bl);

int R_min, R_max;
int C_min, C_max;
int ans = 0, i = 0;
while (i < H*W) {
tie(R_min, R_max) = rows_tree->query(0, i);
tie(C_min, C_max) = cols_tree->query(0, i);
int Size = (R_max + 1 - R_min) * (C_max + 1 - C_min);
if (i+1 == Size) {
ans++;
i++;
} else {
i = Size-1;
}
}
return ans;

}

The initialization of trees runs in O(HW) time. Then for each query
we do two tree updates in time O(log HW) and we iterate over at most
O(H 4+ W) candidates, for each of them making two tree queries in time
O(log HW). Thus total time complexity is O(HW + Q(H + W)log HW).
This algorithm solves subtask 3.

3.3 The third approach — one-dimensional grid

Now, let’s move to subtask 5. The grid can be big, but we have H = 1, so
it can only have one row. Therefore we can simplify our problem and make
a one-dimensional version of it.

The idea is: how to characterize that a set of cells in one-dimensional
array is a rectangle? In array rectangle becomes just a contiguous segment
of cells. Therefore the condition that characterizes rectangles in arrays is as
follows: the set must be connected.

So far we have managed to maintain connectivity information by storing
two values Cp,ipn and Chy,q,. Every time the distance C, 40 +1—Chyin between
them was equal to the number of cells in the set, the set was connected.

But we can use different condition that describes connectivity. Let’s color
the cells from the set black, and the rest of them white (also add white cells
outside the array). Now, the set of black cells is connected if and only if the
number of pairs of adjacent cells with different color is exactly two.
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That’s true, since every connected component generates two such pairs.
Thus we can start from a set containing only one black cell (with number 0
in it). This cell already generates two pairs. Now, let’s add new black cells
and observe how does it change the number of pairs. Let’s call line[c] the
number in cell ¢ (thus line[C[i]] = 7).

If we add number ¢ at position ¢ = C[i], then it can affect only two pairs
(¢c—1,¢) and (¢,c+1). For the first pair if number line[c — 1] is greater than
1, then it means that cell ¢ — 1 is white, and painting cell ¢ black creates
new pair. On the other hand if ¢ — 1 is black, then painting cell ¢ black
removes one pair. The similar case is with (¢, ¢+ 1) pair. The following code
calculates how number changes after painting number ¢:

int calc_delta(int i) {
int ¢ = C[i];
int num = 0;
num += (¢ == 0 || line[c-1] > i) 7 1 : -1;
num += (¢ == W-1 || line[c+1] > i) 7 1 : -1;
return num;

If we make prefix sums of these deltas, then every time we hit value 2,
we have a beautiful rectangle:

int swap_seats(int a, int b) {
swap(Cl[a], C[bl);
swap(line[C[al]l, 1ine[C[bl1);

int ans = 0, pref = 0;
REP(i, W) {
pref += calc_delta(i);
if (pref == 2) {
ans++;
}
}

return ans;

But this is solution still requires O(W) work per query, so it is not very
efficient. How to speed it up? We would need a data structure to maintain
the sequence of “deltas”, i.e. changes after painting subsequent numbers.
The first operation needed from this data structure would be updating a
single entry in the sequence of deltas. Indeed, invocation of calc_delta(i)
depends only on elements at positions C[i], C[i] — 1 and C[i] + 1, therefore
if we change element at position Cla], it will only require changing deltas at
indices Clal], Cla] — 1 and C[a] + 1. These are constant number of updates.
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The second operation is to calculate how many values 2 we have in the
prefix sum of the delta sequence. In general, it is not easy to maintain it,
but we have a nice property that the values never got below 2 (we always
have at least one connected component). Moreover, since calc_delta(0)
is equal to 2, we can simplify it a little bit, by replacing it by 0 (we add a
special-casing to calc_delta function).

Now our structure needs to support the following operations on a se-
quence delta: (1) update a single element of the sequence, (2) get the num-
ber of zeros in the prefix sum of the sequence, provided that all numbers in
prefix sum are non-negative.

It turns out that we can implement such a data structure using a segment
tree, so that the former operation runs in O(logn) time (where n is the
length of the sequence), and the latter in constant time. We get to this
in a minute, but for now we assume that we have such structure called
prefixsum_zeros_tree_t and we implement the rest of the solution. We
have some additional variables:

vector<int> line;
vector<int> delta;
prefixsum_zeros_tree_t* delta_tree;

In give_initial_chart function we do natural initialization of these
variables:

line.assign(W, 0);
delta.assign(W, 0);

REP(i, W) {
line[C[i]] = i;
}
REP(i, W) {
deltal[i] = calc_delta(i);
}

delta_tree = new prefixsum_zeros_tree_t(delta);

Now the code of the update function and swap_seats function is quite
short:

void update_delta(int c) {
if (¢ < 0 || ¢ >= W) return;
int i = linel[c];
deltal[i] = calc_delta(i);
delta_tree->update(i, deltal[i]);
}

int swap_seats(int a, int b) {
if (H '= 1) return -1;
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swap(C[a], C[bl);

swap(line[C[al], line[C[b]1);

for (dnt i = -1; 1 <= 1; i++) {
update_delta(Cl[a]+i);
update_delta(C[b]+i);

}

return delta_tree->count_prefixsum_zeros();

The time complexity of initializing the tree is O(W) and the time of a
single query is O(log W). Therefore the total complexity is O(W +Q log W).

3.4 Interlude — data structure for counting zeros in the pre-
fix sum

All we left with is implementation of prefixsum_zeros_tree_t data struc-
ture. We have said, that we can use a segment tree here, so we need to see
what kind of information we need to maintain for each node of the segment
tree. Each node corresponds to some fragment of a sequence. Unfortunately,
we cannot directly count zeros for a prefix sums of this fragment, since we
do not know cumulative sum for numbers before this fragment. But since
we know that the prefix sums are always non-negative, we know that only
minimal values obtained in prefix sums for the fragment can become zeros
in prefix sums for the whole sequence.

Therefore for each node we maintain three values: cnt (number of min-
imas), hl (difference between 0 and minimum), and hr (difference between
cumulative sum on this fragment and minimum). We store them in info_t
structure. It is easy to create such a structure for a fragment of length 1:

struct info_t {

int hl;

int hr;

int cnt;

info_t() : h1(0), hr(0), cnt(1) { }
}s;

info_t single(int val) {
info_t I;
I.hl = max(-val, 0);
I.hr = max(val, 0);
I.cnt =1 + (val == 0);
return I;
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The more involved operation is joining information from two nodes which
are left and right children of a common parent. We have to consider three
cases, based on difference between minimal values of these two fragments. If
they are equal, all of them becomes minimas of joint fragment. If either of
them is smaller, the other ones could not be minimas any more:

info_t join(const info_t& L, const info_t& R) {
info_t I;
int diff = L.hr - R.hl;
if (diff == 0) {
I.hl = L.hl;
I.hr = R.hr;
I.cnt = L.cnt + R.cnt - (L.hr == 0);
} else if (diff < 0) {

I.hl = L.hl - diff;
I.hr = R.hr;
I.cnt = R.cnt;
} else {
I.hl = L.hl;

I.hr = R.hr + diff;
I.cnt = L.cnt;
}

return I;

The rest of the code is pretty standard for segment trees:

struct prefixsum_zeros_tree_t {
vector<info_t> tree;
int base;
int n;

prefixsum_zeros_tree_t(const vector<int>& vals) {
n = vals.size();
base = 1;
while (base < n) { base *= 2; }
tree.resize(2xbase);
REP(i, n) {
tree[base + i] = single(vals[i]);
}
for (int i = base-1; i >= 1; i--) {
tree[i] = join(tree([2*i], tree[2*i+1]);
}
}

int count_prefixsum_zeros() {
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return tree[l].cnt - 1;

}

void update(int x, int val) {
X += base;

tree[x] = single(val);
while (x > 1) {

x /= 2;

tree[x] = join(tree[2*x], tree[2*x+1]);
}

}
};

3.5 Final touches

It turns out that having solved version with H = 1 we have almost everything
to solve the full problem. Remember, that we said that a set of cells in one-
dimensional array was a rectangle if this set was connected. Can we give
a similar simple characterization of a rectangle in a two-dimensional grid?
Yes, this set must be connected and convez.

It means that it cannot have any “holes” or angles pointing “inwards”.
In fact, it must have exactly four angles, each pointing “outwards”. But
what is more interesting, this can also be characterized by observing small
parts of the grid.

Now we are interested in squares of size 2 X 2 on a grid. Note that in case
of a rectangle, there will be exactly four such squares that contain exactly
one black cell (these corresponds to four “outwards” angles). The rest of the
squares will contain zero, two, or four black cells; in particular there will be
no squares that contain exactly three black cells.

It turns out that this is not only necessary, but also a sufficient condition
for a set of cells to be a rectangle: the number of squares with one black cell
is 4, and the number of squares with three black cells is 0. Since on each
image containing at least one black cell the number of squares with one black
cell is at least 4, this condition can be simplified even more: the number of
squares with one black cell plus the number of squares with three black cells
is equal to 4.

Thus we can use the very same data structure that counts zeros in prefix
sums. Now we assume that cell grid[r][c] stores the number in row r and
column c¢. The code is more involved, since now we need to update number
of cells in each 2 x 2 square that intersects with updated cell:

vector<vector<int> > grid;

vector<int> delta_2;
prefixsum_zeros_tree_t* delta_2_tree;
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int calc_delta_2(int i) {
if (i == 0) return O;
int num_1 = 0, num_3 = O;
REP(ir, 2) REP(ic, 2) {
int cnt = 0;
REP(iir, 2) REP(iic, 2) {

int nr = R[i] - 1 + ir + iir;

int nc = C[i] - 1 + ic + iic;

if (nmr < 0 || nr >=H ||

nc < 0 || nc > W || grid[nr][nc] > i) ++cnt;

}
if (cnt == 1) num_1++;
else if (cnt == 2) num_1--;
else if (cnt == 3) num_3++;
else num_3--;

}

return num_1 + num_3;

}

void update_delta_2(int r, int c) {
if (r <0 |l r>H ||l c<0 ||l ¢c > W) return;
int i = grid[r][c];
delta_2[i] = calc_delta_2(i);
delta_2_tree->update(i, delta_2[il);

+

int swap_seats(int a, int b) {
swap(R[a], R[b]);
swap(C[al, C[bl);
swap(grid[R[al]l [C[al], grid[R[b]l][C[bl]);
for (int ir = -1; ir <= 1; ir++) {
for (int ic = -1; ic <= 1; ic++) {
update_delta_2(R[al+ir, C[al+ic);
update_delta_2(R[b]l+ir, C[bl+ic);
}
}

return delta_2_tree->count_prefixsum_zeros();

The total code complexity of the final solution is O(HW + Qlog HW).
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4 Mechanical Doll

In this problem we need to create a circuit that controls motions of a me-
chanical doll. The circuit consists of exactly one origin (a device number 0),
exactly M triggers that cause motions (devices numbered from 1 to M), and
some number of switches (devices numbered from —1 to —5).

Devices have exits, each of them must be connected to another (possibly
the same) device. The origin and triggers have one exit. Switches have two
exits X and Y; every time we go through a switch, we use the exit that was
not used previously on this switch (the first time we use exit X).

Our aim is to create connections in such a way, that starting from the
origin and following the connections, we will visit triggers N times in order
A, Aq,..., Any_1, we will visit each switch an even number of times, and
we will come back to the origin. For full points we cannot use more than
N +log, N switches.

On the following picture there is a circuit with two triggers and one
switch. Following connections of the circuit, we will visit triggers in order

1,2,1.
L -

(@ ! !

4.1 Warmup

We start by solving subtask 1 in which every trigger appears in sequence A
at most once. Therefore we do not have to use any switches, we just connect
triggers in the required order.

<o

void create_circuit(int M, vector<int> A) {
A .push_back(0);
int N = A.size();
vector<int> C(M+1);
vector<int> X, Y;

REP(i, N)
CIlA[il]
}

~

AL(i+1) % NI;

answer (C, X, Y);

First of all, we can treat the origin as a trigger, and put its device number
at the beginning (or at the end, it does not matter) of sequence A. Then for
every trigger ¢ that appears in the sequence, we connect its exit C[i] to the
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next trigger in the sequence. We don’t use any switches, so we left vectors
X and Y empty.

In subtask 2 we can have triggers that appears twice in sequence A.
Suppose that trigger i appears at positions jy and j; in the sequence. Then
we can connect the exit of this trigger to a switch, the exit X of this switch
to trigger A[jo + 1] and the exit Y of this switch to trigger A[j; + 1].

vector<vector<int> > after (M+1);

REP(i, N) {
after[A[i]] .push_back(A[(i+1) % NI1);

}

int S = 0;

REP(i, M+1) {
const int size =
if (size == 0) {
} else if (size == 1) {

Cli] = after[i][0];

} else if (size == 2) {
Clil = --5;
X.push_back(after[i] [0]);
Y.push_back(after[i] [1]);

}

}

after[i] .size();

First of all, for each trigger ¢ we create list after[i] containing numbers
of triggers that appear after trigger ¢ in sequence A. Then for every trigger,
if it appears exactly once in the sequence (thus list after[i] has length 1),
then we just connect it to a fter[i][0]). Otherwise we create a new switch (by
increasing number of used switches S) and connect its exits to after|[i][0]
and after[i][1].

4.2 More than two appearances

In subtask 3 each trigger can appear up to four times. Let’s think what to do
with a trigger than appears exactly four times. We can create the following
gadget using three switches positioned in two layers:
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Such a gadget has four exits numbered from 0 to 3, exit 5 will be con-
nected to trigger after|i][j]. Note the order of exits on the picture.

What about a trigger that appears exactly three times? One could think
that we can create a gadget using two switches, like the one on the left of
the following picture:

0, 2 0, 2 1 1 0, 2
1
XY XY XY
T 1
1

i

i

Unfortunately, such a gadget does not work, since it creates a sequence
of triggers 0,1,2,1. A good idea is to use previous gadget with four exits,
but to “kill” one of its exits, by connecting it to the bottom layer (see the
middle picture). That would almost work, but there is a subtle catch here:
if we kill the last exit, we would visit all triggers in the correct order, but
we won’t visit every switch an even number of times (and this was also a
requirement in this problem). But killing any other exit is fine (for instance
killing the first one, like in the right picture). In the code we need to add
another if to handle sizes up to four:

} else if (size <= 4) {

Cli] = --8;

X.push_back(--8);

Y.push_back(--8);

if (size == 4) {
X.push_back(after[i] [0]);
Y.push_back(after[i] [2]);
X.push_back(after[i] [1]);
Y.push_back(after[i] [3]);
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} else {
X.push_back(C[il);
Y.push_back(after[i] [1]);
X.push_back(after[i] [0]);
Y.push_back(after[i] [2]);
}
}

The above idea can be generalized to solve the whole problem. If trigger
1 appears s times, we need to create a gadget G4 that has exactly s exits,
connect trigger 7 to this gadget, and connect the exit number j of this gadget
to after[i][j]. The function generate(after, S, X, Y) creates a desired
gadget, updating values S, X and Y, and returns the number of device which
is at the bottom of the gadget:

vector<vector<int> > after(M+1);
REP(i, N) {

after[A[i]] .push_back(A[(i+1) % N1);
}
int S = 0;
REP(i, M+1) {

C[i] = generate(after[i], S, X, Y);
}

Suppose we need to create a gadget G, for s = 2. We can construct it
recursively from one switch and two gadgets Gox—1. The exits of gadget Gy
will be just exits of these two gadgets shuffled:

For value s that is not a power of two, we find number k& such that
s < 2F < 25. Then we create gadget Gor and kill 28 — s of its exits. The
code is as follows:

int generate(const vector<int>& after,

int& S, vector<int>& X, vector<int>& Y) {
const int size = after.size();
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if (size == 0) {
return 0;
} else if (size == 1) {
return after[0];
} else {
int k = 1, K=0;
while (k < size) { k *= 2; K++; }

vector<int> revbits(k);
REP(j, k) {

revbits[j] = revbits[j/21/2 | ((j&1) << K-1);
}

const int id = --S;
REP(j, (k-1)/2) {
X.push_back(--S);
Y.push_back(--8);
}
REP(j, k) {
vector<int>& where = j%2 7 Y : X;
if (revbits([j] < (k-size)) {
where.push_back(id); // kill exit
} else {
where.push_back(after[ revbits[j]l - (k-size) 1);
}
}

return id;

Observe that we use array revbits[j] to store the number j after reversing
the order of its bits, when expressed in binary form. It is useful, since the j-th
exit from the left in the gadget Gy is exit number revbits[j]. When choosing
exits to kill, we take these whose numbers revbits[j] are smaller than 2% — s.
Thanks to that the remaining exits will have consecutive numbers, and we
can connect exit of number revbits[j] to trigger number after[revbits]j] —
(25 — 5)).

This solution uses at most 2s — 1 switches for a trigger that appears s
times in sequence A. Thus it uses at most 2N switches in total, which is
enough for getting half score for subtasks 5 and 6.

The problem is that we use too many switches if s is not a power of
two. One idea how to handle it, is use a better way of killing unused exits.
So far we killed exits with consecutive numbers, but it’s better to kill exits
that are located close to each other on the picture. Let’s see an example
with s = 5 and 2¥ = 8. If we kill the first three exits on the left, then one
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switch becomes unnecessary, since both of its exits will go to the bottom
layer. Therefore, we can remove this switch:

TR Tt 1

AN A

1

T

This is easier said than done, since we need to know which switches to
remove, and also we need to maintain correct order of connections on remain-
ing exits. Perhaps recursive implementation would be more straightforward
here, but nevertheless it can be implemented iteratively:

|

)

int generate(const vector<int>& after,
int& S, vector<int>& X, vector<int>& Y) {
const int size = after.size();
if (size == 0) {
return 0;
} else if (size == 1) {
return after[0];
} else {
int k = 1, K=0;
while (k < size) { k *= 2; K++; }

vector<int> revbits(k), go(k);
REP(j, k) {

revbits[j] = revbits[j/21/2 | ((j&1) << K-1);
}

// Define switches for the first K-1 layers
const int id = --S;
REP(lev, K-1) {
REP(j, 1<<lev) {
if ((j << K-lev) + (1 << K-lev) <= (k-size)) {
i // removed switch
} else if ((j << K-lev) + (1 << K-lev-1) <= (k-size)) {
X.push_back(id); // kill exit
Y.push_back(--8);
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} else {
X.push_back(--8);
Y.push_back(--S);

}

}
}

// Calculate the order of connections for the remaining exits
int ptr = 0;
REP(j, k) {

if (revbits[j] < (k-size)) {

} ;1se {
gol revbits[jl ] = after[ptr++];
}
}

// Define switches on the topmost layer
REP(j, k/2) {
if (2% + 2 <= (k-size)) {
;  // removed switch
} else if (2*%j + 1 <= (k-size)) {
X.push_back(id); // kill exit
Y.push_back(go[2*j+1]);
} else {
X.push_back(go[2*j]1);
Y.push_back(go[2*j+1]);
}
}
return id;
}
}

This way we use only s+ k — 1 switches. Therefore for subtask 5 in which
we have only one trigger, we use less than IV + log, IV switches, as required
for full points.

Unfortunately, this still does not give us full points for subtask 6, since
we can get additional logarithmic addend for more than one trigger, and we
won’t fit in the switch limit. But it turns out that we do not need a separate
gadget for every trigger. Indeed, we need only one gadget of size N + 1.
All triggers are connected to this gadget, and N + 1 exits of the gadget are
connected to triggers in the order they appear in sequence A:

int S = 0;
int id = generate(4, S, X, Y);
REP(i, M+1) {
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Clil = id;
}

This solution uses at most N + logy N switches and solves the whole
problem.

As an author of this task, I can reveal that it was inspired by a certain
mechanics in a puzzle computer game SpaceChem by Zachtronics. So if you
have enjoyed solving it, you could enjoy playing the game.
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5 Highway Tolls

In this problem we are given a connected undirected graph with N vertices
and M edges. The vertices are numbered from 0 to N —1. We are also given
two constants A and B (satisfying 1 < A < B).

Two vertices s and t are chosen, but unknown to us, and we must guess
them. In order to do that we can do the following procedure several times:
we can arbitrarily assign weights A and B to the edges of the graph, turning
it into a weighted graph. Then, we can ask what is the minimal possible
weight for a path between s and t in this weighted graph. We do this by
calling function ask, and we can only do a limited number of such calls.

5.1 The graph is a tree

When we are investigating paths in a graph, it is easier to deal with a tree,
since in a tree there is a unique path between every two vertices.

One simple observation is that we can easily determine the length of the
path p between secret vertices s and ¢ (that is the number of edges on the
path between s and t). If we assign equal weights of A to all the edges of
the graph, and function ask returns that the weight of path p is equal to W,
then the number of edges on the path is equal to W/A.

Another simple idea: we can determine if a certain edge e belongs to
path p. We just assign weight B to this edge, and weight A to all other
edges. Now if edge e does not belong to path p, the weight of this path is
still W. Otherwise, the weight of path p will be different (in fact it will be
W — A+ B).

If we apply such a test to every N —1 edges in the tree, we will determine
all edges that belongs to path p, so in fact we will determine the whole path.
The vertices s and t are the only vertices which are incident to exactly one
edge from this path.

vector<int> w;
long long W;
int M;

void find_pair(int N, vector<int> U, vector<int> V, int A, int B) {
M= U.size();
w.resize(M);
W = ask(w);

vector<int> deg(N);
REP(i, M) {
wl[i]l = 1;
if (ask(w) !=W) {
deg[U[i]]++;
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deg[V[i]]++;
}
wl[i] = 0;
}
int ans[2] = { -1, -1 };
REP(i, N) {
if (degli] == 1) {
ans[ ans[0] '= -1 ] = i;
}
}

answer (ans[0], ans[1]);

This code guesses vertices s and t after asking N questions, and solves
subtask 1.

Now we can move to subtask 3. The graph is no longer small, but it has
even simpler structure: it is a line on which vertices are located in increasing
numbers: 0,1,..., N —1. Since the amount of questions we can ask is limited
by 60, the good intuition would be that we need to use some kind of binary
search.

Indeed, since the edges on the line are ordered, we can use binary search
to locate the first edge e on path p. We do this as follows: we assume
that this edge is located in range [lb,ub]. Then we split this range into
[1b,mid] U [mid + 1,ub] and we assign to every edge from the left range
weight B, and to remaining edges weight A. If weight of the path is greater
than W, then we know, that at least one edge from path p is located in the
left range (so we can recurse to it), otherwise the first edge from p is located
in the right range:

int get_first_edge() {
int 1b = 0, ub = M-1;
while (1b !'= ub) {
int mid = (1b + ub) / 2;
REP(i, M) {
wli] = i <= mid;
}
if (ask(w) !'= W) {
ub = mid;
} else {
1b = mid+1;
}
}

return 1b;

When we find edge e, we know that the left endpoint of this edge will be
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vertex s. And since we have already determined the distance W/A between
vertices in one question, we know that t = s + W/A. The algorithm uses
only 1+ logy N questions.

W= ask();
int e = get_first_edge();
answer(e, e + W/A);

In subtask 2 the tree is no longer a line, but we are given vertex s for
free. Thus we only need to find vertex t. Probably using binary search it is
also a good idea. So let’s try to find the edge on path p that is furthest from
vertex s. We can order all edges in such a way that edges that are closer to
s in a tree get smaller numbers than edges further from s. And then we can
use similar binary search as on the line.

To get an ordering we can use either BFS (we can order the edges ac-
cording to their distance from s) or DFS (we can order them according to
the moment in time when we visit them). In the following code we use the
latter approach:

vector<vector<pair<int,int> > > adj;
vector<int> edge, vert;
int E;

void dfs(int v, int par) {
for (auto& i : adjlv]) {
if (i.second != par) {
vert[E] = i.second;
edge[i.first] = E++;
dfs(i.second, v);
}
}
}

First of all, we create the adjacency lists for the graph. Each list adj[v]
stores pairs (e, u) for every edge e = (v,u) of the graph. We also use ad-
ditional array edge in which we store the numbers of edges as we traverse
them with DFS, and also variable E to track the number of already traversed
edges. Moreover, in vert [e] we store the endpoint of edge e which is further
from s. So if el will be the last edge on path p, we return ¢t = vert[el]:

adj.resize(N);

REP(i, M) {
adj[U[i]].push_back(make_pair(i, V[il));
adj[V[il] .push_back(make_pair(i, U[i]));

}
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edge.resize(M);
vert.resize(M);
dfs(0, -1);

int el = get_last_edge();
answer (0, vertl[ell);

The last part is function get_last_edge. It is very similar to get_first_edge,
but know we are doing it backwards. Note that this function could return
—1 if the path has zero length. This cannot happen now, but it will become
useful later. Note also that this function does not need to know the length
of path p.

int get_last_edge()
int 1b = -1, ub =
while (1b !'= ub) {
int mid = (1b + ub + 1) / 2;
REP(i, M) {
w[i] = edgeli] >= mid;
}
if (ask(w) !'= W) {
1b = mid;
} else {
ub = mid-1;
}
}

return 1b;

{
E-1;

3

Overall, we can solve subtask 2 using 1 + log, N questions.

In subtask 4 we have a tree without any additional hints. But we already
have experience in binary search, so why not use it once more? We know that
if we impose some arbitrary order on the edges, we can use binary search to
find the edge from path p with the smallest number. In particular it means
that we can find some edge e = (u, v) on path p. If we remove this edge, the
tree will separate into two subtrees of roots u and v respectively. We know
that vertices s and ¢ are in different trees, so we can treat them as separate
problems.

In the first tree rooted in v we need to find vertex s. Observe that path
from v to s is part of path p. So we can use solution from subtask 2 to find
the last edge on this path, if we assign weight A to all edges outside the
subtree. In a similar way we can find vertex t in the second subtree:

int e = get_first_edge();

int v = Ulel, u = V[el;
int ans[2];
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REP(j, 2) {
E = 0;
edge.assign(M, -1);
dfs(v, u);

int el = get_last_edge();
ans[j] el == -1 7 v : vert[el];
swap(v, u);

}

answer (ans[0], ans[1]);

When calling dfs function, we assign u as the parent of vertex v, so we
won’t traverse edge (v, u), and we only traverse subtree rooted at v. Note
that this time function get_last_edge can return —1, which means that v
is one of the endpoint of path p.

The solution uses at most 1 + 3log, N questions. But actually this is
not the best upper bound we can get. Note, that two subtrees on which we
are calling function get_last_edge are smaller than IV vertices, in fact they
have N; and N, vertices respectively, where N = N; + N5. Thus we need
log, N1+logs No questions for them and that function achieves maximum for
N; = Ny = N/2, thus we need at most 2log, % = 2(logy N — 1) questions.
Therefore for the whole algorithm we need 3log, N — 1.

5.2 Constants have different parity

Now let’s move to subtask 5. This time the graph does not have to be a
tree, but the constants are fixed to A =1 and B = 2. In fact, the important
thing about them is that they are of different parity.

Consider a following question: suppose that we have partitioned the set
of all vertices in the graph into two subsets V; and V5. Can we tell whether
vertices s and t belong to the same set or different sets?

It turns out that we can. We assign odd weight A to every edge that
connects vertex from subset V; to a vertex from subset V5. To the remaining
edges (that connects vertices inside one subset), we assign even weight B.
We can see that every path that starts in vertex from V; and ends in vertex
from V5 must contain an odd number of edges of weight A, since it must
traverse between subsets odd number of times. Therefore the weight of this
path is odd. Conversely, every path that starts and ends in the same subset,
must contain an even number of edges of weight A, thus its weight is even.

The function that does that is simple. The argument grp is a vector of
length N, where grp[i] is equal to 0 or 1 depending if vertex ¢ belongs to
Vi or Vs

bool different_sets(const vector<int>& grp) {
REP(i, M) {
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wli] = grpl[U[i]l] == grp[V[il];
}
return ask(w) % 2 == 1;

3

We could use this idea to test whether a certain vertex v was chosen as
s or t. It is enough to consider V; = {v}, and if s and ¢ belong to different
sets, we know that v must be one of them. Unfortunately, to test all vertices
this way, we would use N questions, which is way too much to solve subtask
5.

But suppose that we have found two subsets Vi and V; such that one of
them contains vertex s, and the other one contains vertex t. Then we can
use binary search to find vertex ¢: we can partition V; into two subsets V; ;
and V; 2 of roughly the same size, and ask question about subsets Vs U V; 1
and subset V; 2. If function returns same group, then we know that ¢ must
be in subset V; 1, otherwise ¢t must be in subset V; 2. This way we reduced
the size of subset containing ¢ by half. Thus after log, IV steps we will reduce
it to one vertex. The below code does this, assuming that vector grp_diff
contains initial partition:

REP(j, 2) {
int 1b = 0, ub =
while (1b != ub)
int mid = (1b + ub) / 2;
REP(i, N) {
grpli] = (grp_diff[i] ~ j) && 1b <= i && i <= mid;

N-1;
{

}
if (different_sets(grp)) {
ub = mid;
} else {
1b = mid+1;
}
}
ans[j] = 1b;
}

answer (ans[0], ans[1]);

The same way we can do to find vertex s, and it also will cost log, N
questions. So the last thing is: how to find an initial partition into Vj
and V7 There is a nice trick to do this, that requires to consider only
log, N candidate partitions. In the i-th candidate we partition the vertices
according the i-th bit in their number: all vertices with this bit set to 0 go
into subset Vj, and all vertices with bit set to 1 go into subset V;. Note that
since s # t, there is at least one bit on which they differ, so at least one
candidate partition will satisfy our requirement.
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So the code is as follows:

REP(bit, 17) {
REP(i, N) {
grpli] = 11(i & 1<<bit);
}
if (different_sets(grp)) {
grp_diff = grp;
}
}

Overall we will ask at most 3log, N questions, so since log, N < 17, we
will fit under limit of 52 questions for subtask 5.

We can improve the above solution, so it only asks 2log, N questions.
In the first part we will consider log, N candidates, depending on the bits.
Thanks to that we can compute x = sxort.

Now we know that if vertex v was chosen, then the other chosen vertex
must be vxorz. So if we if use logy N question to determine vertex s, we
immediately know that t = sxorx. The code is as follows:

vector<int> grp(N), grp_diff;
int s_xor_t = 0;

REP(bit, 17) {

REP(i, N) {
grpli] = 11(i & 1<<bit);
}
if (different_sets(grp)) {
s_xor_t |= 1 << bit;
grp_diff = grp;
}
}
int 1b = 0, ub = N-1;
while (1b != ub) {
int mid + ub) / 2;

= (1b
REP(i, N) {
grplil = grp_diffl[i] & 1b <= i & i <= mid;
}
if (different_sets(grp)) {

ub = mid;
} else {

1b = mid+1;
}

}
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answer (1b, 1b ~ s_xor_t);

5.3 General problem

In graph that is not a tree there can be more that one shortest path between
vertices s and t. But even then we can use binary search to find an edge e
that lies on one of these shortest paths.

We can think about it as follows: at the beginning all edges have weight
A. Then we proceed in turns, in each turn we change the weight of some
edge from A to B and see whether the weight of a shortest path in weighted
graph increased. If yes, that means that the latest edge changed must lie on
a shortest path from s to t. Of course, we can implement this idea efficiently,
using binary search. That is exactly what function get_first_edge is doing.

That means that we have an edge e on some shortest path from s to t.
Let’s consider vertex v incident with this edge; that means that v lies on a
shortest path from s to t. Now we run a BFS to obtain a tree of shortest
paths from vertex v and order all edges in this tree according to their distance
from vertex v. Based on this order we can use get_last_edge function to
find the vertex s.

There is one subtle point here. Since shortest paths are not necessarily
unique, and we need a tree for get_last_edge function, we need to assign
weight B to all edges which belong to some shortest path, but do not belong
to BFS tree.

After running this algorithm, we rerun it constructing a BFS from vertex
s. This way we will find vertex ¢t. The code is as follows:

int e = get_first_edge();
int v = Ule];
int ans[2];

REP(j, 2) {
E = 0;
queue<int> q;
vector<int> d(N, -1);
dlv] = 0;
q.push(v);

while (!q.empty()) {
int w = q.front();

q.popO);

for (auto& i : adjlwl) {
if (d[i.second] == -1) {
d[i.second] = d[w] + 1;

vert[E] = i.second;
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edge[i.first] = E++;
q.push(i.second);
} else if (dli.second] == d[w] + 1) {
edge[i.first] = N; // on shortest path, but not in BFS tree
}
}
}

int el = get_last_edge();
v = ans[j] = vert[ell;

}

answer (ans[0], ans[1]);

We use 1 + 3log, N questions, so that why we get partial points on
subtask 6. To get full points we need to remove at least 2 questions, to get
3logy N — 1, so we probably need a “partition” solution we used in subtask
4.

We know that can find an edge e = (u, v) on a shortest path from s to ¢.
Without loss of generality, we can assume that vertices s, u, v and ¢t appears
in this order on this path. Then we can see that vertex s is strictly closer to
u than v, otherwise edge (u,v) could not lie on a shortest path from s to t.
Similarly, ¢ is closer to v than to w.

That means that if we consider the set S of all vertices that are closer
to u than v, and the set T of all vertices that are closer to v than u, then
these sets are disjoint, set S contains u and s, and set T' contains v and ¢.
Moreover, we can construct BFS trees on the sets S and T, rooted in u and
v respectively, and the shortest path will go through edge e and edges in
BFS trees.

There is another subtle point here: since shortest paths are not unique,
there could be some shortest paths from s to ¢ that do not contain edge e.
But that means that such a path will contain an edge that does not belong
to T nor S, so we can just assign weight B for all such edges. The code is
as follows:

int e = get_first_edge();
int v[2] = { Ulel, V[el };
vector<int> dist[2];

int ans[2];

REP(j, 2) {
queue<int> q;
vector<int> d(N, -1);
dlv[jl] = 0;
q.push(v[jl);
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while (!q.empty()) {
int w = q.front(Q);

q.popO);

for (auto& i : adjlwl]) {
if (d[i.second] == -1) {
d[i.second] = d[w] + 1;
q.push(i.second);

}
}

}

dist[j] = d; // distances from v[j]
}
REP(j, 2) {

edge.assign(M, -1);

E = 0;

queue<int> q;
vector<int> 4d(N, -1);
dlv[jll = 0;
q.push(v[j1);

while (!q.empty()) {
int w = q.front(Q);

q.popO);

for (auto& i : adjlw]) {
if (dist[j][i.second] < dist[j~1][i.second]) {
if (d[i.second] == -1) {
d[i.second] = d[w] + 1;
vert[E] = i.second;
edge[i.first] = E++;
q.push(i.second);
} else if (d[i.second] == d[w] + 1) {
edge[i.first] = N; // on shortest path, but not in BFS tree
3
} else if (i.first !=e) {
edge[i.first] = N; // between subtrees
}
}
}

int el = get_last_edge();
ans[j] = el == -1 ? v[j] : vert[ell;
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answer (ans[0], ans[1]);

The above code solves all subtasks using at most 3logy N — 1 questions.
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6 Meetings

In this problem we are given a sequence of integers Hy, Hy,...,Hy_1 of
length N and @ queries. Each query is represented by a pair of integers
(L, R) and we must find a position « in range [L, R] that minimizes the sum

costr p(x) = Z maxH (z, k),

L<k<R

where maxH (x, k) denotes the maximum value of H; between indices z and
k (inclusive).

6.1 Trying every possible position

First, let us see how to solve just a single query (L, R). The easiest way is to
iterate over all possible positions x and calculate costy r(x) independently
for each of them. For x < k we have that

maxH (z, k) = max H; = max(maxH(z, k — 1), Hy).
Therefore we can calculate such values maxzH (z, k) by iterating k from

2 to R and maintaining a running maximum. Similarly for = > k, so we can
calculate values maxH (z, k) for all k in O(R — L) time:

const 11 infty = 1000000000;

vector<1ll> minimum_costs(vector<int> H,
vector<int> L, vector<int> R) {
int N = H.size();
int Q L.size();
vector<ll> C(Q);

REP(i, Q) {
11 ans = infty * N;
for (int x = L[i]; x <= R[i]; x++) {
// test candidate x
x1 cost = O;
int maxh = H[x];
for (int k = x; k >= L[i]; k—-) {
maxh = max(maxh, H[k]);
cost += maxh;
}
maxh = H[x];
for (int k = x+1; k <= R[i]; k++) {
maxh = max(maxh, H[k]);
cost += maxh;
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}
ans = min(ans, cost);
}
C[i] = ams;
}
return C;

}

Since we have @ queries, for each we test O(N) candidates for value
x and for each candidate we calculate costy g(x) in O(N), the total time
complexity of this solution is O(QN?). This is enough to pass subtask 1.

To get a faster solution, we cannot calculate costr, r(z) independently
for each z. Instead, we split it into two parts for k less than x and k greater
than z:

costLy, p(z) = Z maxH (z, k), costRp r(x) = Z maxH (z, k).
L<k<az T<k<R

Of course, we have costr, r(z) = costLy r(x) + Hy + costRy p(x). First,
we calculate values costLy g(z) by iterating = from L to R. Then, we
similarly calculate values costRy, g(x) by iterating x from R to L.

Suppose that we have calculated costLy r(x — 1) and now we want to
calculate costLy r(z). Let y be the first position to the left of  such that
H, > H,. Then the contribution of all heights in the range [y + 1, z] must
be changed to H,.

We use a stack to store information that are needed to make such changes.
We call a position y “visible” if all positions between y and = are smaller
than H,. On the stack we have pairs

(hlacl)a (h2ac2>7 D) (hsacs>

containing heights h; > hs > ... > hs on all visible positions. Value c¢;
denotes number of positions between height h; 1 and height h;. The current
contribution is a sum ), h; - ¢;.

REP(i, Q) {
11 ans = infty * N;
stack<pair<int,int> > s;
vector<1ll> cost_le(N), cost_ri(N);

s.push(make_pair (infty+1, 0));
11 cost = 0;
for (int x = L[i]; x <= R[i]; x++) {
int w = 1;
while (s.top().first <= H[x]) {
cost += 11(H[x] - s.top().first) * s.top().second;
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w += s.top() .second;
s.pop(O);
}
cost_le[x] = cost;
s.push(make_pair (H[x], w));
cost += H[x];

}

while (s.size() > 1) {
s.popQ;

}

cost = 0;

for (int x = R[il; x >= L[i]l; x--) {
int w = 1;

while (s.top().first <= H[x]) {
cost += 11(H[x] - s.top().first) * s.top().second;
w += s.top() .second;
s.pop(O);

}

cost_ri[x] = cost;

s.push(make_pair (H[x], w));

cost += H[x];

ans = min(ans, cost_le[x] + H[x] + cost_ril[x]);
}
C[i] = ams;

}

Since every element is pushed on the stack at most once, the time com-
plexity for each query is O(N). So in total the algorithm works in O(QN).
This allows to pass subtask 2.

There is a simpler solution that passes subtask 2, but it requires some
preprocessing. Observe that costLy, r(z) does not depend on R. Moreover,
we can calculate these values for different Ls by iterating from = downwards
and maintaining running maximum. Similarly we can do for costRp r(z):

vector<vector<ll> > cost_le(N, vector<1l1l>(N)),
cost_ri(N, vector<l1l>(N));

REP(x, N) {
11 cost = 0;
int maxh = H[x];
for (int k = x-1; k >= 0; k—) {

maxh = max(maxh, H[k]);
cost += maxh;
cost_le[x] [k] = cost;

}
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cost = 0;

maxh = H[x];

for (int k = x+1; k < N; k++) {
maxh = max(maxh, H[k]);
cost += maxh;
cost_ril[x] [k] = cost;

}

}

Such preprocessing runs in time O(N?). Now it is easy to use these values
to answer queries in time O(N) each:

REP(i, Q) {
11 ans = infty * N;
for (int x = L[i]; x <= R[i]; x++) {
11 cost = cost_le[x][L[i]] + H[x] + cost_rilx][R[il];
ans = min(ans, cost);
}
C[i] = ams;

}

So the total time complexity is O(N? + QN).

6.2 Assuming small number of different heights

In subtask 3 we are told that the sequence of heights H; can have only two
values: 1 or 2. In this case our problem is much simpler, since then

costr, r(z) = 2(R— L+ 1) — longestr, r(x),

where longesty, r(z) is the length of the longest fragment that contains po-
sition  and only positions with height 1 (thus longesty r(z) = 0 if H, = 2).

Therefore the answer to query (L, R) is just 2(R — L 4+ 1) minus the
longest fragment inside range [L, R| that contains only positions with height
1. Finding such a fragment is a classic problem that can be solved using
a segment tree. The idea is that in each node of the tree we keep four
values: best (longest fragment inside the range corresponding to this node),
le (longest fragment that is a prefix of this range), ri (longest fragment
that is a suffix of this range), len (the length of the range). You can read
detailed explanation in my article about maximum-subarray problem!', so
here we only give C++ code for completeness:

struct info_t {
int best;
int le,ri,len;

L Article is available at http://algonotes.com/en/maximum-subarrays.
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info_t() : best(0), 1le(0), ri(0), len(0) { }
};

info_t single(int val) {
info_t I;
I.best = I.1le = I.ri = val == 1;
I.len = 1;
return I;

3

info_t join(const info_t& L, const info_t& R) {
info_t I;
I.best = max(max(L.best, R.best), L.ri + R.1le);
I.le = L.1le;
if (L.best == L.len)
I.le = max(I.le, L.len + R.le);
I.ri = R.ri;
if (R.best == R.len)
I.ri = max(I.ri, L.ri + R.len);
I.len = L.len + R.len;
return I;

}

struct tree_t {
vector<info_t> tree;
int base;
int n;

tree_t(const vector<int>& vals) {
n = vals.size();
base = 1;
while (base < n) { base *= 2; }
tree.resize(2x*base);
REP(i, n) {
tree[base + i] = single(vals[i]);
}
for (int i = base-1; i >=1; i-—-) {
tree[i] = join(tree[2*i], tree[2*i+1]);
}
}

void update(int x, int val) {
X += base;
tree[x] = single(val);
while (x > 1) {
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x /= 2;
tree[x] = join(tree[2*x], tree[2*x+1]);
}
}

info_t query(int x1, int xr) {

x1 += base;

xr += base;

if (x1 == xr) {
return treelx1l];

}

info_t IL = treel[xl], IR = treelxr];

while (x1/2 !'= xr/2) {
if ("x1&1) { IL = join(IL, treelx1+1]); }
if (xr&1) { IR = join(tree[xr-1], IR); }

x1l /= 2;
xr /= 2;
}
return join(IL, IR);

}
};

The rest of the code is very simple:

tree_t tree(H);

REP(i, Q) {
int size = tree.query(L[i], R[i]) .best;
C[i] = 2x(R[i] + 1 - L[i]) - size;

}

Since the initialization of the tree runs in O(N) time, and each query in
O(log N) time, the overall time complexity of this solution is O(N 4@ log N)
that solves subtask 3.

In subtask 4 we have constraint that H; < 20. Let us try to solve this
subtask also with a segment tree. The idea is as follows: for a given fragment
[xL,xR] corresponding to some node in the segment tree we will calculate
an array that stores the contribution from this fragment when we choose the
position z in this fragment. Value cost[hr,, hr] denotes the best contribution
when

hr = max H;, hr = max H;.
zr<ilz rz<i<zRr

To update these values we need also two additional arrays that store the
contribution from the fragment when the chosen position x is outside of the
fragment. Value le[h] denotes the contribution when fragment is to the left
of position x and the maximal height between fragment and the position
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is h = maxy,<i<y H;. Similarly value ri[h] denotes the contribution when
fragment is to the right of  and h = max,<j<y, H;.

Additionally, we store the maximal height in the fragment maxh =
maXg, <z<zy Hi- The structure and code for a fragment of length 1 is simple:

const int MAXH = 21;

struct info2_t {
int cost[MAXH] [MAXH] ;
int le[MAXH], ri[MAXH];
int maxh;

info2_t() {
REP(hl, MAXH) REP(hr, MAXH) {
cost[hl] [hr] = infty;
}
REP(h, MAXH) {
le[h] = ri[h] = infty;
}
}
};

info2_t single2(int val) {
info2_t I;
I.cost[val] [val] = val;
REP(h, MAXH) {
I.le[h] = I.ri[h] = max(h, val);
}
I.maxh = val;
return I;

3

The join function that combines values stored for the left half and the
right half of a fragment into information about the whole fragment is more
involved. To calculate costs we have to consider two cases: the chosen
position x is either in the left half or it is in the right half. In the former case,
we iterate over all possibilities of values cost[hy, ha] for the left fragment and
combine it with the contribution from the right one, which is of course ri[hs].
That gives us an obtainable cost for the whole fragment where h;, = h; and
hr = max(hg, R.maxh). In the later case we have symmetric code.

Code to update arrays le and ri is even simpler. The whole function
join could look as follows:

info2_t join(const info2_t& L, const info2_t& R) {
info2_t I;
REP(h1, MAXH) REP(h2, MAXH) {
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minimize(I.cost[hl] [max(h2, R.maxh)], L.cost[h1][h2] + R.ri[h2]);
minimize(I.cost[max(hl, L.maxh)][h2], L.le[h1] + R.cost[h1][h2]);
}
REP(h, MAXH) {
minimize(I.le[h], L.le[max(h, R.maxh)] + R.lelh]);
minimize(I.ri[h], L.ri[h] + R.ri[max(h, L.maxh)]);
}
I.maxh = max(L.maxh, R.maxh);
return I;

The rest of the code for the segment tree is the same as in the previous
algorithm. To answer a query we just iterate over all possible costs for a
given fragment:

tree_t tree(H);
REP(i, Q) {
info2_t I = tree.query(L[i], R[i]);
int ans = infty;
REP(h1, MAXH) REP(h2, MAXH) {
minimize(ans, I.cost[h1][h2]);
}
C[i] = anms;

}

Each structure info2_t stores O(H?) values (where H = 20), and this
is the time of initialization this structure. Also, time complexity of join
function is O(H?). Therefore the whole algorithm works in time O(H?(N +
Qlog V).

We left as an exercise speeding-up this code to run in time O(H (N +
Qlog N)). The crucial observation is that we only fill values costlhr, hg] if
either hy, or hg (or both) is equal to the maximal height in the fragment.
Therefore we have only O(H) interesting cells to fill in the array. This
complexity is enough to solve subtask 4.

There is another solution for this subtask. In the previous one we split
the sequence evenly, building a segment tree, thus in every node we needed
to store information about various heights. In the next algorithm we will
split this sequence based on the heights, so hopefully information we will
need to store in the nodes of the tree will be simpler. The price we will have
to pay for this will be increase in the height of the tree.

Each node of the tree contains information about some fragment [z, 2 g],
but since we split them not necessarily in half, we store z; and xg in the
node. We store also position zy of a point in which we split this fragment
in two parts: left part [z, xy — 1] and right part [zg + 1, 2] (we exclude
position z g from these parts). We also store pointers to these two parts and
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the value best that denotes the best possible cost if the position x is chosen
inside the fragment.

struct node_t {

int best;

int x1, xr;

int xh;

node_t* L;

node_t* R;

node_t(int x1, int xr) : best(0), x1(x1), xr(xr) { }
};

We always split the fragment in such a way that position g contains
the highest value in the fragment. If there is more than one position with
the highest value, we split the fragment in the “middle” highest value, i.e.
the number of highest values in the left and the right part differ at most by
one.

Suppose we recursively solve the left and the right part, and we want to
calculate best cost for the whole fragment. Again, we have two cases: either
position z is in the left part or in the right part. In the former case we add
best cost from the left part to the contribution from the right part. But
since the height in position xy is no less than any height in the right part,
the contribution from the right part is just H,, multiplied by the length of
this part. We solve the latter case symmetrically:

node_t* create_tree(int x1, int xr) {
node_t* no = new node_t(xl, xr);
if (x1 < xr) {
int top = *max_element(H.begin() + x1, H.begin() + xr);

vector<int> maxes;
for(int i=x1; i<xr; ++i) {

if (H[i] == top) maxes.push_back(i);
}

int xh = maxes[maxes.size()/2];

node_t* L = create_tree(xl, xh);
node_t* R = create_tree(xh+1, xr);

no—>best = min(L->best + H[xh] * (xr - xh),
H[xh] * (xh+1 - x1) + R->best);

no->xh = xh;

no->L = L;

no->R = R;
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return no;

}

The crucial point is to estimate the height of the tree. For every node
we can assign a pair (h, c¢) which means that in the fragment corresponding
to this node the maximum height is h and we have exactly ¢ positions with
this maximum height. Every time we descend from a node to its child, we
either go to (h,c/2) reducing the number of maximal positions by half, or
we go to (h/,¢') where ' < h and ¢ < N, reducing the maximal height.
Therefore the length of each path is limited by O(H log N). Thus procedure
that creates the tree takes O(N H log N).

To query the tree for a certain fragment, we descend recursively from the
root. We will visit at most two paths of this tree, just like in code for query
in a segment tree:

int query(node_t* no, int x1, int xr) {
if (no->x1 == no->xr) {
return O;
} else if (xr <= no->xh) {
return query(no->L, x1, xr);
} else if (no->xh+1 <= x1) {
return query(no->R, x1, xr);

} else if (x1 == no—>xl && no—>xr == xr) {
return no->best;
} else {

return min(
query(no->L, x1, no->xh) + H[no->xh] * (xr - no->xh),
H[no->xh] * (no->xh+1 - x1) + query(no->R, no->xh+1l, xr));

Finally the code to answer a query:

node_t* root = create_tree(0, N);
REP(i, Q) {

C[i]l = query(root, L[i], R[i]+1);
}

The overall complexity of this solution is therefore O(H (N log N+Qlog N)).

6.3 Solving general problem

Now we are ready for the last subtask, whose solution will be the most
involved among all. Let’s consider a single query [L, R]. Let v be a position
inside this range with the greatest height H, (if there are more such positions,
we choose the right-most one). The optimal chosen position z for this query
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will be either to the right of v or to the left of v (it cannot be v itself, since
this would result in the worst possible cost of H,(R — L 4+ 1)). We can
consider the former case only (that z is to the right of v) for all the queries,
and then run the same algorithm once again on a reversed array H.

If the chosen position z is to the right of v, then the best cost is equal
to H,(v — L + 1) plus the optimal cost for range [v + 1, R]. To quickly find
position v in range [L, R] we can use any solution to Range Maximum Query
problem discussed before, for instance a segment tree. In the nodes of this
segment tree we will store not just values H;, but pairs (H;,4). Thanks to
that we will be able to easily break ties with equal heights, and also the
resulting maximum pair will contain both height H,, and its position v. The
solution could look like this (parts of the code will be explained later):

vector<1ll> minimum_costs(vector<int> H,
vector<int> L, vector<int> R) {

int N = H.size();
int Q = L.size();
vector<1ll> C(Q);
vector<1l> Cj[2];
H_pos.resize(N);

REP(j, 2) {
CjLj] .resize(Q);

REP(i, N) {
H_pos[i] = make_pair(H[i], j ? N-1-i : i);
}

rmq_tree_t<pair<int,int> > rmq_tree(H_pos);

node2_t* root = create_tree2(0, N);
precalculate(root, 0, N);

REP(1i, Q) {
int x = rmq_tree.query(L[i], R[i]).second;
if (j) { x = N-1-x; }

11 cost = 11(x - L[i] + 1) * H[x];
Cj[j1[i] = cost;
if (x !'= R[i]) {
// Lazily update Cj[j][i] with optimal cost
// in range [x+1, R[i]])
nodes [x] ->R->queries.push_back(
make_pair(&Cj[j1[i], R[i]l - x - 1));
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calculate(root);

reverse(H.begin(), H.end());
REP(i, Q) {
L[i] = N-1-L[i];
R[i] = N-1-R[il;
swap(L[i], R[i]);

}
}
REP(i, Q) {
C[i] = min(Cj[0][i], Cj[11[il1);
}
return C;

3

It may look like we haven’t gained anything, since we still need to cal-
culate the optimal cost for range [v + 1, R]. But this is not a general case,
since we know that H, must be greater than any value in this range.

As in the previous algorithm, we try a solution with partitioning based on
heights. Let H, be the highest element in the sequence. We will build a tree
with v in the root and pointers to left and right children that contains trees
recursively created for ranges [0,v — 1] and [v 4+ 1, N — 1]. This structure
is called Cartesian tree and we can build it in O(N) time using different
algorithms. We can for instance use divide and conquer approach:

struct node2_t {
int x, x1, xr;
node2_t* L;
node2_t* R;

int frag_len;
11 frag_off;

vector<pair<ll*,int> > queries;

node2_t(int x) : x(x), L(0), R(0), frag len(0), frag off(0) { }
}s;

node2_t* merge(node2_t* L, node2_t* R) {
if (!'L) return R;
if (!R) return L;
if (H_pos[L->x] >= H_pos[R->x]) {
L->R = merge(L->R, R);
return L;
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} else {
R->L = merge(L, R->L);
return R;
}
}

node2_t* create_tree2(int x1, int xr) {

if (xr - x1 == 1) {
return new node2_t(x1);

} else {
int mid = (x1 + xr) / 2;
node2_t* L = create_tree2(xl, mid);
node2_t*x R = create_tree2(mid, xr);
return merge(L, R);

Each node in the tree is described by a structure node2_t that has,
among others, fields: x (position in the sequence), L and R (pointers to the
left and the right child). The other fields will be explained later.

Let’s consider a position v with height H,. Let vy be the left-most posi-
tion such that all heights in range [vr,,v — 1] are smaller than H,. Similarly
denote vy as the right-most position such that all heights in range [v+ 1, vg]
are smaller than H,. The nodes in the left subtree of v in the Cartesian
tree are exactly nodes from range [vr,v — 1], similarly the nodes in range
[v+ 1,vg] are from the right subtree of v. Having a Cartesian tree we can
easily calculate values vy, and vg for all nodes in O(N). We store them in
fields x1 and xr of the structure:

void precalculate(node2_t* no, int x1, int xr) {
if (no—>L) {
precalculate(no->L, x1, no->x);
}
nodes [no->x] = no;
no->x1 = x1;
no->Xr = Xr;
if (no->R) {
precalculate(no->R, no->x+1, xr);
}
}

Moreover, we fill array nodes which store for every position in the se-
quence corresponding node in the Cartesian tree.

Finally we are able to explain, which cost values we will be calculating.
For every node v we will create an array S, of length vg — vy, + 1 such that
value S,[i] denotes optimal cost for the range [vr,vr + 7] (where 0 < i <
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vr —vr). We will calculate array S, based on arrays Sp, and Sg,, where
L, and R, denotes left and right child of v, respectively. We will do this in
a destructive manner, i.e. calculation of array S, will destruct arrays Sy,
and Sg,. Therefore we must use all information in array .S, as soon as we
construct it.

Recall that we need to calculate optimal cost for range [v + 1, R] where
H, is greater than any height in this range. Thus if we consider array S,
where u = R, is the right child of node v, it will contain this cost in the
element R — v — 1. Indeed, we have ur, = v+ 1 and R < ug. Therefore
we will note that as soon as this array is available, we would like to use it.
So for every node in the tree we will have a vector of queries that contains
pairs of index in the array we are interested in and pointer to where to put
this index. We fill this array in this line:

nodes [x] ->R->queries.push_back(
make_pair(&Cj[jl1[i], R[i] - x - 1));

Now we need to construct array S, based on Sy, and Sg,. We can
partition array .S, into three parts of lengths v—wvy, 1, and vg —v respectively.
Clearly, values in the left part will be exactly the same as values in array
Sr,. The middle value will be the cost of [vr,v], which since H, is the
highest, is equal to cost of [vr,v — 1] (last element in Sz, ) plus H,. Time
for right values.

Let’s consider the cost for range [vr,v + 1+ 4] for 0 < i < vg —v. We
have

costlvr, v+ 1+ ] = min(f(4), g(2)),

where f(i) denotes the cost if chosen position z is to the left of v, and g(4)
denotes the cost if z is to the right of v. We can describe them as follows:

f(i) = costlvp,v — 1] + (2 + i) H,,
g(i) = (v—wvr + 1)H, + costlv + 1,v + 1 + 1],

thus f(4) is a linear function with slope H, and intercept cost[vy,v—1]4+2H,,
and values of g(i) are values in array Sg, increased by constant (v—vr+1)H,.

Consider now the difference A(i) = f(i) — g(¢) between these functions.
It turns out that this function is monotonic:

A(i+1) = A®G) = fi+1) = f(i) —g(i+1) +9() =
=H, —costlv+1,v+1+ (i +1)] 4+ costjv+1,v+1+41i > 0.

The last inequality follows from the fact that extending range [v+1,v +
1+ ¢] by one element cannot increase cost more than H, (since this is the
largest height).

Since the difference f(i) — g(¢) increases, that means that the minimum
min(f(¢), g(¢)) is equal to f(i) for some time, and then it is equal to g(i),
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i.e. there is some position j that

N fG) i<y,

Thus if we find index j, then we can fill the right part of array S, as
follows: up to j we fill it according to linear function f(7), and after this we
fill it with values of ¢(7) increased by some constant.

Of course, we cannot represent arrays .S, directly, since that would result
in O(n?) time complexity. So we use some compressed representation for
them. We see that some part of S, can be represented by a linear function.
This gives us an idea to represent whole S, as a piecewise-linear function, i.e.
as a set of ranges (which we call fragments), and in each fragment function
S, is linear.

We store all fragments in a map frags indexed by the first positions of
each fragment. Apart from that each fragment stores its length and two
parameters of the linear function. Member function eval simply evaluates
linear function in a certain offset from the first position:

struct frag t {
11 alpha, beta;
int len;

frag tO { }
frag_t(11 alpha, 11 beta, int len)
alpha(alpha), beta(beta), len(len) { }

11 eval(int off) {
return alpha * off + beta;
}
s

map<int, frag_t> frags;

Storing all fragments in one map has two advantages. First, when creat-
ing left part of array S, by copying from Sz, we do not have to do anything,
since all fragments representing S, are already in the map. Second, we can
easily evaluate the i-th index in created S,, by performing one binary search
on position vy, +1i in this map in O(log N) and evaluating one linear function.
That means that we can answer all queries in total time of O(Q log N).

To calculate the middle value in S, is enough to evaluate the last position
in St,, and add H, to it.

That leaves us with calculating the right part of S,. First, we create new
fragment F' for linear function f(i). Then, we find index j by comparing f ()
with fragments representing Sr,. Let’s denote by G the first such fragment.
As long as the value of the last position in G is greater than the value of
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the same position in F', we know that on the whole range of G function F' is
smaller, so we remove G completely. Finally, we either run out of fragments
in Sg,, or we find a fragment G that intersects with F. In the latter case,
we find index j of the intersection (we can do it by using a formula or we
can just take O(log N) time for a binary search), and we update length of
F (so it ends in j), and parameters of G (so it starts in j + 1).

Since every fragment is removed from the map at most once, all removals
costs us O(N log N).

The last bit we need to do is to add certain constant to all the remaining
fragments in Sg,, before they become fragments of S,,. We do this by using
lazy propagation strategy. Each node v has two additional fields: frag_len
denoting number of fragments that covers array S,, and frag_off denoting
the value that must be added to linear functions in all these fragments. So
we can add any constant to all fragments in S, by adding it to frag_off
in R,.

So we have two bits left: now during each evaluation of a linear function,
we must remember to what array this function belongs, and add appropriate
value frag_off. And second: now array S, contains some fragments from
St and some fragments from Sg,, and they probably have different values of
frag_off, let’s call them of f1, and of fr. In order to update them, so we can
have common value of f for array S,, we use a “merging smaller to bigger”
trick. If array S, has less fragments than array Sg,, we add value of f1, —
of fr to linear functions in all fragments in Sy, and we set of f = of fr.
Otherwise, we update fragments in Sg,. Since after update of a function its
array increases at least twice, we will update this function at most O(log N)
times, so the total time spending on updates will be O(N log N).

The full code of the calculate function is as follows:

void calculate(node2_t* no) {
11 Lcost = 0;
int h = H_pos[no->x].first;

if (no->L) {
calculate(no->L);

no->frag_len = no->L->frag_len;
no->frag_off = no->L->frag_off;

auto it = --frags.lower_bound(no->x);

frag_t& he = it->second;

Lcost = he.eval(he.len-1) + no->L->frag_off;
}

// Create and add fragment for the middle value
frags[no->x] = frag_t(0, Lcost + h - no->frag_off, 1);
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no->frag_len++;

// Create fragment F for f(i)
frag t me = frag t(h, Lcost + 2xh, 0);

if (no->R) {
calculate(no->R);

11 gamma = 11(no->x - no->x1 + 1) * h;
no->R->frag_off += gamma;

// Remove fragments worse than F
auto it = frags.find(no->R->x1);
while (it != frags.end() && it->first < no->R->xr) {
frag_t& he = it->second;
11 my_end = me.eval(me.len + he.len-1);
11 his_end = he.eval(he.len-1) + no->R->frag_off;
if (my_end <= his_end) {
me.len += he.len;
auto it_prev = it++;
frags.erase(it_prev);
no->R->frag_len--;
} else {
break;
}
}

// Find fragment intersecting F
if (it !'= frags.end() && it->first < no->R->xr) {
frag_t& he = it->second;
int 1b = 0, ub = he.len-1;
while (1b != ub) {
int mid = (1b + ub) / 2;
if (me.eval(me.len + mid) <= he.eval(mid) + no->R->frag_off) {

1b = mid+1;
} else {
ub = mid;

}
¥
he.beta += 1b * he.alpha;
he.len -= 1b;
const_cast<int&>(it->first) += 1b;
me.len += 1b;
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// Add fragment F

if (me.len > 0) {
me.beta -= no->frag_off;
frags[no->x+1] = me;
no->frag_len++;

}

// Perform lazy propagation on offset values
if (no->frag_len < no->R->frag_len) {

for (auto i = frags.find(no->x1); i != it; ++i) {
i->second.beta += no->frag_off - no->R->frag_off;
}
no->frag_off = no->R->frag_off;
} else {

for ( ; it != frags.end() && it->first < no->R->xr; ++it) {
it->second.beta += no->R->frag_off - no->frag_off;
}
X

no->frag_len += no->R->frag_len;

}

// Answer queries
for (auto& i : no->queries) {
auto it = --frags.upper_bound(no->x1 + i.second);
int off = no->x1 + i.second - it->first;
frag_t& he = it->second;
11 cost = he.eval(off) + no->frag_off;

*(i.first) += cost;

Overall, the total time complexity is O(Nlog N + Qlog N) and that
solution solves all subtasks.
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