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Maximum Flow Problems in CP

● Problems are interesting

● High variation of problem ideas (vs spanning tree algorithms, shortest paths, etc) 

● Harder problems require faster algorithms



Timeline for Tidal Flow



Algorithms in Competitive Programming

● Easy to teach

● Easy to implement

● Efficient in practice



Example: Fenwick Tree

void update(int i, int delta) {

while (i < size) {

table[i] += delta;

i += i&-i;

}

}

void sum(int i) {
int sum = 0;
while (i > 0) {

sum += table[i];
i -= i&-i;

}
return sum;

}



Overview

● Review of the maximum flow problem and blocking flows

● Tidal Flow

● Theoretical performance

● Empirical performance

● Open questions



Maximum Flow

● Input: (𝐺, 𝑠, 𝑡, 𝑐𝑎𝑝)
● 𝐺 = 𝑉, 𝐸

● 𝑠, 𝑡 ∈ 𝑉

● 𝑐𝑎𝑝: 𝐸 → ℝ+

● Output: 𝑓: 𝐸 → ℝ∗

● Constraints:
● Capacity Constraint: 𝑓 𝑒 ≤ 𝑐𝑎𝑝(𝑒) for all 𝑒 ∈ 𝐸

● Conservation Constraint: σ𝑓 𝑤, 𝑣 = σ𝑓(𝑣, 𝑢) for all 𝑣 ∈ 𝑉 ∖ 𝑠, 𝑡

● Maximize: σ𝑓(𝑠, 𝑣) for all 𝑣 ∈ 𝑉



Maximum Flow: Reverse Edges



Maximum Flow: Reverse Edges

𝑓 𝑤, 𝑣 = −𝑓 𝑣,𝑤 for all 𝑤, 𝑣 ∈ 𝐸



Maximum Flow: Residual Capacities

𝑐𝑎𝑝𝑟 𝑤, 𝑣 = 𝑐𝑎𝑝 𝑤, 𝑣 − 𝑓 𝑤, 𝑣 for all 𝑤, 𝑣 ∈ 𝐸



Augmenting Paths



Augmenting Paths



Augmenting Paths



Augmenting Paths



Augmenting Paths: Runtime

● Arbitrary Paths: 𝑂 𝑓𝑚

● Shortest Paths: 𝑂(𝑛𝑚2)



Dinitz Algorithm



Level Graph



Level Graph



Level Graph



Level Graph



Dinitz

● Blocking flows discovered in 𝑂(𝑛𝑚) through modified DFS

● At most 𝑂(𝑛) level graphs possible

● Runtime:  𝑂(𝑛2𝑚)



Tidal Flow

● Same goal as Dinitz: block the level graph

● Try blocking in 𝑂(𝑚) runtime

● Failure is OK! Keep trying.



Tidal Flow: Conceptual Metaphor

“A (conceptual) metaphor is a cognitive process that occurs when a subject seeks understanding of one 

idea (the target domain) in terms of a different, already known idea (the source domain). The subject 

creates a conceptual mapping between the properties of the source and the target, thereby gaining 

new understanding about the target.” (Forišek and Stienová, 2013)

Here the metaphor is oceanic tides.



Tide Cycle

● High Tide

● Low Tide

● Erosion



Tide Phase: High Tide

● For each vertex, compute ℎ: 𝑉 → 𝑅∗

ℎ 𝑣 = ෍

𝑤∈𝐺(𝑣)

min(𝑐𝑎𝑝 𝑤, 𝑣 − 𝑓 𝑤, 𝑣 , ℎ(𝑤))

● Store promised flow 𝑝: 𝐸 → 𝑅∗

𝑝 𝑤, 𝑣 = min(𝑐𝑎𝑝 𝑤, 𝑣 − 𝑓 𝑤, 𝑣 , ℎ 𝑤 )



High Tide
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Low Tide



Low Tide



Low Tide
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Erosion



Erosion



Implementation



Implementation: High Tide

ℎ 𝑣 = 0 for all 𝑣 ∈ 𝑉;

ℎ 𝑠𝑜𝑢𝑟𝑐𝑒 ⟵ ∞;

foreach 𝑒𝑑𝑔𝑒 𝑒𝑖 𝑤, 𝑣 ∈ 𝐸 do

𝑝(𝑒𝑖) ⟵ min(𝑐𝑎𝑝 𝑒𝑖 − 𝑓 𝑒𝑖 , ℎ(𝑤));

ℎ 𝑣 ⟵ ℎ 𝑣 + 𝑝 𝑒𝑖 ;

end



Implementation: Low Tide

𝑙 𝑣 = 0 for all 𝑣 ∈ 𝑉

𝑙 𝑠𝑖𝑛𝑘 ⟵ ℎ(𝑠𝑖𝑛𝑘); 

foreach 𝑒𝑑𝑔𝑒 𝑒𝑖 𝑤, 𝑣 ∈ 𝐸 in reverse order do

𝑝(𝑒𝑖) ⟵ min(𝑝 𝑒𝑖 , ℎ 𝑤 − 𝑙 𝑤 , 𝑙(𝑣));

𝑙 𝑣 ⟵ 𝑙 𝑣 − 𝑝 𝑒𝑖 ;

𝑙 𝑤 ⟵ 𝑙 𝑤 + 𝑝(𝑒𝑖);

end



Implementation: Erosion

ℎ 𝑣 = 0 for all 𝑣 ∈ 𝑉;

ℎ 𝑠𝑜𝑢𝑟𝑐𝑒 ⟵ 𝑙(𝑠𝑜𝑢𝑟𝑐𝑒);

foreach 𝑒𝑑𝑔𝑒 𝑒𝑖 𝑤, 𝑣 ∈ 𝐸 do

𝑝 𝑒𝑖 ⟵min(𝑝 𝑒𝑖 , ℎ(𝑤));

ℎ 𝑤 ⟵ ℎ 𝑤 − 𝑝(𝑒𝑖);

ℎ 𝑣 ⟵ ℎ 𝑣 + 𝑝 𝑒𝑖 ;

𝑓 𝑒𝑖 ⟵ 𝑓 𝑒𝑖 + 𝑝(𝑒𝑖);

𝑓 𝑟𝑒𝑣 𝑒𝑖 ⟵ 𝑓 𝑟𝑒𝑣 𝑒𝑖 − 𝑝(𝑒𝑖);

end



Run-time Analysis

● Shortest Augmenting Path: 𝑂(𝑛𝑚2)



Bounding Tide Cycles



Bounding Tide Cycles

Requires 𝑂
𝑛

log 𝑛
tide cycles.



Experiments

● Six suites of tests

● 200 tests per suite (10 different values of 𝑛)

● Experiments run against five other algorithms

● Also included a version of Tidal Flow without heuristic function ℎ

● Each algorithm run for a maximum of 20 seconds



Test Suites



Bipartite Matching Suites

● Sparse versus dense

● Unit versus high capacity



Flow Algorithms

● Shortest Augmenting Path (Edmonds and Karp, 1972)

● Dinitz Algorithm (Dinitz, 1970)

● Preflow-Push (Goldberg and Tarjan, 1988)

● Preflow-Push with Gap Heuristic (Goldberg and Tarjan, 1988)

● Improved Shortest Augmenting Path (Orlin and Ahuja, 1987)



Results: Dense High Capacity BPM



Results: Sparse Unit BPM



Open Questions

● Empirical study is only preliminary

● Bounding tide cycles: 𝑂
𝑛

log 𝑛
versus 𝑂(𝑚)

● Empirical results suggest 𝑂 𝑛𝑚2 runtime is not tight

● Does a better ℎ exist?



Questions?


