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Abstract We organize an introductory course on algorithm design and complexity analysis for 
prospective participants of the Swiss Olympiad in Informatics and interested high school students. 
The students are assumed to have some background in programming, but no formal computer 
science education.

Our goal for the first lesson is to introduce them to the basic tools used in running time analysis, 
with a particular emphasis on worst-case versus best-case analysis, uniform versus logarithmic 
cost measurement, and big-O notation; however, we avoid being too formal and use the example 
of primality testing to introduce the concepts hands-on. In this paper, we describe our approach 
in detail.
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1. Introduction

We organize an introductory course on algorithm design and analysis for high school 
students. The course was originally intended for participants of the SOI (Swiss Olym-
piad in Informatics). However, it has become an important part of our outreach pro-
gram, and now, all interested high school students with basic programming skills are 
welcome. This also allows us to encourage gifted students in our course to participate 
in the SOI. Many prospective contestants primarily lack the necessary self-confidence 
rather than the skills to try and participate in an Olympic contest. Hence, opening the 
SOI classes to all interested students might lower the barrier for some students to take 
part in the SOI.

One particular challenge of the course is to give a proper introduction to algorithm 
analysis to an audience that has only basic knowledge in programming, and is not fa-
miliar with the formal analysis of algorithms and their running times. At the same time, 
we regard the issue of time complexity as a central aspect of algorithmic design and 
problem solving strategies.
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The attending students are typically around 16 to 18 years old. In order to attend our 
course, we require the students to have some basic training and experience in program-
ming. The material presented in this paper covers a class of 90 minutes. During class, the 
presentation of the material is interleaved with hands-on exercises. Students are given 
some time to work individually on the given tasks, using their own laptops.

Our approach is to use an easy computational problem to demonstrate principles 
such as time complexity, best- and worst-case analysis, uniform and logarithmic cost 
measurement, and big-O notation in the first lecture of the course. In what follows, we 
describe the steps taken in detail, based on the teaching material supplied.

The programming languages used are both Python and C++. Since all students have 
experience in programming with Python (a prerequisite of the course), we decided to 
start with that language and switch to C++ at a later lecture; in particular, we use Tiger-
Jython, which has been developed by one of the authors (Kohn, 2017).

1.1. Overview

In order to discuss the theoretical concepts mentioned above, we chose the example of 
determining whether a given integer is a prime number. With some simple steps, the ba-
sic algorithm of testing all possible divisors can easily be improved. First, we can move 
to testing odd numbers only (after an initial test if the given integer is even). Second, the 
number of divisors to test can be cut down further by observing that it suffices to test up 
to the square root of the given integer.

This task can be used to discuss measuring the time complexity of an algorithm with 
respect to the input length, and introduce big-O notation. Moreover, this example also 
allows us to discuss the notions of average-case and worst-case scenarios, giving more 
depth to the idea of measuring time complexity.

1.2. Related Work

While the IOI is clearly recognized for its contests, the goals and benefits of the IOI 
movement reach much further. Dagienė notes that “the high-level goal of the IOI is 
to promote computer science among the youth, and to stimulate their interest in pro-
gramming and algorithms” (Dagienė, 2010). As such, a most important part are training 
classes and outreach programs, spurred by the IOI movement and its international con-
tests. The high value of the IOI for CS education is also confirmed by, e.g., Sysło: “The 
Olympiad conducts intensive educational activities” (Sysło, 2011).

There is general agreement that programming is a good starting point for CS educa-
tion, even though some noteworthy exceptions exist (e.g., Bell et al. presented sophis-
ticated materials which do not require any prior programming skills (Bell et al., 2009). 
However, programming by itself is not enough (Dagienė, 2010), but must be completed 
by farther-reaching topics.
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When it comes to continuing CS education beyond programming, on one hand, prob-
lem solving skills are often seen as the core competence to be achieved by students (cf., 
e.g., Wing, 2006). On the other hand, though, the ability to evaluate a program’s proper-
ties such as complexity/efficiency and correctness (cf., e.g., Sysło, 2011) is a prerequi-
site for improving algorithms and finding more efficient solutions. Hence, our starting 
point with a discussion of complexity is a first step to a more thorough discussion of 
algorithms and problem solving strategies in general.

For students, it is particularly important to clearly motivate the discussed topics, and 
build on examples and practical activities (Dagienė, 2010). A good “connection between 
practice and theoretical concepts” (Dagienė, 2010) is key in fostering the students’ un-
derstanding of both theory itself and its relevance.

2. Explaining Complexity

We start our class by discussing a typical task of a computer scientist, which is to 
answer whether a given natural number is a prime number. It is easy to motivate the 
problem, as it is well known by most students, and some of them are usually already 
familiar with methods such as, e.g., the sieve of Eratosthenes (cf., e.g., O’Neill, 2009; 
Sedgewick, 1992). However, our aim is not to present the best solution for the problem 
(even if this were possible within the time boundaries of the course), but to improve 
the straightforward solution step by step, while introducing the aforementioned tools 
of algorithm analysis at the same time. Therefore, we start with the simplest possible 
way to determine whether a given natural number x is prime, i.e., we consider the 
algorithm shown in Algorithm 1, which “answers” whether x (which we assume to be 
at least 3) is a prime number. For such a given x, the algorithm simply checks whether 
it is divided by any number between 1 and x, i.e., whether it is divided by 2, 3, . . . , 
or x − 1. If such a number is found, it answers “Composite,” otherwise it answers 
“Prime.” Naturally, we want to assess how long the algorithm takes to compute a 
result; we call this the algorithm’s time complexity. Thus, the first question we ask is 
how to quantify this time.

Algorithm 1. Determining whether a given number is prime

  def prime(x):

1. 	 divisor = 2

2. 	 while (divisor < x):

3. 		  rest = x % divisor

4. 		  if (rest == 0):

5. 			   print "Composite."

6. 			   return

7.		  divisor += 1

8. 	 print "Prime."
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A straightforward approach is to measure the absolute time taken by the program’s 
execution in, say, milliseconds. However, a statement such as “this algorithm takes 15 
milliseconds on this instance” is not very meaningful since this time obviously depends 
on the machine on which the algorithm is executed. It is rather undesirable to be limited 
to comparing two algorithms only if they are run on the same machine. This is easy to 
see for the students. Another point is that the programming language matters; if the stu-
dents are already familiar with basic C++, they can verify this themselves by implement-
ing the same algorithm in both Python and C++ and run it on the same input. We argue 
that, consequently, another more robust approach is needed, which gives better insight 
into an algorithm’s performance. The key observation is that computational problems 
usually require more time to be solved if the input length increases. The main question is 
what this increase looks like; is it linear, quadratic, cubic, exponential, . . . ?

Now, we discuss with the students that, if we would invoke prime(x) with x being 
set to 100 003 (which is prime), the body of the while-loop is executed roughly 100 000 
times; if x is increased and still prime, the algorithm surely takes longer and longer.

Next, we give a small introduction to encoding natural numbers in binary; to most 
students, this is already known and needs no detailed description. With n bits, we can 
encode a number between 0 and 2n − 1, which means that encoding the number x takes 
roughly n 

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4
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length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4to get a result. Using Algorithm 2 instead yields a running time of roughly

Algorithm 2. Determining faster whether a given number is prime (I)
from math import sqrt

def prime(x):
1. divisor = 2
2. while divisor <= sqrt(x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

to get a result. Using Algorithm 2 instead yields a running time of roughly
√

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 10 seconds.

Why we should care so much about efficiency can be illustrated even more
impressively as follows. Assume that we run Algorithm 1 on a computer that is,
say, 1 000 times faster than before. Then we get a time of

100 000 000 000 031 iterations
1 000 000 000 iterations

second
≈ 100 000 seconds ≈ 1 day and 3 hours ,

which is therefore still a lot more than what Algorithm 2 takes on the much
slower computer.

We can also do it the other way around. Suppose we have 10 minutes to
spend, and ask what the maximum size is of a number y we can test. Using
Algorithm 1, we obtain

y iterations
1 000 000 iterations

second
≤ 600 seconds ,

which, solving for y, gives y ≤ 600 000 000. Using Algorithm 2, we get
√

y iterations
1 000 000 iterations

second
≤ 600 seconds ,

and hence we can test numbers y up to 600 000 0002 = 3 600 000 000 000 000 000.
Given that we motivate Algorithm 2 through a time bound based on the

number x itself rather than its length, it might not immediately be clear why
one should use the input length as a measurement for the time complexity at all.
Two related problems, however, can help in this matter. Determining whether
a number is divisible by 2 has constant complexity as it does not depend on
the length of the input at all. Divisibility by 3, on the other hand, is tested by
summing over the digits of the input number, resulting in linear running time. In
the context of these examples, time complexity based on the number of (binary)
digits becomes quite natural.
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Algorithm 2. Determining faster whether a given number is prime (I)

from math import sqrt

  def prime(x):

1.	 divisor = 2

2. 	 while divisor <= sqrt(x):

3.		  rest = x % divisor

4. 		  if (rest == 0):

5. 			   print "Composite."

6. 			   return

7. 		  divisor += 1

8. 	 print "Prime."
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and hence we can test numbers y up to 600 000 0002 = 3 600 000 000 000 000 000.
Given that we motivate Algorithm 2 through a time bound based on the number x itself 
rather than its length, it might not immediately be clear why one should use the input 
length as a measurement for the time complexity at all. Two related problems, however, 
can help in this matter. Determining whether a number is divisible by 2 has constant 
complexity as it does not depend on the length of the input at all. Divisibility by 3, on the 
other hand, is tested by summing over the digits of the input number, resulting in linear 
running time. In the context of these examples, time complexity based on the number of 
(binary) digits becomes quite natural.

3. Best-Case and Worst-Case Analysis

Next, we present Algorithm 3 to the students as a variation of Algorithm 2, but instead 
of terminating right after finding a divisor of x (performing an “early exit”), it sets a 
Boolean variable isprime to False, which was previously initialized with True. We 
ask which of these two algorithms is “better”? Although probably everyone would 
agree that Algorithm 2 is superior to Algorithm 3 since the latter may perform un-
necessary operations, the answer to the question is actually not that easy. The reason 
is that there are different ways to analyze the time complexity of algorithms. If Al-
gorithm 3 is executed with x = 100 000, its while-loop is executed roughly 100 000 
times, whereas Algorithm 2 terminates at the very beginning, namely after finding out 
that x is even. However, if x is prime, both implementations take roughly the same 
time. Thus, we discuss with the students that, in order to answer whether one of the 
algorithms is “better,” we first need to fix what kinds of inputs we look at, which we 
describe as follows.

Best-case analysis. ●● Here, we analyze the given algorithm’s time complexity on in-
puts of given length that are in a sense as “favorable” as possible. For Algorithm 2, 

Algorithm 3. Determining faster whether a given number is prime (II)

  def prime(x):

1. 	 divisor = 2

2. 	 isprime = True

3. 	 while divisor <= sqrt(x):

4. 		  rest = x % divisor

5. 		  if (rest == 0):

6. 			   isprime = False

7. 	 if (isprime):

8. 		  print "Prime."

9. 	 else:

10. 		  print "Composite."
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this would be numbers with a divisor of 2. If Algorithm 3 is given such a number 
of length n, it still executes the body of its while-loop roughly 1.414n times. Actu-
ally, this is the case for every input of length n.
Worst-case analysis. ●● In this case, we analyze the “least favorable” instances, 
i.e., those that make the algorithm run as long as possible. For Algorithm 2, 
these are prime numbers or squares of prime numbers; in both cases, the while-
loop is executed roughly 1.414n times, which is now the same time Algorithm 
3 takes.
Average-case analysis. ●● We can also analyze the behavior of the algorithms on 
average. Since, for Algorithm 3, the time complexity is the same for every in-
put of a given length, this is both easy and not very meaningful. Conversely, 
the behavior of Algorithm 2 is different on different inputs. However, here, we 
would first have to fix what we mean by “average.” We could, e.g., assume that 
all inputs appear with the same probability. Then again, from a practical perspec-
tive, some inputs may be more likely than others. Therefore, it depends on the 
concrete environment in which the algorithm is executed to determine what a 
typical input looks like.

We usually design algorithms with their worst-case time complexity in mind; as 
noted above, with respect to this measure, Algorithms 2 and 3 are “equally good.” Of 
course, we stress that implementing Algorithm 3 instead of Algorithm 2 is still a bad idea 
since Algorithm 2 is clearly faster in case of non-worst-case instances.

4. Uniform and Logarithmic Measurement

So far, we have only considered the number of executions of the while-loop when 
speaking about the algorithm’s time complexity. As in the example above, we are 
interested in a function that describes how the running time grows with the input 
length n. Now we take a closer look at the work carried out by the algorithm, i.e., the 
number of elementary instructions within the loop. By this we mean arithmetic opera-
tions (treating addition and multiplication equally as one operation each) and, e.g., 
comparing two numbers. We briefly introduce the following two measurements on an 
informal level.

The uniform cost measurement. ●● When applying this measurement, we account 
cost 1 to every elementary instruction carried out by the machine executing the 
algorithm. The above algorithms perform a number of instructions in every execu-
tion of the while-loop that does not depend on n; specifically, in every iteration, 
divisor is increased and compared with 

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4

 , x is divided by divisor, and 
then compared to 0. We can therefore say that the number of computational steps 
is roughly 4 · 1.414n (plus a constant number of instructions at the beginning and 
the end of the program).
The logarithmic cost measurement. ●● The obvious problem with the uniform cost 
measurement is that it does not account for the sizes of the numbers that are in-
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volved. To allow for a more accurate measurement, we can thus account a num-
ber of computational steps to instructions involving this number that is equal to 
its length. Since x is represented with n bits and divisor increases until it is 
roughly 
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4

 (which can be bounded by at most n bits), the analysis yields roughly 
4n · 1.414n.

We conclude that the logarithmic cost measurement makes sense if the numbers con-
sidered are unbounded and may possibly be many times as large as the registers of the 
computer. In most of the examples presented later in class, such as sorting a sequence of 
given numbers, the input numbers can be represented with a few bits, and we will thus 
use the uniform cost measurement.

5. Big-O Notation

Our last goal of the first lecture is to introduce big-O notation on an informal level; the 
aim is not to give a mathematical rigorous definition. We again consider the aforemen-
tioned time complexity of roughly 4 · 1.414n, and argue that, with growing n, 1.414n is 
the dominant factor of the expression, and the constant 4 becomes less and less signifi-
cant with respect to its magnitude. The same is true for any other constant as well. What 
we do want to distinguish is whether the complexity grows, e.g., linearly, polynomially, 
or exponentially.

To this end, all functions that grow, say, almost quadratically, are contained in a set 

the aforementioned time complexity of roughly 4 · 1.414n, and argue that, with
growing n, 1.414n is the dominant factor of the expression, and the constant 4
becomes less and less significant with respect to its magnitude. The same is true
for any other constant as well. What we do want to distinguish is whether the
complexity grows, e.g., linearly, polynomially, or exponentially.

To this end, all functions that grow, say, almost quadratically, are contained
in a set O(n2). The important thing is for the students to really think of O(n2) as
an infinite set that contains, e.g., 1.52n2, 4n2, 20n2, or 1000n2. All these functions
are contained in this set. Hence, we say “56n2 is in O(n2)” and simply write
56n2 ∈ O(n2), and so on. Furthermore, we observe that the function n2 +n can be
bounded from above by 2n2, and thus also n2 + n ∈ O(n2); likewise, 17n ≤ 17n2

and thus 17n ∈ O(n2). The same is true for 2n2 + 6n1.5, or 2.75n2 +
√

2n + 9,
and so on. We explain that it suffices if this is true for sufficiently large n. Finally,
we discuss that sets as above can be defined for other functions (which we always
assume to be positive and monotonically increasing), giving a few examples.

It follows that the worst-case time complexity of Algorithm 1 is in O(2n) with
respect to the uniform cost measurement, and the complexity of Algorithms 2
and 3 is in O(1.414n). The intuition is finally underpinned with a few more
examples of different algorithms and their time complexity.

One way to conclude this lecture is to discuss the existence of randomized
primality testing such as the algorithm of Solovay and Strassen [5], or the
deterministic AKS algorithm [1], which achieves a running time in O(nd), for a
constant d.

6 Conclusion

We described an example of how to introduce the concepts of running time, best-
and worst-case analysis, uniform and logarithmic cost measurement, and big-O
notation. To this end, we used the simple example of primality testing. We have
so far tested this approach with different classes and settings, with the common
property that the students had implemented algorithms before, but had no solid
background in the formal analysis of algorithms.

Our experience is very positive. We found that, often, during presentation of
our material, some students would quickly point out that the initial algorithm
could be improved upon by focusing on odd numbers only, or even that testing
possible divisors up to the square root would suffice. However, after having seen
the context of the material, it became clear to these students that the goal of
our class was not in finding the best solution for primality testing, but rather in
discussing the basic concepts of complexity and what it means to improve an
algorithm.

After this introductory lecture, the students were all able to use terms such
as “asymptotic worst-case complexity” correctly on an intuitive level. Subsequent
lectures discussed topics such as sorting or graph algorithms, with the students
being able to understand and express the complexities of the different algorithms
presented.
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we discuss that sets as above can be defined for other functions (which we always
assume to be positive and monotonically increasing), giving a few examples.

It follows that the worst-case time complexity of Algorithm 1 is in O(2n) with
respect to the uniform cost measurement, and the complexity of Algorithms 2
and 3 is in O(1.414n). The intuition is finally underpinned with a few more
examples of different algorithms and their time complexity.

One way to conclude this lecture is to discuss the existence of randomized
primality testing such as the algorithm of Solovay and Strassen [5], or the
deterministic AKS algorithm [1], which achieves a running time in O(nd), for a
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6 Conclusion

We described an example of how to introduce the concepts of running time, best-
and worst-case analysis, uniform and logarithmic cost measurement, and big-O
notation. To this end, we used the simple example of primality testing. We have
so far tested this approach with different classes and settings, with the common
property that the students had implemented algorithms before, but had no solid
background in the formal analysis of algorithms.

Our experience is very positive. We found that, often, during presentation of
our material, some students would quickly point out that the initial algorithm
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possible divisors up to the square root would suffice. However, after having seen
the context of the material, it became clear to these students that the goal of
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After this introductory lecture, the students were all able to use terms such
as “asymptotic worst-case complexity” correctly on an intuitive level. Subsequent
lectures discussed topics such as sorting or graph algorithms, with the students
being able to understand and express the complexities of the different algorithms
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Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
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It is easy to see that Algorithm 1 does the job of testing a number for primality,
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need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years
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as “asymptotic worst-case complexity” correctly on an intuitive level. Subsequent
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6. Conclusion

We described an example of how to introduce the concepts of running time, best- and 
worst-case analysis, uniform and logarithmic cost measurement, and big-O notation. 
To this end, we used the simple example of primality testing. We have so far tested this 
approach with different classes and settings, with the common property that the students 
had implemented algorithms before, but had no solid background in the formal analysis 
of algorithms.

Our experience is very positive. We found that, often, during presentation of our 
material, some students would quickly point out that the initial algorithm could be im-
proved upon by focusing on odd numbers only, or even that testing possible divisors up 
to the square root would suffice. However, after having seen the context of the material, 
it became clear to these students that the goal of our class was not in finding the best 
solution for primality testing, but rather in discussing the basic concepts of complexity 
and what it means to improve an algorithm.

After this introductory lecture, the students were all able to use terms such as “as-
ymptotic worst-case complexity” correctly on an intuitive level. Subsequent lectures 
discussed topics such as sorting or graph algorithms, with the students being able to 
understand and express the complexities of the different algorithms presented.
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