
Olympiads in Informatics, 2017, Vol. 11, 77–86
© 2017 IOI, Vilnius University
DOI: 10.15388/ioi.2017.06

77

An Introduction to Running Time Analysis
for an SOI Workshop

Dennis KOMM, Tobias KOHN
Department of Computer Science, ETH Zürich
Universitätstrasse 6, 8092 Zürich, Switzerland
e-mail: {dennis.komm,tobias.kohn}@inf.ethz.ch

Abstract We organize an introductory course on algorithm design and complexity analysis for
prospective participants of the Swiss Olympiad in Informatics and interested high school students.
The students are assumed to have some background in programming, but no formal computer
science education.

Our goal for the first lesson is to introduce them to the basic tools used in running time analysis,
with a particular emphasis on worst-case versus best-case analysis, uniform versus logarithmic
cost measurement, and big-O notation; however, we avoid being too formal and use the example
of primality testing to introduce the concepts hands-on. In this paper, we describe our approach
in detail.

Keywords: SOI workshop, running time analysis, worst-case analysis, cost measurement, big-O no-
tation

1. Introduction

We organize an introductory course on algorithm design and analysis for high school
students. The course was originally intended for participants of the SOI (Swiss Olym-
piad in Informatics). However, it has become an important part of our outreach pro-
gram, and now, all interested high school students with basic programming skills are
welcome. This also allows us to encourage gifted students in our course to participate
in the SOI. Many prospective contestants primarily lack the necessary self-confidence
rather than the skills to try and participate in an Olympic contest. Hence, opening the
SOI classes to all interested students might lower the barrier for some students to take
part in the SOI.

One particular challenge of the course is to give a proper introduction to algorithm
analysis to an audience that has only basic knowledge in programming, and is not fa-
miliar with the formal analysis of algorithms and their running times. At the same time,
we regard the issue of time complexity as a central aspect of algorithmic design and
problem solving strategies.

D. Komm, T. Kohn78

The attending students are typically around 16 to 18 years old. In order to attend our
course, we require the students to have some basic training and experience in program-
ming. The material presented in this paper covers a class of 90 minutes. During class, the
presentation of the material is interleaved with hands-on exercises. Students are given
some time to work individually on the given tasks, using their own laptops.

Our approach is to use an easy computational problem to demonstrate principles
such as time complexity, best- and worst-case analysis, uniform and logarithmic cost
measurement, and big-O notation in the first lecture of the course. In what follows, we
describe the steps taken in detail, based on the teaching material supplied.

The programming languages used are both Python and C++. Since all students have
experience in programming with Python (a prerequisite of the course), we decided to
start with that language and switch to C++ at a later lecture; in particular, we use Tiger-
Jython, which has been developed by one of the authors (Kohn, 2017).

1.1. Overview

In order to discuss the theoretical concepts mentioned above, we chose the example of
determining whether a given integer is a prime number. With some simple steps, the ba-
sic algorithm of testing all possible divisors can easily be improved. First, we can move
to testing odd numbers only (after an initial test if the given integer is even). Second, the
number of divisors to test can be cut down further by observing that it suffices to test up
to the square root of the given integer.

This task can be used to discuss measuring the time complexity of an algorithm with
respect to the input length, and introduce big-O notation. Moreover, this example also
allows us to discuss the notions of average-case and worst-case scenarios, giving more
depth to the idea of measuring time complexity.

1.2. Related Work

While the IOI is clearly recognized for its contests, the goals and benefits of the IOI
movement reach much further. Dagienė notes that “the high-level goal of the IOI is
to promote computer science among the youth, and to stimulate their interest in pro-
gramming and algorithms” (Dagienė, 2010). As such, a most important part are training
classes and outreach programs, spurred by the IOI movement and its international con-
tests. The high value of the IOI for CS education is also confirmed by, e.g., Sysło: “The
Olympiad conducts intensive educational activities” (Sysło, 2011).

There is general agreement that programming is a good starting point for CS educa-
tion, even though some noteworthy exceptions exist (e.g., Bell et al. presented sophis-
ticated materials which do not require any prior programming skills (Bell et al., 2009).
However, programming by itself is not enough (Dagienė, 2010), but must be completed
by farther-reaching topics.

An Introduction to Running Time Analysis for an SOI Workshop 79

When it comes to continuing CS education beyond programming, on one hand, prob-
lem solving skills are often seen as the core competence to be achieved by students (cf.,
e.g., Wing, 2006). On the other hand, though, the ability to evaluate a program’s proper-
ties such as complexity/efficiency and correctness (cf., e.g., Sysło, 2011) is a prerequi-
site for improving algorithms and finding more efficient solutions. Hence, our starting
point with a discussion of complexity is a first step to a more thorough discussion of
algorithms and problem solving strategies in general.

For students, it is particularly important to clearly motivate the discussed topics, and
build on examples and practical activities (Dagienė, 2010). A good “connection between
practice and theoretical concepts” (Dagienė, 2010) is key in fostering the students’ un-
derstanding of both theory itself and its relevance.

2. Explaining Complexity

We start our class by discussing a typical task of a computer scientist, which is to
answer whether a given natural number is a prime number. It is easy to motivate the
problem, as it is well known by most students, and some of them are usually already
familiar with methods such as, e.g., the sieve of Eratosthenes (cf., e.g., O’Neill, 2009;
Sedgewick, 1992). However, our aim is not to present the best solution for the problem
(even if this were possible within the time boundaries of the course), but to improve
the straightforward solution step by step, while introducing the aforementioned tools
of algorithm analysis at the same time. Therefore, we start with the simplest possible
way to determine whether a given natural number x is prime, i.e., we consider the
algorithm shown in Algorithm 1, which “answers” whether x (which we assume to be
at least 3) is a prime number. For such a given x, the algorithm simply checks whether
it is divided by any number between 1 and x, i.e., whether it is divided by 2, 3, . . . ,
or x − 1. If such a number is found, it answers “Composite,” otherwise it answers
“Prime.” Naturally, we want to assess how long the algorithm takes to compute a
result; we call this the algorithm’s time complexity. Thus, the first question we ask is
how to quantify this time.

Algorithm 1. Determining whether a given number is prime

 def prime(x):

1. 	 divisor = 2

2. 	 while (divisor < x):

3. 		 rest = x % divisor

4. 		 if (rest == 0):

5. 			 print "Composite."

6. 			 return

7.		 divisor += 1

8. 	 print "Prime."

D. Komm, T. Kohn80

A straightforward approach is to measure the absolute time taken by the program’s
execution in, say, milliseconds. However, a statement such as “this algorithm takes 15
milliseconds on this instance” is not very meaningful since this time obviously depends
on the machine on which the algorithm is executed. It is rather undesirable to be limited
to comparing two algorithms only if they are run on the same machine. This is easy to
see for the students. Another point is that the programming language matters; if the stu-
dents are already familiar with basic C++, they can verify this themselves by implement-
ing the same algorithm in both Python and C++ and run it on the same input. We argue
that, consequently, another more robust approach is needed, which gives better insight
into an algorithm’s performance. The key observation is that computational problems
usually require more time to be solved if the input length increases. The main question is
what this increase looks like; is it linear, quadratic, cubic, exponential, . . . ?

Now, we discuss with the students that, if we would invoke prime(x) with x being
set to 100 003 (which is prime), the body of the while-loop is executed roughly 100 000
times; if x is increased and still prime, the algorithm surely takes longer and longer.

Next, we give a small introduction to encoding natural numbers in binary; to most
students, this is already known and needs no detailed description. With n bits, we can
encode a number between 0 and 2n − 1, which means that encoding the number x takes
roughly n

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4

 log
2
 x bits. Therefore, executing Algorithm 1 with prime input x takes a

time that grows with 2n with n denoting the binary length of x. Of course, in each execu-
tion of the loop, there are a number of computational steps involved, which we need to
account for, but for now we just focus on the number of times the body of the loop is
executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality, but
it also does quite some unnecessary work. We first argue that it suffices to only test odd
numbers between 1 and x (after testing whether x is divisible by 2), which reduces the
number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only need to test
whether x is divisible by a number of at least 2 and at most

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4

, needs a little more think-
ing. Most students are not familiar with the formal concept of a proof by contradiction. Yet
it is possible to argue that there cannot be two divisors a and b = x/a that are both larger
than

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4

. We conclude that, if the input x is not a prime number, we will always find a
number between 2 and

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4

 that divides it. If we do not find such a number, then there is
no other divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<” instead
of “<=” in line 2 of Algorithm 2. Note that this implementation does not only test divisibil-
ity by odd numbers. This is done on purpose, because we want to compare this improve-
ment to the above constant-factor improvement with respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new algorithm
in terms of how often the loop is executed now, which is roughly

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4

 times, and hence

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4

 = 2n/2

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4

 1.414n.
We discuss the implications of this improvement in class with our students. To this

end, we give a demonstration that is inspired by the book of Cormen et al. (Cormen
et al., 2009). Assume we run both Algorithms 1 and 2 on a computer that is able to

An Introduction to Running Time Analysis for an SOI Workshop 81

process 1 000 000 executions of the while-loop per second. Suppose further that we
execute Algorithm 1 with the prime number x = 100 000 000 000 031, which means that
we need roughly

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4to get a result. Using Algorithm 2 instead yields a running time of roughly

Algorithm 2. Determining faster whether a given number is prime (I)
from math import sqrt

def prime(x):
1. divisor = 2
2. while divisor <= sqrt(x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

to get a result. Using Algorithm 2 instead yields a running time of roughly
√

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 10 seconds.

Why we should care so much about efficiency can be illustrated even more
impressively as follows. Assume that we run Algorithm 1 on a computer that is,
say, 1 000 times faster than before. Then we get a time of

100 000 000 000 031 iterations
1 000 000 000 iterations

second
≈ 100 000 seconds ≈ 1 day and 3 hours ,

which is therefore still a lot more than what Algorithm 2 takes on the much
slower computer.

We can also do it the other way around. Suppose we have 10 minutes to
spend, and ask what the maximum size is of a number y we can test. Using
Algorithm 1, we obtain

y iterations
1 000 000 iterations

second
≤ 600 seconds ,

which, solving for y, gives y ≤ 600 000 000. Using Algorithm 2, we get
√

y iterations
1 000 000 iterations

second
≤ 600 seconds ,

and hence we can test numbers y up to 600 000 0002 = 3 600 000 000 000 000 000.
Given that we motivate Algorithm 2 through a time bound based on the

number x itself rather than its length, it might not immediately be clear why
one should use the input length as a measurement for the time complexity at all.
Two related problems, however, can help in this matter. Determining whether
a number is divisible by 2 has constant complexity as it does not depend on
the length of the input at all. Divisibility by 3, on the other hand, is tested by
summing over the digits of the input number, resulting in linear running time. In
the context of these examples, time complexity based on the number of (binary)
digits becomes quite natural.

5

Why we should care so much about efficiency can be illustrated even more impres-
sively as follows. Assume that we run Algorithm 1 on a computer that is, say, 1 000 times
faster than before. Then we get a time of

Algorithm 2. Determining faster whether a given number is prime (I)
from math import sqrt

def prime(x):
1. divisor = 2
2. while divisor <= sqrt(x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

to get a result. Using Algorithm 2 instead yields a running time of roughly
√

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 10 seconds.

Why we should care so much about efficiency can be illustrated even more
impressively as follows. Assume that we run Algorithm 1 on a computer that is,
say, 1 000 times faster than before. Then we get a time of

100 000 000 000 031 iterations
1 000 000 000 iterations

second
≈ 100 000 seconds ≈ 1 day and 3 hours ,

which is therefore still a lot more than what Algorithm 2 takes on the much
slower computer.

We can also do it the other way around. Suppose we have 10 minutes to
spend, and ask what the maximum size is of a number y we can test. Using
Algorithm 1, we obtain

y iterations
1 000 000 iterations

second
≤ 600 seconds ,

which, solving for y, gives y ≤ 600 000 000. Using Algorithm 2, we get
√

y iterations
1 000 000 iterations

second
≤ 600 seconds ,

and hence we can test numbers y up to 600 000 0002 = 3 600 000 000 000 000 000.
Given that we motivate Algorithm 2 through a time bound based on the

number x itself rather than its length, it might not immediately be clear why
one should use the input length as a measurement for the time complexity at all.
Two related problems, however, can help in this matter. Determining whether
a number is divisible by 2 has constant complexity as it does not depend on
the length of the input at all. Divisibility by 3, on the other hand, is tested by
summing over the digits of the input number, resulting in linear running time. In
the context of these examples, time complexity based on the number of (binary)
digits becomes quite natural.

5

which is therefore still a lot more than what Algorithm 2 takes on the much slower
computer.

We can also do it the other way around. Suppose we have 10 minutes to spend, and
ask what the maximum size is of a number y we can test. Using Algorithm 1, we obtain

Algorithm 2. Determining faster whether a given number is prime (I)
from math import sqrt

def prime(x):
1. divisor = 2
2. while divisor <= sqrt(x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

to get a result. Using Algorithm 2 instead yields a running time of roughly
√

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 10 seconds.

Why we should care so much about efficiency can be illustrated even more
impressively as follows. Assume that we run Algorithm 1 on a computer that is,
say, 1 000 times faster than before. Then we get a time of

100 000 000 000 031 iterations
1 000 000 000 iterations

second
≈ 100 000 seconds ≈ 1 day and 3 hours ,

which is therefore still a lot more than what Algorithm 2 takes on the much
slower computer.

We can also do it the other way around. Suppose we have 10 minutes to
spend, and ask what the maximum size is of a number y we can test. Using
Algorithm 1, we obtain

y iterations
1 000 000 iterations

second
≤ 600 seconds ,

which, solving for y, gives y ≤ 600 000 000. Using Algorithm 2, we get
√

y iterations
1 000 000 iterations

second
≤ 600 seconds ,

and hence we can test numbers y up to 600 000 0002 = 3 600 000 000 000 000 000.
Given that we motivate Algorithm 2 through a time bound based on the

number x itself rather than its length, it might not immediately be clear why
one should use the input length as a measurement for the time complexity at all.
Two related problems, however, can help in this matter. Determining whether
a number is divisible by 2 has constant complexity as it does not depend on
the length of the input at all. Divisibility by 3, on the other hand, is tested by
summing over the digits of the input number, resulting in linear running time. In
the context of these examples, time complexity based on the number of (binary)
digits becomes quite natural.

5

which, solving for y, gives y ≤ 600 000 000. Using Algorithm 2, we get

Algorithm 2. Determining faster whether a given number is prime (I)
from math import sqrt

def prime(x):
1. divisor = 2
2. while divisor <= sqrt(x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

to get a result. Using Algorithm 2 instead yields a running time of roughly
√

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 10 seconds.

Why we should care so much about efficiency can be illustrated even more
impressively as follows. Assume that we run Algorithm 1 on a computer that is,
say, 1 000 times faster than before. Then we get a time of

100 000 000 000 031 iterations
1 000 000 000 iterations

second
≈ 100 000 seconds ≈ 1 day and 3 hours ,

which is therefore still a lot more than what Algorithm 2 takes on the much
slower computer.

We can also do it the other way around. Suppose we have 10 minutes to
spend, and ask what the maximum size is of a number y we can test. Using
Algorithm 1, we obtain

y iterations
1 000 000 iterations

second
≤ 600 seconds ,

which, solving for y, gives y ≤ 600 000 000. Using Algorithm 2, we get
√

y iterations
1 000 000 iterations

second
≤ 600 seconds ,

and hence we can test numbers y up to 600 000 0002 = 3 600 000 000 000 000 000.
Given that we motivate Algorithm 2 through a time bound based on the

number x itself rather than its length, it might not immediately be clear why
one should use the input length as a measurement for the time complexity at all.
Two related problems, however, can help in this matter. Determining whether
a number is divisible by 2 has constant complexity as it does not depend on
the length of the input at all. Divisibility by 3, on the other hand, is tested by
summing over the digits of the input number, resulting in linear running time. In
the context of these examples, time complexity based on the number of (binary)
digits becomes quite natural.

5

Algorithm 2. Determining faster whether a given number is prime (I)

from math import sqrt

 def prime(x):

1.	 divisor = 2

2. 	 while divisor <= sqrt(x):

3.		 rest = x % divisor

4. 		 if (rest == 0):

5. 			 print "Composite."

6. 			 return

7. 		 divisor += 1

8. 	 print "Prime."

D. Komm, T. Kohn82

and hence we can test numbers y up to 600 000 0002 = 3 600 000 000 000 000 000.
Given that we motivate Algorithm 2 through a time bound based on the number x itself
rather than its length, it might not immediately be clear why one should use the input
length as a measurement for the time complexity at all. Two related problems, however,
can help in this matter. Determining whether a number is divisible by 2 has constant
complexity as it does not depend on the length of the input at all. Divisibility by 3, on the
other hand, is tested by summing over the digits of the input number, resulting in linear
running time. In the context of these examples, time complexity based on the number of
(binary) digits becomes quite natural.

3. Best-Case and Worst-Case Analysis

Next, we present Algorithm 3 to the students as a variation of Algorithm 2, but instead
of terminating right after finding a divisor of x (performing an “early exit”), it sets a
Boolean variable isprime to False, which was previously initialized with True. We
ask which of these two algorithms is “better”? Although probably everyone would
agree that Algorithm 2 is superior to Algorithm 3 since the latter may perform un-
necessary operations, the answer to the question is actually not that easy. The reason
is that there are different ways to analyze the time complexity of algorithms. If Al-
gorithm 3 is executed with x = 100 000, its while-loop is executed roughly 100 000
times, whereas Algorithm 2 terminates at the very beginning, namely after finding out
that x is even. However, if x is prime, both implementations take roughly the same
time. Thus, we discuss with the students that, in order to answer whether one of the
algorithms is “better,” we first need to fix what kinds of inputs we look at, which we
describe as follows.

Best-case analysis. ●● Here, we analyze the given algorithm’s time complexity on in-
puts of given length that are in a sense as “favorable” as possible. For Algorithm 2,

Algorithm 3. Determining faster whether a given number is prime (II)

 def prime(x):

1. 	 divisor = 2

2. 	 isprime = True

3. 	 while divisor <= sqrt(x):

4. 		 rest = x % divisor

5. 		 if (rest == 0):

6. 			 isprime = False

7. 	 if (isprime):

8. 		 print "Prime."

9. 	 else:

10. 		 print "Composite."

An Introduction to Running Time Analysis for an SOI Workshop 83

this would be numbers with a divisor of 2. If Algorithm 3 is given such a number
of length n, it still executes the body of its while-loop roughly 1.414n times. Actu-
ally, this is the case for every input of length n.
Worst-case analysis. ●● In this case, we analyze the “least favorable” instances,
i.e., those that make the algorithm run as long as possible. For Algorithm 2,
these are prime numbers or squares of prime numbers; in both cases, the while-
loop is executed roughly 1.414n times, which is now the same time Algorithm
3 takes.
Average-case analysis. ●● We can also analyze the behavior of the algorithms on
average. Since, for Algorithm 3, the time complexity is the same for every in-
put of a given length, this is both easy and not very meaningful. Conversely,
the behavior of Algorithm 2 is different on different inputs. However, here, we
would first have to fix what we mean by “average.” We could, e.g., assume that
all inputs appear with the same probability. Then again, from a practical perspec-
tive, some inputs may be more likely than others. Therefore, it depends on the
concrete environment in which the algorithm is executed to determine what a
typical input looks like.

We usually design algorithms with their worst-case time complexity in mind; as
noted above, with respect to this measure, Algorithms 2 and 3 are “equally good.” Of
course, we stress that implementing Algorithm 3 instead of Algorithm 2 is still a bad idea
since Algorithm 2 is clearly faster in case of non-worst-case instances.

4. Uniform and Logarithmic Measurement

So far, we have only considered the number of executions of the while-loop when
speaking about the algorithm’s time complexity. As in the example above, we are
interested in a function that describes how the running time grows with the input
length n. Now we take a closer look at the work carried out by the algorithm, i.e., the
number of elementary instructions within the loop. By this we mean arithmetic opera-
tions (treating addition and multiplication equally as one operation each) and, e.g.,
comparing two numbers. We briefly introduce the following two measurements on an
informal level.

The uniform cost measurement. ●● When applying this measurement, we account
cost 1 to every elementary instruction carried out by the machine executing the
algorithm. The above algorithms perform a number of instructions in every execu-
tion of the while-loop that does not depend on n; specifically, in every iteration,
divisor is increased and compared with

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4

 , x is divided by divisor, and
then compared to 0. We can therefore say that the number of computational steps
is roughly 4 · 1.414n (plus a constant number of instructions at the beginning and
the end of the program).
The logarithmic cost measurement. ●● The obvious problem with the uniform cost
measurement is that it does not account for the sizes of the numbers that are in-

D. Komm, T. Kohn84

volved. To allow for a more accurate measurement, we can thus account a num-
ber of computational steps to instructions involving this number that is equal to
its length. Since x is represented with n bits and divisor increases until it is
roughly

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4

 (which can be bounded by at most n bits), the analysis yields roughly
4n · 1.414n.

We conclude that the logarithmic cost measurement makes sense if the numbers con-
sidered are unbounded and may possibly be many times as large as the registers of the
computer. In most of the examples presented later in class, such as sorting a sequence of
given numbers, the input numbers can be represented with a few bits, and we will thus
use the uniform cost measurement.

5. Big-O Notation

Our last goal of the first lecture is to introduce big-O notation on an informal level; the
aim is not to give a mathematical rigorous definition. We again consider the aforemen-
tioned time complexity of roughly 4 · 1.414n, and argue that, with growing n, 1.414n is
the dominant factor of the expression, and the constant 4 becomes less and less signifi-
cant with respect to its magnitude. The same is true for any other constant as well. What
we do want to distinguish is whether the complexity grows, e.g., linearly, polynomially,
or exponentially.

To this end, all functions that grow, say, almost quadratically, are contained in a set

the aforementioned time complexity of roughly 4 · 1.414n, and argue that, with
growing n, 1.414n is the dominant factor of the expression, and the constant 4
becomes less and less significant with respect to its magnitude. The same is true
for any other constant as well. What we do want to distinguish is whether the
complexity grows, e.g., linearly, polynomially, or exponentially.

To this end, all functions that grow, say, almost quadratically, are contained
in a set O(n2). The important thing is for the students to really think of O(n2) as
an infinite set that contains, e.g., 1.52n2, 4n2, 20n2, or 1000n2. All these functions
are contained in this set. Hence, we say “56n2 is in O(n2)” and simply write
56n2 ∈ O(n2), and so on. Furthermore, we observe that the function n2 +n can be
bounded from above by 2n2, and thus also n2 + n ∈ O(n2); likewise, 17n ≤ 17n2

and thus 17n ∈ O(n2). The same is true for 2n2 + 6n1.5, or 2.75n2 +
√

2n + 9,
and so on. We explain that it suffices if this is true for sufficiently large n. Finally,
we discuss that sets as above can be defined for other functions (which we always
assume to be positive and monotonically increasing), giving a few examples.

It follows that the worst-case time complexity of Algorithm 1 is in O(2n) with
respect to the uniform cost measurement, and the complexity of Algorithms 2
and 3 is in O(1.414n). The intuition is finally underpinned with a few more
examples of different algorithms and their time complexity.

One way to conclude this lecture is to discuss the existence of randomized
primality testing such as the algorithm of Solovay and Strassen [5], or the
deterministic AKS algorithm [1], which achieves a running time in O(nd), for a
constant d.

6 Conclusion

We described an example of how to introduce the concepts of running time, best-
and worst-case analysis, uniform and logarithmic cost measurement, and big-O
notation. To this end, we used the simple example of primality testing. We have
so far tested this approach with different classes and settings, with the common
property that the students had implemented algorithms before, but had no solid
background in the formal analysis of algorithms.

Our experience is very positive. We found that, often, during presentation of
our material, some students would quickly point out that the initial algorithm
could be improved upon by focusing on odd numbers only, or even that testing
possible divisors up to the square root would suffice. However, after having seen
the context of the material, it became clear to these students that the goal of
our class was not in finding the best solution for primality testing, but rather in
discussing the basic concepts of complexity and what it means to improve an
algorithm.

After this introductory lecture, the students were all able to use terms such
as “asymptotic worst-case complexity” correctly on an intuitive level. Subsequent
lectures discussed topics such as sorting or graph algorithms, with the students
being able to understand and express the complexities of the different algorithms
presented.

8

 (n2). The important thing is for the students to really think of

the aforementioned time complexity of roughly 4 · 1.414n, and argue that, with
growing n, 1.414n is the dominant factor of the expression, and the constant 4
becomes less and less significant with respect to its magnitude. The same is true
for any other constant as well. What we do want to distinguish is whether the
complexity grows, e.g., linearly, polynomially, or exponentially.

To this end, all functions that grow, say, almost quadratically, are contained
in a set O(n2). The important thing is for the students to really think of O(n2) as
an infinite set that contains, e.g., 1.52n2, 4n2, 20n2, or 1000n2. All these functions
are contained in this set. Hence, we say “56n2 is in O(n2)” and simply write
56n2 ∈ O(n2), and so on. Furthermore, we observe that the function n2 +n can be
bounded from above by 2n2, and thus also n2 + n ∈ O(n2); likewise, 17n ≤ 17n2

and thus 17n ∈ O(n2). The same is true for 2n2 + 6n1.5, or 2.75n2 +
√

2n + 9,
and so on. We explain that it suffices if this is true for sufficiently large n. Finally,
we discuss that sets as above can be defined for other functions (which we always
assume to be positive and monotonically increasing), giving a few examples.

It follows that the worst-case time complexity of Algorithm 1 is in O(2n) with
respect to the uniform cost measurement, and the complexity of Algorithms 2
and 3 is in O(1.414n). The intuition is finally underpinned with a few more
examples of different algorithms and their time complexity.

One way to conclude this lecture is to discuss the existence of randomized
primality testing such as the algorithm of Solovay and Strassen [5], or the
deterministic AKS algorithm [1], which achieves a running time in O(nd), for a
constant d.

6 Conclusion

We described an example of how to introduce the concepts of running time, best-
and worst-case analysis, uniform and logarithmic cost measurement, and big-O
notation. To this end, we used the simple example of primality testing. We have
so far tested this approach with different classes and settings, with the common
property that the students had implemented algorithms before, but had no solid
background in the formal analysis of algorithms.

Our experience is very positive. We found that, often, during presentation of
our material, some students would quickly point out that the initial algorithm
could be improved upon by focusing on odd numbers only, or even that testing
possible divisors up to the square root would suffice. However, after having seen
the context of the material, it became clear to these students that the goal of
our class was not in finding the best solution for primality testing, but rather in
discussing the basic concepts of complexity and what it means to improve an
algorithm.

After this introductory lecture, the students were all able to use terms such
as “asymptotic worst-case complexity” correctly on an intuitive level. Subsequent
lectures discussed topics such as sorting or graph algorithms, with the students
being able to understand and express the complexities of the different algorithms
presented.

8

 (n2) as an infinite set
that contains, e.g., 1.52n2, 4n2, 20n2, or 1000n2. All these functions are contained in
this set. Hence, we say “56n2 is in

the aforementioned time complexity of roughly 4 · 1.414n, and argue that, with
growing n, 1.414n is the dominant factor of the expression, and the constant 4
becomes less and less significant with respect to its magnitude. The same is true
for any other constant as well. What we do want to distinguish is whether the
complexity grows, e.g., linearly, polynomially, or exponentially.

To this end, all functions that grow, say, almost quadratically, are contained
in a set O(n2). The important thing is for the students to really think of O(n2) as
an infinite set that contains, e.g., 1.52n2, 4n2, 20n2, or 1000n2. All these functions
are contained in this set. Hence, we say “56n2 is in O(n2)” and simply write
56n2 ∈ O(n2), and so on. Furthermore, we observe that the function n2 +n can be
bounded from above by 2n2, and thus also n2 + n ∈ O(n2); likewise, 17n ≤ 17n2

and thus 17n ∈ O(n2). The same is true for 2n2 + 6n1.5, or 2.75n2 +
√

2n + 9,
and so on. We explain that it suffices if this is true for sufficiently large n. Finally,
we discuss that sets as above can be defined for other functions (which we always
assume to be positive and monotonically increasing), giving a few examples.

It follows that the worst-case time complexity of Algorithm 1 is in O(2n) with
respect to the uniform cost measurement, and the complexity of Algorithms 2
and 3 is in O(1.414n). The intuition is finally underpinned with a few more
examples of different algorithms and their time complexity.

One way to conclude this lecture is to discuss the existence of randomized
primality testing such as the algorithm of Solovay and Strassen [5], or the
deterministic AKS algorithm [1], which achieves a running time in O(nd), for a
constant d.

6 Conclusion

We described an example of how to introduce the concepts of running time, best-
and worst-case analysis, uniform and logarithmic cost measurement, and big-O
notation. To this end, we used the simple example of primality testing. We have
so far tested this approach with different classes and settings, with the common
property that the students had implemented algorithms before, but had no solid
background in the formal analysis of algorithms.

Our experience is very positive. We found that, often, during presentation of
our material, some students would quickly point out that the initial algorithm
could be improved upon by focusing on odd numbers only, or even that testing
possible divisors up to the square root would suffice. However, after having seen
the context of the material, it became clear to these students that the goal of
our class was not in finding the best solution for primality testing, but rather in
discussing the basic concepts of complexity and what it means to improve an
algorithm.

After this introductory lecture, the students were all able to use terms such
as “asymptotic worst-case complexity” correctly on an intuitive level. Subsequent
lectures discussed topics such as sorting or graph algorithms, with the students
being able to understand and express the complexities of the different algorithms
presented.

8

 (n2)” and simply write 56n2 

the aforementioned time complexity of roughly 4 · 1.414n, and argue that, with
growing n, 1.414n is the dominant factor of the expression, and the constant 4
becomes less and less significant with respect to its magnitude. The same is true
for any other constant as well. What we do want to distinguish is whether the
complexity grows, e.g., linearly, polynomially, or exponentially.

To this end, all functions that grow, say, almost quadratically, are contained
in a set O(n2). The important thing is for the students to really think of O(n2) as
an infinite set that contains, e.g., 1.52n2, 4n2, 20n2, or 1000n2. All these functions
are contained in this set. Hence, we say “56n2 is in O(n2)” and simply write
56n2 ∈ O(n2), and so on. Furthermore, we observe that the function n2 +n can be
bounded from above by 2n2, and thus also n2 + n ∈ O(n2); likewise, 17n ≤ 17n2

and thus 17n ∈ O(n2). The same is true for 2n2 + 6n1.5, or 2.75n2 +
√

2n + 9,
and so on. We explain that it suffices if this is true for sufficiently large n. Finally,
we discuss that sets as above can be defined for other functions (which we always
assume to be positive and monotonically increasing), giving a few examples.

It follows that the worst-case time complexity of Algorithm 1 is in O(2n) with
respect to the uniform cost measurement, and the complexity of Algorithms 2
and 3 is in O(1.414n). The intuition is finally underpinned with a few more
examples of different algorithms and their time complexity.

One way to conclude this lecture is to discuss the existence of randomized
primality testing such as the algorithm of Solovay and Strassen [5], or the
deterministic AKS algorithm [1], which achieves a running time in O(nd), for a
constant d.

6 Conclusion

We described an example of how to introduce the concepts of running time, best-
and worst-case analysis, uniform and logarithmic cost measurement, and big-O
notation. To this end, we used the simple example of primality testing. We have
so far tested this approach with different classes and settings, with the common
property that the students had implemented algorithms before, but had no solid
background in the formal analysis of algorithms.

Our experience is very positive. We found that, often, during presentation of
our material, some students would quickly point out that the initial algorithm
could be improved upon by focusing on odd numbers only, or even that testing
possible divisors up to the square root would suffice. However, after having seen
the context of the material, it became clear to these students that the goal of
our class was not in finding the best solution for primality testing, but rather in
discussing the basic concepts of complexity and what it means to improve an
algorithm.

After this introductory lecture, the students were all able to use terms such
as “asymptotic worst-case complexity” correctly on an intuitive level. Subsequent
lectures discussed topics such as sorting or graph algorithms, with the students
being able to understand and express the complexities of the different algorithms
presented.

8

 (n2), and so on.
Furthermore, we observe that the function n2+n can be bounded from above by 2n2, and
thus also n2 + n 

the aforementioned time complexity of roughly 4 · 1.414n, and argue that, with
growing n, 1.414n is the dominant factor of the expression, and the constant 4
becomes less and less significant with respect to its magnitude. The same is true
for any other constant as well. What we do want to distinguish is whether the
complexity grows, e.g., linearly, polynomially, or exponentially.

To this end, all functions that grow, say, almost quadratically, are contained
in a set O(n2). The important thing is for the students to really think of O(n2) as
an infinite set that contains, e.g., 1.52n2, 4n2, 20n2, or 1000n2. All these functions
are contained in this set. Hence, we say “56n2 is in O(n2)” and simply write
56n2 ∈ O(n2), and so on. Furthermore, we observe that the function n2 +n can be
bounded from above by 2n2, and thus also n2 + n ∈ O(n2); likewise, 17n ≤ 17n2

and thus 17n ∈ O(n2). The same is true for 2n2 + 6n1.5, or 2.75n2 +
√

2n + 9,
and so on. We explain that it suffices if this is true for sufficiently large n. Finally,
we discuss that sets as above can be defined for other functions (which we always
assume to be positive and monotonically increasing), giving a few examples.

It follows that the worst-case time complexity of Algorithm 1 is in O(2n) with
respect to the uniform cost measurement, and the complexity of Algorithms 2
and 3 is in O(1.414n). The intuition is finally underpinned with a few more
examples of different algorithms and their time complexity.

One way to conclude this lecture is to discuss the existence of randomized
primality testing such as the algorithm of Solovay and Strassen [5], or the
deterministic AKS algorithm [1], which achieves a running time in O(nd), for a
constant d.

6 Conclusion

We described an example of how to introduce the concepts of running time, best-
and worst-case analysis, uniform and logarithmic cost measurement, and big-O
notation. To this end, we used the simple example of primality testing. We have
so far tested this approach with different classes and settings, with the common
property that the students had implemented algorithms before, but had no solid
background in the formal analysis of algorithms.

Our experience is very positive. We found that, often, during presentation of
our material, some students would quickly point out that the initial algorithm
could be improved upon by focusing on odd numbers only, or even that testing
possible divisors up to the square root would suffice. However, after having seen
the context of the material, it became clear to these students that the goal of
our class was not in finding the best solution for primality testing, but rather in
discussing the basic concepts of complexity and what it means to improve an
algorithm.

After this introductory lecture, the students were all able to use terms such
as “asymptotic worst-case complexity” correctly on an intuitive level. Subsequent
lectures discussed topics such as sorting or graph algorithms, with the students
being able to understand and express the complexities of the different algorithms
presented.

8

 (n2); likewise, 17n ≤ 17n2 and thus 17n 

the aforementioned time complexity of roughly 4 · 1.414n, and argue that, with
growing n, 1.414n is the dominant factor of the expression, and the constant 4
becomes less and less significant with respect to its magnitude. The same is true
for any other constant as well. What we do want to distinguish is whether the
complexity grows, e.g., linearly, polynomially, or exponentially.

To this end, all functions that grow, say, almost quadratically, are contained
in a set O(n2). The important thing is for the students to really think of O(n2) as
an infinite set that contains, e.g., 1.52n2, 4n2, 20n2, or 1000n2. All these functions
are contained in this set. Hence, we say “56n2 is in O(n2)” and simply write
56n2 ∈ O(n2), and so on. Furthermore, we observe that the function n2 +n can be
bounded from above by 2n2, and thus also n2 + n ∈ O(n2); likewise, 17n ≤ 17n2

and thus 17n ∈ O(n2). The same is true for 2n2 + 6n1.5, or 2.75n2 +
√

2n + 9,
and so on. We explain that it suffices if this is true for sufficiently large n. Finally,
we discuss that sets as above can be defined for other functions (which we always
assume to be positive and monotonically increasing), giving a few examples.

It follows that the worst-case time complexity of Algorithm 1 is in O(2n) with
respect to the uniform cost measurement, and the complexity of Algorithms 2
and 3 is in O(1.414n). The intuition is finally underpinned with a few more
examples of different algorithms and their time complexity.

One way to conclude this lecture is to discuss the existence of randomized
primality testing such as the algorithm of Solovay and Strassen [5], or the
deterministic AKS algorithm [1], which achieves a running time in O(nd), for a
constant d.

6 Conclusion

We described an example of how to introduce the concepts of running time, best-
and worst-case analysis, uniform and logarithmic cost measurement, and big-O
notation. To this end, we used the simple example of primality testing. We have
so far tested this approach with different classes and settings, with the common
property that the students had implemented algorithms before, but had no solid
background in the formal analysis of algorithms.

Our experience is very positive. We found that, often, during presentation of
our material, some students would quickly point out that the initial algorithm
could be improved upon by focusing on odd numbers only, or even that testing
possible divisors up to the square root would suffice. However, after having seen
the context of the material, it became clear to these students that the goal of
our class was not in finding the best solution for primality testing, but rather in
discussing the basic concepts of complexity and what it means to improve an
algorithm.

After this introductory lecture, the students were all able to use terms such
as “asymptotic worst-case complexity” correctly on an intuitive level. Subsequent
lectures discussed topics such as sorting or graph algorithms, with the students
being able to understand and express the complexities of the different algorithms
presented.

8

 (n2). The same is
true for 2n2 + 6n1.5, or 2.75n2 +

Algorithm 1. Determining whether a given number is prime
def prime(x):

1. divisor = 2
2. while (divisor < x):
3. rest = x % divisor
4. if (rest == 0):
5. print "Composite."
6. return
7. divisor += 1
8. print "Prime."

bits, we can encode a number between 0 and 2n − 1, which means that encoding
the number x takes roughly n ≈ log2 x bits. Therefore, executing Algorithm 1
with prime input x takes a time that grows with 2n with n denoting the binary
length of x. Of course, in each execution of the loop, there are a number of
computational steps involved, which we need to account for, but for now we just
focus on the number of times the body of the loop is executed.

It is easy to see that Algorithm 1 does the job of testing a number for primality,
but it also does quite some unnecessary work. We first argue that it suffices to
only test odd numbers between 1 and x (after testing whether x is divisible by
2), which reduces the number of loop executions by a factor of roughly 2.

While this improvement is easy to see, the next step, namely that we only
need to test whether x is divisible by a number of at least 2 and at most 

√
x,

needs a little more thinking. Most students are not familiar with the formal
concept of a proof by contradiction. Yet it is possible to argue that there cannot
be two divisors a and b = x/a that are both larger than 

√
x. We conclude that,

if the input x is not a prime number, we will always find a number between 2
and 

√
x that divides it. If we do not find such a number, then there is no other

divisor, and x is therefore prime. This idea is incorporated in Algorithm 2, which
we usually have the students discover themselves. A typical mistake is to use “<”
instead of “<=” in line 2 of Algorithm 2. Note that this implementation does not
only test divisibility by odd numbers. This is done on purpose, because we want
to compare this improvement to the above constant-factor improvement with
respect to the naive algorithm.

We also ask the students to reason about the time complexity of their new
algorithm in terms of how often the loop is executed now, which is roughly

√
x

times, and hence
√

2n = 2n/2 ≈ 1.414n.
We discuss the implications of this improvement in class with our students.

To this end, we give a demonstration that is inspired by the book of Cormen et
al. [3]. Assume we run both Algorithms 1 and 2 on a computer that is able to
process 1 000 000 executions of the while-loop per second. Suppose further that
we execute Algorithm 1 with the prime number x = 100 000 000 000 031, which
means that we need roughly

100 000 000 000 031 iterations
1 000 000 iterations

second
≈ 100 000 000 seconds ≈ 3 years

4

 n + 9, and so on. We explain that it suffices if this
is true for sufficiently large n. Finally, we discuss that sets as above can be defined for
other functions (which we always assume to be positive and monotonically increasing),
giving a few examples.

It follows that the worst-case time complexity of Algorithm 1 is in

the aforementioned time complexity of roughly 4 · 1.414n, and argue that, with
growing n, 1.414n is the dominant factor of the expression, and the constant 4
becomes less and less significant with respect to its magnitude. The same is true
for any other constant as well. What we do want to distinguish is whether the
complexity grows, e.g., linearly, polynomially, or exponentially.

To this end, all functions that grow, say, almost quadratically, are contained
in a set O(n2). The important thing is for the students to really think of O(n2) as
an infinite set that contains, e.g., 1.52n2, 4n2, 20n2, or 1000n2. All these functions
are contained in this set. Hence, we say “56n2 is in O(n2)” and simply write
56n2 ∈ O(n2), and so on. Furthermore, we observe that the function n2 +n can be
bounded from above by 2n2, and thus also n2 + n ∈ O(n2); likewise, 17n ≤ 17n2

and thus 17n ∈ O(n2). The same is true for 2n2 + 6n1.5, or 2.75n2 +
√

2n + 9,
and so on. We explain that it suffices if this is true for sufficiently large n. Finally,
we discuss that sets as above can be defined for other functions (which we always
assume to be positive and monotonically increasing), giving a few examples.

It follows that the worst-case time complexity of Algorithm 1 is in O(2n) with
respect to the uniform cost measurement, and the complexity of Algorithms 2
and 3 is in O(1.414n). The intuition is finally underpinned with a few more
examples of different algorithms and their time complexity.

One way to conclude this lecture is to discuss the existence of randomized
primality testing such as the algorithm of Solovay and Strassen [5], or the
deterministic AKS algorithm [1], which achieves a running time in O(nd), for a
constant d.

6 Conclusion

We described an example of how to introduce the concepts of running time, best-
and worst-case analysis, uniform and logarithmic cost measurement, and big-O
notation. To this end, we used the simple example of primality testing. We have
so far tested this approach with different classes and settings, with the common
property that the students had implemented algorithms before, but had no solid
background in the formal analysis of algorithms.

Our experience is very positive. We found that, often, during presentation of
our material, some students would quickly point out that the initial algorithm
could be improved upon by focusing on odd numbers only, or even that testing
possible divisors up to the square root would suffice. However, after having seen
the context of the material, it became clear to these students that the goal of
our class was not in finding the best solution for primality testing, but rather in
discussing the basic concepts of complexity and what it means to improve an
algorithm.

After this introductory lecture, the students were all able to use terms such
as “asymptotic worst-case complexity” correctly on an intuitive level. Subsequent
lectures discussed topics such as sorting or graph algorithms, with the students
being able to understand and express the complexities of the different algorithms
presented.

8

 (2n) with re-
spect to the uniform cost measurement, and the complexity of Algorithms 2 and 3 is in

the aforementioned time complexity of roughly 4 · 1.414n, and argue that, with
growing n, 1.414n is the dominant factor of the expression, and the constant 4
becomes less and less significant with respect to its magnitude. The same is true
for any other constant as well. What we do want to distinguish is whether the
complexity grows, e.g., linearly, polynomially, or exponentially.

To this end, all functions that grow, say, almost quadratically, are contained
in a set O(n2). The important thing is for the students to really think of O(n2) as
an infinite set that contains, e.g., 1.52n2, 4n2, 20n2, or 1000n2. All these functions
are contained in this set. Hence, we say “56n2 is in O(n2)” and simply write
56n2 ∈ O(n2), and so on. Furthermore, we observe that the function n2 +n can be
bounded from above by 2n2, and thus also n2 + n ∈ O(n2); likewise, 17n ≤ 17n2

and thus 17n ∈ O(n2). The same is true for 2n2 + 6n1.5, or 2.75n2 +
√

2n + 9,
and so on. We explain that it suffices if this is true for sufficiently large n. Finally,
we discuss that sets as above can be defined for other functions (which we always
assume to be positive and monotonically increasing), giving a few examples.

It follows that the worst-case time complexity of Algorithm 1 is in O(2n) with
respect to the uniform cost measurement, and the complexity of Algorithms 2
and 3 is in O(1.414n). The intuition is finally underpinned with a few more
examples of different algorithms and their time complexity.

One way to conclude this lecture is to discuss the existence of randomized
primality testing such as the algorithm of Solovay and Strassen [5], or the
deterministic AKS algorithm [1], which achieves a running time in O(nd), for a
constant d.

6 Conclusion

We described an example of how to introduce the concepts of running time, best-
and worst-case analysis, uniform and logarithmic cost measurement, and big-O
notation. To this end, we used the simple example of primality testing. We have
so far tested this approach with different classes and settings, with the common
property that the students had implemented algorithms before, but had no solid
background in the formal analysis of algorithms.

Our experience is very positive. We found that, often, during presentation of
our material, some students would quickly point out that the initial algorithm
could be improved upon by focusing on odd numbers only, or even that testing
possible divisors up to the square root would suffice. However, after having seen
the context of the material, it became clear to these students that the goal of
our class was not in finding the best solution for primality testing, but rather in
discussing the basic concepts of complexity and what it means to improve an
algorithm.

After this introductory lecture, the students were all able to use terms such
as “asymptotic worst-case complexity” correctly on an intuitive level. Subsequent
lectures discussed topics such as sorting or graph algorithms, with the students
being able to understand and express the complexities of the different algorithms
presented.

8

 (1.414n). The intuition is finally underpinned with a few more examples of different
algorithms and their time complexity.

One way to conclude this lecture is to discuss the existence of randomized primality
testing such as the algorithm of Solovay and Strassen (Hromkovič, 2008), or the deter-
ministic AKS algorithm (Agrawal et al., 2004), which achieves a running time in

the aforementioned time complexity of roughly 4 · 1.414n, and argue that, with
growing n, 1.414n is the dominant factor of the expression, and the constant 4
becomes less and less significant with respect to its magnitude. The same is true
for any other constant as well. What we do want to distinguish is whether the
complexity grows, e.g., linearly, polynomially, or exponentially.

To this end, all functions that grow, say, almost quadratically, are contained
in a set O(n2). The important thing is for the students to really think of O(n2) as
an infinite set that contains, e.g., 1.52n2, 4n2, 20n2, or 1000n2. All these functions
are contained in this set. Hence, we say “56n2 is in O(n2)” and simply write
56n2 ∈ O(n2), and so on. Furthermore, we observe that the function n2 +n can be
bounded from above by 2n2, and thus also n2 + n ∈ O(n2); likewise, 17n ≤ 17n2

and thus 17n ∈ O(n2). The same is true for 2n2 + 6n1.5, or 2.75n2 +
√

2n + 9,
and so on. We explain that it suffices if this is true for sufficiently large n. Finally,
we discuss that sets as above can be defined for other functions (which we always
assume to be positive and monotonically increasing), giving a few examples.

It follows that the worst-case time complexity of Algorithm 1 is in O(2n) with
respect to the uniform cost measurement, and the complexity of Algorithms 2
and 3 is in O(1.414n). The intuition is finally underpinned with a few more
examples of different algorithms and their time complexity.

One way to conclude this lecture is to discuss the existence of randomized
primality testing such as the algorithm of Solovay and Strassen [5], or the
deterministic AKS algorithm [1], which achieves a running time in O(nd), for a
constant d.

6 Conclusion

We described an example of how to introduce the concepts of running time, best-
and worst-case analysis, uniform and logarithmic cost measurement, and big-O
notation. To this end, we used the simple example of primality testing. We have
so far tested this approach with different classes and settings, with the common
property that the students had implemented algorithms before, but had no solid
background in the formal analysis of algorithms.

Our experience is very positive. We found that, often, during presentation of
our material, some students would quickly point out that the initial algorithm
could be improved upon by focusing on odd numbers only, or even that testing
possible divisors up to the square root would suffice. However, after having seen
the context of the material, it became clear to these students that the goal of
our class was not in finding the best solution for primality testing, but rather in
discussing the basic concepts of complexity and what it means to improve an
algorithm.

After this introductory lecture, the students were all able to use terms such
as “asymptotic worst-case complexity” correctly on an intuitive level. Subsequent
lectures discussed topics such as sorting or graph algorithms, with the students
being able to understand and express the complexities of the different algorithms
presented.

8

 (nd),
for a constant d.

An Introduction to Running Time Analysis for an SOI Workshop 85

6. Conclusion

We described an example of how to introduce the concepts of running time, best- and
worst-case analysis, uniform and logarithmic cost measurement, and big-O notation.
To this end, we used the simple example of primality testing. We have so far tested this
approach with different classes and settings, with the common property that the students
had implemented algorithms before, but had no solid background in the formal analysis
of algorithms.

Our experience is very positive. We found that, often, during presentation of our
material, some students would quickly point out that the initial algorithm could be im-
proved upon by focusing on odd numbers only, or even that testing possible divisors up
to the square root would suffice. However, after having seen the context of the material,
it became clear to these students that the goal of our class was not in finding the best
solution for primality testing, but rather in discussing the basic concepts of complexity
and what it means to improve an algorithm.

After this introductory lecture, the students were all able to use terms such as “as-
ymptotic worst-case complexity” correctly on an intuitive level. Subsequent lectures
discussed topics such as sorting or graph algorithms, with the students being able to
understand and express the complexities of the different algorithms presented.

References

Agrawal, M., Kayal, N., Saxena, N. (2004). PRIMES is in

References

1. M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics
160(2):781–793, 2004.

2. T. Bell, J. Alexander, I. Freeman, M. Grimley. Computer science unplugged: School
students doing real computing without computers. NZ J. Appl. Comput. Inf. Tech.
13(1):20–29, 2009.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
3rd edition. The Mit Press, 2009.

4. V. Dagienė. Sustaining Informatics Education by Contests. Proceedings of the
4th International Conference on Informatics in Secondary Schools - Evolution and
Perspectives: Teaching Fundamentals Concepts of Informatics:1–12, 2010.

5. J. Hromkovič. Design and Analysis of Randomized Algorithms: Introduction to
Design Paradigms. Springer, 2008.

6. T. Kohn. Teaching Python Programming to Novices: Addressing Misconceptions
and Creating a Development Environment. PhD Thesis, ETH Zürich, 2017.

7. M. E. O’Neill. The Genuine Sieve of Eratosthenes. Journal of Functional Program-
ming, 19(1), 95-106, 2009.

8. R. Sedgewick. Algorithms in C++. Addison-Wesley, 1992.
9. M. Sysło. Outreach to Prospective Informatics Students. Proceedings of the

5th International Conference on Informatics in Schools: Situation, Evolution and
Perspectives:56–70, 2011.

10. J. M. Wing. Computational Thinking. Commun. ACM 49(3):33–35, 2006.

Dennis Komm is lecturer at ETH Zurich and an external
lecturer at University of Zurich. He studied computer science
at RWTH Aachen University and Queensland University of
Technology. He received his PhD from ETH Zurich in 2012. His
research interests focus on algorithmics and advice complexity.

Tobias Kohn is a PostDoc researcher in computer science
education at ETH Zurich. The focus of his research is program-
ming education, particularly in high schools. He holds an MSc
in mathematics, and a PhD in computer science from ETH,
and has been teaching mathematics and computer science for
10 years.

9

. Annals of Mathematics, 160(2),781–793.
Bell, T., Alexander, J., Freeman, I., Grimley, M. (2009). Computer science unplugged: school students doing

real computing without computers. NZ J. Appl. Comput. Inf. Tech. 13(1), 20–29.
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2009). Introduction to Algorithms, 3rd edition. The Mit

Press.
Dagienė, V. (2010). Sustaining informatics education by contests. In: Proceedings of the 4th International Con-

ference on Informatics in Secondary Schools – Evolution and Perspectives: Teaching Fundamentals Con-
cepts of Informatics. 1–12.

Hromkovič, J. (2008). Design and Analysis of Randomized Algorithms: Introduction to Design Paradigms.
Springer.

Kohn, T. (2017). Teaching Python Programming to Novices: Addressing Misconceptions and Creating a Devel-
opment Environment. PhD Thesis, ETH Zürich.

O’Neill, M.E. (2009). The genuine sieve of eratosthenes. Journal of Functional Programming, 19(1), 95–106.
Sedgewick, R. (1992). Algorithms in C++. Addison-Wesley.
Sysło, M. (2011). Outreach to prospective informatics students. In: Proceedings of the 5th International Confer-

ence on Informatics in Schools: Situation, Evolution and Perspectives. 56–70.
Wing, J.M. (2006). Computational thinking. Commun. ACM 49(3), 33–35.

D. Komm, T. Kohn86

D. Komm is lecturer at ETH Zurich and an external lecturer at Univer-
sity of Zurich. He studied computer science at RWTH Aachen Univer-
sity and Queensland University of Technology. He received his PhD
from ETH Zurich in 2012. His research interests focus on algorithmics
and advice complexity.

T. Kohn is a PostDoc researcher in computer science education at
ETH Zurich. The focus of his research is programming education, par-
ticularly in high schools. He holds an MSc in mathematics, and a PhD
in computer science from ETH, and has been teaching mathematics
and computer science for 10 years.

