
Tidal Flow: A Fast and
Teachable Maximum Flow
Algorithm
Matthew C. Fontaine

Blog: http://algorithms-live.blogspot.com/

Channel: https://www.youtube.com/algorithmslive

http://algorithms-live.blogspot.com/
https://www.youtube.com/algorithmslive

Maximum Flow Problems in CP

● Problems are interesting

● High variation of problem ideas (vs spanning tree algorithms, shortest paths, etc)

● Harder problems require faster algorithms

Timeline for Tidal Flow

Algorithms in Competitive Programming

● Easy to teach

● Easy to implement

● Efficient in practice

Example: Fenwick Tree

void update(int i, int delta) {

while (i < size) {

table[i] += delta;

i += i&-i;

}

}

void sum(int i) {
int sum = 0;
while (i > 0) {

sum += table[i];
i -= i&-i;

}
return sum;

}

Overview

● Review of the maximum flow problem and blocking flows

● Tidal Flow

● Theoretical performance

● Empirical performance

● Open questions

Maximum Flow

● Input: (𝐺, 𝑠, 𝑡, 𝑐𝑎𝑝)
● 𝐺 = 𝑉, 𝐸

● 𝑠, 𝑡 ∈ 𝑉

● 𝑐𝑎𝑝: 𝐸 → ℝ+

● Output: 𝑓: 𝐸 → ℝ∗

● Constraints:
● Capacity Constraint: 𝑓 𝑒 ≤ 𝑐𝑎𝑝(𝑒) for all 𝑒 ∈ 𝐸

● Conservation Constraint: σ𝑓 𝑤, 𝑣 = σ𝑓(𝑣, 𝑢) for all 𝑣 ∈ 𝑉 ∖ 𝑠, 𝑡

● Maximize: σ𝑓(𝑠, 𝑣) for all 𝑣 ∈ 𝑉

Maximum Flow: Reverse Edges

Maximum Flow: Reverse Edges

𝑓 𝑤, 𝑣 = −𝑓 𝑣,𝑤 for all 𝑤, 𝑣 ∈ 𝐸

Maximum Flow: Residual Capacities

𝑐𝑎𝑝𝑟 𝑤, 𝑣 = 𝑐𝑎𝑝 𝑤, 𝑣 − 𝑓 𝑤, 𝑣 for all 𝑤, 𝑣 ∈ 𝐸

Augmenting Paths

Augmenting Paths

Augmenting Paths

Augmenting Paths

Augmenting Paths: Runtime

● Arbitrary Paths: 𝑂 𝑓𝑚

● Shortest Paths: 𝑂(𝑛𝑚2)

Dinitz Algorithm

Level Graph

Level Graph

Level Graph

Level Graph

Dinitz

● Blocking flows discovered in 𝑂(𝑛𝑚) through modified DFS

● At most 𝑂(𝑛) level graphs possible

● Runtime: 𝑂(𝑛2𝑚)

Tidal Flow

● Same goal as Dinitz: block the level graph

● Try blocking in 𝑂(𝑚) runtime

● Failure is OK! Keep trying.

Tidal Flow: Conceptual Metaphor

“A (conceptual) metaphor is a cognitive process that occurs when a subject seeks understanding of one

idea (the target domain) in terms of a different, already known idea (the source domain). The subject

creates a conceptual mapping between the properties of the source and the target, thereby gaining

new understanding about the target.” (Forišek and Stienová, 2013)

Here the metaphor is oceanic tides.

Tide Cycle

● High Tide

● Low Tide

● Erosion

Tide Phase: High Tide

● For each vertex, compute ℎ: 𝑉 → 𝑅∗

ℎ 𝑣 = ෍

𝑤∈𝐺(𝑣)

min(𝑐𝑎𝑝 𝑤, 𝑣 − 𝑓 𝑤, 𝑣 , ℎ(𝑤))

● Store promised flow 𝑝: 𝐸 → 𝑅∗

𝑝 𝑤, 𝑣 = min(𝑐𝑎𝑝 𝑤, 𝑣 − 𝑓 𝑤, 𝑣 , ℎ 𝑤)

High Tide

High Tide

High Tide

High Tide

High Tide

High Tide

High Tide

High Tide

High Tide

High Tide

High Tide

Low Tide

Low Tide

Low Tide

Low Tide

Low Tide

Low Tide

Low Tide

Low Tide

Low Tide

Low Tide

Erosion

Erosion

Implementation

Implementation: High Tide

ℎ 𝑣 = 0 for all 𝑣 ∈ 𝑉;

ℎ 𝑠𝑜𝑢𝑟𝑐𝑒 ⟵ ∞;

foreach 𝑒𝑑𝑔𝑒 𝑒𝑖 𝑤, 𝑣 ∈ 𝐸 do

𝑝(𝑒𝑖) ⟵ min(𝑐𝑎𝑝 𝑒𝑖 − 𝑓 𝑒𝑖 , ℎ(𝑤));

ℎ 𝑣 ⟵ ℎ 𝑣 + 𝑝 𝑒𝑖 ;

end

Implementation: Low Tide

𝑙 𝑣 = 0 for all 𝑣 ∈ 𝑉

𝑙 𝑠𝑖𝑛𝑘 ⟵ ℎ(𝑠𝑖𝑛𝑘);

foreach 𝑒𝑑𝑔𝑒 𝑒𝑖 𝑤, 𝑣 ∈ 𝐸 in reverse order do

𝑝(𝑒𝑖) ⟵ min(𝑝 𝑒𝑖 , ℎ 𝑤 − 𝑙 𝑤 , 𝑙(𝑣));

𝑙 𝑣 ⟵ 𝑙 𝑣 − 𝑝 𝑒𝑖 ;

𝑙 𝑤 ⟵ 𝑙 𝑤 + 𝑝(𝑒𝑖);

end

Implementation: Erosion

ℎ 𝑣 = 0 for all 𝑣 ∈ 𝑉;

ℎ 𝑠𝑜𝑢𝑟𝑐𝑒 ⟵ 𝑙(𝑠𝑜𝑢𝑟𝑐𝑒);

foreach 𝑒𝑑𝑔𝑒 𝑒𝑖 𝑤, 𝑣 ∈ 𝐸 do

𝑝 𝑒𝑖 ⟵min(𝑝 𝑒𝑖 , ℎ(𝑤));

ℎ 𝑤 ⟵ ℎ 𝑤 − 𝑝(𝑒𝑖);

ℎ 𝑣 ⟵ ℎ 𝑣 + 𝑝 𝑒𝑖 ;

𝑓 𝑒𝑖 ⟵ 𝑓 𝑒𝑖 + 𝑝(𝑒𝑖);

𝑓 𝑟𝑒𝑣 𝑒𝑖 ⟵ 𝑓 𝑟𝑒𝑣 𝑒𝑖 − 𝑝(𝑒𝑖);

end

Run-time Analysis

● Shortest Augmenting Path: 𝑂(𝑛𝑚2)

Bounding Tide Cycles

Bounding Tide Cycles

Requires 𝑂
𝑛

log 𝑛
tide cycles.

Experiments

● Six suites of tests

● 200 tests per suite (10 different values of 𝑛)

● Experiments run against five other algorithms

● Also included a version of Tidal Flow without heuristic function ℎ

● Each algorithm run for a maximum of 20 seconds

Test Suites

Bipartite Matching Suites

● Sparse versus dense

● Unit versus high capacity

Flow Algorithms

● Shortest Augmenting Path (Edmonds and Karp, 1972)

● Dinitz Algorithm (Dinitz, 1970)

● Preflow-Push (Goldberg and Tarjan, 1988)

● Preflow-Push with Gap Heuristic (Goldberg and Tarjan, 1988)

● Improved Shortest Augmenting Path (Orlin and Ahuja, 1987)

Results: Dense High Capacity BPM

Results: Sparse Unit BPM

Open Questions

● Empirical study is only preliminary

● Bounding tide cycles: 𝑂
𝑛

log 𝑛
versus 𝑂(𝑚)

● Empirical results suggest 𝑂 𝑛𝑚2 runtime is not tight

● Does a better ℎ exist?

Questions?

