
1	/	3

International	Olympiad	in	Informatics	2016
12-19th	August	2016
Kazan,	Russia
day1_2

railroadrailroad
Country:	USA

Roller	Coaster	Railroad
Anna	is	working	in	an	amusement	park	and	she	is	in	charge	of	building	the	railroad
for	a	new	roller	coaster.	She	has	already	designed	 	special	sections	(conveniently
numbered	from	 	to	 )	that	affect	the	speed	of	a	roller	coaster	train:	lift	hills,
brake	runs,	and	many	others.	She	now	has	to	put	them	together	and	propose	a	final
design	of	the	roller	coaster.

For	each	 	between	 	and	 ,	inclusive,	the	special	section	 	has	two	properties:
when	entering	the	section,	there	is	a	speed	limit:	the	speed	of	the	train	must	be
at	most	 	km/h	(kilometers	per	hour),
when	leaving	the	section,	the	speed	of	the	train	is	exactly	 	km/h,	regardless	of
the	speed	at	which	the	train	entered	the	section.

The	finished	roller	coaster	should	contain	each	of	the	 	sections	exactly	once.
Moreover,	there	should	be	a	track	between	every	two	consecutive	sections.	Anna
should	choose	the	order	of	the	 	sections	and	then	decide	the	lengths	of	each	track.
The	length	of	a	track	is	measured	in	meters	and	may	be	equal	to	any	non-negative
integer	(possibly	zero).

Each	meter	of	the	track	between	two	special	sections	slows	the	train	down	by	1	km/h.
At	the	beginning	of	the	ride,	the	train	enters	the	first	special	section	going	at	1	km/h.

The	final	design	must	satisfy	the	following	requirements:
the	train	does	not	violate	any	speed	limit	when	entering	the	special	sections;
the	speed	of	the	train	is	positive	at	any	moment	until	it	reaches	the	end	of	the
last	special	section.

In	all	subtasks	except	subtask	3,	your	task	is	to	find	the	order	of	the	 	special	sections
and	the	lengths	of	tracks	between	consecutive	sections,	in	such	a	way	that	the	total
length	of	tracks	between	sections	is	as	small	as	possible.	In	subtask	3	you	only	need	to
check	whether	there	exists	a	valid	roller	coaster	design,	such	that	each	track	has	zero
length.

Implementation	details
You	should	implement	the	following	function	(method):

int64	plan_roller_coaster(int[]	s,	int[]	t).
s:	array	of	length	 ,	maximum	allowed	entry	speeds.
t:	array	of	length	 ,	exit	speeds.

n

0 n − 1

i 0 n − 1 i

si

ti

n

n

n

n

n



2	/	3

The	function	should	return	the	minimum	possible	total	length	of	all	tracks
between	special	sections	(in	subtask	3	you	can	output	any	positive	integer	if
answer	is	not	zero,	see	details	in	the	Subtasks	section).

For	the	C	language	the	function	signature	is	slightly	different:
int64	plan_roller_coaster(int	n,	int[]	s,	int[]	t).

n:	the	number	of	elements	in	s	and	t	(i.e.,	the	number	of	special	sections),
the	other	parameters	are	the	same	as	above.

Example
int64	plan_roller_coaster([1,	4,	5,	6],	[7,	3,	8,	6])
It	this	example	there	are	four	special	sections.	The	best	solution	is	to	build	them	in
the	order	 ,	and	to	connect	them	by	tracks	of	lengths	 	respectively.	This
is	how	a	train	travels	along	this	railroad	track:

Initially	the	speed	of	the	train	is	 	km/h.
The	train	starts	the	ride	by	entering	special	section	 .
The	train	leaves	section	 	going	at	 	km/h.
Then	there	is	a	track	of	length	 	m.	When	the	train	reaches	the	end	of	the	track,
its	speed	is	 	km/h.
The	train	enters	special	section	 	going	at	 	km/h	and	leaves	it	at	the	same
speed.
After	leaving	section	 ,	the	train	travels	along	a	 m	long	track.	Its	speed
decreases	to	 	km/h.
The	train	enters	special	section	 	going	at	 	km/h	and	leaves	it	going	at	
km/h.
Immediately	after	special	section	 	the	train	enters	special	section	 .
The	train	leaves	section	 .	Its	final	speed	is	 	km/h.

The	function	should	return	the	total	length	of	track	between	special	sections:	
.

Subtasks

In	all	subtasks	 	and	 .
1.	 (11	points):	 ,
2.	 (23	points):	 ,
3.	 (30	points):	 .	In	this	subtask	your	program	only	needs	to	check

whether	the	answer	is	zero	or	not.	If	the	answer	is	not	zero,	any	positive	integer
answer	is	considered	correct.

4.	 (36	points):	 .

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

0,3,1,2 1,2,0

1
0

0 7
1

6
3 6

3 2
4

1 4 3

1 2
2 8

1 + 2 + 0 = 3

1 ≤ ≤si 109 1 ≤ ≤ti 109

2 ≤ n ≤ 8
2 ≤ n ≤ 16
2 ≤ n ≤ 200000

2 ≤ n ≤ 200000



3	/	3

line	1:	integer	 .
line	2	+	i,	for	 	between	 	and	 :	integers	 	and	 .

n

i 0 n − 1 si ti


