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Abstract. In recent IOIs, there are several problems that seem unsolvable, until we realise that 
there is a special case to the problem that makes it tractable. In IOI 2014, the problem ‘Friend’ 
appears to be a standard NP-hard Maximum Independent Set problem. However, the graph is gen-
erated in a very special way, hence there is a way to solve the problem in polynomial time. There 
were several contestants who didn’t identify the special case in this problem, and hence were stuck 
at the problem. In this paper, we will study a well-known technique called reduction to show that 
a problem we are currently tackling is intractable. In addition, we introduce techniques to identify 
special cases such that contestants will be prepared to tackle these problems.
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1. Introduction

The problem ‘Friend’ in IOI 2014 required contestants to find a set of vertices with maxi-
mum total weight, such that no two vertices in the set are sharing a common edge. This 
is a classical Weighted Maximum Independent Set problem. We can show that Weight-
ed Maximum Independent Set problem is NP-hard by reduction from 3-SAT (Cormen 
et al., 2009). Since the formulation of NP-completeness 4 decades ago, no one has been 
able to propose a solution to any NP-hard problem in polynomial time. Clearly, it is not 
expected that a high school student can solve the problem in 5 hours. None of the Indo-
nesian IOI 2014 team solved this problem during the contest. After returning from the 
competition, I asked the Indonesian team about this problem. None of the team members 
were aware of the fact that Maximum Independent Set is an NP-hard problem, and thus 
were stuck trying to solve a general Maximum Independent Set problem.

A similar problem also occurred in IOI 2008. The problem ‘Island’ required contes-
tants to find a longest path in a graph with 1,000,000 vertices. The longest path problem 
is a classic NP-hard problem which can be reduced from the Hamiltonian path problem. 
If a contestant is not aware that the longest path problem is difficult to solve, the con-
testant may spend a lot of his/her time just to tackle the general longest path problem, 
without realising that there is a special case to the given graph.
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Generally, some contestants spend too much thinking time trying to solve something 
that is believed to be unsolvable. If only they realise that their attempt is intractable, 
they may try a different approach and find a special case of this problem. In section 2 
of this paper, we will introduce a classic reduction technique often used in theoretical 
computer science research. In the context of competitive programming, we may find out 
that a problem which we are attempting is unlikely to be solvable. After realizing that 
a problem is intractable, we are going to discuss how to proceed to solve the problem 
in section 3. Finally, in section 4 we will take a look at some common special cases in 
competitive programming that can be used to solve these kind of problems.

Fig. 1. The result of Indonesian team in IOI 2014, taken from http://stats.ioinformat-
ics.org. The red squared column highlights the ‘Friend’ problem.

Fig. 2. IOI 2014 tasks statistics, taken from http://stats.ioinformatics.org. ‘Friend’ 
problem is the second least accepted problem in IOI 2014. It may be because some contes-
tants (at least all the Indonesians) were stuck at trying to solve a general case of Maximum 
Independent Set.

Fig. 3. The result of Indonesian team in IOI 2008, taken from http://stats.ioinformat-
ics.org. The red squared column highlights the ‘Island’ problem.
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2. Identifying Intractability of a Problem through Reduction

We would like to know that the problem that we are attempting is unlikely to have an 
immediate solution. The most common way is to apply a well-known technique called 
reduction. Suppose we know that problem  X  is impossible to solve, and we also know 
that we can solve problem  X  by using problem  Y  as a black-box1. If we can solve 
problem  Y , then we can solve problem  X  as well. Therefore, problem  Y  is also im-
possible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have 
yet to be solved in polynomial time for more than 4 decades. MIN-VERTEX-COVER 
is a graph problem that involves finding a minimum subset of nodes such that for every 
edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a graph 
problem of finding a maximum subset of nodes such that for every edge, at most one of 
its endpoint is in the subset. Suppose we already know that MIN-VERTEXCOVER is 
a NP-hard problem. Therefore, we can show that MAX-INDEPENDENT-SET is also a 
NP-hard problem by reducing a MIN-VERTEX-COVER problem into a MAX-INDE-
PENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If 
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Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
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Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y
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From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y
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From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily 
constructed if we have a MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER 
is a NP-hard problem. It is good to know as many NP-hard problem as possible. This 
is necessary so that if we encounter a new problem  X , we can use any of the NP-hard 
problems that we know, reduce it to problem  X , and thus prove that  X  is also NP-
hard.

3. How to Proceed

Suppose we already know that a problem is unsolvable (i.e. any known algorithm will 
not solve this problem in time). In competition, it is impossible to complain that “This 
is unsolvable, can you eliminate this problem?” to the judges, since the judges believe 
they have a solution. Such a request is absurd when there are already several contestants 
who have solved that problem. Also, in a major competition (e.g. ACM International 
Collegiate Programming Contest World Finals, IOI), it is unlikely that the judges have 
incorrect solution.

3.1. Approximation

In real life, when we cannot find the optimal solution, we can try to find the solution 
that is close to the optimal solution. More specifically, we try to find a solution that is 
not larger than 
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to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional
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for this problem is to prune the exponential algorithm we use to find all possible paths 
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Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
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is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
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constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y
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3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional
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Figure 4: Comparison of O(2N ) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
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2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y
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constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional
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Figure 4: Comparison of O(2N ) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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3 How to proceed
Suppose we already know that a problem is unsolvable (i.e. any known algorithm will not solve this problem in
time). In competition, it is impossible to complain that "This is unsolvable, can you eliminate this problem?"
to the judges, since the judges believe they have a solution. Such a request is absurd when there are already
several contestants who have solved that problem. Also, in a major competition (e.g. ACM International Collegiate
Programming Contest World Finals, IOI), it is unlikely that the judges have incorrect solution.

3.1 Approximation
In real life, when we cannot find the optimal solution, we can try to find the solution that is close to the optimal
solution. More specifically, we try to find a solution that is not larger than α (where α > 1) times the optimal
solution for a minimisation problem. The most common approximation algorithm I found in textbooks is the
2-approximation MIN-VERTEX-COVER problem, which means that the algorithm will not choose more than twice
the number of vertices than the optimal solution. However, approximation problems rarely occur in competitive
programming (especially IOI). One of the reason is because to create this kind of problem, the judges have to
know the optimal solution in order to verify that the contestant’s solution is indeed α-approximation. However,
generating the optimal solution is impossible (or takes a long time). Since this approach is not really suitable for
competitive programming, I will not discuss this approach in detail.

3.2 Pruning
This approach is useful in some competitive programming problems. In ACM International Collegiate Programming
Contest (ICPC) World Finals 2010, problem I (Robots on Ice) required the contestant to count the number of
Hamiltonian Paths with constraints (ACM ICPC World Finals 2010 problem statement n.d.), which is known to
be a NP-hard problem. While finding all possible paths is impossible, the solution for this problem is to prune
the exponential algorithm we use to find all possible paths (ACM ICPC World Finals 2010 Solutions n.d.). If at
some point we know that it is impossible to visit the rest of the unvisited points, then we can prune the path and
backtrack immediately. However, it is not very suitable for IOI. Usually, IOI problems require deep analysis from
the contestant. It is rare that we can get Accepted by only "hacking" a complete search algorithm. Therefore, we
will not discuss this technique in detail.

3.3 Finding Small Constraints
Suppose there is an NP-hard problem with large N that is impossible to solve exponentially (e.g. N > 50).
Sometimes we should also look for other small constraints that may help. For example, a SUBSET-SUM problem
is considered an NP-hard problem, and will not be solvable with N = 100. When we are given the constraint that
all the elements inside the array are small (e.g. [0, 100]), this problem can be solved using O(NX2) Dynamic
Programming, where X is the upper bound of the elements inside the array. Even though the running time of the
algorithm is exponential to the size of the input, the algorithm is still fast enough for the given constraint. Another
way to apply this technique is when the value of N is not too large (e.g. N < 40). For example, while O(2N )
algorithm for N = 36 is unlikely to run in one second, we can, for instance, use a O(2N/2) Meet In The Middle
algorithm for solving a problem like SUBSET-SUM. While O(2N/2) is still exponential to N , it is much faster than
O(2N ), and the range of N that it can solve is twice the range of N using a O(2N ) solution.

3.4 Finding Special Cases
This is the most suitable approach in IOI, and thus is the main focus of this paper. To solve IOI 2008 Island
and IOI 2014 Friend, we need to use this approach. We must find a special constraint in the problem such
that this constraint allows the problem to be solvable in polynomial time. We can check whether an additional
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constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
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Figure 4: Comparison of O(2N ) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)
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3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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Figure 4: Comparison of O(2N ) and O(2N/2) SUBSET-SUM algorithm running time for various input sizes. This
experiment is run 100 times for each value of N on a MacBook Pro (Retina, 13-inch, Early 2015)

constraint causes a problem to be solvable in polynomial time using the reduction proof of the original problem (with-
out the additional constraint), and check whether the proof still holds given the additional constraint to the problem.

We will give we one example of a special case in a NP-hard problem. Suppose we have a function with the
following formula

f(n) =


1, n = 1 ∨ n = 2
f(n − 1) + f(n − 2), n > 2

We consider the sequence F = {f(n)}∞
n=1, and we define F (N) to be the first N terms of F . We want to know

whether we can create a partition of F (N) into two disjoint multisets A and B such that the sum of all elements
in A is equal to the sum of all elements in B

This looks like a classic PARTITION problem. PARTITION problem is NP-hard by reduction from SUBSET-
SUM. Therefore, for a large value of N , it is unlikely to be able to find an algorithm that finds A and B in an
efficient way. However, this sequence is defined in a very special way, in the sense that F is defined using the
aforementioned recurrence. Therefore, we should inspect the recurrence formula more closely.

Lemma 3. Any consecutive subsequence of F with length multiples of three can be partitioned into two multisets
of equal sum.

Proof. Pick any consecutive subsequence of F with length multiples of three, which we will denote by F  =
{f(a), f(a + 1), f(a + 2), ...f(b)} for some a < b. We can partition F  into

A = {f(a + 3k), 0 ≤ k ≤ b − a − 2
3 } ∪ {f(a + 1 + 3k), 0 ≤ k ≤ b − a − 2

3 }

B = {f(a + 2 + 3k), 0 ≤ k ≤ b − a − 2
3 }.

A and B will have the same sum, as for every 0 ≤ k ≤ b−a−2
3

f(a + 3k) + f(a + 1 + 3k) = f(a + 2 + 3k)

Jonathan Irvin GUNAWAN

  can be partitioned into two multisets of equal 
sum.

Proof. Assign 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges
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size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  to 

2 Identifying Intractability of a Problem through Reduction
We would like to know that the problem that we are attempting is unlikely to have an immediate solution. The
most common way is to apply a well-known technique called reduction. Suppose we know that problem X is
impossible to solve, and we also know that we can solve problem X by using problem Y as a black-box1. If we can
solve problem Y, then we can solve problem X as well. Therefore, problem Y is also impossible to solve.

We are using NP-hard problems for illustration. Recall that NP-hard problems have yet to be solved in polynomial
time for more than 4 decades. MIN-VERTEX-COVER is a graph problem that involves finding a minimum subset
of nodes such that for every edge, at least one of its endpoint is in the subset. MAX-INDEPENDENT-SET is a
graph problem of finding a maximum subset of nodes such that for every edge, at most one of its endpoint is in
the subset. Suppose we already know that MIN-VERTEX-COVER is a NP-hard problem. Therefore, we can show
that MAX-INDEPENDENT-SET is also a NP-hard problem by reducing a MIN-VERTEX-COVER problem into a
MAX-INDEPENDENT-SET problem.

We will first prove the following two lemmas.

Lemma 1. If S ⊆ V is an INDEPENDENT-SET of graph G(V, E), then V − S is a VERTEX-COVER of the
graph G(V, E)

Proof. Let us assume that V − S is not a VERTEX-COVER. Therefore, there are two vertices A, B /∈ V − S

and there is an edge connecting A and B. Since A, B /∈ V − S, we have A, B ∈ S. As A and B are connected
by an edge, we note that S is not an INDEPENDENT-SET. This is a contradiction. Therefore V − S is a
VERTEX-COVER.

Lemma 2. If S ⊆ V is a VERTEX-COVER of graph G(V, E), then V − S is an INDEPENDENT-SET of the
graph G(V, E)

Proof. The proof is actually similar to the previous lemma. Let us assume that V −S is not a INDEPENDENT-SET.
Therefore, there are two vertices A, B ∈ V − S and there is an edge connecting A and B. Since A, B ∈ V − S,
we have A, B /∈ S. As A and B are connected by an edge, we note that S is not a VERTEX-COVER. This is a
contradiction. Therefore V − S is an INDEPENDENT-SET.

Theorem 1. If S ⊆ V is a MAX-INDEPENDENT-SET of graph G(V, E), then V − S is a MIN-VERTEX-COVER
of the graph G(V, E).

Proof. We know that V − S is a vertex cover by lemma 1. The only thing that remains for us to prove is its
minimality. Suppose V − S is not minimum vertex cover. Then, there is another vertex cover V − S where
|V − S| < |V − S|, which implies that |S| > |S|. By lemma 2, S is an independent set. Therefore, S is not a
maximum independent set. This is a contradiction. Therefore V − S is the minimum vertex cover.

From the above theorem, we conclude that a MIN-VERTEX-COVER can be easily constructed if we have a
MAX-INDEPENDENT-SET.

In the beginning of this section, we assume we know that MIN-VERTEX-COVER is a NP-hard problem. It is
good to know as many NP-hard problem as possible. This is necessary so that if we encounter a new problem X, we
can use any of the NP-hard problems that we know, reduce it to problem X, and thus prove that X is also NP-hard.

1We say that problem X is reducible to problem Y
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holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
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4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
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Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.
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f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
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planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
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We will provide more examples of special cases in the following section.

4 Some example of special cases
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4.1 Planar graphs
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et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges
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size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  holds for 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  by using the Euler’s formula. 
Therefore, the number of edges is 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 . Naturally, any algorithm that has 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

  in its 
running time can be changed into 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 . Computing shortest path in a general graph us-



J.I. Gunawan94

ing Bellman-Ford algorithm takes 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.
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on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
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planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire

Jonathan Irvin GUNAWAN

 , but it only takes 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).
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The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
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haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
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f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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graph requires at least k colours. By the four colour theorem, any planar graph can be coloured with at most four
colours. (Gonthier 2005). Since at most four colours are required to colour a planar graph, there does not exist
a clique with more than four vertices. Hence, we can solve the problem by checking whether there is a clique
with four vertices. If there is no clique with four vertices, we check whether there is a clique with three vertices.
Finding whether there is a clique with k vertices can be solved naively in O(V k). Therefore, the whole solution
takes O(V 4) time, which is polynomial. The solution can be improved to O(V 2). Instead of having four nested
loops to find four vertices independently, we can have two nested loops over the edges instead and test whether
the four vertices (which are the endpoint of the two edges) form a clique. This solution takes O(E2), which is the
same as O(V 2) in planar graph.

4.1.3 Problem example

We will use a past competitive programming problem to illustrate the importance of the properties in a planar
graph. The ‘Traffic’ problem from Central European Olympiad in Informatics (CEOI) 2011 illustrates this concept
well. In this problem, there is a directed graph with up to V = 300, 000 vertices given in a 2D plane. There are
two vertical lines denoted as ‘left’ and ‘right’. All vertices are contained within the ‘left’ and ‘right’ lines, with some
vertices possibly lying on these two lines. The problem requires the contestant to print the number of visitable2
vertices lying on the ‘right’ line from every vertex lying on the ‘left’ line (which we shall call ‘left’ vertices and
‘right’ vertices for simplicity). An instance for this problem can be seen on figure 5.

Figure 5: An instance of problem ‘Traffic‘. In this example, the expected output is {4, 4, 0, 2}, since the top ‘left’
vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 ‘right’ vertices, the third top ‘left’ vertex
cannot visit any ‘right’ vertex, and the bottom ‘left’ vertex can visit 2 ‘right’ vertices

The bruteforce solution for this problem is to run DFS from every ‘left’ vertex which gives us a running time
2vertex v is visitable from vertex u if there is a path from u to v
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by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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 . Instead of having four nested loops 
to find four vertices independently, we can have two nested loops over the edges instead 
and test whether the four vertices (which are the endpoint of the two edges) form a clique. 
This solution takes 

graph requires at least k colours. By the four colour theorem, any planar graph can be coloured with at most four
colours. (Gonthier 2005). Since at most four colours are required to colour a planar graph, there does not exist
a clique with more than four vertices. Hence, we can solve the problem by checking whether there is a clique
with four vertices. If there is no clique with four vertices, we check whether there is a clique with three vertices.
Finding whether there is a clique with k vertices can be solved naively in O(V k). Therefore, the whole solution
takes O(V 4) time, which is polynomial. The solution can be improved to O(V 2). Instead of having four nested
loops to find four vertices independently, we can have two nested loops over the edges instead and test whether
the four vertices (which are the endpoint of the two edges) form a clique. This solution takes O(E2), which is the
same as O(V 2) in planar graph.

4.1.3 Problem example

We will use a past competitive programming problem to illustrate the importance of the properties in a planar
graph. The ‘Traffic’ problem from Central European Olympiad in Informatics (CEOI) 2011 illustrates this concept
well. In this problem, there is a directed graph with up to V = 300, 000 vertices given in a 2D plane. There are
two vertical lines denoted as ‘left’ and ‘right’. All vertices are contained within the ‘left’ and ‘right’ lines, with some
vertices possibly lying on these two lines. The problem requires the contestant to print the number of visitable2
vertices lying on the ‘right’ line from every vertex lying on the ‘left’ line (which we shall call ‘left’ vertices and
‘right’ vertices for simplicity). An instance for this problem can be seen on figure 5.

Figure 5: An instance of problem ‘Traffic‘. In this example, the expected output is {4, 4, 0, 2}, since the top ‘left’
vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 ‘right’ vertices, the third top ‘left’ vertex
cannot visit any ‘right’ vertex, and the bottom ‘left’ vertex can visit 2 ‘right’ vertices

The bruteforce solution for this problem is to run DFS from every ‘left’ vertex which gives us a running time
2vertex v is visitable from vertex u if there is a path from u to v
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 , which is the same as 

by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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graph requires at least k colours. By the four colour theorem, any planar graph can be coloured with at most four
colours. (Gonthier 2005). Since at most four colours are required to colour a planar graph, there does not exist
a clique with more than four vertices. Hence, we can solve the problem by checking whether there is a clique
with four vertices. If there is no clique with four vertices, we check whether there is a clique with three vertices.
Finding whether there is a clique with k vertices can be solved naively in O(V k). Therefore, the whole solution
takes O(V 4) time, which is polynomial. The solution can be improved to O(V 2). Instead of having four nested
loops to find four vertices independently, we can have two nested loops over the edges instead and test whether
the four vertices (which are the endpoint of the two edges) form a clique. This solution takes O(E2), which is the
same as O(V 2) in planar graph.

4.1.3 Problem example

We will use a past competitive programming problem to illustrate the importance of the properties in a planar
graph. The ‘Traffic’ problem from Central European Olympiad in Informatics (CEOI) 2011 illustrates this concept
well. In this problem, there is a directed graph with up to V = 300, 000 vertices given in a 2D plane. There are
two vertical lines denoted as ‘left’ and ‘right’. All vertices are contained within the ‘left’ and ‘right’ lines, with some
vertices possibly lying on these two lines. The problem requires the contestant to print the number of visitable2
vertices lying on the ‘right’ line from every vertex lying on the ‘left’ line (which we shall call ‘left’ vertices and
‘right’ vertices for simplicity). An instance for this problem can be seen on figure 5.

Figure 5: An instance of problem ‘Traffic‘. In this example, the expected output is {4, 4, 0, 2}, since the top ‘left’
vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 ‘right’ vertices, the third top ‘left’ vertex
cannot visit any ‘right’ vertex, and the bottom ‘left’ vertex can visit 2 ‘right’ vertices

The bruteforce solution for this problem is to run DFS from every ‘left’ vertex which gives us a running time
2vertex v is visitable from vertex u if there is a path from u to v
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by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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by the construction of the function.

Theorem 2. If N is divisible by three, then F (N) can be partitioned into two multisets of equal sum.

Proof. If N is divisible by three, then F (N) is a prefix of F with length multiples of three. By lemma 3, F (N)
can be partitioned into two multisets of equal sum..

Theorem 3. If N ≡ 1 (mod 3), F (N) cannot be partitioned into two multisets of equal sum.

Proof. Suppose F (N) = F (N) − f(1). Note that F (N) contains N − 1 elements. Since N ≡ 1 (mod 3), we
haveN − 1 ≡ 0 (mod 3). By lemma 3, F (N) can be partitioned into two multisets of equal sum. Therefore, the
sum of all elements in F (N) is even. However, the sum of all elements in F (N) = F (N) + f(1), which is odd
because F (N) is even while f(1) is odd. Therefore, there is no way to partition F (N).

Theorem 4. If N ≡ 2 (mod 3). F (N) can be partitioned into two multisets of equal sum.

Proof. Assign f(1) to A and f(2) to B. Since f(1) = f(2), we are now trying to partition F (N) = F (N) −
f(1) − f(2). F (N) will have N − 2 elements. Since N ≡ 2 (mod 3), we obtain N − 2 ≡ 0 (mod 3). By lemma
3, F (N) can be partitioned into two multisets of equal sum, which implies our theorem.

Therefore, solving this problem is reduced to checking whether N ≡ 1 (mod 3). We can solve this in O(1).
We will provide more examples of special cases in the following section.

4 Some example of special cases
We will look at some common examples of special cases that may occur in competitive programming problems.

4.1 Planar graphs
Planar graph is a graph that can be drawn on a flat surface without having two edges crossing each other (West
et al. 2001). There are many graph problems which are easy to solve if the graph is planar. We will provide several
examples.

4.1.1 Number of edges

In simple general graph, the number of edges can be up to a quadratic order with respect to the number of
vertices (i.e. O(V 2)). This is not the case for planar graph. In a planar graph, we may show that E ≤ 3V − 6
holds for V ≥ 3 by using the Euler’s formula. Therefore, the number of edges is O(V ). Naturally, any algorithm
that has O(E) in its running time can be changed into O(V ). Computing shortest path in a general graph using
Bellman-Ford algorithm takes O(V E) (Halim & Halim 2013), but it only takes O(V 2) in a planar graph. Counting
the number of connected components using DFS in a general graph takes O(V + E), but it only takes O(V ) in a
planar graph. Therefore, if the problem requires us to compute the number of connected components in a planar
graph, even though the constraint states that V ≤ 100, 000, E ≤ 100, 0002, the standard DFS solution still runs
under one second (in competitive programming, we assume that 1 million operations can be done in 1 second
(Halim & Halim 2013)).

4.1.2 Maximum Clique problem

The Maximum Clique problem requires us to find the maximum set of vertices in a graph, such that every pair of
vertices in the set is directly connected by an edge. By reduction from vertex cover, the maximum clique problem
on general graph is NP-hard. However, it is easy to solve this problem in planar graph. Consider the problem
of colouring a graph such that no two adjacent vertices have the same colour. Note that if there is a clique of
size k in a graph, the set of the vertices inside the clique must be coloured with k colours. Therefore, the entire
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every ‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is 
a contiguous sequence, assuming that we have removed all ‘right’ vertices which are 
not visitable from any ‘left’ vertex. With this property, there is a 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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4.2. Bipartite Graph
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of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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  such that all edges connect a vertex from 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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  and a vertex from 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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 . Some 
problems have a bipartite graph as an input although the problem statement does not 
explicitly state that the given input graph must be bipartite. The problem that we used 
as an introduction for this paper, IOI 2014 Friend is a very good example. The construc-
tion of the graph in subtask 5 of this problem implicitly ensures that the final graph 
will always be bipartite. There are several graph problems that are NP-hard for general 
graph but solvable in polynomial time if the graph is bipartite. Since bipartite graph and 
bipartite matching was recently included in IOI 2015 syllabus (Forišek, 2015), we can 
expect that this type of problem may be conceived in the near future of IOI. We will 
take a look at several examples.

4.2.1. Vertex Cover and Independent Set (and Maximum Matching)
As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-
INDEPENDENTSET problems are NP-hard. However, both of these problems are 
solvable in polynomial time on bipartite graph. By Konig’s theorem, the size of the 
minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite 
matching (Bondy and Murty, 1976), and the size of the maximum independent set in 

Fig. 5. An instance of problem ‘Traffic’. In this example, the expected output is {4, 4, 0, 2}, 
since the top ‘left’ vertex can visit 4 ‘right’ vertices, the second top ‘left’ vertex can visit 4 
‘right’ vertices, the third top ‘left’ vertex cannot visit any ‘right’ vertex, and the bottom ‘left’ 
vertex can visit 2 ‘right’ vertices.
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bipartite graph is equal to the number of the vertices minus the size of the maximum 
bipartite matching. Therefore, both problems are equivalent to finding the size of the 
maximum bipartite matching, which can be solved in 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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  time. Finding the size 
of the maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maxi-
mum-Flow algorithm is much simpler to solve, as compared to using Edmonds Blos-
som algorithm on general graph. This is actually the solution of the 5th subtask of IOI 
2014 Friend.

4.3. Directed Acyclic Graph

A directed acyclic graph is a directed graph that does not contain any cycle. Similar to 
planar and bipartite graphs, there are several graph problems that are much easier to 
solve if the graph is a directed acyclic graph.

4.3.1. Minimum Path Cover
MIN-PATH-COVER is a problem that requires us to find the minimum number of 
vertex-disjoint paths needed to cover all of the vertices in a graph. By a simple re-
duction from Hamiltonian Path, this problem is NP-hard. A graph has a Hamiltonian 
Path if and only if we only need one path to cover all of the vertices. However, this 
problem can be solved in polynomial time for a directed acyclic graph. For a graph 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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 , we create a new graph 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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 . Then it can be shown by Konig’s Theorem that 

of O(V 2). It is very difficult to find a solution (if any) faster than O(V 2) for this problem. However, there is an
important constraint on the problem. The graph given in this problem is always a planar graph. We first relabel
the ‘right’ vertices in ascending order according to the y-coordinate. The planar properties ensures that for every
‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.

4.4 Miscellaneous
4.4.1 Special case of CNF-SAT problem

We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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O(V log V ) solution (CEOI 2011 Solutions n.d.).

4.2 Bipartite Graph
Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.

4.2.1 Vertex Cover and Independent Set (and maximum matching)

As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
are NP-hard. However, both of these problems are solvable in polynomial time on bipartite graph. By Konig’s
theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
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to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
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shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
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‘left’ vertex, the sequence of ‘right’ visitable vertices from that ‘left’ vertex is a contiguous sequence, assuming that
we have removed all ‘right’ vertices which are not visitable from any ‘left’ vertex. With this property, there is a
O(V log V ) solution (CEOI 2011 Solutions n.d.).
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Bipartite graph is a graph in which the vertices can be partitioned into two disjoint sets U and V such that all
edges connect a vertex from U and a vertex from V . Some problems have a bipartite graph as an input although
the problem statement does not explicitly state that the given input graph must be bipartite. The problem that we
used as an introduction for this paper, IOI 2014 Friend is a very good example. The construction of the graph
in subtask 5 of this problem implicitly ensures that the final graph will always be bipartite. There are several
graph problems that are NP-hard for general graph but solvable in polynomial time if the graph is bipartite. Since
bipartite graph and bipartite matching was recently included in IOI 2015 syllabus (Forisek 2015), we can expect
that this type of problem may be conceived in the near future of IOI. We will take a look at several examples.
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As we discussed in an earlier section, both of the MIN-VERTEX-COVER and MAX-INDEPENDENT-SET problems
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theorem, the size of the minimum vertex cover in bipartite graph is equal to the size of the maximum bipartite
matching (Bondy & Murty 1976), and the size of the maximum independent set in bipartite graph is equal to the
number of the vertices minus the size of the maximum bipartite matching. Therefore, both problems are equivalent
to finding the size of the maximum bipartite matching, which can be solved in O(V 3) time. Finding the size of the
maximum matching in bipartite graph using Hopcroft-Karp algorithm or Maximum-Flow algorithm is much simpler
to solve, as compared to using Edmonds Blossom algorithm on general graph. This is actually the solution of the
5th subtask of IOI 2014 Friend.

4.3 Directed Acyclic Graph
A directed acyclic graph is a directed graph that does not contain any cycle. Similar to planar and bipartite graphs,
there are several graph problems that are much easier to solve if the graph is a directed acyclic graph.

4.3.1 Minimum Path Cover

MIN-PATH-COVER is a problem that requries us to find the minimum number of vertex-disjoint paths needed
to cover all of the vertices in a graph. By a simple reduction from Hamiltonian Path, this problem is NP-hard.
A graph has a Hamiltonian Path if and only if we only need one path to cover all of the vertices. However, this
problem can be solved in polynomial time for a directed acyclic graph. For a graph G = (V, E), we create a new
graph G = (Vout ∪ Vin, E), where Vout = Vin = V and E = {(u, v) ∈ Vout × Vin : (u, v) ∈ E}. Then it can be
shown by Konig’s Theorem that G has a matching of size m if and only if there exist |V | − m vertex-disjoint
paths that cover all of the vertices in G.
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We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. This problem requires the
contestant to find a solution with the minimum number of true variables that satisfy a CNF-SAT problem with up
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4.4. Miscellaneous

4.4.1. Special Case of CNF-SAT Problem
We will use Google Code Jam 2008 Round 1A ‘Milkshake’ problem for this example. 
This problem requires the contestant to find a solution with the minimum number of 
true variables that satisfy a CNF-SAT problem with up to 2,000 variables (Google 
Code Jam 2008 Round 1A, ‘Milkshake’ problem, n.d.). The CNF-SAT is a satisfiability 
problem given in a conjunctive normal form (i.e. conjunction of disjunction of literals) 
which was proven to be NP-hard (Cook, 1971). Therefore, it is unlikely that there is an 
algorithm to solve a CNF-SAT problem with 2,000 variables in less than 8 minutes3. 
However, there is a special property in this problem, in which at most one unnegated 
literal exists in each clause. Therefore, all clauses can be converted into Horn clauses. 
With this property, a linear time algorithm exists. (Google Code Jam 2008 Round 1A, 
‘Milkshake’ solution, n.d.).

3	 In Google Code Jam, contestants are given 8 minutes to produce the output upon downloading the input.
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5. Conclusion

In conclusion, we can use a well-known reduction technique to prove that a problem that 
we are currently attempting to solve is impossible (or at least it is very hard such that no 
people has been able to solve it for more than 40 years). In competitive programming 
(including IOI), understanding this technique is essential so that we will not be stuck at 
trying to solve an impossible problem, thus prompting us to find another way to solve 
the problem. To prove that a problem is NP-hard, it is good to know as many NP-hard 
problems as possible, so that we can reduce from any one of the problems that we know 
to the new problem. Some of the classic NP-hard problems include 3-SAT, Vertex Cover, 
Independent Set, and Subset Sum. After realizing that the problem is NP-hard, we must 
be able to find the special case that makes the problem solvable. We must be able to find 
a special property that breaks the reduction proof. Having a lot of practice on these kind 
of problems will help us to familiarize with the possibilities of a special case. Some of 
the common special cases include planar, bipartite, and directed acyclic graph.
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