
Distributed Tasks: Introducing Distributed
Computing to Programming Competitions

Adam Karczmarz, Jakub Łącki, Adam Polak,
Jakub Radoszewski, Jakub O. Wojtaszczyk

University of Warsaw and Google Warsaw, Poland

Olympiads in Informatics conference, Kazan, Russian Federation

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 1/12



Background

Distributed (and cloud) computing is gaining much attention
nowadays.

The computing giants of today (e.g. Google, Amazon,
Facebook) do not operate on enormous mainframes, but on
networked farms of smaller servers.

Major programming competitions (e.g. the IOI, the ACM
ICPC, Google Code Jam, TopCoder’s algorithmic track,
Facebook Hacker Cup, the CodeForces) did not include any
concepts of distributed computing.

This work resulted in the introduction of distributed tasks in a
major Polish programming competition Algorithmic
Engagements (Potyczki Algorytmiczne) and of a distributed
track at Google Code Jam.

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 2/12



Distributed Tasks

Model: M = 100 nodes (machines) connected by a network.

Input: Every node has random access to input data. Usually the
whole data is too large to be accessed on a single node.

Communication: The nodes can exchange messages using a very
simple C++ API of put-send and receive-get methods.

Output: Exactly one node writes the results to the standard
output.

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 3/12



C++ API

The same code is ran on all nodes.

int NumberOfNodes ();
int MyNodeId (); // 0 .. NumberOfNodes () - 1

Constructing messages:

void PutChar(int target , char value);
void PutInt(int target , int value);
void PutLL(int target , long long value);

Sending a message (non-blocking):

void Send(int target);

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 4/12



C++ API

Receiving a message (blocking, via buffers):

int Receive(int source);

If source is -1, it receives a message from any source.

Reading the message:

char GetChar(int source);
int GetInt(int source);
long long GetLL(int source);

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 5/12



Technical Restraints

Why M = 100 nodes?

Large enough for a factor-of-M speedup to be noticeable.
Small enough to have that many machines.

How many messages can be sent?

Sending a small message will take roughly 3-5ms. So we allow
around 1000 messages and a few MB of messages per node.

What is the time limit?

Task statement contains a guarantee on the running time of
input access methods (usually tens of nanoseconds). The
total time limit is a few seconds (measured until all the
processes terminate).

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 6/12



Technical Restraints

Why M = 100 nodes?
Large enough for a factor-of-M speedup to be noticeable.
Small enough to have that many machines.

How many messages can be sent?

Sending a small message will take roughly 3-5ms. So we allow
around 1000 messages and a few MB of messages per node.

What is the time limit?

Task statement contains a guarantee on the running time of
input access methods (usually tens of nanoseconds). The
total time limit is a few seconds (measured until all the
processes terminate).

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 6/12



Technical Restraints

Why M = 100 nodes?
Large enough for a factor-of-M speedup to be noticeable.
Small enough to have that many machines.

How many messages can be sent?
Sending a small message will take roughly 3-5ms. So we allow
around 1000 messages and a few MB of messages per node.

What is the time limit?

Task statement contains a guarantee on the running time of
input access methods (usually tens of nanoseconds). The
total time limit is a few seconds (measured until all the
processes terminate).

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 6/12



Technical Restraints

Why M = 100 nodes?
Large enough for a factor-of-M speedup to be noticeable.
Small enough to have that many machines.

How many messages can be sent?
Sending a small message will take roughly 3-5ms. So we allow
around 1000 messages and a few MB of messages per node.

What is the time limit?
Task statement contains a guarantee on the running time of
input access methods (usually tens of nanoseconds). The
total time limit is a few seconds (measured until all the
processes terminate).

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 6/12



Basic Example

Problem: Compute the minimum of n integers (n ≤ 109).

Functions available on all nodes:

int GetN();
int GetElem(int index);

Inefficient single-node solution:

int n = GetN();
int minimum = INFTY;
for (int i = 0; i < n; ++i)
minimum = min(minimum , GetElem(i));

cout << minimum << endl;

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 7/12



Basic Example

Problem: Compute the minimum of n integers (n ≤ 109).

Functions available on all nodes:

int GetN();
int GetElem(int index);

Inefficient single-node solution:

int n = GetN();
int minimum = INFTY;
for (int i = 0; i < n; ++i)
minimum = min(minimum , GetElem(i));

cout << minimum << endl;

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 7/12



Basic Example

Problem: Compute the minimum of n integers (n ≤ 109).

Functions available on all nodes:

int GetN();
int GetElem(int index);

Inefficient single-node solution:

int n = GetN();
int minimum = INFTY;
for (int i = 0; i < n; ++i)
minimum = min(minimum , GetElem(i));

cout << minimum << endl;

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 7/12



Solution

int n = GetN();
int minimum = INFTY;
for (int i = 0; i < n; ++i)
minimum = min(minimum , GetElem(i));

cout << minimum << endl;

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 8/12



Solution

int M = NumberOfNodes (), no = MyNodeId (); // <--
int n = GetN();
int minimum = INFTY;
for (int i = 0; i < n; ++i)
minimum = min(minimum , GetElem(i));

cout << minimum << endl;

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 8/12



Solution

int M = NumberOfNodes (), no = MyNodeId ();
int n = GetN();
int minimum = INFTY;
for (int i = no; i < n; i += M) // <--
minimum = min(minimum , GetElem(i));

cout << minimum << endl;

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 8/12



Solution

int M = NumberOfNodes (), no = MyNodeId ();
int n = GetN();
int minimum = INFTY;
for (int i = no; i < n; i += M)
minimum = min(minimum , GetElem(i));

PutInt(0, minimum); // <--
Send (0);

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 8/12



Solution

int M = NumberOfNodes (), no = MyNodeId ();
int n = GetN();
int minimum = INFTY;
for (int i = no; i < n; i += M)
minimum = min(minimum , GetElem(i));

PutInt(0, minimum);
Send (0);
if (no == 0) { // <--
for (int p = 1; p < M; ++p) {
Receive(p);
minimum = min(minimum , GetInt(p));

}
}

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 8/12



Proof of Concept

The real challenge in setting up a new competition type is in
finding attractive problems:

that challenge the contestants’ creativity and problem-solving
skill

that do not require significant domain knowledge (in this case:
knowledge of distributed programming paradigms)

that are fun, but not tedious, to implement, once you have
the correct set of ideas.

The tasks from two editions of Algorithmic Engagements and
Distributed Track of Google Code Jam each show that there are
plenty of such tasks!

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 9/12



Task “Workshop” (Algorithmic Engagements 2014)

A cycle of length n ≤ 109 is specified using an oracle which for a
given vertex returns its two neighbours. The neighbours are
returned in an order that is not necessarily consistent with the
order of the vertices on the cycle. A number of queries are given,
each consisting of two vertices, and the task is to compute for each
query the length of the shortest path between the two vertices.

7

3

1

5

4

6

2

8

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 10/12



Backend

Input generation requirements:

Access to an arbitrary element.

Consistency across nodes, and across accesses.

Access times on the order of 100ns.

Ability to serve data with total size on the order of 10GB or
more.

The input data is generated on the fly.

The distributed and cloud computing aspect pops up also in the
grading: one can rent virtual machines and pay by the minute!

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 11/12



Backend

Input generation requirements:

Access to an arbitrary element.

Consistency across nodes, and across accesses.

Access times on the order of 100ns.

Ability to serve data with total size on the order of 10GB or
more.

The input data is generated on the fly.

The distributed and cloud computing aspect pops up also in the
grading: one can rent virtual machines and pay by the minute!

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 11/12



Backend

Input generation requirements:

Access to an arbitrary element.

Consistency across nodes, and across accesses.

Access times on the order of 100ns.

Ability to serve data with total size on the order of 10GB or
more.

The input data is generated on the fly.

The distributed and cloud computing aspect pops up also in the
grading: one can rent virtual machines and pay by the minute!

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 11/12



Thank you!

Thank you for your attention!

(More task examples with solutions are in the paper!)

A.Karczmarz, J. Łącki, A. Polak, J. Radoszewski, J.Wojtaszczyk Distributed Tasks 12/12


